
Compiler-guaranteed Safety in Code-copying

Virtual Machines

Gregory B. Prokopski, Clark Verbrugge
Sable Research Group

School of Computer Science, McGill University
Montreal, Quebec, Canada

{gproko,clump}@sable.mcgill.ca

Abstract. 1Virtual Machine authors face a difficult choice between low
performance, cheap interpreters, or specialized and costly compilers. A
method able to bridge this wide gap is the existing code-copying tech-
nique that reuses chunks of the VM’s binary code to create a simple
JIT. This technique is not reliable without a compiler guaranteeing that
copied chunks are still functionally equivalent despite aggressive opti-
mizations. We present a proof-of-concept, minimal-impact modification
of a highly optimizing compiler, GCC. A VM programmer marks chunks
of VM source code as copyable. The chunks of native code resulting from
compilation of the marked source become addressable and self-contained.
Chunks can be safely copied at VM runtime, concatenated and executed
together. This allows code-copying VMs to safely achieve speedup up to
3 times, 1.67 on average, over the direct interpretation. This maintain-
able enhancement makes the code-copying technique reliable and thus
practically usable.

1 Introduction

Virtual Machines (VMs) are used as a target compilation architecture by many
languages. The most widely known example is Java, but the same is true of a host
of languages with dynamic properties, including Python, PHP, Perl6, Forth and
many others. The choice of the operations represented by the virtual assembly
(bytecodes) and the construction of a Virtual Machine differ for each language
but they all require a virtual machine, and thus also a translation mechanism
involving either the use of a cheap but slower interpreter or the use of a more
dynamic just-in-time or ahead-of-time compiler that generates better optimized
code, at greater cost. For many environments efficiency remains important, but
the development and maintenance costs of an optimizing compiler are outweighed
by the simplicity and rapid development time of an interpreter-based VM.

Code-copying has been proposed as a VM interpreter implementation tech-
nique that improves performance, reducing the gap between interpreters and

1 This work is to apper in LNCS: International Conference on Compiler Construction
2008 proceedings. c©Springer 2008.

compilers [5,10]. In this work we address the main safety, practical implementa-
tion and maintenance problems inherent in such a technique that were left mostly
unsolved by the previous works. Our design builds on the well-known GCC com-
piler to ensure semantic guarantees appropriate for code-copying in VM designs.
This allows dynamic code construction and interpretation with good efficiency
versus maintenance tradeoffs. Supporting language enhancements in a continu-
ally evolving, optimizing compiler such as GCC can be complex; we thus further
show how changes to the basic VM compiler itself can be minimally intrusive,
requiring changes dependent mainly on core, stable internal compiler structures.
Low maintenance and easily isolated changes are important practical require-
ments for a feasible system.

An attractive feature of supporting advanced interpreter execution designs
is that a static compiler such as GCC can become an effective back-end for
multiple VM architectures. This provides optimized execution at low cost for a
number of interpreted languages. We provide experimental data from an imple-
mentation based on the SableVM Java Virtual Machine [5]. Our results show
that our automatic and verified safe design is able to match, and sometimes
exceed that of previous, labour-intensive, hand-done and unverified attempts.
This demonstrates the viability of our approach in terms of performance and
portability.

We make the following specific contributions:

– We develop safe and practical code-copying techniques appropriate for a
high-performance interpreter using GCC as a back-end. This also allows us to
provide previously elusive safety guarantees for the code-copying technique.

– Our approach ensures a maintainable design within the context of GCC
itself and should also be applicable to other compilers. Ensuring safety in
code-copying could be performed by large, invasive efforts at nearly all levels
of compilation; instead our technique minimizes the impact on general GCC
development to insertion of few well-separated phases: initial code alterations
and insertion of copyable code areas markers (early phases), restoration of
basic block order and other properties of copyable code areas (after most of
optimizations), and final verification (after all optimizations).

– Our work provides an attractive, single-compiler solution with potential for
use in a variety of different programming languages and virtual machines.
This takes advantage of the ubiquity and continuous development of a major
compiler framework such as GCC.

In the next section we give related work on code-copying and other interpreter
optimization techniques. Section 3 then gives background on code-copying tech-
niques and requirements. Our design and GCC modifications are detailed in
Section 4, and Section 5 provides some experimental results from our implemen-
tation.

2

2 Related Work

In our work we are concerned with optimizing interpreter-based VMs by enabling
them to practically and safely use the code-copying technique. This technique
originates from direct-threaded interpretation and was first described by Rossi
and Sivalingam [10]. Compilers used at that time did not use too many opti-
mizations that would make code-copying impossible, but their solution also did
not give safety guarantees.

Gagnon was the first to use the code-copying technique in a Java inter-
preter [5]. While this implementation solved some important problems specific
to the interpretation of Java bytecode, its code-copying engine required manual
tuning that could not give guarantees of safe execution and therefore could not
be regarded as a production-ready solution. Interestingly, experiments done with
a simple, non-optimizing portable JIT for SableVM (SableJIT [1]) showed that
such a JIT was only barely able to achieve speeds comparable to the code-copying
engine. This demonstrated once again that code-copying is a very attractive so-
lution, save only for its lack of safety.

One of the important reasons why code-copying is significantly faster than
other interpretation techniques is its positive influence on the success rate of
branch predictors commonly used in today’s hardware containing branch target
buffers (BTB). As Ertl showed in his work on indirect branch prediction in
interpreters [4] other solutions that improve branch prediction, like bytecode
duplication, can also give significant performance improvement. Speedup due to
branch prediction improvements much outweighs other negative effects such as
increased instruction-cache misses.

A solution similar to a code copying engine is a JIT using code generated
by a C compiler, as developed by Ertl [2]. In this solution, however, the pieces
of code were actually modified (patched) on the fly, so as to contain immediate
values and remove the need for the instruction counter. Due to the patching
architecture-specific code was necessary. Ertl’s solution did include automated
tests to detect code chunks that were definitely not copyable, but it was not
guaranteed to find all such chunks (see Figure 6 in [9] for an example) and thus
did not ensure safety. Our solution can not only detect non-copyable code but
actually change a formerly non-copyable code chunk into a copyable one.

Other solutions include systems like DyC [6] which dynamically recompiles
programs during their execution to benefit from run-time values allowing for op-
timizations based on partial evaluation. There also exist portable JITs like GNU
Lightning, but these often come with support for limited number of platforms
and their own limited set of code primitives.

Specialized interpreters are another route to optimized performance. In Vm-
gen the VM system can be trained on a set of programs to detect the most often
occurring small sequences of bytecodes and then modify the source of the in-
terpreter to combine these sequences into superinstructions, optimized the next
time the interpreter is recompiled [3]. While the speed benefits of this solution
are indisputable, it still requires non-automated training, selection of the set of
training programs and interpreter recompilation.

3

Another optimization based on exploitation of frequently occurring byte-
code sequences were shown by Stephenson under the name of multicode substi-

tution [11]. He showed that to limit the total number of instructions (including
those created by the optimization itself) such an approach must be combined
with careful selection of sequences based on how well a sequence of bytecodes
can be optimized.

A completely different approach to execution of bytecode was taken by GCJ
and LLVM. GCJ is a GCC-based Ahead-Of-Time compiler, including also a
direct-threaded interpreter for dynamically loaded code. GCJ takes as its in-
put either Java source or Java bytecode (class files) and compiles them to an
architecture-specific executable. LLVM is a compilation framework created for
lifelong program analysis that features its own code representation, own compiler
and other tools that make it very extendable and reusable.

3 VM Execution and Code-Copying

Figure 3 shows a rough taxonomy of the different kinds of execution engines
used by Virtual Machines; in general this is through an interpreter or compiler,
though mixed designs are also possible [12]. On the right side of Figure 3 com-
piler approaches translate streams of bytecodes into native machine code, either
Ahead-Of-Time, where the compiled code is stored and made ready for multiple,
repeated execution, or Just-in-Time, compiling the code just prior to execution
and (typically) discarding the result after the program is completed. Compilation
is desirable for performance, but implies a very non-trivial resource commitment
not always available to VM designers.

Virtual Machine

Interpreter Compiler

code-copying

direct-threaded

switch-
threaded

Ahead-
Of-Time

Just-In-Time

Fig. 1. The taxonomy of Virtual Ma-
chines execution engines.

Interpreters have the advantage
of simplicity, although improved per-
formance is possible with different
design approaches. We illustrate the
main designs on the left side of Fig-
ure 3 to situate the code-copying ap-
proach; these include a basic switch-

threaded interpreter, and a direct-

threaded model.
A switch-threaded interpreter sim-

ulates a basic fetch, decode, execute
cycle, reading the next bytecode to
execute and using a large switch-case

statement to branch to the actual VM code appropriate for that bytecode. This
process is straightforward but if, such as in Java, bytecodes often encode only
small operations the overhead of fetching and decoding an instruction is propor-
tionally high, making the overall design quite inefficient.

A direct-threaded interpreter is a more advanced interpreter that minimizes
decoding overhead. This kind of interpreter requires an extension offered by
some compilers known as labels-as-values. Many operating systems, their tools

4

and VMs are written in C or its close derivatives. Normally a C program can
contain gotos only to labels. With the labels-as-values extension it is possible
to take an address of a label and store it in a pointer type variable. Later this
variable can be used as an argument of a goto. In a direct-threaded interpreter
a stream of bytecodes is thus replaced by a stream of addresses of labels. The
labels themselves are placed at the start of the code responsible for the execution
of operations encoded by each bytecode. With this mechanism the interpreter
can immediately execute a direct goto to the right chunk of code. Optimization
is implied by reducing the repeated decoding of instructions, trading repeated
test-and-branch sequences for a one-time preparatory action where a stream of
bytecodes is translated into a stream of addresses.

It is important to notice that the speed advantage of a direct-threaded inter-
preter over a switch-threaded interpreter already comes with the requirement of
additional, specialized support from the compiler used to compile the interpreter.

3.1 Code-copying technique

In some sense, and as indicated in Figure 3, code-copying2 bridges interpreter
and compiler-based VM implementation approaches. Code-copying is a further
optimization to interpreter design, but one which makes relatively strong as-
sumptions about compiler code generation. The basic idea of code-copying is
to make use of the compiler applied to the VM to generate binary code for
matching bytecodes. Parts or chunks of the VM code are used to implement the
behaviour of each bytecode. Those chunks of code are marked with labels at
their beginning and end. At runtime, the interpreter copies the binary chunks
corresponding to an input stream of bytecodes and concatenates them into a
new place in memory, as shown in Figure 2. Such a set of concatenated instruc-
tions is called a superinstruction and it can execute at a much greater speed
than using any of the other two formerly described techniques. Depending on
the application and other factors the code-copying technique can give from 1.2
to 3 times performance gain [5] over the direct-threaded technique.

3.2 Safety

As numerous studies have shown the performance gains from using code-copying
technique are clear [4,5,10]. However one of the biggest problems the implemen-
tators of code-copying VMs face is ensuring that the fragments of the code
chunks copied to construct superinstructions are still fully functional in their
new locations and as parts of superinstructions.

Unfortunately, the C standard does not contain any semantics that would
allow us to express and impose the necessary restrictions on selected parts of
code. For instance the bracketing labels placed before and after source code of

2 Note that in the literature what we call code-copying is sometimes referred to as
inlining or inline-threading [5]; these latter terms, however, we find, mislead most
compiler developers and researchers to think of inlining of functions or methods.

5

ILOAD_0:

ILOAD_1:

IADD:

ISTORE_2:

ILOAD_0

ILOAD_1

IADD

ISTORE_2

. . .

. . .

. . .

ILOAD_1

ILOAD_0

IADD

ISTORE_2

in terpre ter main loop
(d i rec t - th readed)

single superinstruct ion
(code-copying)

super instruct ion
ILOAD1_ILOAD0_IADD_ISTORE2

Fig. 2. A simplified comparison of direct-threaded and code-copying engines.

chunks and used to address them do not guarantee contiguity of the resulting
binary code chunks, nor do they place restrictions on the use of relative address-
ing. Without ensured contiguity compiler optimizations will often relocate basic
blocks of a chunk outside of the bracketing labels. At VM runtime this will result
in incomplete copies of such a code chunk. The use of relative addressing of jump
or call targets outside of a code chunk will make the copies of such chunk contain
jumps or calls to invalid addresses. These and other related serious issues have
to be handled, otherwise virtual machine crashes or undefined behavior are to be
expected. To the best of our knowledge there is no production-quality solution
that would ensure creation of code chunks by an optimizing C compiler that can
be safely copied and executed.

Without guaranteed safety of code-copying an interpreter cannot practically,
reliably make use of this powerful technique. Previous results used hand-done
examination, trial-and-error, and manual porting combined with specialized test
suites [9] in attempt to ensure safety. The large effort required, and the lack of
a fully verified result motivates our design in the next section.

4 Design

For VM designers our approach requires the additional use of simple identifiers
bracketing copyable code. We make use of the well-known #pragma operator
to surround and thus help identify copyable chunks. The bulk of our design ef-
fort is in ensuring safety for code copying, a result guaranteed by a small set
of well-specified additional passes within GCC. Below we first detail require-
ments for code to be relocatable and thus suitable for code-copying, followed by
a description of the GCC modifications, including the final verification phase.

4.1 Generation of safely copyable code

There are specific requirements that a chunk of code has to meet so it could
be copied to another location in memory, concatenated with other chunks and

6

I. Register pragma locations start/end during parsing

II. Scan the tree (twice)

III. Insert permanent marking and ensure areas are solid

IV. Fix ordering of basic blocks in copyable areas

VI. Verify RTL of copyable areas, that they

 hold the copyable-code properties

- ensure each pragma location is followed by a label

- flag these label statements as BEGIN & END

- insert volatile assembly around END labels

- modify gotos within the copyable areas to use absolute

 addressing (via register) if the target is outside of an area

- modify calls within areas to use absolute addressing

 (call via register)

AST is created

Scan 1

Scan 2

CFG is created
BB’s are created

Tree-SSA and RTL
optimizations

late
optimizations

- initial permanent marking of BEGIN/TARGET basic blocks

- restore marking of copyable areas using BEGIN, TARGET

 and computed gotos as boundaries (reusable pass)

- restore marking of copyable areas (reusable pass)

- reorder basic blocks of copyable areas

V. Insert RTL markers of copyable areas boundaries

Fig. 3. To produce copyable code with minimal changes to the internal structure of
the compiler we inserted several well isolated passes.

safely executed. A code chunk can only be safely copied if its copy is functionally

equivalent, i.e. chunk of code Cbaseaddrα ≡ Cbaseaddrβ where α 6= β.
We thus define a chunk of code C to be copyable if all of the following

conditions ensuring functional equivalence are true:

– C occupies a single contiguous space in memory that starts and ends with
two distinct code labels specified by a programmer.

– Natural control flow enters C only at its “top” and exits only at its “bottom.”
– Any jump from inside of C to code outside of C (e.g. to an exception handler)

uses an absolute target address.
– Any jump from the inside of C to another place inside C uses a relative

target address.
– Any function call from inside of C uses an absolute target address.
– At C boundaries registers must be used consistently with other code chunks

boundaries (this is already ensured by GCC’s computed goto extension).

4.2 GCC modifications

Our goal was to modify a highly optimizing C compiler, such as GNU C Compiler
4.2, to selectively generate code that meets these requirements therefore ensuring
functional equivalence of selected code chunks.

To compile a single function GCC executes several dozens of optimization
passes. These passes modify the code in ways that are usually supposed to im-
prove the speed of the resulting code, or its other parameters. It is not feasible to

7

modify and maintain all of these passes to selectively generate code conforming
to our requirements. Instead we modify the compiler to:

– preserve the information about which parts of the code have to be treated
specially—from the moment the source code is parsed to the moment the
final assembly is generated,

– allow (almost) all of the optimizations to execute without modifications and
then at certain selected points of the compilation process use additional
passes that modify the code in a manner that makes selected code chunks
copyable.

The overall set of modifications is divided into separate passes that collec-
tively track or restore information throughout the whole compilation process;
a general description is shown in Figure 3. Depending on the representation of
the code at each stage of compilation this information is tracked in a different
form. In the source code it exists as #pragma lines, then as special flags of se-
lected AST elements, later we attach it to basic blocks and computed goto’s,

and eventually it is inserted in a form of notes into the assembly. Tracking this
information turned out to be the most difficult part of our work. It is because of
all the aggressive optimizations that might duplicate, remove, and move parts of
the code in which we are interested that ensuring copyable code is non-trivial.
We ensure that this information is not lost, misplaced or mangled by separat-
ing it from structures accessed by optimization passes where possible and by
employing multiple sanity checks in each of our passes that use this information.

Phase I: Code parser pragma hook Figure 5 illustrates a fragment of inter-
preter source code for a single code chunk. The code of an instruction (bytecode)
is surrounded by the special copyable #pragma statements that mark the begin-
ning and end of the copyable chunk.

Phase II: Scan the tree (1) To ensure chunks are properly identified and
separated an initial pass is performed to check starting and ending conditions.
Each location of #pragma copyable begin and end registered during parsing is
checked to ensure it is followed by a label. These start and end labels have then
their special start and end flags set accordingly. Finally the code is modified by
artificially inserting into the stream of statements two empty volatile assembly

instructions around the end label.
The volatile assembly code acts as a barrier to code movement, and is used to

ensure the basic blocks directly following areas, the target blocks, are preserved
and act as the sole and unique exits of the natural control flow from a copyable
area. Our tests showed that otherwise some optimizations would attempt to
remove or merge target blocks.

Phase II: Scan the tree (2) In most architectures control flow jumps can be
relative or absolute. Relative jumps have the advantage of being (usually) smaller

8

instructions, but having a machine-specific limitations on the distance for which
they are useful. Absolute jumps are often longer instruction sequences since the
complete target address must be encoded, not just the relative displacement.
As mentioned in Section 4.1 for control flow that goes outside of the copyable
area absolute jumps are required to ensure the code behaves the same once
copied. Similarly, jumps within a copyable region must use relative addressing
to guarantee a copy will behave in an equivalent fashion.

Our second phase thus includes a pass to convert control flow statements
that go outside of a copyable area (and not to the target block) to use absolute
addresses for their targets. There are two cases of such control flow: a goto and
a function call, both complicated by the fact that GCC itself does not produce
the final binary code, rather it uses an external, platform-specific assembler
program. It is in fact the assembler’s role to choose the addressing mode for
each call or jump; typically the shortest addressing mode to reach the target is
chosen, but there is no general and relatively platform-agnostic way to specify
in the assembler input that a jump or a call is to use absolute addressing. Below
we describe how we ensure absolute jumps are used through the use of computed

gotos, and then how we process the code chunk to ensure control flow is safe for
copying.

Original code within a copyable area:

goto NullPointerException; /* label outside of the copyable area */

Is replaced with:

{ void *address = &&NullPointerException;

/* this assembly prevents constant propagation */

__asm__ __volatile__ ("" : "=r" (address) : "0" (address) : "memory");

goto *address; /* computed goto uses absolute addressing */ }

Fig. 4. To ensure absolute addressing a goto to outside of a copyable area is
replaced with a specially crafted computed goto.

To force selected jumps and calls to use absolute addressing we modify the
code of these instructions to make jumps and calls via a register. As shown in
Figure 4, in C these instructions are represented respectively by a computed goto

and a function call using a function pointer. A computed goto is a special feature
of the labels-as-values extension of GCC used by direct-threaded engine. It is
a goto whose argument is not a label but a variable containing the address of
a label (or any other address). Using a register to hold the destination address
may have a negative impact on the performance that will vary from platform to
platform, or even CPU type. Here the benefits of maintainability and safety are
paramount, and as we will show in Section 5 our solution is efficient in practice.

9

Nevertheless, more portable ways of expressing absolute addressing could slightly
improve performance.

Our current system assumes that code chunks are small enough that the
compiler will use optimal, relative jumps within the code of instructions found
in a region. While it does not attempt to ensure intra-area jumps are relative, an
appropriate pass could easily be added. Violations to this assumption, however,
will still be detected in our final verification phase.

Phase III: Mark and ensure areas are solid Rather than modifying a large
part of GCC to ensure properties of copyable code regions are preserved at all
subsequent compilation stages, by all compilation passes, we instead inserted
two additional passes. The first pass modifies the code in a way that ensures
the minimal information about copyable code regions is always preserved. The
second (reusable) pass uses this information and is capable of finding all the basic
blocks belonging to copyable areas after arbitrary optimizations. Both passes
include sanity checks mentioned earlier ensuring the additional information on
code chunks is not lost or mangled.

a r e a = 5
flags = START

a r e a = 5

a r e a = 0

a r e a = 5

a r e a = 5
flags=TARGET

a r e a = 0

Basic blocksSta tements s t ream

/* Code before the area */

#pragma copyable start

 COPYABLE_ICMP_START:

 . . .

 /* Copyable code */

 . . .

#pragma copyable end

 ICMP_END:

/* Code after the area */

Fig. 5. Initial marking of basic blocks
right after parsing.

After the source code is parsed
into the stream of statements the
compiler creates descriptions of basic
blocks. Each such description contains
pointers to the first and the last in-
struction that a basic block contains.
We found that a basic block is a con-
venient unit to carry the additional in-
formation about the copyable code. It
gives an easy access to smaller compo-
nents of the code, like each particular
instruction, while also being easily ac-
cessible via higher-level structures like
the control flow graph. We extended
the data structure describing a basic
block to store the unique id of the
copyable area a block belongs to and to store a field of utility flags. The initial
marking of basic blocks is straightforward. We scan the stream of statements for
labels earlier marked as start and end, and mark basic blocks with corresponding
flags.

In general optimizations can create new basic blocks, move or split existing
ones. One of the possible results is that some basic blocks that functionally are
part of a copyable area might no longer be placed between the start and target

basic blocks of this area and might not carry the initial marking. To recover
marking after optimizations we rely on the preservation of the start and target

blocks, which in turn is ensured with sanity checks. Area marking restoration
can then be done through simple propagation along the control flow graph, from
the start block of each area until the target block and jumps via computed gotos.

10

It is critical that the compiler had earlier modified all the jumps to outside of
copyable areas to use computed gotos. This way it is possible to always find the
limits of copyable areas.

Importantly, our approach does not use a heuristic and is guaranteed to
properly restore the list of blocks belonging to each copyable area. We still
included extensive sanity checks that in practice should never be triggered. This
is because, for instance, we earlier inserted volatile assembly around chunks end
labels and disabled cross-jump optimization (see below). With these measures
in place previously executed optimizations should not have inserted or deleted
start or target blocks or cause the control flow graphs of different code chunks
to interfere.

For functions containing copyable code we disabled cross-jump optimization
which attempts to find identical code chunks within a function and share a single
instance of the code. This clearly conflicts with with the need of the code-copying
engine to use self-contained code chunks.

Phase IV: Fix basic blocks ordering The main reason for our basic block
reordering pass is an optimization performed by GCC by default, basic block

partitioning. This pass does two things. It divides the set of basic blocks of a
function into those that are expected to be executed frequently (hot blocks)
and those that are expected to be executed rarely (cold blocks). In the final
assembly all the hot blocks of each function are located contiguously in the
upper part of the code, and the cold blocks are located below the hot blocks.
This optimization also reorders basic blocks to ensure that the fall-thru edges are
used for the most often encountered control flow. These are heuristic techniques
for improving instruction cache hit rate and simplifying control flow, and this
optimization can in practice improve the performance of a virtual machine by
several percent, therefore we want to allow for it.

For a chunk of code to be copyable the compiler has to restore the order of
basic blocks so that the marked code is self-contained. In this case the goal is
to move basic blocks to ensure that the start basic block of the copyable area
is followed by all other blocks belonging to it, which are then followed by the
target basic block of the same copyable area. After the marking of basic blocks
belonging to all areas is restored (as described in the previous section) it is
relatively easy to move all basic blocks belonging to an area into the wanted
positions. Positions of other basic blocks, not belonging to copyable areas, are
left unchanged.

4.3 Phase V and VI: RTL markers and final verification

The additional passes described above modify the structure of the code based on
up to date information about the boundaries of basic blocks, construction of the
control flow graph, and other data. During the last compilation passes the GCC
compiler discards some of this information or does not keep it up to date. In our
tests we found that these last optimization passes do not change the structure

11

of the code enough to invalidate the properties of copyable code. Nonetheless,
this was not sufficient for the safety guarantees we required and another solution
was needed. We therefore added two passes.

Not long before the information about basic blocks and control flow graph
becomes unavailable an additional pass inserts into the program representation
(RTL stream) special (untouchable by other passes) notes that mark the start
and end of copyable areas, including the ID of an area. The second pass is then a
simple verification pass that uses only a minimum of information. It is executed
just before the final assembly is sent to the external assembler. With the notes

inserted by our previous pass it is possible to verify all the necessary properties
of copyable areas when the code is final. The verification algorithm takes each
instruction from the instruction stream and ensures that:

– all copyable areas are present,
– copyable areas do not interleave with one another,
– jumps from a copyable area A are either to a target within A or to this

area’s target label (the label that begins the target basic block). Note that
it is also necessary to ensure that all jumps within A are also within the
allowable range of a relative jump3,

– jumps to the outside of an area are made via register and not a symbol (thus
are absolute),

– all calls from within areas are made via register and not a symbol (thus are
absolute).

A verification error at this point is uncorrectable and is treated as an internal
compiler error. This guarantees that if source code compiles properly then the
copyable chunks of binary code will be safe to copy and execute in a code-copying
VM. Sanity checks in all the passes ensure proper flow of the information on code
chunks which allows the final verification to function reliably. In our experience
we have not yet encountered a case where the verification pass would fail when
all the former passes executed properly.

5 Experimental Results

To examine practicality of our design we modified a Java Virtual Machine,
SableVM [5], to use our enhanced GCC. In SableVM source we marked code
chunks with our copyable #pragma. Code-copying was already supported in
SableVM, but required globally disabling block reordering in GCC and did not
provide safety guarantees. During preparations we used our enhanced GCC to
verify the unsafe code formerly used by SableVM’s code-copying engine and
found several cases where execution of a less likely control flow path in a byte-
code would result in a VM crash due to a function call using relative addressing.

The goal of our main experiments was thus to demonstrate that our new
approach allows the code-copying strategy to be realistically and more reliably

3 This check has not been implemented in our current system.

12

Fig. 6. Performance comparison of SableVM with standard direct-threaded engine,
unsafe code-copying engine and safe code-copying engine using the GCC copyable-code
enhancement.

used while maintaining the performance. The results shown in Figure 6 have
been gathered using a machine with Intel Pentium IV at 3GHz, 512MB RAM.
The SPEC benchmarks, averaged over 10 runs, were executed with their default
settings (-S 100), and performance is shown normalized to the speed of the
direct-threaded engine as a baseline for comparison. SableCC and Soot are large,
object-oriented, in-house benchmarks.

Metric #

Data structures modified 4
Fields added to data structures 6
Data structures added 3
Functions added to existing files 4
Function calls/hooks inserted 8
Code lines added or modified 139
Code lines in new files 1500

Fig. 7. Metrics of code modified and added
to GCC

The benefits of code-copying
are clear. We are able to achieve
approximate parity with the un-
safe code-copying approach. More
surprising perhaps is that the per-
formance of SableVM version 1.13
modified to use our GCC ex-
tensions actually improved over
the manual code-copying design in
most cases. We attribute the gen-
eral improvement to the fact that
previously SableVM had to glob-
ally disable basic block reordering
for the code-copying engine to work at all. With the added GCC support for
code-copying this useful optimization was enabled. We also note that the perfor-
mance of two SPEC benchmarks that benefit the most from code-copying, as well
as Soot slightly decreased, about 2-3%. We suspect that this effect is caused by
the memory barriers inserted into the code in places where the special #pragma

is used. These barriers might be inhibiting some of the optimizations. Previously
Gu et al. [7,8], however, showed that changes to the executable code placement

13

without actual changes to the functioning of a VM can cause a tremendous
variance (up to almost 10%) in the VM performance. More detailed analysis of
performance gains and losses is thus warranted, but certainly the magnitude of
correlation in Figure 6 is sufficient to demonstrate the general success of our
compiler-facilitated approach. Overall, the effect is clear: our modifications effi-
ciently enable code-copying as a safe technique for VM interpreter design.

One of our goals was to minimize the impact of our changes to GCC on GCC
maintenance. Figure 7 shows the results of our impact measurements in terms of
required changes to code and data structures. In a truly large project such as a
GCC we see these numbers as indicators that our extension has minimal impact
on the existing GCC code and its maintenance. We also report that a major up-
grade of our enhanced GCC from 3.4 to 4.2 (about 2 years of GCC development)
took only a few hours and consisted mostly of renaming and testing. We believe
this validates our claim that a relatively simple compiler modification can help
improve the performance of dynamic execution environments.

6 Conclusions and Future Work

For a variety of reasons, including simplicity and dynamic support, many modern
languages are based on virtual machine (VM) designs. Efficiency and ease of
design are key features for rapidly evolving languages and associated execution
environments.

Code-copying interpreters offer a good trade-off between performance and
maintenance, but were previously limited by the lack of critical safety guar-
antees, as well maintenance concerns with respect to the VM compiler itself.
Copyable code must behave functionally the same when copied, and while con-
ceptually trivial these guarantees are simply not provided by current compilers
or C language extensions.

With our work we demonstrate that it is possible to make code-copying safe
and practical. Our approach to GCC modifications demonstrates viability of
our technique for ensuring the safety properties essential to code-copying. We
show how this technique can be relatively easily integrated with a modern C
compiler, while keeping the changes relatively isolated and making only limited
assumptions about the inner workings of a compiler, thus ensuring long-term
maintainability.

The implementation of a code-copying GCC extension on which we based this
paper was focused on supporting the i386 architecture. On other architectures
there might be additional issues with delay slots (e.g. MIPS), relative address-
ing of externs and globals (e.g. x86 64), or relative-jump span limitations (e.g.
PowerPC). We are currently working on incorporating the necessary detection
and correction mechanisms into our GCC extension leading to full support of
more architectures.

As well as deeper performance analysis, further determining the source of
our gains over hand-done code-copying, our immediate future work is in the ap-
plication of our technique to other VM architectures and other hardware archi-

14

tectures. Simplified use of code-copying could improve performance for a variety
of predominantly interpreted languages, and we hope to show greater generality
of our design by replicating the code-copying technique in other environments.

This research was supported in part by NSERC and FQRNT. The authors
would also like to thank Etienne M. Gagnon for his suggestion regarding compiler
modification as a way of making code-copying practically usable. The source code
of our modified GCC 4.2 is available at http://www.prokopski.com .

References

1. David Bélanger. SableJIT: A retargetable just-in-time compiler. Master’s thesis,
McGill University, August 2004.

2. M. Anton Ertl and David Gregg. Retargeting JIT compilers by using C-compiler
generated executable code. In Parallel Architecture and Compilation Techniques
(PACT’ 04), pages 41–50, 2004.

3. M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan. Vmgen: a gener-
ator of efficient virtual machine interpreters. Softw. Pract. Exper., 32(3):265–294,
2002.

4. M. Anton Ertl, Christian Thalinger, and Andreas Krall. Superinstructions and
replication in the Cacao JVM interpreter. Journal of .NET Technologies, 4:25–32,
2006. Journal papers from .NET Technologies 2006 conference.

5. Etienne M. Gagnon. A Portable Research Framework for the Execution of Java
Bytecode. PhD thesis, McGill University, 2002.

6. Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J.
Eggers. A retrospective on: “an evaluation of staged run-time optimizations in
DyC”. SIGPLAN Not., 39(4):656–669, 2004.

7. Dayong Gu, Clark Verbrugge, and Etienne Gagnon. Code layout as a source of
noise in JVM performance. In Component And Middleware Performance workshop,
OOPSLA 2004, 2004.

8. Dayong Gu, Clark Verbrugge, and Etienne M. Gagnon. Relative factors in per-
formance analysis of Java virtual machines. In VEE ’06: Proceedings of the 2nd
international conference on Virtual execution environments, pages 111–121. ACM
Press, 2006.

9. Gregory B. Prokopski, Etienne M. Gagnon, and Christian Arcand. Bytecode test-
ing framework for SableVM code-copying engine. Technical Report SABLE-TR-
2007-9, Sable Research Group, School of Computer Science, McGill University,
Montréal, Québec, Canada, September 2007.

10. Markku Rossi and Kengatharan Sivalingam. A survey of instruction dispatch
techniques for byte-code interpreters. Technical Report TKO-C79, Faculty of In-
formation Technology, Helsinki Univeristy of Technology, May 1996.

11. Ben Stephenson and Wade Holst. Multicodes: optimizing virtual machines us-
ing bytecode sequences. In OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 328–329, New York, NY, USA, 2003. ACM Press.

12. T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,
H. Komatsu, and T. Nakatani. Overview of the IBM Java just-in-time compiler.
IBM Syst. J., 39(1):175–193, 2000.

15

