
Phase-based Adaptive Recompilation in
a JVM

Dayong Gu Clark Verbrugge

Sable Research Group, School of Computer Science
McGill University, Montréal, Canada
{dgu1, clump}@cs.mcgill.ca

April 7, 2008

Sable Group, McGill University 1/33

Outline

1 Motivation

2 Hardware Information Analysis

3 Adaptive Recompilation

4 Conclusions and Future Work

Sable Group, McGill University 2/33

Motivation

Java Programs

JVM
(Virtual Hardware)

Sable Group, McGill University 3/33

Motivation

Java Programs

JVM
(Virtual Hardware)

Real Hardware

Sable Group, McGill University 4/33

Motivation

Hardware Impact
The impact of hardware on program behaviour can be significant

Strong correlation exists: hardware performance ↔ program behaviour

Hardware Event Counters
Hardware counters widely exist in modern processors

Accessible from software libs: PAPI, PMAPI,PCL,...

Sable Group, McGill University 5/33

Motivation

Hardware Impact
The impact of hardware on program behaviour can be significant

Strong correlation exists: hardware performance ↔ program behaviour

Hardware Event Counters
Hardware counters widely exist in modern processors

Accessible from software libs: PAPI, PMAPI,PCL,...

Use hardware event data to improve adaptive
optimizations in JVM

Sable Group, McGill University 5/33

Program Phases

There are different types of program phases

Sable Group, McGill University 6/33

Program Phases

There are different types of program phases

Flat Phases
refer to the contiguous intervals
where show a stable, flat
performance on a type of
sampled, profiling data

Periodic Phases
long term repetitions in
execution, showing unstable
performance but sharing similar
patterns

Sable Group, McGill University 6/33

Program Phases

There are different types of program phases

Flat Phases
refer to the contiguous intervals
where show a stable, flat
performance on a type of
sampled, profiling data

Periodic Phases
long term repetitions in
execution, showing unstable
performance but sharing similar
patterns

Detect this long term periodic phases from hardware data and
employ the phase information in adaptive optimizations

Sable Group, McGill University 6/33

Contributions

Highlight the hardware impact on Java program
execution

Develop online pattern creation algorithm to
represent hardware event

Detect long term periodic phases from hardware
patterns

Implement an adaptive recomplication strategy
using phase information

Sable Group, McGill University 7/33

Hardware Event Data Example

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

H
ar

dw
ar

e
E

ve
nt

Time

Sable Group, McGill University 8/33

Recurrent Phases

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

H
ar

dw
ar

e
E

ve
nt

Time

Sable Group, McGill University 9/33

Hardware Pattern

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

H
ar

dw
ar

e
E

ve
nt

Time

Sable Group, McGill University 10/33

Hardware Pattern

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

H
ar

dw
ar

e
E

ve
nt

Time

Sable Group, McGill University 11/33

Hardware Pattern

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

H
ar

dw
ar

e
E

ve
nt

Time

Sable Group, McGill University 12/33

Hardware Pattern

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

H
ar

dw
ar

e
E

ve
nt

Time

Sable Group, McGill University 13/33

Hardware Pattern

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

H
ar

dw
ar

e
E

ve
nt

Time

Sable Group, McGill University 14/33

Hardware Pattern

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

H
ar

dw
ar

e
E

ve
nt

Time

Sable Group, McGill University 15/33

Pattern Building Algorithm (Simplified)

Yes

Get HW data D

Get the variation:
 D Vs former Data

Large enough?

Begin a new
pattern building

No

Continue the current
pattern building;

Add info. about D

Pattern Finish?

No

Report pattern

Conditions:
1. Small variations in a row
2. Pattern reaches the max length
3. Meet a more important variation
(stop in the middle)

Yes

Sable Group, McGill University 16/33

Pattern Building Example

(1) Hardware Data

 1 2 3 4 5 6

Sable Group, McGill University 17/33

Pattern Building Example

(1) Hardware Data

 1 2 3 4 5 6

(2) Variation

-1

-0.5

 0

 0.5

 1

 1 2 3 4 5 6

Sable Group, McGill University 17/33

Pattern Building Example

(1) Hardware Data

 1 2 3 4 5 6

(2) Variation

-1

-0.5

 0

 0.5

 1

 1 2 3 4 5 6

(3) Level

 2 3 4 5 6

Lv0

Lv1

Lv2

Lv3

Sable Group, McGill University 17/33

Pattern Building Example

(1) Hardware Data

 1 2 3 4 5 6

(2) Variation

-1

-0.5

 0

 0.5

 1

 1 2 3 4 5 6

(3) Level

 2 3 4 5 6

Lv0

Lv1

Lv2

Lv3

(4) Pattern

 2 3 4 5 6

Lv0

Lv1

Lv2

Lv3
01 00 01 00 00

Sable Group, McGill University 17/33

Pattern Analysis

Patterns are stored and analyzed

The number of occurrences determines the
hotness of a pattern

The hottest pattern is used to represent the
current program phase

The phase information is used to archieve a
better adaptive hot method recompilation strategy
in Jikes RVM

Sable Group, McGill University 18/33

Recompilation in Jikes RVM

Get method
samples

Compute the
Past time in a
method

Estimate the
compilation
cost Ci to
optimization
level i

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
pt

. L
ev

el

Samples

Opt0
Opt1
Opt2
Opt3

Recompile to level i, if (SpeedupRatei ∗ Past) > Ci

Sable Group, McGill University 19/33

Recompilation in Jikes RVM

Get method
samples

Compute the
Past time in a
method

Estimate the
compilation
cost Ci to
optimization
level i

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
pt

. L
ev

el

Samples

Opt0
Opt1
Opt2
Opt3

Recompile to level i, if (SpeedupRatei ∗ Past) > Ci

Assume Future ≡ Past

Sable Group, McGill University 19/33

Optimization Opportunity

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
pt

. L
ev

el

Samples

Opt0
Opt1
Opt2
Opt3

Sable Group, McGill University 20/33

Optimization Opportunity

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
pt

. L
ev

el

Samples

Sable Group, McGill University 21/33

Optimization Opportunity

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
pt

. L
ev

el

Samples

Sable Group, McGill University 22/33

Optimization Opportunity

Recompilation is not free, cannot always be
aggressive

Sable Group, McGill University 23/33

Optimization Opportunity

Recompilation is not free, cannot always be
aggressive

Our approach:
Program Sampled Methods Hardware Event Recompilation

State Behaviour Aggressiveness

New The “Beginners” No recurrence Low

of patterns

Young Important methods Recurrences High

of patterns

Mature Optimized methods Less fresh patterns Moderate

Less important methods More old patterns

Rejuvenated New important More fresh High

methods patterns again

Sable Group, McGill University 23/33

Optimization Opportunity

Recompilation is not free, cannot always be
aggressive

Our approach:
Program Sampled Methods Hardware Event Recompilation

State Behaviour Aggressiveness

New The “Beginners” No recurrence Low

of patterns

Young Important methods Recurrences High

of patterns

Mature Optimized methods Less fresh patterns Moderate

Less important methods More old patterns

Rejuvenated New important More fresh High

methods patterns again

Future 6= Past
Fixed aggressiveness ⇒ Adaptive aggressiveness

Sable Group, McGill University 23/33

Optimization Opportunity

Optimize code to higher levels earlier

Possibly save recompilation overhead for
intermediate levels

Save unnecessary recompilation for the “beginners”

Sable Group, McGill University 24/33

Original

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
pt

. L
ev

el

Samples

Opt0
Opt1
Opt2
Opt3

Sable Group, McGill University 25/33

Online Optimization

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
pt

. L
ev

el

Samples

Sable Group, McGill University 26/33

Offline Head Space Study

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
pt

. L
ev

el

Samples

Sable Group, McGill University 27/33

Experimental Set-up

Benchmarks:
SPECjvm98 suite
Dacapo benchmarks: antlr, bloat, fop, pmd,

xalan

Soot and PseudoJbb

Test on Athlon 1.4G, 1GB memory, Debian Linux
kernel 2.6.9

Average of the middle 11 in 15 runs

Sable Group, McGill University 28/33

Recompilation Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

co
m

p db

ja
ck

ja
va

c

je
ss

m
pe

g

m
tr

t rt

an
tlr

bl
oa

t

fo
p

pm
d

xa
la

n

so
ot

pJ
bb

A
vg

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Orig Online Offline

Whole Execution Time Reduction Average Up to
(incl. all overhead)

Offline Use training runs 8.7% 21%
Online Use HW pattern info. 4.4% 18%

Sable Group, McGill University 29/33

Whole Overhead

Benchmark Overhead (%) Benchmark Overhead (%)
compress 2.02 antlr 2.12

db 1.39 bloat 1.65
jack 1.71 fop 1.69

javac 1.13 pmd 1.70
jess 0.49 xalan 1.07

mpegaudio 1.76 soot 1.85
mtrt 0.82 PseudoJbb 0.77

raytrace 1.30 Average 1.43

The “overhead” includes all sources from hardware
monitoring, pattern construction, information analysis, and
building control events to adaptive engine

Sable Group, McGill University 30/33

Conclusions

Understanding repetitive program behaviour and
exploring phases in program execution is important

We implemented a technique for determining
program phases from hardware data

We applied the phase information in adaptive
recomplication
Hardware information can be used in a wide range
of areas

Runtime profiling, selecting GC points
Program understanding, system reconfiguration,
instruction/data relocation and prefetch ...

Sable Group, McGill University 31/33

Future Work

Test other hardware events/combinations

Use offline analysis results for repeatable executions

Attach hardware variation with software structures

Advanced static analysis can be helpful

Develop other adaptive applications

Sable Group, McGill University 32/33

Thank you!

Questions?

Sable Group, McGill University 33/33

	Outline
	Motivation
	Hardware Information Analysis
	Adaptive Recompilation
	Conclusions and Future Work

