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Abstract

Pointer analyses enable many subsequent program analyses and transformations by
statically disambiguating references to the heap. However, different client analyses may
have different sets of pointer analysis needs, and each must pick some pointer analysis
along the cost/precision spectrum to meet those needs. Some analysis clients employ
combinations of pointer analyses to obtain better precision with reduced analysis times.
Our goal is to ease the task of developing client analyses by enabling composition
and substitutability for pointer analyses. We therefore propose object representatives,
which statically represent runtime objects. A representative encapsulates the notion of
object identity, as observed through the representative’s aliasing relations with other
representatives. Object representatives enable pointer analysis clients to disambiguate
references to the heap in a uniform yet flexible way. Representatives can be generated
from many combinations of pointer analyses, and pointer analyses can be freely
exchanged and combined without changing client code. We believe that the use of object
representatives brings many software engineering benefits to compiler implementations
because, at compile time, object representatives are Java objects. We discuss our
motivating case for object representatives, namely, the development of an abstract
interpreter for tracematches, a language feature for runtime monitoring. We explain
one particular algorithm for computing object representatives which combines flow-
sensitive intraprocedural must-alias and must-not-alias analyses with a flow-insensitive,
context-sensitive whole-program points-to analysis. In our experience, client analysis
implementations can almost directly substitute object representatives for runtime objects,
simplifying the design and implementation of such analyses.

1. INTRODUCTION

Many static program analyses depend on the availability of pointer analysis information to disambiguate
heap references. For instance, dependence and side-effect analyses need to know the identities of objects
that are written to. An analysis that determines whether the fields of parameters are modified needs
to know if such fields are modified through aliases. Typestate and tracematch analyses (as discussed
in this paper) must acknowledge changes to object states even when objects are pointed to by many
different variables.

While all of these client analyses need pointer information, they do not need the same precision in their
pointer information. For instance, partial redundancy elimination, dead code elimination and structure
copy optimization work adequately with imprecise pointer information [12]; other analyses, such as
analyses for tracematches [3, 4] or for typestate [9], need more precise pointer information. Some
approaches [4, 17, 33] combine multiple pointer analyses to get an adequate cost/precision trade-off.

However, it is currently difficult to combine multiple pointer analyses, as the interfaces to pointer analysis
vary greatly: some analyses expose Boolean-valued methods which answer queries about local variables,
while other analyses expose points-to sets which developers can test for disjointness. Furthermore,
some pointer analyses return may-aliasing information, while others return must-aliasing information.
Developers of client analyses must track the different pointer analysis interfaces and coordinate the calls
to the different analyses, which complicates the design and implementation of these client analyses.
We believe that a uniform interface for pointer analysis would greatly aid the development of client
analyses.
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We therefore propose object representatives as a convenient abstract interface that decouples pointer
analyses from their clients. In this paper, we enumerate desirable properties of object representatives
and propose ways of computing them. Object representatives assign names to heap objects and enable
client analyses to uniformly 1) disambiguate references which definitely point to different heap objects
(i.e. answer may-alias queries) and 2) identify references which definitely point to the same heap
object (i.e. answer must-alias queries). We demonstrate that object representatives are an easy-to-use
interface to pointer analysis that enables higher-level abstract reasoning about the heap and simplifies
implementations of client analyses.

Object representatives can serve as static representatives of runtime objects; this works especially well
due to the must-alias information that they encapsulate. In particular, representatives can be directly
compared and indexed. They can therefore be stored in indexed data structures, such as hash sets or
hash maps. The identity (and hash code) of an object representative is solely determined by its aliasing
relationships with other representatives. In other words, two object representatives are equal if they
must represent the same area of the heap. To sum up, object representatives provide client analyses
with a way to reason about equality and inequality of references to the heap in a uniform, intuitive and
well encapsulated way.

To concretely motivate the need for object representatives, we explain some details from our
static analysis of tracematches [4], which requires precise flow-sensitive must-alias and must-not-
alias information. Unfortunately, no currently-known algorithm can compute whole-program flow-
sensitive must-alias information for sizable programs in a reasonable amount of time, so we combined
three different pointer analyses. Our baseline pointer information comes from the Spark pointer
analysis framework [21] and its extension, context-sensitive refinement-based whole-program points-
to analysis [28]. Both are reasonably efficient, partly because they are not flow-sensitive—they do
not consider the ordering of statements within a particular method—and partly because they do not
support must-alias information. We then augmented this baseline information with intraprocedural flow-
sensitive must-alias and must-not-alias information, which is also easy to compute efficiently. Object
representatives allowed us to uniformly combine all of our analysis results and to hide them behind a
single abstraction.

The contributions of this paper include:

• A description of object representatives and the properties that they should have.
• An algorithm for computing object representatives, which combines analysis results from different

pointer analyses, such as interprocedural and intraprocedural may- and must-alias analyses.
• A discussion of our experience with object representatives, and in particular, how object

representatives helped us design client analyses.

The structure of the remainder of this paper is as follows. Section 2 explains one particular client analysis
that motivated our need for object representatives. Section 3 presents the abstract interface of object
representatives, our notation for enabling different analyses to collaboratively name heap locations. In
Section 4 we explain a reference implementation of this interface, tailored to the client analysis from
Section 2. The implementation combines three different pointer analysis, described in Section 5, to
disambiguate references to the heap. Finally, Section 6 presents related work and Section 7 concludes.
The appendix contains additional information about more client analyses and how they can benefit from
using object representatives.

2. CLIENT ANALYSIS: ABSTRACT INTERPRETATION OF TRACEMATCHES

Our need for object representatives was motivated by a number of problems that we encountered with
traditional pointer abstractions when developing a particular client analysis. In previous work [3, 4]
we proposed static analysis approaches for evaluating tracematches at compile time. Tracematches
are a programming language feature for runtime monitoring. A tracematch associates a common
typestate [9] with a number of objects using constraints. For instance, the constraint i = o(i2) on
a state “called next” could mean that i2.next() was just called on iterator object o(i2), referred
to by program variable i2 and identified by the abstract tracematch variable i. Such information is
useful: programmers must never advance the iterator o(i2) (e.g. using a call to i1.next(), where
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o(i1) = o(i2)) without knowing that i has a next element (which can be checked by calling
i2.hasNext()). We provide further information about tracematches in Appendix A.

To implement an abstract interpretation for tracematches, we needed to model runtime objects at
compile time. That is, we had to represent a constraint i = o(i2) by a constraint i = x, where x is
some compile-time representative of the runtime object o(i2). At first, it was not clear what this x

should be.

2.1. Storing points-to sets.

In [3] we used points-to sets from a whole-program points-to analysis as our abstraction: we modelled
the constraint i = o(i2) by i = pointsTo(i2). To decide whether we had reached a fixed point or
not, we needed to determine equality of two points-to sets, which was at best inelegant for points-to
sets. Furthermore, we also found that the points-to sets were too imprecise for nontrivial tracematch
analyses due to their flow-insensitivity.

2.2. Storing variable names.

Having found that whole-program points-to information was not strong enough on its own, we next
sought (in [4]) to combine flow-sensitive intraprocedural must-alias and must-not-alias information with
whole-program points-to information. We therefore needed a new compile-time representation for heap
objects.

As a quick and dirty hack, we attempted to use local variable names, representing i = o(i2) with
the constraint i = i2. After replacing all occurrences of points-to sets with local variables in our
implementation (a tedious job!) we soon discovered the many disadvantages of storing variable names.
For instance, we store constraints in disjunctive normal form (DNF), as hash sets of disjuncts, where
each disjunct is stored as a hash map, mapping tracematch variable names to our abstraction. The
use of local variable names with DNF caused unnecessary memory consumption. At runtime, if o(i1)
and o(i2) point to the same object, then disjunct i = o(i1) equals disjunct i = o(i2). Therefore, the
constraint only needs to store one of the disjuncts. At compile time, however, the disjuncts i = i1

and i = i2 would be considered different because i1 and i2 appear different. This would lead to both
mappings being stored. The problem was that we conflated variable names with the names of the values

stored in those variables.

Furthermore, it turned out that variable names are not enough. The same variable can point to different
objects at different lines of the program (sometimes even at the same line, if this line is executed more
than once). We would also have needed to store the source statements of local variables, which would
have complicated the abstraction even further. This painful experience prompted our abstraction of
runtime objects by object representatives.

Object representatives have applications beyond implementing abstract interpretation for tracematches.
In Appendix B, we demonstrate how programmers of other client analyses can benefit from using object
representatives by giving two concrete examples: constant propagation and side-effects analysis for
method parameters.

3. OBJECT REPRESENTATIVES

Object representatives are inspired by work by Fink et al. on static evaluation of typestate [9]; in fact,
object representatives are an extension to their notion of instance keys [9, 27]. Object representatives
simplify the problem of statically reasoning about the heap by adding a layer of indirection. Namely,
they enable analyses to reason about (static representations of) objects, rather than being forced to
reason about variables.

Conceptually, object representatives must:

1. represent one or more runtime objects;
2. support a must-not-alias query that, when true, mean that object representatives i and j always

refer to disjoint areas of the heap;
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3. support an equality operation “equals” that, when true, mean that object representatives i and j

always refer to the same heap object; equals must depend solely on a representative’s must-alias
relationship to other representatives.

4. belong to a certain must-aliasing scope.

1 void foo( Iterator i ) {
2 Collection c; Iterator j ; Object o;
3 while( i .hasNext()) {
4 c = i.next ();
5 j = c. iterator ();
6 while ( j .hasNext()) {
7 o = j.next ();
8 /∗ use o somehow ∗/
9 } } }

FIGURE 1: Example redefining j in the outer
but not in the inner loop

The scope is necessary to concretize the general notion of
must-aliasing. It enables the representative to say whether it
must-aliases itself at a given location. One might think that
variables must always alias themselves at a given location.
This is not quite true in the presence of loops or recursion.
Consider the example on the right. At line 5, j gets assigned
a different object in every iteration of the outer loop.
Depending on the client analysis, it can be valid both to
answer that j does must-alias itself or that it does not. The
answer depends on the scope: If the scope is the execution
of the entire method foo then j not must-aliases j at line
7, due to the possible redefinition. If the scope is only the inner loop (lines 6-9), then j must-aliases
itself at line 7: during the execution of the inner loop, the value of j never changes. Such a scope
might be useful for analyses that attempt to determine loop invariants; other analyses may require
method-wide, thread-wide or even program-wide scopes.

Note that our abstraction will never say that two variables belonging to different scopes are must-
aliased. For instance, if object representatives are defined on a method-wide scope, then we will use
an intraprocedural must-alias analysis to relate these representatives to each other. Such an analysis
cannot determine that two variables from different methods are must-aliased. To determine must-
aliasing between these representatives, we must widen the scope, e.g. to a program-wide scope, and
use an interprocedural must-alias analysis to compute object representatives.

We define two kinds of object representatives, strong and weak representatives. A strong representative
represents at most one concrete runtime object during a single execution of the scope; weak
representatives have no such requirement. In Section 5.1.3 we will explain how a must-alias analysis can
generate both strong and weak representatives for a given scope. Client can select between generating
strong and weak object representatives by setting a runtime flag; no changes to client code are needed.

Because object representatives implement equals in a sensible way, we can easily store them in
associative data structures like hash maps. Since their identity is a function only of their relationship with
other representatives, two representatives representing the same object but stored in different program
variables will be equal. Object representatives therefore indeed directly represent runtime objects, and
enable direct, intuitive and well encapsulated implementations of abstract interpreters.

Returning the example in Section 2, we now model the constraint i = o(i2) by i = r(i2), where r(i2)
is the object representative of the object that i2 refers to. Here, the equals function identifies r(i1)
and r(i2) as equal. Hence, we see that the constraints i = r(i1) and i = r(i2) are equal, which
enables optimizations.

This concludes our abstract description of object representatives. In the next section, we explain one
concrete implementation of object representatives, tailored to the static abstract interpretation of
tracematches.

4. A CONCRETE IMPLEMENTATION

Figure 2 presents the abstract Java interface for object representatives. Note that object representatives
provide must-alias and must-not-alias operations. Furthermore, they implement the generic method
equals so as to satisfy the properties mentioned above. (The properties also apply to hashCode.) This
interface would be easy to extend, e.g. with methods to retrieve the possible concrete types that a
variable can be assigned. For the sake of brevity, we restrict ourselves to the interface given below.
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1 public interface ObjectRepresentative {
2 public boolean mustAlias(ObjectRepresentative other );
3 public boolean mustNotAlias(ObjectRepresentative other);
4 public int hashCode();
5 public boolean equals(Object obj );
6 }

FIGURE 2: Abstract interface for object representatives

The internal state of an object
representative is defined in terms of
three values, stored in fields of the
ObjectRepresentative object:

1. a local variable name;
2. the statement for which the

object representative is cre-
ated; and

3. the representative’s must-
aliasing scope (e.g. loop, method, abstract thread, program, . . . ).

Object representatives must contain a defining statement for the representative, since a variable name
alone does not disambiguate potential objects in the presence of redefinitions. SSA form [1, 25] would
mitigate this problem, but was not available to us; however, storing the defining statement was a
perfectly acceptable solution in our situation.

We next sketch our implementation of the object representative interface, which is tailored to our
particular context. The abstract interface of object representatives enables different implementations
and different back-end analyses; we used a flow-insensitive refinement-based whole-program points-to
analysis [28] with flow-sensitive intraprocedural must-alias and must-not-alias analyses.

4.1. Implementation of mustNotAlias.

object repre-
sentatives of

same
method?

start
local

must-not-alias
analysis

points-to
sets overlap?

don’t know
(may-alias)

must
not alias

yes

no don’t know

must not alias

yes no

FIGURE 3: Flow chart for the must-not-alias
operation on object representatives

The flow chart in Figure 3 illus-
trates the implementation of the
mustNotAlias(ObjectRepresentative)

method. First, we compare the two methods
(i.e. scopes) of the receiver object representative
and the parameter object representative. If the
two object representatives come from the same
method, we first apply our intraprocedural must-
not-alias analysis (which is usually more precise).
The analysis receives the associated local variables
and assignment statements as input. If the
intraprocedural must-not-alias analysis determines
that those two variables at those statements cannot
possibly point to the same object we return true,
indicating that the object representatives cannot
alias.

If the intraprocedural must-not-alias analysis
instead returns “don’t know”, or if the two
variables come from different methods, we consult
the interprocedural points-to analysis. Note that,
sometimes, an interprocedural analysis can be more precise even if two variables are defined in the same
method—for instance, they may be assigned fresh values in a callee method. We therefore construct
points-to sets and refine them using context information for both object representatives. (Actually, we
cache the refined points-to sets inside the object representatives). If the resulting points-to sets do not
overlap, we return true as well, because again we know that the variables cannot be aliased. Otherwise,
we return false, indicating that we don’t know whether or not the variables may be aliased.

4.2. Implementation of mustAlias and equals.

The implementation of the method mustAlias is even simpler than that of mustNotAlias, because
must-alias analysis cannot use our interprocedural points-to analysis. Only intraprocedural analysis
information is available. We return true if the two object representatives belong to the same method
and if the must-alias analysis for this method returns true on the local variables and statements stored
in the object representatives. We implemented two different versions of the intraprocedural must-alias
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1 public int hashCode() {
2 final int prime = 31;
3 int result = 1;
4 result = prime ∗ result + declaringMethod.fullName().hashCode();
5 result = prime ∗ result + must alias analysis (declaringMethod).valNumber(var,stmt);
6 return result ;
7 }

FIGURE 4: Implementation of the hashCode() method for object representatives (pseudo code)

analysis, for strong and weak object representatives; clients may select the must-alias analysis that best
suits their needs. Section 5.1 describes how we compute must-alias analysis results and how strong
and weak analyses differ. The equals method simply delegates to the method mustAlias when its
parameter object is an ObjectRepresentative as well.

4.3. Implementation of hashCode.

For performance reasons, hash codes should differ whenever possible; of course, they must be equal
for two object representatives whenever an invocation of equals on those representatives would return
true, i.e. if the representatives must be aliased. We found the following solution for computing an
effective hash code for object representatives. The implementation combines (1) the identity of the
declaring method; and (2) a unique value number assigned to the associated variable by the local must-
alias analysis of this method at the associated statement (see Section 5.1). Figure 4 gives our concrete
implementation in Java-like pseudo code. It ensures that hash codes differ whenever they can but are
equal whenever they have to be.

5. POINTER ANALYSES

We integrated three different pointer analyses to compute our object representatives. Intraprocedural
must-alias and must-not-alias analyses are quite precise in their area of applicability and run quickly,
but do not have any information about object references passed in as method parameters or read from
fields. We therefore incorporated a whole-program points-to analysis into our object representatives.

Our intraprocedural analyses can be seen as a generalized constant propagation over object reference
values [31]. We generate fresh constant values either at expressions in general (must-alias) or at new
expressions (must-not-alias). We then propagate values along assignments of local variables. The object
representative abstraction enables client analyses to seamlessly combine the results of all three pointer
analyses.

5.1. Intraprocedural must-alias analysis

Given two pointer variables v1 at program point p1 and v2 at program point p2, our must-alias analysis
determines whether v1 and v2 must point to the same heap object o. We assign value numbers to v1

and v2; if they have the same number, then they must always point to the same heap object (for the
duration of the method execution).

5.1.1. Value numbering.

Our local analyses assign a fixed value number [19] to each program expression in the code. (Identical
expressions at different program locations are assigned different numbers.) If two variables contain the
same value number, they must point to the same object: variables have the same value number when
a variable is a copy of the value of another variable. Our abstract domain consists of integers and the
special values ⊤ (unknown) and ⊥ (nothing, for uninitialized values). Consider the following example.

(i,⊥), (j, ⊥)
(i, 1), (j, ⊥)
(i, 1), (j, 1)
(i, 1), (j, 1)
(i, 2), (j, 1)
(i, 3), (j, 1)
(i, 3), (j, 3)
(i, 3), (j, 3)

1 i = c1. iterator ();
2 j = i;
3 if (p) {
4 i = c2. iterator ();
5 } // 3 = { 1, 2 }
6 j = i;
7 print ( j );

The left-hand column shows value numbers before each line
on the right. All variables initially get the uninitialized value
⊥. Line 1 assigns the value number 1 to i. Line 2 copies
1 from i to j, so j and i are must-aliased. Our analysis
indicates this by giving both i and j the same value number,
1, after line 2. After line 4, i gets a new value, modelled
with value number 2.
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5.1.2. Value numbering at merge points.

If a variable (like i) has incoming value numbers 1 and 2 at a merge point, we generate a new value
number “{1, 2}” to uniquely represent the two possible values of i, and create a unique identifier 3
to represent this value number. At line 6, we copy 3 to j, enabling us to conclude that i and j must
be aliased. The creation of a fresh value number (e.g. 3) ensures that our analysis properly handles
multiple reaching definitions; note that the fresh representative does not must-alias any of the previous
reaching definitions (because we don’t know which of the previous definitions actually reaches).

Values at different program points. Our must-alias analysis supports queries with respect to a
statement. In the above example, i at line 1 and j at 6 are not must-aliased (due to the conditional).
Our analysis can infer, however, that i at 1 and j at 2 are must-aliased, as i at 1 and j at 2 both have
value number 1.

Queries with respect to statements are essential when client analyses need to associate analysis
information with heap objects, not variables: a variable can point to many different objects over its
lifetime. Static single assignment form (SSA form) [1, 25] can be used to encode the query position in
the variable itself by splitting local variables at each redefinition. SSA form guarantees that there is a
distinct variable name for any single static assignment, i.e. each assignment location. However, SSA
form does not help handle variable redefinitions that are caused by multiple executions of the same
statement.

5.1.3. Variable redefinitions in loops and reentrant code.

As noted in Section 3, each object representative is defined with respect to a single must-aliasing
scope, e.g. a loop, method, thread or the entire program (other scopes may be possible, too). An object
representative can be either strong or weak with respect to this scope. A strong representative only must-
aliases itself at the same program location if it is guaranteed that this representative represents a single

runtime object. The must-alias analysis presented above computes weak representatives—we therefore
call it a weak must-alias analysis. It computes weak representatives because it assigns exactly one value
number to each expression, even if the expression may be evaluated multiple times (by revisiting the
same statement) and therefore could return different values (or objects) during the scope’s execution.
We found that weak representatives did not suffice for our tracematch analysis; referring back to Figure
1 on page 4, we needed to distinguish between the value held in variable j at different points in time.
In particular, we had to determine whether the object pointed to by j had changed states. Strong

must-alias analysis handles variable redefinitions by soundly over-approximating the variable contents.
We can extend our weak must-alias analysis to a strong must-alias analysis as follows. We first find
all strongly connected components (SCCs) in a method’s control flow graph. If variable v gets value
number i at an assignment statement within some SCC (i.e. within a loop), we invalidate i and give v

the value number ⊤ as a conservative over-approximation.

Note that, in the setting of our concrete client analysis, variable redefinitions can only occur within
loops: our scope for object representatives is a single method execution. Broader scopes would generally
be helpful because they allow the resolution of must-alias queries from variables from different methods.
However, they would also allow for other types of looping constructs, like recursion. (Such scopes could
in principle be supported through other must-alias analyses. A global must-alias analysis could support a
program-wide scope. However, we are not aware of any global must-alias analyses that are both practical
and generally applicable.) Any such looping construct can cause a variable redefinition. Conversely, a
smaller scope, e.g. a loop, might have fewer redefinitions and therefore require fewer representatives to
be invalidated. If the scope contains no looping constructs (i.e. straight-line code), statements execute
at most once, so a statement can never overwrite its definition from a previous execution. Invalidation
is therefore unnecessary in straight-line code, and strong and weak representatives are equivalent. To
sum up, we have seen that the definition of strong object representatives must depend on the scope for
those representatives.

// (c,⊥), (i,1), (j,⊥), (o,⊥)
// (c,⊤), (i,1), (j,⊤), (o,⊤)
// (c,⊤), (i,1), (j,⊤), (o,⊤)
// (c,⊤), (i,1), (j,⊤), (o,⊤)
// (c,⊤), (i,1), (j,⊤), (o,⊤)

1 void foo( Iterator i ) {
2 Collection c; Iterator j ; Object o;
3 while( i .hasNext()) {
4 c = i.next ();
5 j = c. iterator ();
6 ...
7 }
8 }

We present the strong anal-
ysis results for our example
from Figure 1 on the right.
Variables v, j and o are all
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assigned ⊤ because they are reassigned in the loop. The variable i, however, is assigned the value
number 1, because it is not assigned within the loop. Our analysis therefore answers that i always
points to the same value during the execution of foo().

Our implementation supports both strong and weak must-alias analyses. Our tracematch analyses use
each analysis where it is most appropriate. For instance, we apply an optimization based on loop
invariance. If the program’s state does not change between loop iterations, then only the first iteration
matters, so it is safe to use the weak must-alias analysis. Other optimizations require variables that
may point to different objects at runtime to have different value numbers; we use the strong analysis
for such optimizations.

5.2. Intraprocedural must-not-alias analysis

A must-not-alias analysis determines that two variables cannot point to the same heap object. If a
must-not-alias analysis states that v1 and v2 may be aliased, then on any execution they may or may
not be aliased. Conversely, if a must-not-alias analysis states that v1 and v2 cannot be aliased, then
they definitely point to different objects, and we say that v1 and v2 “must-not-alias”.

Must-not-alias information enables client analyses to conclude that two statements definitely do not
interfere with each other because they act on different parts of the heap. We have implemented a must-
not-alias analysis and include its results in our object representatives; like the must-alias information,
it is based on value numbers.

The analysis abstraction for our must-not analysis consists of sets of value numbers, potentially including
the initial value ⊥ (nothing aliases ⊥) and the unknown value ⊤ (everything aliases ⊤). Unlike the
must-alias analysis, which assigns a fresh value number for each expression, the must-not analysis only
assigns fresh value numbers at new expressions; otherwise it assigns ⊤. The results of other expressions
are not necessarily fresh, and we cannot intraprocedurally say anything about the results of method
calls, for instance; all such expressions may alias any other values in the method. Our analysis handles
x = y by copying the value number(s) for y to x. For merge operations, instead of generating a new
value number representing the join of both incoming value numbers as in the must-alias case, we simply
combine the sets directly, making it easier to read off the must-not-alias relationships. Consider the
following example.

// {(l, ⊥), (m, ⊥)}
// {(l, { 1 }), (m, ⊥)}
// {(l, { 1 }), (m, { 2 })}
// {(l, { 1 }), (m, { 2 })}
// {(l, { 1 }), (m, { 2 })}
// {(l, { 1 }), (m, ⊤)}
// {(l, { 3 }), (m, ⊤)}
// {(l, {1,3}), (m, ⊤)}

1 List l ,m;
2 l = new List(); // 1
3 m = new List(); // 2
4 leak(m);
5 if (p) {
6 m = foo();
7 l = new List(); // 3
8 }
9

At line 1, l and m are
uninitialized, so we assign
⊥ to these variables. Lines
2 and 3 store fresh objects
in l and m, so we give l

and m new value numbers.
At line 6, foo() might
return a non-fresh object: for
instance, foo() could return
the object created at line 3, which was leaked in line 4. We must therefore assign ⊤ to m; it may alias
anything. Line 7 stores another fresh object in l, so the analysis gives l the value number 3. After the
merge point at line 8, l might contain either the object created at 1 or the object created at 3. For m,
we merge {2} with ⊤, giving an abstract value of ⊤ for m.

Querying whether l after line 3 could alias l after line 7 would give “must-not alias” because the set
for l after line 3 is disjoint from the set for l after line 7. Conversely, l after line 3 and l after line 9
would result in the answer “may alias”. A query of our abstraction on the relationship between m after
line 4 and m after line 9 would also give “may alias”.

5.3. Interprocedural points-to analysis

We have presented must-alias and must-not-alias analyses which work on one method at a time. Ideally,
such flow-sensitive techniques would also work at a whole-program level, giving us detailed pointer
information which integrates method parameters, array and field values. Unfortunately, no efficient
techniques for a general interprocedural flow-sensitive must-alias analysis have yet been proposed. Flow-
sensitive interprocedural approaches for the may-alias problem do exist [8, 18, 32], although even these
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approaches have not yet been shown to scale well enough to process interestingly-sized programs.
However, flow-insensitive pointer analyses—points-to analyses—have been very successful.

Like our must-not-alias analysis, a points-to analysis determines the set of heap objects that program
variables could possibly point to. Interprocedural points-to analyses assign value numbers to new

expressions. (That is, new expressions continue to serve as representatives for memory locations.)
However, interprocedural analyses can propagate value numbers throughout the entire program rather
than through just a single method body, eliminating the need for conservative assumptions due to
parameters, arrays and fields.

1 A x;
2 void f () { x = new A(); } // (1)
3 void g() { x = new A(); } // (2)
4 void main() {
5 f ();
6 g();
7 print (x);
8 }

The example to the right illustrates the limitations of flow-
insensitive analyses. Two different methods f() and g() assign to
a field x. A main method then executes f() and g(), where g()

invalidates the value of x set by f(). No flow-insensitive analysis
could infer that x at line 7 is must-not-aliased with x after the
assignment in f() in line 2. In other words, strong updates [5]
are impossible. There would be just one points-to set for x, { 〈1〉,
〈2〉 }, modelling that x can point to the object created at (1) or the object created at (2).

Of course, interprocedural flow-insensitive points-to analyses can still be more precise than
intraprocedural flow-sensitive analyses, even on two variables from the same method, because the
interprocedural analysis can summarize computations outside the method that affect the method.

x = c. iterator (); // (3)

y = c. iterator (); // (4)

Consider the following example to the right. Here, no strictly
intraprocedural analysis could have any information about the
contents of iterator (), and must therefore assume that both calls to iterator () may, in principle,
return the same value. We modelled this assumption in our intraprocedural analysis by assigning ⊤ as
the value number for expressions that are not new expressions, such as method calls. Interprocedural
analyses, on the other hand, typically consider the contents of called procedures, or at least summaries
of their effects.

1 public Iterator iterator () {
2 return new HashSetIterator(); // (5)
3 }

A context-sensitive interprocedural analysis can combine the
body of the iterator function—which contains creation site
(5)—with the fact that it is called from program points (3)
and (4), to distinguish the values of x and y. A points-to
analysis that uses calling-context information could model the object returned from iterator at (3) with
a pair 〈call-site, creation-site〉, i.e. 〈3, 5〉. The object returned at (4) would then be modelled with the
pair 〈4, 5〉. Because the points-to sets {〈3, 5〉} and {〈4, 5〉} are disjoint, the objects pointed to by x and
y cannot alias. Interprocedural analyses give additional precision in some cases; we exploit this precision
in the definition of object representatives.

Context information—where is (5) called from?—is critical. Without context information, even an
interprocedural analysis would model both x and y with just the creation site 〈5〉, making it impossible
to conclude that x and y may not alias.

Applicability. It is difficult to soundly analyze partial programs when using a whole-program analysis,
since the un-analyzed portions of these programs may have unknown and hard-to-circumscribe effects on
the points-to information. Even if an interprocedural analysis can process any particular method quickly,
the analysis generally needs to process all reachable methods to ensure soundness. It is therefore difficult
to quickly obtain interprocedural analysis results; state-of-the-art machines require minutes to compute
interprocedural analysis results. Our intraprocedural analyses, however, usually execute in milliseconds.

Demand-driven analyses. Our work on static tracematch optimizations uses Sridharan and Bod́ık’s
demand-driven and refinement-based context-sensitive points-to analysis [28], which is based on
Spark [21], a context-insensitive flow-analysis framework, included in the Soot compiler framework [30].
We obtain analysis results by first running Spark to generate context-insensitive points-to sets, and then
generating additional context information on demand. We only require context information for variables
that we actually query. The demand-driven approach gives precise results (precise for a flow-insensitive
approach, at least), while keeping analysis time to a minimum.
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Availability. We integrated our implementation of object representatives into version 2.2.5 of the
Soot program analysis framework (http://www.sable.mcgill.ca/soot/). Our static analysis of
tracematches is available for download at http://www.aspectbench.org/, as well as a paper [4]
describing the analysis in further detail. It is integrated as of version 1.3.0 of the AspectBench Compiler.

6. RELATED WORK

Past approaches to assigning names for heap objects include using malloc sites as names; Array
SSA [10]; anchor handles [11]; and extended SSA numbering [19]. Most approaches explicitly assign
names for heap objects by combining variable names with additional information. Our approach instead
decentralizes the creation of names: conceptually, an object representative’s identity is a function solely
of its alias relationship to other representatives. Many must-alias and must-not-alias analyses exist in
the program literature. All such analyses can be used to define object representatives.

We next discuss related work in the areas of SSA form, instance keys, whole-program pointer analyses,
client analyses, flow-sensitive analyses, and specializing pointer analyses.

6.1. SSA form

Recall that the basic idea behind Static Single Assignment form [7] is to augment variable names
with indices such that each augmented variable name has exactly one definition. Object representatives
are more generally useful than SSA form: most importantly, they enable client analyses to smoothly
integrate must-alias information. It is not clear how to relate must-alias information and SSA form. For
instance, in the Array SSA work [10], the authors use ad-hoc techniques which combine SSA numbers
with dominance information to get must-alias and may-alias information, and it is not clear how to fit
interprocedural pointer analyses into this framework. Furthermore, the use of compiler-level objects, as
in object representatives, helps analysis writers produce cleaner code.

6.2. Instance keys and memory disambiguation

Fink et al. put forward the notion of instance keys [9, 27], a term originating from Grove et al.’s
InstVarKeys [13]. Fink et. al. informally define an instance key as an abstract name uniquely identifying
a set of objects. While their work uses instance keys heavily, the authors do not describe the properties
of instance keys nor how they are computed. We found that the notion of instance keys was useful in
our own research, and it inspired our design of object representatives. To our understanding, instance
keys also represent runtime objects and support must-not-alias queries. Object representatives add the
notion of an identity, as defined using must-alias relationships, and the notion of a scope or lifetime
over which this identity is defined.

Ghiya et al. [12] describe a memory disambiguation framework for the Intel Itanium compiler. Their
work is similar to ours in that they provide an interface for static analysis clients to query a family of
analyses (including intraprocedural and interprocedural pointer analyses) and expose abstract storage
locations (LOCs). A LOC is defined to be a “a storage object that is independent of all other storage
objects”; that is, a LOC never may-aliases any other LOC. There is no guarantee that two variables
with the same LOC must alias each other. In contrast, object representatives do support must-alias
information, and strong object representatives can therefore be used in the place of runtime objects
when implementing static analyses.

In a similar vein, O’Callahan [23] proposes the Value-Point Relation. Unlike abstract storage locations,
value points can describe any program expression. Two value points (v, ℓ1) and (v, ℓ2) are related if some
execution of the program evaluates the same value for v at ℓ1 and ℓ2. Object representatives and value
points both support queries with respect to program locations. However, like LOCs, the value-point
relation is designed for may information, and it is not clear how to generalize the value-point relation
to simultaneously support both may and must information, a key feature of object representatives.

Another way to combine must and must-not information is to compute them together using a
combined abstraction. Emami et al. [8] propose such a combined abstraction and integrate it with a
context-sensitive interprocedural pointer analysis, using the notation of abstract stack locations. Object
representatives differ from abstract stack locations: object representatives give names for objects on the
heap, while abstract stack locations track stack-based objects.
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6.3. Whole-program pointer analyses

Our research relies on the existence of whole-program points-to analyses, which have been an active
field of research over the last 25 years. Whole-program analyses generally trade off between precision
and performance (in terms of time and space), and researchers have attempted to improve on precision
while maintaining performance, or to maintain precision while improving performance.

In [15], Hind surveys the most important research in this field, lists 11 open questions in points-
to analysis, and references papers that attempt to answer these questions. Open questions include:
implementing points-to analyses for incomplete programs; designing demand-driven or incremental
analyses; and efficiently incorporating flow-sensitivity at a whole-program level.

Two examples of whole-program pointer analyses are due to Altucher and Landi [2] and to Naik and
Aiken [22]. Altucher and Landi name allocation sites and essentially use some limited context information
by supporting custom allocation routines. They improve the results of their must-alias analysis with
some may-alias information. Naik and Aiken propose a whole-program must-not-alias analysis which
establishes facts of the form “if pointers p and q do not alias, then x and y do not alias either.” Their
analysis is a flow-insensitive whole-program approach which does not use must-alias information.

We have used whole-program points-to analyses to relate object representatives to each other. To answer
aliasing queries on local variables, our component analyses only need to be able to determine whether
the points-to sets for those variables overlap. We believe that all points-to analyses implement such an
interface, so our approach is general enough to incorporate any whole-program pointer analysis. In fact,
we experimented with a number of points-to analyses with different performance/precision trade-offs
in the context of our static analysis of tracematches. Object representatives were flexible enough to
incorporate all these analyses.

6.4. Client analyses

Many static analyses benefit from alias or points-to information, if they do not require it, since explicit
references are a ubiquitous feature of modern programming languages. Pioli and Hind wrote a survey
paper [16] which gives an overview of points-to analyses from a client’s perspective and give examples
of the wide range of extant client analyses. The authors mention live variable analysis, reaching
definitions analysis and interprocedural constant propagation, and compare the precision of different
points-to analyses for those client analyses. Their list is not exhaustive; other client analyses include
cast elimination [28], side effect analysis [20], escape analysis [24] and ownership [6], thread-local
objects analysis [14], static write barrier removal for generational garbage collectors [33], automatic
parallelization and static race detection [22].

In general, all of the above client analyses work best with a maximally precise points-to or alias
analysis, but they also generally require the whole program, triggering a need for a whole-program
points-to analysis. However, intraprocedural flow-sensitive must-not-alias and must-alias information
could enhance their precision. We believe that object representatives would help in the design and
implementation of all of these analyses, as they did for our client analysis for tracematches.

An interesting client analysis that makes this fact apparent is the static analysis of PHP code for security
vulnerabilities by Jovanovic et al. [17]. In their approach, the authors use intraprocedural (may- and
must-alias) and interprocedural pointer analyses. The authors conflate heap objects with the variables
that point to these objects, and maintain the relationships between variables manually, which leads to
a complicated exposition.

6.5. Specializing pointer analyses

In [26], Rountev et al. present an analysis that treats different parts of a program with different precision.
Many programs use large standard libraries that are both difficult and expensive to analyze precisely. The
authors propose to analyze those libraries in a more coarse-grained fashion, computing only summary
information for the libraries. This summary information can then enable a more precise analysis for the
rest of the program. This work shares with our work the view that different pointer analyses might be
suitable for different purposes. However, the approaches are orthogonal. Object representatives could
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be used to incorporate the results of analyses as proposed by Rountev et al. with each other and with
the result of our analyses proposed here.

In [28] Sridharan and Bod́ık present a flow-insensitive, refinement-based, demand-driven, points-to
analysis (which we used for our static tracematch optimizations). Their analysis supports the analysis
of different parts of a program with different precisions, and enables client analyses to state how much
they care about particular points-to sets. We believe that object representatives could support such
an interface using parametrization: some object representatives could be computed more carefully than
others, if they are particularly important to the client analysis.

7. CONCLUSIONS

In this paper we have described object representatives, a notation that assigns names to heap
locations by combining the results of multiple pointer analyses. We presented an implementation of
object representatives that combines results from a flow-insensitive interprocedural points-to analysis
with results from flow-sensitive intraprocedural alias analyses. We demonstrated how we use object
representatives computed this way in an abstract interpretation of tracematches, a programming
language feature for runtime monitoring.

Object representatives enable clients to determine whether two variables definitely point to the same
heap object and whether two variables definitely point to different objects. We furthermore defined two
different kinds of object representatives, strong and weak, which have different semantics with respect
to the redefinition of variables over the execution of a given scope.

We believe that object representatives simplify the design and implementation of static analyses that
rely on pointer analyses: with object representatives, static analyses can be designed and implemented
more like the runtime systems they model.
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APPENDIX
In this appendix we give additional information about tracematches, the notation for runtime monitoring
that motivated our need for object representatives. Also we explain how object representatives can
benefit other client analyses, by giving the two examples of constant propagation and side-effects
analysis for method parameters.

A. TRACEMATCHES

Tracematches are a programming language feature for runtime monitoring. A tracematch specifies a
regular expression; the runtime system monitors for occurrences of the specified regular expression in the
dynamic event stream of the program, and executes a given body of code when the regular expression
matches. Our research aims to evaluate tracematches ahead of time, both 1) to generate better runtime
monitoring code and 2) to verify programs for partial correctness, by proving that certain erroneous
event sequences can never occur in program executions.

1 tracematch(Iterator i ) {
2 sym hasNext before: call(∗ java . util . Iterator +.hasNext()) && target(i);
3 sym next before: call (∗ java . util . Iterator +.next()) && target(i);
4

5 next next { System.err . println (‘‘ Trouble with ’ ’+i); } }

FIGURE 5: HasNext example: ensure next is not called twice without an intervening call to hasNext.

Figure 5 presents the HasNext verification tracematch, which matches (suspicious) traces where a
program calls i.next() twice in a row without any intervening call to i.hasNext(). Tracematches
include an alphabet of symbols, a regular expression over this alphabet and a body of code. Symbols
define abstract tracematch events in terms of concrete program events, using AspectJ pointcuts [29].
Symbols may bind variables; line 1 of the tracematch declares that symbols in this tracematch may bind
an Iterator object, i. Lines 2–3 define symbols hasNext and next, which capture method calls to
the hasNext() and next() methods of i. Line 5 declares the regular expression “next next” (using
symbols) and the body of code to be executed when the regular expression matches. The hasNext

symbol on iterator i resets partial matches for i.

1 Iterator i = c. iterator ();
2 Iterator i1 = i;
3 while ( i1 .hasNext()) { // hasNext(i1)
4 Iterator i2 = i;
5 Object o = i2.next (); // next( i2 )
6 }

FIGURE 6: Example program using iterators.

Now, assume that a programmer applies the
HasNext tracematch to the example program
in Figure 6. The program creates an iterator
i and iterates on it. To demonstrate aliasing,
we introduced auxiliary variables i1 and i2.
Aliasing is generally unavoidable. For instance,
program optimizations and transformations
can introduce aliasing, or variables enter or
escape the current method and must be
treated as potentially aliased.

We can observe that the program in Figure 6 is “safe” with respect to the tracematch—that is, the
program can never trigger the tracematch. The key reason is that the variables i1 and i2 must point
to the same object (they must-alias), so that each call to next() at line 5 must be preceded by a call
to hasNext() on the same object, at line 3, so that there can never be two next() calls in a row
without any intervening hasNext() calls.

A.1. Runtime evaluation

The runtime implementation of tracematches evaluates a tracematch by associating objects with
automaton states. For each state, it records a logical formula, or constraint, which evaluates to true
if an object is currently in a state; furthermore, it updates the formulas as the program executes. For
the HasNext tracematch, the tracematch implementation uses the state machine from Figure 7, and
assigns an initial configuration (tt,ff ,ff) to the state vector (q0, q1, q2). This reflects the situation that,
at program start, all objects reside in the initial state and in no other state.
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q0start q1 q2

next next

FIGURE 7: Automaton for the HasNext tracematch from Figure 5.

Once the program executes line 5 from the example (Figure 6), the next edge from q0 to q1 causes the
runtime implementation to move the object stored in i2 to state q1. The new configuration is therefore
(tt, i = o(i2),ff), where we denote the runtime object stored in i2 with o(i2), and i = o(i2) at
the second position represents the fact that o(i2) is now in state q1. The constraint for q0 remains tt

because new partial matches can start any time; that is, a tracematch is matched against each suffix
of the execution trace.

A.2. Abstract interpretation

At this point it should be clear that an abstract interpretation of tracematches somehow needs
to abstract from concrete runtime configurations of the form (tt, i = o(i2),ff) by using abstract
configurations. Object representatives allow us to simply use abstract configurations of the form
(tt, i = r(i2),ff), where r(i2) is the object representative for the object stored in i2.

B. OTHER CLIENT ANALYSES

As we show in the following, object representatives can enable more simple and concise reasoning not
only for abstract interpreters but also for other client analyses.

B.1. Constant propagation

Constant propagation is a basic compiler optimization that attempts to pre-compute values of
expressions at compile time. Consider the following example program.

1 p. f = 1;
2 q. f = 2;
3 x = p.f + 1;

In the absence of pointer analysis, a client analysis does not know anything about the relationship
between the values of variables p and q, and therefore could not conclude anything about the value of
x after line 3.

Object representatives associate heap locations with variables. If two variables have the same strong
object representative, then they definitely point to the same heap object. (We only use strong object
representatives in the discussion in this section.) The implication is that constant propagation only
needs to store one value per field per representative. If p and q have the same representative, then x

gets 3 after line 3. When two variables have different object representatives, the client analysis can ask
whether or not the object representatives are known to must-not-alias. If p and q’s object representatives
do must-not-alias, then x gets 2 after line 3.

B.2. Effects on method parameters

Developers would often like to know whether or not fields of method parameters are modified within the
body of a method. The complication is that fields of method parameters can be written to indirectly,
through aliases of the parameters, as seen in this simplified example:

1 void foo(T p) {
2 T q = p;
3 q. f++;
4 }

A sound analysis must be able to determine that p’s field is modified by the write to q. f on line 3. If p

and q carry the same strong object representative, then an analysis can state that p is definitely written
to. Note how the object representative is usable in place of the actual runtime object. On the other
hand, if p and q’s object representatives must-not-alias, then the analysis can safely conclude that p is
never written to in method foo.
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