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Motivation

Hardware Impact
The impact of hardware on program behaviour can be significant

Strong correlation exists: hardware performance ↔ program behaviour

Hardware Event Counters
Hardware counters widely exist in modern processors

Accessible from software libs: PAPI, PMAPI,PCL,...
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Hardware Impact
The impact of hardware on program behaviour can be significant

Strong correlation exists: hardware performance ↔ program behaviour

Hardware Event Counters
Hardware counters widely exist in modern processors

Accessible from software libs: PAPI, PMAPI,PCL,...

Use hardware event data to improve adaptive
optimizations in JVM
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Program Phases

There are different types of program phases
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Program Phases

There are different types of program phases

Flat Phases
refer to the contiguous intervals
where show a stable, flat
performance on a type of
sampled, profiling data

Periodic Phases
long term repetitions in
execution, showing unstable
performance but sharing similar
patterns
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Program Phases

There are different types of program phases

Flat Phases
refer to the contiguous intervals
where show a stable, flat
performance on a type of
sampled, profiling data

Periodic Phases
long term repetitions in
execution, showing unstable
performance but sharing similar
patterns

Detect this long term periodic phases from hardware data and
employ the phase information in adaptive optimizations

Sable Group, McGill University 6/33



Contributions

Highlight the hardware impact on Java program
execution

Develop online pattern creation algorithm to
represent hardware event

Detect long term periodic phases from hardware
patterns

Implement an adaptive recomplication strategy
using phase information
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Hardware Event Data Example
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Recurrent Phases
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Hardware Pattern
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Hardware Pattern
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Pattern Building Algorithm (Simplified)

Yes

Get HW data D

Get the variation:
 D Vs former Data

Large enough?

Begin a new
pattern building

No

Continue the current
pattern building;

Add info. about D

Pattern Finish?

No

Report pattern

Conditions:
1. Small variations in a row
2. Pattern reaches the max length
3. Meet a more important variation
(stop in the middle)

Yes
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Pattern Building Example

(1) Hardware Data

 1  2  3  4  5  6
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Pattern Analysis

Patterns are stored and analyzed

The number of occurrences determines the
hotness of a pattern

The hottest pattern is used to represent the
current program phase

The phase information is used to archieve a
better adaptive hot method recompilation strategy
in Jikes RVM
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Recompilation in Jikes RVM

Get method
samples

Compute the
Past time in a
method

Estimate the
compilation
cost Ci to
optimization
level i
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Assume Future ≡ Past
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Optimization Opportunity
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Optimization Opportunity

Recompilation is not free, cannot always be
aggressive
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Optimization Opportunity

Recompilation is not free, cannot always be
aggressive

Our approach:
Program Sampled Methods Hardware Event Recompilation

State Behaviour Aggressiveness

New The “Beginners” No recurrence Low

of patterns

Young Important methods Recurrences High

of patterns

Mature Optimized methods Less fresh patterns Moderate

Less important methods More old patterns

Rejuvenated New important More fresh High

methods patterns again
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Optimization Opportunity

Recompilation is not free, cannot always be
aggressive

Our approach:
Program Sampled Methods Hardware Event Recompilation

State Behaviour Aggressiveness

New The “Beginners” No recurrence Low

of patterns

Young Important methods Recurrences High

of patterns

Mature Optimized methods Less fresh patterns Moderate

Less important methods More old patterns

Rejuvenated New important More fresh High

methods patterns again

Future 6= Past
Fixed aggressiveness ⇒ Adaptive aggressiveness
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Optimization Opportunity

Optimize code to higher levels earlier

Possibly save recompilation overhead for
intermediate levels

Save unnecessary recompilation for the “beginners”
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Original
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Online Optimization
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Offline Head Space Study
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Experimental Set-up

Benchmarks:
SPECjvm98 suite
Dacapo benchmarks: antlr, bloat, fop, pmd,

xalan

Soot and PseudoJbb

Test on Athlon 1.4G, 1GB memory, Debian Linux
kernel 2.6.9

Average of the middle 11 in 15 runs
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Recompilation Results
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Online Use HW pattern info. 4.4% 18%
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Whole Overhead

Benchmark Overhead (%) Benchmark Overhead (%)
compress 2.02 antlr 2.12

db 1.39 bloat 1.65
jack 1.71 fop 1.69

javac 1.13 pmd 1.70
jess 0.49 xalan 1.07

mpegaudio 1.76 soot 1.85
mtrt 0.82 PseudoJbb 0.77

raytrace 1.30 Average 1.43

The “overhead” includes all sources from hardware
monitoring, pattern construction, information analysis, and
building control events to adaptive engine

Sable Group, McGill University 30/33



Conclusions

Understanding repetitive program behaviour and
exploring phases in program execution is important

We implemented a technique for determining
program phases from hardware data

We applied the phase information in adaptive
recomplication
Hardware information can be used in a wide range
of areas

Runtime profiling, selecting GC points
Program understanding, system reconfiguration,
instruction/data relocation and prefetch ...
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Future Work

Test other hardware events/combinations

Use offline analysis results for repeatable executions

Attach hardware variation with software structures

Advanced static analysis can be helpful

Develop other adaptive applications
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Thank you!

Questions?
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