Component-Based Lock Allocation

Richard L. Halpert

Christopher J. F. Pickett

Clark Verbrugge

School of Computer Science, McGill University
Montréal, Québec, Canada
{rhalpe, cpicke, clump}@sable.mcgill.ca

Abstract

The allocation of lock objects to critical sections in con-
current programs affects both performance and correctness.
Recent work explores automatic lock allocation, aiming pri-
marily to minimize conflicts and maximize parallelism by
allocating locks to individual critical section interferences.
We investigate component-based lock allocation, which al-
locates locks to entire groups of interfering critical sections.
Our allocator depends on a thread-based side effect analy-
sis, and benefits from precise points-to and may happen in
parallel information. Thread-local object information has
a small impact, and dynamic locks do not improve signifi-
cantly on static locks. We experiment with a range of small
and large Java benchmarks on 2-way, 4-way, and 8-way
machines, and find that a single static lock is sufficient for
mtrt, that performance degrades by 10% for hsqldb, that
jbb2000 becomes mostly serialized, and that for lusearch,
xalan, and jbb2005, component-based lock allocation re-
covers the performance of the original program.

1. Introduction

Achieving concurrency and scalability in parallel pro-
grams requires lock allocation: mapping locks to critical
sections. Traditionally, lock allocation is a manual process
susceptible to programmer error, and may lead to deadlock,
livelock, data races, or performance degradation. Auto-
matic lock allocation relieves programmers of this burden,
and provides an implementation of pessimistic transactions,
in which critical sections behave atomically [13,21]. This
contrasts with optimistic transactions, which default on
lock allocation and assume a single global lock, but exploit
speculative execution to achieve concurrency [15]. Recent
work examines optimal lock allocation, and proves that the
minimum lock allocation (MLA) optimization problem is
NP-hard, and the corresponding k-bounded lock allocation
(KLA) decision problem is NP-complete [11,13,30,36,37].
Heuristics may thus be required for practical use.

We focus on improving the quality of lock allocations
possible without either optimal or heuristic MLA solutions.
Specifically, we allocate locks on a per-component basis.
We find that for many benchmarks this achieves the same
runtime performance as the original program with a manu-

ally specified lock allocation. Our results suggest that paral-
lel programs often exhibit simplistic concurrent behaviour,
and that good solutions can be obtained using straightfor-
ward program analyses. Of course, MLA may be able to im-
prove on the runtime performance achieved by component-
based allocation. However, in this instance our analyses still
play two roles: 1) they reduce the size of the MLA input
problem, thereby decreasing the cost of optimal allocation;
and 2) they provide “next best” solutions that may suffice
when MLA is too expensive.

Our design is essentially top-down in that we first con-
servatively identify interfering critical sections, then use
compiler analyses to refine the solution, and finally assign
locks to interference graph components. This contrasts with
the more bottom-up approaches used by McCloskey [21],
Hicks [13], and Emmi [11], which associate locks with in-
dividual data, either manually or automatically, and then
use a subset of these locks to transform critical sections.
The approach used by Sreedhar and Zhang [30] is similar to
ours, but moves immediately to MLA and KLA [36,37]. It
does not explore the intermediate refinement of allocating
locks per graph component rather than per critical section,
rejected for its limiting effect on parallelism [36].

Our lock allocator is also flexible with respect to lock-
ing disciplines. It only requires annotations in the form of
synchronized blocks or methods, it permits nested synchro-
nization, it allocates dynamic or per-data structure locks if
possible, and it allows for use of condition variables. It does
not require locksets, which acquire and release all locks
at the beginning and end of an outer critical section, nor
does it require rwo-phase locking, in which all locks are ac-
quired before any are released. Although using multiple
locks per critical section is not a priori undesirable, it in-
troduces deadlock concerns, and related work constructs a
total ordering among lock acquisitions to break Coffman’s
circular wait condition [9]. Our allocator uses static anal-
ysis to detect when nested locking might lead to deadlock
and merges components with cyclic dependences.

1.1. Contributions

e A component-based lock allocator for Java that assigns
locks to groups of interfering critical sections. This de-
pends on precise construction of a critical section inter-
ference graph using a thread-based side effect analysis.

e Automatic synchronization elimination, a trivial conse-
quence of the approach. A component containing an iso-
lated critical section that does not interfere with itself does
not require synchronization, and results show that many
such components exist.

e A thread-local objects analysis that improves side effect
information, and a relaxed lock-oblivious form of may
happen in parallel analysis for Java, which we use to
prune false interference graph edges.

e Experimental data for five small and six large Java bench-
marks, various analysis configurations, and 2-way, 4-way,
and 8-way machines. Component-based allocation often
recovers the original program performance.

2. Related Work

For analysis and transformation we use the Soot Java
bytecode compiler framework [32]. Our allocator depends
on the built-in class hierarchy analysis (CHA) [10], context-
insensitive subset-based points-to analysis (Spark) [17], and
may happen in parallel (MHP) analysis [18].

Naumovich et al. present an algorithm for computing
MHP information for concurrent Java programs [25], and
Li provides an implementation in Soot [18]. As a refine-
ment to her run-once and run-many categorization of thread
behaviour, we further categorize run-many threads as either
run-one-at-a-time or run-many-at-a-time using a start-join
analysis; Sura et al. discover similar information in their
analysis of thread structure for sequentially consistent com-
pilation [31]. Barik proposes a scalable alternative to Nau-
movich’s analysis for Java [6], and Agarwal et al. extend
it to support X10 [2]. The unique feature of our analysis is
that it is lock-oblivious: it ignores the impact of mutual ex-
clusion and thereby overestimates MHP information. This
provides better scalability and is appropriate for a lock allo-
cator that discards existing allocations.

Chang and Choi [8] and also Salcianu and Rinard [29]
present thread-sensitive points-to analyses for Java. Our
points-to analysis, while thread-insensitive, provides input
to a thread-based side effect (TBSE) analysis that mod-
els the heap using thread-local and thread-shared partitions.
Our use of TBSE for interference identification might bene-
fit from the interprocedural thread-sensitive slicing analysis
for Java by Nanda and Ramesh [24]. We improve thread-
sensitivity using a thread-local objects (TLO) analysis that
identifies thread-local reads and writes inside critical sec-
tions. Ruf [27] and Aldrich et al. [4] find TLO information
statically effective for synchronization elimination in Java,
but not such that multithreaded runtime performance is sig-
nificantly affected. Praun and Gross provide a related object
use graph (OUG) and use it to check for conflicting and
non-conflicting object accesses [34]. It is worth revisiting
all synchronization elimination techniques in the context of
lock allocation.

One problem closely related to lock allocation is static
race detection. Naik et al. detect races in Java programs us-
ing a staged analysis that refines the set of memory access
pairs potentially involved in a race until the number of false
alarms is small [23]. Naik and Aiken later investigate a con-
ditional must not alias analysis that concludes whether two
objects are aliased from the hypothesis that two other ob-
jects are not aliased [22]. In the context of static race detec-
tion, their analysis determines whether two guarded mem-
ory regions are aliased given that the lock objects guarding
them are not aliased, and reports a race if true. Pratikakis et
al. detect races in C programs using a consistent correlation
analysis that determines which locks are held when a thread
accesses a memory location p, and whether there is some
lock [that is always held for each access to p [26]. Abadi et
al. present a type-based system for Java programs that de-
pends on annotations to detect races [1]. A tool infers these
annotations automatically, and they are input to a fixed point
computation that removes the incorrect ones using a type-
based race detector. Finally, a set of warnings is produced
using the correct annotations. Flanagan and Freund also
demonstrate that a constraint-based analysis can be used to
insert synchronized operations and correct a program con-
taining data races [12]. These techniques find memory ac-
cesses that are not properly synchronized, whereas lock al-
location examines memory accesses inside critical sections
and specifies objects to protect them. Our requirement that
input programs be correctly synchronizable by our allocator
is precisely defined by the Java Memory Model [19].

Table 1 compares recent work on lock allocation. Mc-
Closkey et al. introduce pessimistic atomic sections and
provide a tool to convert them automatically to more effi-
cient lock-based code [21]. They require annotations that
associate locks with all shared data, in addition to anno-
tations that identify atomic sections. Pessimistic atomic
sections can be nested, and dynamic locks are permitted,
namely dynamically allocated lock objects that guard dy-
namically allocated data structures. A whole-program anal-
ysis detects the use of shared data inside atomic sections,
and a provably sound transformation ensures that the right
locks are acquired according to a global total ordering. One
limitation is that a rwo-phase locking discipline is required,
such that once a lock is released for a given atomic sec-
tion, no more locks can be acquired. In a related but sig-
nificantly more radical technique, Vaziri ef al. propose that
only data be synchronized, and prove that lock operations
can be safely inserted [33].

Hicks et al. also convert atomic sections to pessimistic
transactions [13], using the same compiler analysis frame-
work as their static race detection tool [26]. Locks are
associated with abstract memory locations identified by a
pointer analysis to create locksets that protect critical sec-
tions. Locksets restrict two-phase locking by acquiring and
releasing all locks at the beginning and end of outer atomic
sections. They make two improvements, first by eliminating

Table 1. Related work on lock allocation.

work |language| compiler analysis locking discipline allocation input results
pointer[TLO|MHP|data[nested]2-phase[locksets|dynamic[CVs|heuristicl MLA [small[large| AOT|RT
[21] C yes | no | no |yes| yes yes no yes | yes no no | yes | yes | yes |yes
[13] C yes |yes | no | no | yes yes yes no no yes no | no | no | no |no
[30,36,37]|OpenMP| yes | no | yes | no | no yes yes no yes | yes yes | yes | yes | yes |yes
[11] C,Java | yes | no | no | no | yes yes no yes | no no yes | yes | yes | yes [no
current Java yes |yes | yes | no | yes no no yes |yes| yes no | yes | yes | yes |yes

synchronization on thread-local data, and second by coa-
lescing locks that are always acquired and released together.
The first improvement is comparable to applying TLO in-
formation to the construction of an interference graph. The
second is a lock minimization heuristic that eliminates re-
dundant locking. They do not permit dynamic locks, and
note that maintaining a total ordering among acquisitions
with dynamic locks may require runtime support.

Sreedhar, Zhang, et al. develop a framework for data
flow and concurrency analysis of parallel programs, and
use it to allocate locks that maximize concurrency and min-
imize serialization overhead [30, 36,37]. Their computa-
tion of a concurrency relation is comparable to MHP anal-
ysis and they apply it to data flow problems, in particular
pointer analysis and lock allocation. They use this concur-
rency information to identify critical sections with intersect-
ing read/write sets that are actually independent, and con-
struct a concurrency graph with either an interfering or non-
interfering edge between two critical section vertices. We
use a straightforward translation of their concurrency graph
where all edges indicate interference and non-interfering
edges are removed.

They compute a minimum lock allocation (MLA) such
that two vertices connected by an interfering edge have at
least one lock in common, and two vertices connected by a
non-interfering edge have no locks in common. They also
provide a k-bounded lock allocation (KLA) algorithm for
bounding the number of locks in exchange for serialization
overhead, an obvious corollary of k-colouring as used by
register allocation. They formulate MLA and KLA as inte-
ger linear programming (ILP) problems, and for a range of
randomly generated inputs compare heuristic solutions with
optimal ones provided by an industrial ILP solver. Limita-
tions include that they disallow nested locking altogether,
which impacts on the use of synchronized library code,
and that they only allocate static locks. They also anal-
yse OpenMP, and note that the interaction between aliasing
and concurrency is more complicated for Java programs.
However, they do provide a useful extension of data flow
that considers the isolation semantics of critical sections,
and describe support for condition variables and barriers in
some detail, albeit for a structured subset of OpenMP. They
claim that existing OpenMP programs often use unnamed
critical sections, thus requiring a single global lock, and that
the work therefore has practical importance [30].

Emmi et al. also examine the problem of lock alloca-
tion [11]. They build directly on McCloskey’s work by
eliminating the requirement that annotations protect shared
data. Like Zhang et al. they depend on ILP for alloca-
tion, clearly explaining how to set up MLA and KLA for
0-1 ILP while accounting for various refinements. Impor-
tantly, they find that optimal solutions are tractable for Mc-
Closkey’s larger AOLServer benchmark. They consider dy-
namic locks in some detail, avoiding deadlock by using an
accessed-before relation derived from temporal analysis of
critical sections, and favouring dynamic locks over static
locks during allocation. They also note that more precise
compiler analysis is complementary to their work.

Finally, we see lock allocation in general as complemen-
tary to optimistic concurrency and transactional memory, an
active field of research [15]. Lock allocation could be used
to reduce the overhead incurred by optimistic concurrency
in a system that executes uncontended critical or atomic
sections non-speculatively and without overhead. Although
this model differs from most transactional memory propos-
als, which incur overhead for every transaction, Martinez
and Torrellas do propose hardware for such a system [20],
and Welc et al. demonstrate a software implementation in a
Java virtual machine [35].

3. Design

Our lock allocator accepts compiled Java programs con-
sisting of .class files. Input programs must not use
volatiles, native code, or java.util.concurrent for
thread synchronization, and must contain critical sections
protecting all accesses to thread-shared state. It must be
possible to specify a lock allocation that results in correct
synchronization as defined by the Java Memory Model [19].
Any original lock allocation is discarded, and the lock allo-
cator chooses locks to produce a race-free, deadlock-free
program. This allows for newly written software to ignore
the lock allocation problem altogether, and for existing pro-
grams to benefit from automatic correction of unsafe allo-
cations. Existing programs containing fine-grained manual
allocations also provide a basis for experimental evaluation
of lock allocation strategies. Both classes of program un-
dergo unnecessary synchronization elimination.

Any form of Object.wait (), Object.notify (), or
Object.notifyAll () is safe, provided the input program
retries condition variables after waking up from a call to

wait (). After lock allocation, these calls are redirected to
the lock object protecting the immediately enclosing criti-
cal section. Additionally, calls to notify () are replaced
with calls to noti£yAll (), which guarantees that wakeup
notifications reach their intended thread without being un-
safely intercepted by some other waiting thread. Nested use
of wait () and notify () may have deadlock implications,
as described in Section 3.6.

We represent programs with a critical section interfer-
ence graph G = (V, E), where each v € V is a critical
section and each e € E is an inferference. An interfer-
ence edge between two critical sections indicates that they
might conflict at runtime, and a self loop indicates that two
or more threads compete for the same critical section. Our
initial approximation is a fully connected graph, which we
refine through a series of compiler analyses.

Interference ldentification
Thread-Local Objects Analysis
Thread-Based Side Effect Analysis

CS1——Cs2

™
CS3

Interference Pruning
May Happen in Parallel Analysis

CS1——CSs2

CS3)
l Component-Based Lock Allocation

Static Locking
Dynamic Locking

CS1——CSs2

CS3
Figure 1. Analysis pipeline.

An overview of our analysis pipeline and an example al-
location are given in Figure 1. Initially, the input program
contains a set of critical sections that we assume are safely
protected by a singleton lock object; in the figure, these are
critical sections CS1, CS2, and CS3. Interference informa-
tion is computed by a thread-based side effect (TBSE) anal-
ysis, which in turn employs a thread-local objects (TLO)
analysis, both of which depend on points-to information
and a call graph. In the example, this reveals the CS1—
CS2, CS1-CS3, and CS3-CS3 edges. False edges in the
resultant interference graph are pruned by a may happen in
parallel (MHP) analysis; consider the false CS1-CS3 edge
and CS3-CS3 self loop in the example.

This yields a set of locked components which contain in-
terfering critical sections, CS1-CS2 in the example, and a
set of unlocked components which are isolated critical sec-
tions without self loops, CS3 in the example. Component-
based lock allocation proceeds to allocate a lock to each
locked component, locking only CS1-CS2 in the exam-
ple and removing unnecessary synchronization from CS3.
Locks may be static, instantiated once per program run,
or dynamic, instantiated once per protected data structure.
The result is a correctly synchronized program with a set of
locks that is less conservative than a singleton allocation.

3.1. Information Flow Analysis

Our lock allocator uses a flow-insensitive, context-
sensitive, interprocedural information flow analysis (IFA)
as the basis of the thread-local objects analysis described
in Section 3.2. Given a pair of memory locations a and b,
IFA approximates whether the value stored in a is derived
from the value stored in b. This analysis only considers ex-
plicit information flow resulting from direct assignment or
arithmetic operations; a more accurate analysis would also
consider implicit control-based information flow [3].

Given a method to analyse, IFA generates an information
flow graph and an information flow summary. The graph
nodes represent all values manipulated by the method,
namely parameters, locals, fields, statics, and the return
value. Every assignment or return statement generates an
edge in the graph. The summary is derived from the graph
by removing local variables and collapsing strongly con-
nected components. It thus approximates all publicly ac-
cessible values manipulated by the method, namely param-
eters, fields, statics, and the return value. Our analysis dis-
tinguishes between syntactically different values but is type-
based and ignores points-to information.

At a callsite, the summaries of all target methods are
combined. This combined summary is merged with the
current graph by connecting summary parameters to call-
site arguments, the summary return value to the callsite re-
turn value, and the summary this object and fields to the
callsite receiver local. If no summary exists for some tar-
get method, then a graph and summary are recursively con-
structed. A simple conservative summary is used when back
edges in the recursion are encountered, and internal library
calls also use a conservative summary to improve runtime.

3.2. Thread-Local Objects Analysis

After initial points-to analysis and call graph construc-
tion, our lock allocator performs a thread-local objects
(TLO) analysis that serves to improve the precision of the
thread-based side effect analysis described in Section 3.3.
TLO classifies all fields as either thread-local or thread-
shared, where any field that may be accessed by more than
one thread is thread-shared and all others are thread-local.
TLO uses IFA as described in Section 3.1 to propagate this

information throughout the program. TLO information con-
tributes to interference graph quality because reads from
and writes to thread-local fields do not interfere.

TLO accepts a set of thread classes 7 that implement
the Runnable interface, and analyses each # € T indepen-
dently to determine which fields in the program may hold
thread-shared values. Initially, any field of ¢ accessed by a
method external to ¢ is classified as thread-shared, and all
other fields are classified as thread-local. The parameters
of each method in 7 are classified as thread-local unless the
method is called externally, in which case they are thread-
shared. After this initial classification, TLO queries IFA to
obtain an information flow summary for each method in ¢.
Whenever a summary indicates that a thread-shared value
flows to a thread-local field, the classification of that field is
changed to thread-shared. This propagation repeats until a
fixed point is reached.

Next, a locality context is created for each method m in
the call graph. A locality context contains a thread-shared or
thread-local classification for each field and parameter in m.
The previous classification of fields and parameters for each
m in t provides an initial set of locality contexts. Shared val-
ues are propagated from locality contexts to callsites using
the information flow graph of m, and then merged with the
locality contexts of all target methods. This interprocedural
propagation continues until a fixed point is reached.

When queried about some value u for any m, TLO starts
from the locality context of m and traverses its information
flow graph to find all information sources of u. It reports
that u is thread-shared unless all sources are thread-local
and thus u is thread-local in each ¢ that calls m.

3.3. Thread-Based Side Effect Analysis

We extend Lhotdk’s side effect analysis as implemented
in Soot [17] to a thread-based side effect (TBSE) analysis.
TBSE computes sets of (field, object) pairs that may be read
or written by individual critical sections, and these sets are
used to create the interference graph. TBSE is a points-to
analysis client, and incorporates TLO as described in Sec-
tion 3.2, a critical section nesting model, and special han-
dling of calls to library methods and static initializers.

Soot computes the side effects of statements using a sim-
ple set of data flow analyses and the output of its points-to
analysis. TBSE alters these analyses to ignore side effects
involving thread-local objects. Our nesting model allows
inner locks to be released independently of outer locks, and
accordingly TBSE also excludes the side effects of inner
critical sections.

For application calls to library interface methods, TBSE
assumes full side effects on receiver and parameter objects.
However, the side effects of internal library calls are ex-
cluded because deep library call chains and side effects in-
volving static fields both impact significantly on precision.
TBSE also excludes the side effects of static initializers be-

cause they impact on precision. Although ignoring static
initializers is unsound, they could safely be forced to exe-
cute before the code affected by our transformations.

Our allocator constructs an interference graph using
the information provided by TBSE. A vertex v is cre-
ated for every critical section, and an interference edge e
is inserted between every pair of vertices v; and v; for
which (read (v;) Nwrite(v;)) U (write(v;) N read(v;)) U
(write(v;) Nwrite(v;)) # @. This union of intersections
contains all of the data dependences between two critical
sections. When non-empty, it is stored as the contributing
read/write set of e.

3.4. May Happen in Parallel Analysis

After construction of the interference graph using thread-
based side effect information, a may happen in parallel
(MHP) analysis prunes false positive edges. Our implemen-
tation is a context-insensitive and lock-oblivious adaptation
of Li’s MHP analysis in Soot [18]. It first uses a run-once,
run-many analysis to categorize thread classes as run-once
or run-many. It then uses a start-join analysis to further cat-
egorize the run-many threads as run-one-at-a-time or run-
many-at-a-time.

Our MHP analysis is lock-oblivous in that it ignores ob-
ject synchronization, method synchronization, and calls to
any form of wait () or notify (). This allows our lock
allocator to determine which interfering critical sections re-
quire locks to prevent parallel execution, and contributes to
unnecessary synchronization elimination. This simplifica-
tion reduces the MHP analysis problem to first identifying
and categorizing threads, and then for each thread determin-
ing the set of reachable methods.

The run-once, run-many analysis iterates over the call
graph, and for each method marks each statement in the
body of the method and the method itself as either run-once
or run-many [18]. The initial approximation is run-once.
Statements inside loops and inside run-many methods are
categorized as run-many. Methods with incoming edges
from multiple callsites and methods called from run-many
statements are also categorized as run-many. These com-
plementary analyses alternate until a fixed point is reached.

Next, invocation statements s calling Thread.start ()
are used to identify and categorize distinct thread classes
t € T. If s is run-once, then ¢ is run-once. If s is run-many
but the points-to set of the receiver contains one object and
the allocation site of that object is run-once, then a singleton
Thread object reaches s and ¢ is also run-once. Otherwise,
t is run-many. As an implementation detail, 7' is input to
the TLO analysis in Section 3.2.

In the case of a run-many thread class ¢, a start-join anal-
ysis searches the method m containing the start () invo-
cation s that identified ¢ for invocation statements j calling
Thread.join(). A local must alias analysis first filters
out any j that is not guaranteed to join . A post-dominator

analysis then filters out any j that does not post-dominate
s. If some j exists after filtering, and m is not reentrant and
does not happen in parallel with itself, then ¢ is labelled run-
one-at-a-time, otherwise run-many-at-a-time. If m is later
found to happen in parallel with itself, then ¢ is reclassified
as run-many-at-a-time. Our run-one-at-a-time classification
is comparable to the single thread constraint identified by
Sura et al. [31].

The MHP analysis finally reports pairs of methods reach-
able from two or more different threads as may happen in
parallel. For this classification, each run-many-at-a-time
thread class is treated as two threads, and each other thread
class as one. This information is used to prune edges be-
tween critical sections in the interference graph whose con-
taining methods may not happen in parallel.

The above treatment differs in several ways from Li’s
work [18]. Her lock-sensitive analysis creates a whole-
program control flow graph in order to analyse synchro-
nization and wait/notify statements correctly. Our lock-
oblivious analysis works more quickly than her implemen-
tation because it does not need to create a whole-program
CFG. It also works for a wider variety of programs, because
her construction of a whole-program CFG requires that ev-
ery virtual method call be statically resolvable.

3.5. Lock Allocation

Lock allocation begins after the interference graph has
been pruned using MHP information. Our allocator assigns
locks to components at three different granularities:

e Singleton: A single static lock shared by all components.
e Static: A different static lock for each locked component.

e Dynamic: A different dynamic lock for each locked com-
ponent, reverting to static allocation if necessary.

All three granularities remove all previously existing
uses of lock objects by critical sections, and guarantee
that every critical section in a locked component is pro-
tected by some new appropriate lock object. Synchronized
methods are replaced with unsynchronized wrapper meth-
ods around synchronized blocks, and calls to wait () and
notify () are redirected to the new lock object for the
immediately enclosing critical section. We insert public
static Object fields to provide lock objects for the sin-
gleton and static granularities.

Singleton allocation is trivial: the interference graph is
ignored, and the same static lock is assigned to every critical
section in the program, including those in unlocked com-
ponents. The composition of our analysis pipeline has no
bearing on this naive allocation. Static allocation does de-
pend on the interference graph, but the actual process is also
straightforward: each locked component is assigned a dif-
ferent static lock, and synchronization is removed from un-
locked components.

Dynamic allocation builds on static allocation. For a
given locked component, each critical section must be dy-
namically lockable: it must have an object available on en-
try through which all reads and writes of the critical sec-
tion are accessible. To determine if such an object exists,
the allocator examines all statements in the critical section
that generate elements of the contributing read/write sets of
connected interference edges. Static field reads and writes
immediately disqualify the critical section. For each non-
static read and write, the accessed object is added to a set
of objects that require locking. Any object that aliases all
objects in the set is a suitable dynamic lock for the critical
section. If there exists a dynamic lock common to all criti-
cal sections then it can safely protect the entire component,
otherwise a static lock is required.

3.6. Deadlock Avoidance

The analyses discussed so far have focused on freedom
from data races. However, another necessary condition for
correct synchronization is the absence of deadlock, which
can be ensured by breaking cyclic lock acquisitions [9]. Our
lock allocator abides by a policy of minimal perturbance
when performing deadlock detection and correction. It first
allows an initial lock allocation to proceed without regard to
deadlock, then detects violations of the partial ordering of
acquisitions implied by critical section nesting, and finally
corrects deadlock by adding deadlock avoidance edges to
the interference graph and reallocating the locks.

During deadlock detection, the allocator examines all
pairs of critical sections. If a pair is nested, it records the
ordering of their locks and adds the outer critical section to
a set of critical sections associated with that ordering. Any
new ordering is then compared to all previous orderings. If
a violation is found, it indicates potential deadlock, and a
deadlock avoidance edge is inserted between the outer criti-
cal section of the new ordering and every critical section as-
sociated with the violated ordering. Lock allocation restarts
after all pairs are examined if any edges were added.

A deadlock avoidance edge is treated like an interference
edge for a static field, and must be protected by a static lock.
This effectively merges any graph components that gener-
ate a cycle. This technique is suitable for component-based
allocation, but we also intend to use it for fine-grained allo-
cations involving multiple locks per critical section.

Our deadlock detection algorithm handles typical nested
mutual exclusion deadlock. However, it does not handle
nested wait/notify deadlock, which occurs if a thread waits
on one lock while holding others, and the locks it holds
prevent other threads from reaching the necessary call to
notifyall (). This type of deadlock can be avoided by in-
serting an edge between the outer critical sections prevent-
ing access to notifyall () and the inner critical section
containing the call to wait (). None of the benchmarks we
experiment with exhibit this behavior.

Table 2. Benchmarks.

| name | critical sections | description | source |
pcmab 2 25 producers and 25 consumers connect via an aspect Sable
roller 6 7 passenger threads compete for 7 seats in 1 roller coaster thread Sable
traffic 24 1 car thread and 1 driver thread navigate together around a rotary Sable
bank 8 8 threads transfer funds between two accounts Doug Lea
sync 16 8 threads increment a counter, synchronized on an object or a method | Java Grande
mtrt 6 2 threads render a raytraced image SPEC
hsqldb 269 20 threads run transactions against a banking application DaCapo
lusearch 88 32 threads search a large index for 3500 words DaCapo
xalan 73 8 threads perform XSL transforms DaCapo
jbb2000 241 Npeak through 2 xNpeqx threads perform middleware operations SPEC
jbb2005 187 CPUpax through 2 x CPUy,ax threads perform middleware operations SPEC

4. Experimental Evaluation

We use three different x86_64 SMP machines for exper-
imental evaluation. Our 2-way machine has one dual-core
2.0 GHz AMD Athlon 64 X2 3800+ processor, runs Ubuntu
6.06 with a Linux 2.6.15 kernel, and uses Sun’s 64-bit
1.5.0_.06 JVM. Our 4-way machine has four 1.8 GHz AMD
Opteron 844 processors, runs Ubuntu 7.04 with a Linux
2.6.20 kernel, and uses Sun’s 64-bit 1.5.0.06 JVM. Our 8-
way machine has four dual-core 2.0 GHz AMD Opteron
870 processors and uses Sun’s 64-bit 1.5.0_.12 JVM. For
jbb2000 it runs RHEL 4.0 with a Linux 2.6.9 kernel, and
for all other benchmarks it runs 64-bit Windows Server
2003 Enterprise Edition. These environments are fairly het-
erogenous and our results indicate both system-dependent
behaviour and broader trends. Complementary experiments
would investigate scalability on the same machine by dis-
abling processors or using CPU affinity masks. We exper-
imented briefly with a 16-way POWERS machine running
AIX 5.3, but found brittleness in the interaction of Soot,
DaCapo, and IBM’s 1.5.0 JVM.

We use eleven different multithreaded benchmarks from
various sources, as shown in Table 2. The first five are
smaller and contention heavy. The three Sable benchmarks
were developed internally: pcmab stresses thread schedul-
ing, producer/consumer thread coordination, and Aspect]
1.5 performance, and roller and traffic are both simula-
tions of high contention situations. bank is a micro bench-
mark derived from Lea’s ATApplet [16], in which each
thread makes a random account transaction and then calls
Thread.yield () one million times. For these four bench-
marks we measure the time of one program run. sync is the
only benchmark from the Java Grande Forum multithreaded
benchmark suite that exercises lock-based synchronization.
It reports two throughput metrics, object synchronizations
per second and method synchronizations per second, and
we measure them individually.

The next six are larger Java benchmarking standards.
We include mtrt from SPEC JVMO9S, the only benchmark
in the suite with a multithreaded workload, and measure

the time of the first iteration at input size 100. We use all
three benchmarks with multithreaded workloads from ver-
sion 2006-10-MR2 of DaCapo [7], namely hsqldb, luse-
arch, and xalan, and measure the time of the first itera-
tion at the default input size. We use the -xdeps pack-
aging of DaCapo suitable for Soot transformation, and note
that extra care is required to analyse and run all application
classes properly: hsqldb loads its main driver by reflection,
and xalan is also contained in the JVM class libraries. Fi-
nally, we include SPEC JBB2000 and JBB2005, which run
multiple fixed-length iterations iternally, each increasing the
number of threads by one. For jbb2000, we use the offi-
cial metric that averages all points from Npeak, the iteration
with peak throughput and N threads, through 2 x Npeax. For
Jjbb2005, we use the official metric that averages all points
from CPU .« through 2x CPU . threads.

We perform thirteen different experiments on each
benchmark. An unprocessed experiment simply measures
raw performance without transformation. A control exper-
iment processes all class files with Soot but does not per-
form lock allocation. There remain eleven allocation exper-
iments: singleton, a single static lock, and then both static
(sta) and dynamic (dyn) variants of five different analysis
pipeline configurations. These configurations are: 1) cha,
which uses class hierarchy analysis (CHA) [10] to deter-
mine points-to information, and then our thread-based side-
effect (TBSE) analysis; 2) spk, which uses Spark [17] to de-
termine points-to information, and then TBSE; 3) spk-tlo,
which is spk with thread-local objects (TLO) analysis en-
abled; 4) spk-mhp, which is spk with may happen in parallel
(MHP) analysis enabled; and 5) spk-tlo-mhp, which is spk
with both TLO and MHP enabled. CHA is included to test
whether the more precise points-to information provided by
Spark has an effect on allocations using TBSE alone. The
TLO and MHP analyses depend on Spark, and we do not
perform cha-tlo, cha-mhp, or cha-tlo-mhp experiments.

All benchmarks are transformed twelve times with Soot,
once for control, and eleven times for the allocation exper-
iments. We use a 2.0 GHz machine for the transformations
with a 1 GB heap, except for spk-tlo-* on hsgldb which re-

quire an 8 GB heap, and show results in Table 3. For those
experiments where the lock allocation differs, we also mea-
sure runtime performance. Each benchmark runs 50 times
per differing allocation and per machine with a 1 GB heap,
except for jbb2000 and jbb2005 which run only 5 times due
to both their excessive length and relative stability. The
singleton experiment for jbb2005 requires that we disable
bytecode verification, a peculiar transformation artifact that
we do not investigate. We find a significant performance
difference between unprocessed and control, and compare
the performance of allocation experiments to control to ex-
clude unrelated factors. Figure 2 shows normalized slow-
downs against control, as well as 95% confidence intervals
for the differences between means. These intervals are plot-
ted as offsets against the control mean, and when they cross
1.0 the difference between means is not statistically signifi-
cant. For sync, jbb2000, and jbb2005, we report changes in
inverse throughput rather than execution time.

Our source code is available in revision 2995 of
Soot [32]. In the interest of encouraging external repeata-
bility we are also making available our benchmarks, run
scripts, raw data, and data processing scripts.

4.1. Static Results

Table 3 shows the effect of different analysis pipeline
configurations on interference graph construction and lock
allocation. We report only the dynamic allocation for each
configuration, as the static allocation is identical save that
all dynamic locks become static. We include a single mea-
sure of analysis time on a 2.0 GHz machine, and find it ac-
ceptable in all cases except one, generally under 2 minutes
for small benchmarks and 5 minutes for large ones. The
exception is for spk-tlo-* on hsqldb; some feature of our
TLO algorithm or implementation does not scale well to
this problem.

The graph characteristics column of Table 3 illustrates
the effect that introducing new pipeline components has
on interference graph evolution. |V is constant for each
benchmark, corresponding to the number of critical sections
in Table 2, and indicates the size of the interference graph
construction problem. | E| is the number of edges in the final
interference graph, and |E|/|V| is graph density, ranging
from O to |V|?, a suitable graph quality metric. The weight
of any edge e € E is the number of fields involved in its
contributing read/write set, and >_ weight(e) indicates the
size of the dynamic lock allocation problem. Most bench-
marks exhibit reduced graph density and summed edge
weight as more sophisticated analyses are introduced, al-
though not necessarily at every stage. Switching from CHA
to Spark has the largest effect, and including MHP has the
second largest effect.

The graph components column illustrates the effect that
interference graph quality has on lock allocation. A con-
nected set of vertices is a locked component, and an iso-

lated vertex with no self loop is an unlocked component.
The allocator assigns one lock to each locked component,
either static or dynamic. A set of N locked components C
is shown as N:[|Cq]|...|Cy]|]. For example, the spk-* con-
figurations of roller have three statically locked components
with two critical sections each, shown as 3:[2 2 2].

Empirically, as graph density decreases, the tofal number
of graph components increases monotonically towards |V |:
locked components split into isolated locked and unlocked
sub-components as internal edges are removed. Although
lower graph density and summed edge weight should intu-
itively allow for the number of dynamic locks to increase, in
practice these compete with unlocked components. For the
seven allocations with dynamic locks, only traffic and sync
increase dynamic lock count with more sophisticated anal-
yses; bank remains constant, hsgldb decreases from seven
to two, and lusearch, jbb2000, and jbb2005 all decrease to
zero. Over eleven benchmarks, Spark has an impact on the
lock allocations of nine, MHP on eight, and TLO only on
two, hsqldb and jbb2005.

Nine out of eleven benchmarks have unlocked compo-
nents, which often account for a significant fraction of both
| V| and the total number of components. These are isolated
critical sections that either lie in dead code, interfere only
with critical sections with which they may not happen in
parallel, or do not read or write thread-shared data. In the
second and third cases, synchronization elimination will re-
duce locking overhead, but the performance improvement is
generally expected to be negligible. This is due to optimiza-
tions in all production and many research JVMs for uncon-
tended and unshared locks [5, 14,28]. The primary benefit
of synchronization elimination is a more fine-grained allo-
cation for the remaining locked components.

4.2. Dynamic Results

Figure 2 presents runtime performance data for all com-
binations of benchmark, experiment, and machine. We now
discuss each benchmark in detail.

pcmab. All allocations are equivalent to singleton. The
transformed version outperforms control on 2-way and 4-
way machines due to a starvation problem in the original
program, and variation in control contributes most of the
large confidence interval. This is an example of coarse-
grained locking actually improving on fine-grained locking
that was not created artificially for this purpose. On an 8-
way machine, the starvation problem is not present, which
may be due to scheduler fairness differences or decreased
contention for processor time.

roller. Performance is usually unaffected, even for the
singleton and cha-* allocations where a single static lock
protects all passenger seats. The portion of the workload
that becomes serialized is small, and the portion that fol-
lows is already serialized in the original program. How-
ever, singleton and cha-* do not scale to an 8-way machine,

Table 3. Effect of analysis pipeline configuration on interference graph and lock allocation.

analysis pipeline

graph characteristics

graph components

benchmark points-to | TLO | MHP | time (s) || |V |E| % Zweight(e) total Statc 1oc[ked dynamic unlocked
CHA 83 2 4 2.0 17 1 1:[2] 0 0
SPK 77 2 4 2.0 17 1 1:[2] 0 0
pcmab SPK X 78 2 4 2.0 16 1 1:[2] 0 0
SPK X 78 2 4 2.0 17 1 1:[2] 0 0
SPK X X 76 2 4 2.0 16 1 1:[2] 0 0
CHA 82 6 24 | 4.0 450 1 1:[6] 0 0
SPK 76 6 12 2.0 230 3 3:[222] 0 0
roller SPK X 81 6 12 | 2.0 230 3 3:[222] 0 0
SPK X 77 6 10 1.7 174 3 3:[222] 0 0
SPK X X 78 6 10 1.7 174 3 3:[222] 0 0
CHA 87 24 | 147 | 6.1 486 4 1:[21] 0 3
SPK 82 24 89 3.7 174 9 4:[12313] 0 5
traffic SPK X 85 24 81 34 163 9 4:[12313] 0 5
SPK X 82 24 32 1.3 76 10 3:[234] 1:[9] 6
SPK X X 84 24 32 1.3 76 10 3:[234] 1:[9] 6
CHA 79 8 29 3.6 29 3 1:[5] 1:[2] 1
SPK 78 8 12 1.5 12 4 1:[4] 1:[2] 2
bank SPK X 75 8 12 1.5 12 4 1:[4] 1:[2] 2
SPK X 76 8 12 1.5 12 4 1:[4] 1:[2] 2
SPK X X 77 8 12 1.5 12 4 1:[4] 1:[2] 2
CHA 81 16 68 | 4.2 1033 8 1:8] 1:[2] 6
SPK 79 16 66 | 4.1 1031 9 1:[8] 2:[11] 6
sync SPK X 82 16 66 | 4.1 1031 9 1:[8] 2:[11] 6
SPK X 81 16 2 13 2 16 0 2:[11] 14
SPK X X 76 16 2 13 2 16 0 2:[11] 14
CHA 259 6 16 2.7 444 3 1:[4] 0 2
SPK 113 6 16 2.7 411 3 1:[4] 0 2
mtrt SPK X 119 6 16 2.7 343 3 1:[4] 0 2
SPK X 109 6 1 17 126 6 1:[1] 0 5
SPK X X 114 6 1 17 93 6 1:[1] 0 5
CHA 821 269 | 15030 | 56 703181 79 | 4:[112190] 7:[7x1] 68
SPK 287 269 | 6555 | 24 294011 119 | 4:[112150] 2:[11] 113
hsqldb SPK X 31032 || 269 | 6441 | 24 286845 123 | 4:[1 12 146] 2:[11] 117
SPK X 302 269 | 5453 | 20 244225 128 2:[2 141] 2:[11] 124
SPK X X 21780 || 269 | 5401 | 20 239024 130 2:[2 139] 2:[11] 126
CHA 142 88 | 1193 | 14 32526 39 3:[1149] 1:[2] 35
SPK 130 88 86 98 1307 74 |5:[111610] 1:[1] 68
lusearch SPK X 157 88 86 98 1252 74 |5:[111610] 1:[1] 68
SPK X 136 88 73 .83 1031 74 3:[1610] 0 71
SPK X X 160 88 73 .83 982 74 3:[1610] 0 71
CHA 395 73 | 1195 | 16 136813 30 3:[1144] 0 27
SPK 194 73 6 .08 26 72 3:[112] 0 69
xalan SPK X 200 73 6 .08 26 72 3:(112] 0 69
SPK X 191 73 3 .04 18 72 1:[2] 0 71
SPK X X 198 73 3 .04 18 72 1:[2] 0 71
CHA 276 241 | 7482 | 31 81649 74 1:[167] 1:[2] 72
SPK 149 241 | 163 | .68 4737 225 3:[2413] 0 222
jbb2000 SPK X 298 241 | 162 | .67 4655 225 3:[2413] 0 222
SPK X 146 241 | 150 | .62 4533 227 2:[3 13] 0 225
SPK X X 296 241 | 150 | .62 4503 227 2:[3 13] 0 225
CHA 276 187 | 3225 | 17 29376 51 1:[129] 11:[3x 1 8x2] 39
SPK 173 187 | 562 | 3.0 4150 110 3:[2 6 69] 11:[8x 1 3x2] 96
jbb2005 SPK X 298 187 | 450 | 24 3906 132 3:[1255] 9:[9%1] 120
SPK X 172 187 | 75 40 87 156 | 4:[248 18] 3:[222] 149
SPK X X 295 187 | 21 1 27 177 3:[238] 0 174

o —_ —_
) o)

slowdown

o
o

5.0

4.0

£3.0
©

£20

1.0
0.0

1.2

slowdown
o 4
o o

°
©

slowdown
- Db N
(&)} o [(6)]

—_
o

15 |

10

slowdown

pcmab

2-way

4-way

8-way

traffic

4-way

sync (objects)

2-way 4-way 8-way
| mitrt
TTTT
II 11T
4-way 8-way
lusearch
4-way 8-way
jbb2000 e
:] TFL - . WL
2-way 4-way 8-way

slowdown
— N
3 o

—_
o

o
)

1.4
1.2
£1.0
©
08
0.6
0.4

N
&)

slowdown
— N
3 =}

-
o

slowdown
o —_ —_ —_
© o 4 i

o
0

slowdown
R -
o N

o
o

o
o

10

slowdown

roller
2-way 4-way 8-way
L bank
2-way 4-way 8-way
r sync (methods)
-
2-way 4-way 8-way
I hsqldb
2-way 4-way 8-way
xalan
1T,
[
2-way 4-way 8-way
L jbb2005
2-way 4-way 8-way

Figure 2. Runtime performance. For each benchmark and machine, left to right bars are: 1) unprocessed,
2) singleton; 3-7) static cha, spk, spk-tlo, spk-mhp, and spk-tlo-mhp; 8—12) dynamic variants of 3-7.

possibly due to increased processor resources and therefore
contention between threads.

traffic. 4-way unprocessed livelocks or nearly livelocks
on startup for approximately 30% of all runs, and we dis-
card those measurements; none of the other experiments ex-
perience this problem. Moving from CHA to Spark and in-
cluding MHP both have a significant effect on performance,
as suggested by static allocation data. MHP exposes a dy-
namic lock, which degrades 2-way performance but im-
proves 8-way performance. Although there are only two
threads, non-optimal 8-way performance is two-fold worse
than non-optimal 2-way performance.

bank. This is the only benchmark where deadlock is
detected. All allocations degrade performance, by roughly
20% on 2-way and 4-way machines, and 5% on an §-way
machine. In some contexts, these may be tolerable over-
heads. The slowdown is due to the lack of a suitable dy-
namic lock for the static component, even though one exists;
this component is created by a deadlock avoidance edge. On
an 8-way machine there is one thread per processor, which
possibly contributes to the improved performance.

sync. For object synchronization, the throughput of all
allocations is close to control. 2-way dynamic locking de-
grades performance but 8-way dynamic locking improves
it; we note that traffic and bank exhibit similar behaviour.
For method synchronization, our allocator actually converts
the method under test to use object synchronization, and
performance degrades on 2-way and 4-way machines, pre-
sumably because object synchronization is more expensive
in the JVM. Although 8-way method synchronization is ac-
ceptable, we observe that the raw throughput is on the order
of 20 to 30 times worse for all experiments.

mtrt. The spk-*-mhp-* allocations are functionally
equivalent to the control program, except that synchroniza-
tion is removed where possible. This benchmark is embar-
rassingly parallel and performance is independent of alloca-
tion on 2-way and 8-way machines. On the 4-way machine,
the intermediate allocations without MHP reduce perfor-
mance, but singleton allocation has no effect. TBSE alone
only identifies two unlocked components, and performance
changes may be due to JIT compilation idiosyncrasies.

hsqldb. Static analysis has difficulty, but performance is
not significantly different between lock allocations, all of
which have one large component and exhibit 5-10% slow-
downs on 2-way and 8-way machines. Despite that hsqldb
runs 20 threads, the raw execution speed does not scale from
two to eight processors, suggesting an existing serialization.

lusearch. This application is embarrassingly parallel,
and singleton and cha-* conservatively limit parallelism
where the original program has no contention. However, the
more precise points-to information in spk-* allows TBSE to
regain the original performance.

xalan. This application is also embarrassingly parallel,
as threads simply remove documents from a queue for pro-
cessing, but results indicate subtle concurrency isses. On a

2-way machine, the singleton and cha-* allocations outper-
form both control and unprocessed by 30%; however, this
change is inverted on a 4-way machine, and on an 8-way
machine they have no effect. In all cases, spk-* matches
original performance. Like pcmab, xalan has a built-in per-
formance problem that coarse-grained lock allocation can
correct, at least on 2-way machines.

Jjbb2000. singleton does not scale, generally degrading
performance by a factor of 2x CPUp,ax. spk-* roughly halve
the degradation, but only such that throughput is 80-100%
serialized. MHP improves allocations only marginally, and
there is no effect on runtime behaviour.

jbb2005. Like jbb2000, singleton does not scale. Unlike
jbb2000, each new addition to the analysis pipeline con-
tributes until the original performance is regained. This is
the only benchmark where TLO has an effect, although the
effect of MHP is much greater. Dynamic locking improves
spk-mhp-dyn on 4-way and 8-way machines, but spk-tlo-
mhp-* outperform it. Our hypothesis as to why jbb2005
succeeds but jbb2000 fails is that jbb2005 is a refactored
version of jbb2000 that is more idiomatic of Java.

5. Conclusions and Future Work

This work presents a complete system for component-
based lock allocation and experimentally identifies suffi-
cient locking strategies. A single static lock only guarantees
equal or better performance for pcmab and mtrt, although it
does improve xalan by 30% on 2-way machines. Thread-
based side effect analysis alone guarantees equal or better
performance for pcmab, roller, lusearch, and xalan, but not
for mtrt. It also improves traffic, jbb2000, and jbb2005.
However, it depends on precise context-insensitive points-
to information; CHA-based analyses are too imprecise, and
this is predictable statically.

The inclusion of may happen in parallel information
guarantees the performance of mtrt, and further improves
traffic and jbb2005. However, this is not predictable stat-
ically, as MHP also affects the allocations of five other
benchmarks. MHP always removes interference edges be-
tween two critical sections that may not happen in parallel.
Therefore, it only affects performance when the removal
also splits a larger component, and both sub-components
are significantly contended at the same time. Thread-local
object information guarantees the performance of jbb2005,
but only in combination with MHP. Dynamic locking offers
no improvement when other strategies are sufficient. For
traffic, bank, and sync (objects), it affects performance neg-
atively for small machines and positively for large ones.

traffic, bank, sync, hsqldb, and jbb2000 are good bench-
marks for future work, although only jbb2000 exhibits in-
tolerable overheads. We will consider heuristic and op-
timal MLA and KLA, converting object synchronization
to method synchronization, and context-sensitive points-to
analysis as potential improvements to our approach.

Acknowledgements

This research is funded by NSERC and IBM CAS
Toronto. We would like to thank the anonymous reviewers
for their comments, and IBM for their 8-way hardware.

References

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe
locking: Static race detection for Java. TOPLAS, 28(2):207—
255, Mar. 2006.

[2] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasun-
dar. May-happen-in-parallel analysis of X10 programs. In
PPoPP’07, pages 183-193, Mar. 2007.

[3] A. Ahmedani. Information flow in a Java intermediate lan-
guage. Master’s thesis, School of Computer Science, McGill
University, Montréal, Québec, Canada, Aug. 2006.

[4] J. Aldrich, E. G. Sirer, C. Chambers, and S. J. Eggers. Com-
prehensive synchronization elimination for Java. Sci. Com-
put. Program., 47(2-3):91-120, May 2003.

[5] D. E Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin
locks: Featherweight synchronization for Java. In PLDI’98,
pages 258-268, June 1998.

[6] R. Barik. Efficient computation of may-happen-in-parallel
information for concurrent Java programs. In LCPC’05, vol-
ume 4339 of LNCS, pages 152-169, Oct. 2005.

[7] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovié¢, T. Van-
Drunen, D. von Dincklage, and B. Wiedermann. The Da-
Capo benchmarks: Java benchmarking development and
analysis. In OOPSLA’06, pages 169—190, Oct. 2006.

[8] B.-M. Chang and J.-D. Choi. Thread-sensitive points-to
analysis for multithreaded Java programs. In ISCIS’ 04, vol-
ume 3280 of LNCS, pages 945-954, Oct. 2004.

[9] E. G. Coffman, M. Elphick, and A. Shoshani. System dead-
locks. CSUR, 3(2):67-78, June 1971.

[10] J. Dean, D. Grove, and C. Chambers. Optimization of
object-oriented programs using static class hierarchy anal-
ysis. In ECOOP’95, volume 952 of LNCS, pages 77-101,
Aug. 1995.

[11] M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock
allocation. In POPL’07, pages 291-296, Jan. 2007.

[12] C. Flanagan and S. N. Freund. Automatic synchronization
correction. In SCOOL’05, Oct. 2005.

[13] M. Hicks, J. S. Foster, and P. Pratikakis. Lock inference for
atomic sections. In TRANSACT’06, June 2006.

[14] K. Kawachiya, A. Koseki, and T. Onodera. Lock reserva-
tion: Java locks can mostly do without atomic operations.
In OOPSLA’02, pages 130-141, Nov. 2002.

[15] J. R. Larus and R. Rajwar. Transactional Memory. Morgan
& Claypool, 2006.

[16] D. Lea. Concurrent Programming in Java: Design Princi-
ples and Patterns. Addison-Wesley, 2nd edition, Nov. 1999.

[17] O. Lhotdk. Spark: A flexible points-to analysis framework
for Java. Master’s thesis, School of Computer Science,
McGill University, Montréal, Québec, Canada, Feb. 2003.

[18] L. Li. A practical MHP information computation for con-
current Java programs. Master’s thesis, School of Computer
Science, McGill University, Montréal, Québec, Canada,
Aug. 2004.

[19]

(20]

(21]

(22]
(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(37]

J. Manson, W. Pugh, and S. V. Adve. The Java memory
model. In POPL’05, pages 378-391, Jan. 2005.

J. F. Martinez and J. Torrellas. Speculative synchronization:
Applying thread-level speculation to explicitly parallel ap-
plications. In ASPLOS-X, pages 18-29, Oct. 2002.

B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
Synchronization inference for atomic sections. In POPL’06,
pages 346358, Jan. 2006.

M. Naik and A. Aiken. Conditional must not aliasing for
static race detection. In POPL’07, pages 327-338, 2007.
M. Naik, A. Aiken, and J. Whaley. Effective static race de-
tection for Java. In PLDI’06, pages 308-319, June 2006.
M. G. Nanda and S. Ramesh. Interprocedural slicing of
multithreaded programs with applications to Java. TOPLAS,
28(6):1088-1144, Nov. 2006.

G. Naumovich, G. S. Avrunin, and L. A. Clarke. An effi-
cient algorithm for computing MHP information for concur-
rent Java programs. In ESEC/FSE’99, pages 338-354, Sept.
1999.

P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith:
Context-sensitive correlation analysis for race detection. In
PLDI’06, pages 320-331, June 2006.

E. Ruf. Effective synchronization removal for Java. In
PLDI’00, pages 208-218, June 2000.

K. Russell and D. Detlefs. Eliminating synchronization-
related atomic operations with biased locking and bulk re-
biasing. In OOPSLA’06, pages 263-272, Oct. 2006.

A. Sélcianu and M. Rinard. Pointer and escape analysis for
multithreaded programs. In PPoPP’01, pages 12-23, June
2001.

V. C. Sreedhar, Y. Zhang, and G. R. Gao. A new frame-
work for analysis and optimization of shared memory paral-
lel programs. Technical Report CAPSL-TM-063, CAPSL,
U. Delaware, Newark, Delaware, USA, July 2005.

Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and
D. Padua. Compiler techniques for high performance se-
quentially consistent Java programs. In PPoPP’05, pages
2-13, June 2005.

R. Vallée-Rai. Soot: A Java bytecode optimization frame-
work. Master’s thesis, School of Computer Science, McGill
University, Montréal, Québec, Canada, July 2000. http:
//www.sable.mcgill.ca/soot/.

M. Vaziri, F. Tip, and J. Dolby. Associating synchroniza-
tion constraints with data in an object-oriented language. In
POPL’06, pages 334345, Jan. 2006.

C. von Praun and T. R. Gross. Static conflict analysis for
multi-threaded object-oriented programs. In PLDI’03, pages
115-128, June 2003.

A. Welc, A. L. Hosking, and S. Jagannathan. Transparently
reconciling transactions with locking for Java synchroniza-
tion. In ECOOP’06, volume 4067 of LNCS, pages 148—173,
July 2006.

Y. Zhang, V. C. Sreedhar, W. Zhu, V. Sarkar, and G. R.
Gao. Optimized lock assignment and allocation for pro-
ductivity: A method for exploiting concurrency among crit-
ical sections. Technical Report CAPSL-TM-065, CAPSL,
U. Delaware, Newark, Delaware, USA, Apr. 2006.

Y. Zhang, V. C. Sreedhar, W. Zhu, V. Sarkar, and G. R. Gao.
Optimized lock assignment and allocation: A method for ex-
ploiting concurrency among critical sections. In PPoPP’07,
pages 146—-147, Mar. 2007. Short paper from poster session.

