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ABSTRACT
Many aspects for runtime monitoring are history-based : they
contain pieces of advice that execute conditionally, based on
the observed execution history. History-based aspects are
notorious for causing high runtime overhead. Compilers can
apply powerful optimizations to history-based aspects using
domain knowledge. Unfortunately, current aspect languages
like AspectJ impede optimizations, as they provide no means
to express this domain knowledge.

In this paper we present dependent advice, a novel AspectJ
language extension. A dependent advice contains depen-
dency annotations that preserve crucial domain knowledge:
a dependent advice needs to execute only when its dependen-
cies are fulfilled. Optimizations can exploit this knowledge:
we present a whole-program analysis that removes advice-
dispatch code from program locations at which an advice’s
dependencies cannot be fulfilled.

Programmers often opt to have history-based aspects gen-
erated automatically, from formal specifications from model-
driven development or runtime monitoring. As we show
using code-generation tools for two runtime-monitoring ap-
proaches, tracematches and JavaMOP, such tools can use
knowledge contained in the specification to automatically
generate dependency annotations as well.

Our extensive evaluation using the DaCapo benchmark
suite shows that the use of dependent advice can signifi-
cantly lower, sometimes even completely eliminate, the run-
time overhead caused by history-based aspects, indepen-
dently of the specification formalism.

Categories and Subject Descriptors
D.3.4 [Programming Lang.]: Processors—Optimization

General Terms
Experimentation, Languages, Performance

Keywords
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program analysis, runtime verification
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1. INTRODUCTION
In this paper we present dependent advice, a novel lan-

guage extension to aid efficient implementations of, and rea-
soning about, history-based aspects. A history-based aspect
executes its pieces of advice conditionally, based on the ob-
served execution history. There can be many uses of history-
based aspects but programmers primarily use history-based
aspects for runtime monitoring and verification.

Figure 1 shows a simplified example, the “Connection-
Closed” aspect. This aspect monitors the events of discon-
necting and reconnecting a connection c, as well as writing
data to c. Note that almost all the aspect code is concerned
with bookkeeping internal state. This can induce a large
runtime overhead [3,8,11,13,20]. The error message at line
17 implements the only functionality that is visible outside
the aspect. Note that the aspect prints the error only if both

the advice“disconn”and“write”execute on the same connec-
tion c. In addition, the advice “reconn” only has to execute
on connections that are both disconnected and written to
at some point in time. Compilers could use this important
information to apply powerful optimizations: For example,
one does not have to monitor “disconn(c)” if the connection
c is never written to. Unfortunately a programmer cannot
express this crucial domain knowledge in plain AspectJ syn-
tax, and it would be very hard for an AspectJ compiler to
re-construct this knowledge solely based on the aspect code.
This impedes crucial optimizations.

Dependent advice solve this problem. A dependent advice

1 aspect ConnectionClosed {
2 Set closed = new WeakIdentityHashSet();
3

4 after /∗disconn∗/ (Connection c) returning:
5 call(∗ Connection.disconnect()) && target(c) {
6 closed .add(c);
7 }
8

9 after /∗reconn∗/ (Connection c) returning:
10 call(∗ Connection.reconnect()) && target(c) {
11 closed .remove(c);
12 }
13

14 after /∗write∗/ (Connection c) returning:
15 call(∗ Connection.write (..)) && target(c) {
16 if (closed .contains(c))
17 error(”May not write to ”+c+”, as it is closed !”);
18 }
19 }

Figure 1: ConnectionClosed monitoring aspect
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contains dependency annotations to encode crucial domain
knowledge: a dependent advice needs to execute only when
its dependencies are fulfilled. For the “connection” example
from Figure 1, a programmer could add the annotation

dependency{ strong disconn, write; weak reconn; }.

This annotation conveys the information that the execution
of the advice “disconn” and “write” both depend on one an-
other, and in addition the execution of “reconn” depends on
both “disconn”and “write” to execute at some point in time.

Programmers can use dependent advice to document de-
sign intent or to aid static verification. For instance depen-
dencies could encode forbidden combinations of events and
static whole-program analyses could prove that such com-
binations cannot occur. In this paper we focus however on
using dependent advice to aid an efficient implementation of
history-based aspects: we present a flow-insensitive whole-
program analysis that removes dispatch code for dependent
advice from program locations at which the advice’s depen-
dencies cannot be fulfilled. The analysis is equivalent to a
flow-insensitive static whole-program analysis that Bodden
et. al originally designed [8] for tracematches [1], an AspectJ
language extension for runtime monitoring. Through depen-
dent advice, this analysis becomes applicable to a broader
context. The results of our evaluation show that the use of
dependent advice can yield significant speedups at runtime.

However, writing dependency annotations by hand can
be error prone and time consuming. Therefore it would
be beneficial if tools could generate these annotations au-
tomatically. Fortunately, many people do not write history-
based aspects by hand either: researchers have proposed sev-
eral tools [1, 11, 16, 19] that generate history-based AspectJ
aspects automatically, from formal specifications from run-
time verification or model-driven development. As we show
in this paper, these specifications convey enough domain
knowledge to generate dependent advice automatically. We
modified two runtime monitoring tools, tracematches [1] and
JavaMOP [11], to generate dependent advice from specifica-
tions that express monitoring properties using past-time and
future-time linear temporal logic and regular expressions.

To validate our approach we applied a large set of both
generated and hand-written aspects with and without de-
pendency annotations to the DaCapo [4] benchmark suite.
Our results show that the use of dependent advice can sig-
nificantly lower, and sometimes even completely eliminate,
the runtime overhead caused by history-based aspects. Most
interestingly however, while the result of this optimization
depends on the monitored property and program, it is in-
dependent of the code generation tool and specification for-
malism.

To summarize, the main contributions of this paper are:

• an AspectJ language extension called dependent ad-

vice, encoding domain knowledge that helps compilers
optimize advice execution, and an implementation of
this extension in the AspectBench Compiler [2] (abc),

• an algorithm that generates dependent advice from
finite-state models or specifications, along with an im-
plementation of this algorithm for JavaMOP (regu-
lar expressions, past-time and future-time LTL) and
tracematches, and

• a set of experiments proving that compilers can suc-
cessfully optimize dependent advice (whereas normal

advice could not be optimized any further) and that
these optimizations are effective regardless of the spec-
ification tool and formalism that was used to generate
the dependent advice.

We organized the remainder of the paper as follows. In
the next section we explain dependent advice, their syntax
and semantics. We present our implementation of depen-
dent advice in Section 3, and in Section 4 we explain an al-
gorithm to generate dependent advice from any finite-state
based monitor specification. In an accompanying Techni-
cal Report [6] we prove this algorithm correct and “stable”:
it generates equivalent dependency annotations for equiva-
lent finite-state specifications, even if these specifications are
written in different formalisms. Section 5 explains our ex-
periments and limitations of the approach. This is followed
by a discussion of related work and conclusions.

2. DEPENDENT ADVICE
In this section we describe dependent advice. We start by

explaining their syntax, first in a short form and then in a
more verbose form. Then we give a matching semantics.

2.1 Syntax
Dependent advice are a backwards-compatible AspectJ

language extension that comprise the following syntactic
changes. (Our Report [6] formally defines the full syntax.)

• Pieces of advice can have a dependent modifier,

• every dependent advice is given a name, and

• an aspect can hold a set of dependency declarations.

A dependency declaration has the following form:

dependency{
strong s1, . . . , sn;
weak w1, . . . , wm;

}

Here s1 through sn, and w1 through wm, are names of
dependent advice declared in the same aspect as the depen-
dency declaration. Figure 2 shows how to use dependent
advice for ConnectionClosed.

1 aspect ConnectionClosed {
2 dependency{ strong disconn, write; weak reconn; }
3

4 Set closed = new WeakIdentityHashSet();
5

6 dependent after disconn(Connection c) returning:
7 call(∗ Connection.disconnect()) && target(c) {
8 closed .add(c);
9 }

10

11 // ... advice ‘‘ write ’’ and ‘‘reconn’’ omitted for brevity
12 }

Figure 2: ConnectionClosed with dependent advice

Informally, the meaning of “strong disconn, write;” is that
the disconn advice only has to execute on a Connection
c if at some point in time the advice write executes on
c as well. In addition, write only has to execute on c if
disconn executes on c. In other words, the dependency
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states that if disconn was to execute on a Connection c for
which it is known that write never occurs on c then the
execution of disconn can safely be omitted—and the other
way around. Weak dependencies are slightly different: By
adding “weak reconn;” the programmer states that “reconn”
only has to execute on Connections c for which both “dis-
conn” and “write” execute at some point, but not the other
way around.

Note however that the dependency annotation in Figure 2
(line 2) omits the variable name c of the Connection. This is
because, by default, a dependency annotation infers variable
names from the formal parameters of the advice declarations
that it references (e.g. line 6). The dependency annotation
from Figure 2 is a short hand for the more verbose

dependency{ strong disconn(c), write(c); weak reconn(c); }

The semantics of variables in dependency declarations is
similar to unification semantics in logic programming lan-
guages like Prolog [12]: The same variable at multiple loca-
tions in the same dependency refers to the same object. For
each advice name, the dependency infers variable names in
the order in which the parameters for this advice are given
at the site of the advice declaration. Variables for return
values from after returning and after throwing advice
are appended to the end. For instance, the following advice
declaration would yield the advice reference createIter (c, i ).

dependent after createIter(Collection c) returning(Iterator i):
call(∗ Collection . iterator ()) {}

We decided to allow for this kind of automatic inference
of variable names because both code-generation tools and
programmers frequently seem to follow the convention that
equally-named advice parameters are meant to refer to the
same objects. That way, programmers or code generators
can use the simpler short-form as long as they follow this
convention. Nevertheless the verbose form can be useful in
rare cases. Assume the following piece of advice:

dependent before detectLoops(Node n, Node m):
call(Edge.new(..)) && args(n,m) {
if (n==m) { System.out.println(”No loops allowed!”); }}

This advice only has an effect when n and m both refer to the
same object. However, due to the semantics of AspectJ, the
advice cannot use the same name for both parameters—the
inferred annotation would be detectLoops(n,m). The verbose
syntax for dependent advice allows us to state nevertheless
that for the advice to have an effect, both parameters actu-
ally have to refer to the same object, say k:

dependency{ strong detectLoops(k,k); }

Our Technical Report contains further information about
the type-checks that we apply to dependent advice and to
dependency declarations. Here we just wish to state that
we ensure that every dependent advice is referenced by at
least one dependency declaration. Also, each dependency
declaration references each dependent advice at most once.

2.2 Matching semantics
We define the matching semantics of dependent advice

as a semantic extension to ordinary advice matching in As-
pectJ. A program can generally have multiple aspects with
dependent advice. However, since the semantics of depen-
dent advice in one aspect is defined independently from
other aspects, in the following we assume one fixed aspect

A, without loss of generality. (While it would be interesting
to consider dependencies between entire aspects, this topic
is out of the scope of this paper.)

Let A be the set of A’s pieces of advice, D the set of de-
pendency declarations in A, V the set of all possible variable
names, O the set of all heap objects allocated on a given pro-
gram execution and J the set of all AspectJ joinpoints (i.e.
events) on that execution.

Furthermore we declare functions strong and weak of type
D → P(A), which return the set of advice that the de-
pendency declaration d ∈ D references as strong, respec-
tively weak advice. We define the set Ad ⊆ A as Ad :=
strong(d) ∪ weak(d).

In the following let us assume that variables in d have
been fully inferred (see Section 2.1). The set Vd is the set
of variables mentioned in d. Our type checks ensure that
d references each advice a ∈ Ad only once. Therefore d in-
duces for each advice a a mapping σd

a from a’s parameters to
variables in Vd: If d references an advice declaration adv(T1

p1,...,Tn pn) using the advice reference adv(v1,...,vn)

then we obtain the mapping

σ
d
adv = {p1 7→ v1, . . . , pn 7→ vn}.

Note that σd
a is the identity function in case that variable

names were inferred for a in d.

2.2.1 Advice matching for normal advice
We model advice matching in AspectJ [14] as a function

match : A× J → {β | β : V ⇀ O} ∪ {⊥}.

For each pair of advice a ∈ A and joinpoint j ∈ J , match

returns ⊥ in case a does not execute at j. If a does execute
then match returns a variable binding β, a mapping from
a’s parameters to objects ({ } for parameter-less advice).

Compatible joinpoints.
In the remainder of this section we will refer to “compat-

ible joinpoints”. We say that two joinpoints ja and jb are
compatible with respect to a dependency declaration d and
two pieces of advice a and b if a executes at ja with a vari-
able binding βa, b executes at jb with a variable binding βb

respectively, and both βa and βb assign the same objects to
equal variables, with variable names substituted as defined
through d. Formally we define a predicate compt as follows:

compt : J ×A× J ×A×D → B

compt(ja, a, jb, b, d) =

let βa := match(a, ja), βb := match(b, jb) in

βa 6= ⊥∧ βb 6= ⊥ ∧

∀pa ∈ dom(σd
a) ∀pb ∈ dom(σd

b ) :

σd
a(pa) = σd

b (pb) → βa(pa) = βb(pb)

2.2.2 Advice matching for dependent advice
Dependent advice differ in their matching semantics from

normal AspectJ advice and we therefore define a function
depMatch that matches dependent advice against joinpoints,
based on D and match. depMatch also has access to a func-
tion activates. This function is a parameter to depMatch

(description follows).

depMatch : A× J → {β | β : V ⇀ O} ∪ {⊥}
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depMatch(a, j) =










match(a, j) if match(a, j) 6= ⊥ ∧

∃d ∈ D . activates(d, a, j)

⊥ else

The function depMatch refines the original match func-
tion provided by AspectJ: It only produces a match if the
Boolean predicate activates holds for at least one advice de-
pendency. When activates(d, a, j) holds, we say that the de-
pendency d activates the dependent advice a at j. The pred-
icate activates is a parameter to our matching semantics. A
compiler may choose between different implementations of
activates but we define that any sound implementation of
dependent advice must guarantee:

Condition 1 (Soundness condition).

∀d ∈ D ∀a ∈ A ∀ja ∈ J :
(

a ∈ Ad ∧ ∀b ∈ strong(d) ∃jb ∈ J : compt(ja, a, jb, b, d)
)

−→ activates(d, a, ja) = true

Informally, Condition 1 states that a dependency d must

activate a at joinpoint ja, if d references a (as strong or
weak advice), and for each strong advice b in d there is some
joinpoint jb (at some time earlier or later in the program
execution, or the current joinpoint itself) that is compatible
with ja (with respect to d, a and b).

The most conservative implementation would be the con-
stant function true. This would effectively treat dependent
advice just as ordinary AspectJ advice (depMatch degener-
ates to match as our type-checks ensure that D 6= ∅).

An optimizing implementation would instead want to re-
turn false from activates whenever possible, but without
jeopardizing soundness. A perfect implementation would
determine activates such that it returns false whenever the
premise of Condition 1 does not hold. That way, the imple-
mentation would disable dependent advice whenever possi-
ble but still guarantee soundness. Unfortunately determin-
ing activates that way is undecidable: At the time where
activates needs to decide whether or not to activate a depen-
dency at the current joinpoint, it may need to know whether
a compatible joinpoint will occur in the future.

A sensible implementation of dependent advice must there-
fore approximate activates. It must try to return false on
a best-effort basis, but only when the soundness condition
permits, i.e. when the premise of the soundness condition
does not hold. In the next section we explain an effective
implementation based on this principle.

3. IMPLEMENTING DEPENDENT ADVICE
We next explain the static abstraction of Condition 1 that

we use in our implementation. The abstraction considers all
possible program executions. In Section 3.2 we prove this
abstraction sound. We explain the details of our concrete
implementation in the AspectBench Compiler in Section 3.3.

3.1 A static abstraction of Condition 1
Our soundness condition, Condition 1, defines the situ-

ations in which activates(d, a, ja) must return true. As
noted earlier, an effective implementation of dependent ad-
vice should attempt to return false from this function when-
ever possible, i.e. whenever the premise of Condition 1 does
not hold. This is exactly the case when its negation holds:

Condition 2 (Negation of the premise of Condition 1).
a 6∈ Ad ∨ ∃b ∈ strong(d) ∀jb ∈ J : ¬compt(ja, a, jb, b, d)

According to Condition 2, a dependency d can fail to activate
a dependent advice a for two reasons. In the first case d does
not at all reference a, i.e. a 6∈ Ad. This is the trivial case.
(Note that our type checks demand that a be referenced by
some dependency, so there must be another dependency d′

which at least gives a a chance of being activated.) The
second reason is that there is a strong advice b in d so that
there exists no joinpoint jb that is compatible with ja. This
is the condition that our static analysis exploits.

Note that we can fully determine the following parts of
Condition 2 at compile time. For each dependency d we can
determine the sets strong(d) and Ad. For any advice a ∈
Ad the variable substitution σd

a (used within compt) is also
statically determined. Hence, the only parts of Condition 2
that our static analysis needs to approximate are:

1. the set J of all joinpoints, and

2. the variable binding match(a, j) that occurs when ad-
vice a matches at joinpoint j (also used within compt).

Approximating joinpoints through joinpoint shadows.
A woven AspectJ program generates a joinpoint j by exe-

cuting a piece of code generated by the AspectJ compiler
at a specific program location, j’s joinpoint shadow [22]
shadow(j). We define the set S of all shadows as:

S =
⋃

j∈J

{s | s = shadow(j)}

We can now define our static approximation of Condition
2 via joinpoint shadows. Given a dependent advice a, a
shadow sa and a dependency d, we define:

Condition 3 (Static approximation of Condition 2).
a 6∈ Ad ∨ ∃b ∈ strong(d) ∀sb ∈ S : ¬sCompt(sa, a, sb, b, d)

The function sCompt is a static approximation of compt

that accepts shadows instead of joinpoints. Both functions
are very similar. The only difference is that compt uses
match to compute mappings from variables to runtime ob-
jects. At compile time we have no access to runtime ob-
jects. sCompt therefore approximates this mapping through
a compile-time function sMatch.

Approximating objects through points-to sets.
Because we now deal with joinpoint shadows, we redefine

match as a function sMatch over inputs from S instead of
J . A function call match(a, j) returns ⊥ when advice a does
not execute at j. This is a runtime decision: Several AspectJ
pointcuts have to be evaluated at runtime. For instance the
pointcut this(A) only matches if the concrete runtime type
of the currently executing object is a subtype of A. AspectJ
compilers allow the AspectJ runtime to determine a match
by weaving a dynamic residue [14] in place of the joinpoint
shadow. In some cases a compiler can statically determine
that an advice a can never apply at a given joinpoint shadow
s = shadow(j). For instance, in the above example it could
be that the currently executing object must be of a final
type (i.e. can have no subtypes) that is not a subtype of
A. In this case this(A) cannot hold at s, and the compiler
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generates a “Never” residue that instructs the compiler not
to weave any advice code for a at s. In the following we will
say that never(a, s) holds in this situation.

The other difference between match and sMatch is that,
because sMatch is evaluated at compile time, it cannot re-
turn a mapping from advice parameters to runtime objects.
Every joinpoint shadow does however give us access to a
mapping ι which maps each advice parameter p to the local
program variable l that the compiler inserts to bind p to its
runtime value when the advice is executed at this shadow.
For a local variable l we can determine its points-to set [17]
pointsTo(l). A points-to set pointsTo(l) = {s1, . . . , sn} is
a set of allocation sites. The set models the fact that l is
only ever assigned objects that are allocated at the sites
s1, . . . , sn. We denote the set of all points-to sets by P. This
allows us to define sMatch as follows.

sMatch : A× S → {β | β : V ⇀ P} ∪ {⊥}

sMatch(a, s) =

{

⊥ if never(a, s)

λp . pointsTo(ι(p)) else

This makes us almost ready for defining our static ap-
proximation of the function compt. The last insight that
we exploit is that two run-time objects referenced by ad-
vice parameters p and q cannot point to the same objects
if pointsTo(ι(p)) ∩ pointsTo(ι(q)) = ∅: In this case p and q
are only assigned values from local variables that themselves
are definitely not assigned objects from the same allocation
site. This yields the following definition of sCompt.

sCompt : S × A× S ×A×D → B

sCompt(sa, a, sb, b, d) =

let βa := sMatch(a, sa), βb := sMatch(b, sb) in

βa 6= ⊥ ∧ βb 6= ⊥ ∧

∀pa ∈ dom(σd
a) ∀pb ∈ dom(σd

b ) :

σd
a(pa) = σd

b (pb) → βa(pa) ∩ βb(pb) 6= ∅

3.2 Soundness of the approximation
We next define what it means for this abstraction to be

sound, and prove soundness based on this definition.

Theorem 1 (sCompt soundly approximates compt).
∀ja, jb ∈ J ∀d ∈ D ∀a, b ∈ Ad :

compt(ja, a, jb, b, d)

−→ sCompt(shadow(ja), a, shadow(jb), b, d)

Proof 1 (Proof of Theorem 1). The proof of Theorem 1
is almost immediate if one assumes that points-to sets are
computed in a sound way, i.e. if o is an object created at
allocation site s and assigned to a program variable l then
s ∈ pointsTo(l)—a general assumption that we make for
this paper. We conduct the proof in inverse order, from the
right to the left. If sCompt(shadow(ja), a, shadow(jb), b, d)
does not hold then this can have two reasons: (1) we have
never(a, sa) or never(b, sb), or (2) the two shadows induce
variable bindings that assign disjoint points-to sets to the
same variable from d (used at different locations). In case
(1) ¬compt(ja, a, jb, b, d) holds trivially because never(a, sa)
implies match(a, ja) = ⊥, and the same holds for b, sb and
jb. Similarly, (2) disjoint points-to sets imply distinct run-
time objects (assuming sound points-to sets).

Theorem 1 directly implies the following corollary, there-
fore proving our approximation sound.

Corrolary 1 (Condition 3 soundly approximates Condition
2). For every joinpoint j ∈ J with s := shadow(j), every
dependency d and every dependent advice a ∈ Ad, it holds
that Condition 3 implies Condition 2.

This concludes the discussion of our static abstraction. In
the following we give some additional detail about the actual
implementation within the AspectBench Compiler.

3.3 Implementation in abc
Figure 3 gives an overview of our implementation of de-

pendent advice as an extension“abc.da”to the AspectBench
Compiler (abc). The user provides a Java base program as
input, plus a set of aspects augmented with dependency an-
notations. In a first step, our compiler extension parses and
type-checks the aspects and annotations. It then splits apart
the dependency information from the aspects. abc then
matches the resulting plain-AspectJ aspects against the base
program, producing a “weaving plan”. This plan holds in-
formation about which advice applies where in the program.
abc next weaves the appropriate pieces of advice into the
program (based on the weaving plan) and produces a woven
program—still un-optimized. At this stage, our extension
intercepts the compilation to analyze the woven program
based on the previously extracted dependency annotations.
For each potential match recorded in the weaving plan, we
statically analyze if the dependencies for the matched advice
can potentially be fulfilled at the matched program location.
If not, then we remove this potential match from the plan.
After the analysis finishes, we re-weave the entire program,
i.e. we instruct abc to un-do the previous weaving process
and weave the base program again, this time with the up-
dated weaving plan. After the program was re-woven, abc

automatically emits Java bytecode for the woven (and now
optimized) program. We next explain the internals of the
analysis, highlighted in Figure 3.

As mentioned earlier, our analysis executes right after
weaving, analyzing the woven program. It has access to
the base program, all aspects, all dependent advice in these
aspects, and abc’s weaving plan. The weaving plan W con-
tains a list of tuples (s, a, r) where s is a joinpoint shadow,
a is an advice applying at s, and r the dynamic residue
that the runtime will evaluate to determine whether a must
indeed execute at a concrete joinpoint induced by s.

Quick-check.
Our analysis iterates through the weaving plan, consid-

ering each entry separately, first using the “Quick-check”
shown in Algorithm 1. The Quick-check changes the residue
of an entry (s, a, r) ∈ W to (s, a,Never) if no advice depen-
dency d activates a at s for the trivial reason that at least
one strong advice b in d matches nowhere in the entire pro-
gram, as determined by the weaving plan, line 8. Note that
the condition in line 8 depends on whether the algorithm al-
ready processed weaving-plan entries for b itself. We there-
fore iterate Algorithm 1 until a fixed point is reached. The
Quick-check is “quick” because it does not require points-to
information. In our benchmarks it therefore always finished
in under 3.3 seconds.

If active advice applications remain after the Quick-check,
then we next apply Sridharan and Bod́ık’s demand-driven
refinement-based context-sensitive points-to analysis [25] to
the woven program. This analysis first produces context-
insensitive points-to sets using Spark [17]. Then next, when
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aspects with depen-
dency annotations

base program

check & split aspects

dependency annotations

match weaving plan weave woven program

analyze

update

Figure 3: Overview of our implementation of dependent advice as an extension “abc.da” to abc

Algorithm 1 Quick-check

1: for (sa, a, ra) ∈ W do
2: if (ra 6= Never) ∧ (a is dependent advice) then
3: activated := false
4: for d ∈ D with a ∈ Ad do
5: allStrongAdviceMatch := true
6: for b ∈ strong(d) do
7: for sb ∈ S do
8: if ¬∃(sb, b, rb) ∈ W : rb 6= Never then
9: allStrongAdviceMatch := false

10: end if
11: end for
12: end for
13: if allStrongAdviceMatch then
14: activated := true
15: end if
16: end for
17: if ¬activated then
18: W := ( W \ {(sa, a, ra)} ) ∪ {(sa, a, Never)}
19: end if
20: end if
21: end for

queried for the points-to sets of a local variable l the anal-
ysis refines the points-to sets for l with context informa-
tion. Essentially, this changes the representation of a points-
to set from a set {s1, . . . , sn} of allocation sites to a set
{(c1, s1), . . . , (cm, sn)}, where the different ci are static rep-
resentations of calling contexts. This makes the points-to
sets more precise. In previous work [8] we found that context
information [25] is necessary to optimize pieces of advice that
reference objects created inside factory methods, e.g. differ-
ent iterators, which are all produced by a call to the same
method iterator(). Because we query the analysis only on
variables that actually bind values at joinpoint-shadows of
dependent advice, this demand-driven approach usually ex-
ecutes a lot faster than an analysis that determines context
information for every program variable.

Flow-insensitive Orphan-shadows analysis.
We then apply a flow-insensitive “Orphan-shadows” anal-

ysis, shown in Algorithm 2. The algorithm essentially pro-
ceeds like the Quick-check (Algorithm 2 only shows the dif-
ferences to Algorithm 1), however an advice a only activates
a dependency d if every strong advice b of d has a shadow
that is compatible with sa, as determined by sCompt. Again
we iterate Algorithm 2 until we reach a fixed point. This it-
eration is no bottle-neck: in all our experiments we reached
the fixed point after two or three iterations. We named the
analysis Orphan-shadows analysis because it identifies shad-
ows that are lacking other shadows to activate any depen-
dency, and disables advice applications at these shadows.

Algorithm 2 Flow-insensitive Orphan-shadows analysis
(only showing differences to Algorithm 1)

· · ·
8: if ¬∃(sb, b, rb) ∈ W : rb 6= Never ∨

sCompt(sa, a, sb, b, d) = false then
9: allStrongAdviceMatch := false

10: end if
· · ·

4. GENERATING DEPENDENT ADVICE
The above optimizations assumed dependency annotations

in the code. Programmers may write dependency annota-
tions by hand but this can be time consuming and error
prone. Fortunately, programmers often opt to have history-
based aspects generated automatically, from finite-state mon-
itor specifications. Runtime-monitoring tools generate state-
machines from such specifications, along with aspects that
trigger state transitions when monitored events occur. The
state machine then executes a user-defined piece of code
when those transitions drive it into a final state. If spec-
ifications bind free variables, there exists one state-machine
instance per variable binding.

4.1 Generation from finite-state machines
We next present a general algorithm that exploits domain

knowledge in a given finite-state specification to generate
sound dependency annotations automatically.

Definition 1 (Finite-state machine). A finite-state machine

M is a tuple (Q,Σ, q0, ∆, QF ), where Q is a set of states, Σ
is a set of input symbols, q0 the initial state, ∆ ⊆ Q×Σ×Q
the transition relation and QF ⊆ Q the set of accepting (or
final) states. For this paper we assume that q0 6∈ QF . Fur-
ther, one can easily transform M into an equivalent finite-
state machine in which accepting states have no outgoing
transitions and we assume that M has this form.

Definition 2 (Words and runs). A word w = (a1, . . . , an)
is an element of Σ∗. We define a run ρ of M on w to be
a sequence (q0, qi1 , . . . , qin

) such that ∀k : (0 ≤ k < n) →
(qik

, ak+1, qik+1
) ∈ ∆, with i0 := 0. A run ρ is accepting if

qin
∈ QF . We say that M accepts w, w ∈ L(M), if there

exists an accepting run of M on w. We assume that both
words and runs are non-empty, i.e. that n ≥ 1.

Algorithm 3 (page 7) defines the function genDeps which
generates dependency declarations from M. The idea is that
a dependency should exist for every possible accepting path
within M, where symbols that need to be read in order
to reach the final state occur as strong, and symbols that
must not be read in order to reach this final state appear as
weak. The programmer initializes the algorithm by calling
genDeps(q0, ∅, {}). Intuitively, genDeps recursively explores
M in a depth-first manner to find all paths p through M
that satisfy the following conditions: (1) the path ends in
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Algorithm 3 genDeps(q, p, c), with q ∈ Q, p ∈ P(Q × Σ),
c : Q ⇀ N

Global variables: D := ∅

1: if c(q) ≤ 1 then
2: c′ := copy of c; c′(q) := c(q) + 1
3: if q ∈ QF then
4: strong := {a ∈ Σ | ∃q ∈ Q : (q, a) ∈ p}
5: Qp := {q ∈ Q | ∃a ∈ Σ : (q, a) ∈ p}
6: weak := {a ∈ Σ | a 6∈ strong∧

∃q ∈ Qp\QF : (q, a, q) 6∈ ∆}
7: D := D ∪ {(strong, weak)}
8: end if
9: for a ∈ Σ do

10: p′ := p ∪ {(q, a)}
11: for q′ ∈ Q such that q′ 6= q ∧ (q, a, q′) ∈ ∆ do
12: genDeps(q′,p′,c′)
13: end for
14: end for
15: end if

0start 1

2

3
a

b

d

b

c c

(a) Example state machine

0start 1

2

3

0start 1 3 } P1

} P2

a d

c c

a d

(b) Paths determined by genDeps

for P1 : dependency{ strong a,d; weak c; } //D1
for P2 : dependency{ strong a,c,d; weak b; } //D2

(c) Dependency declaration generated for state machine

Figure 4: An example run of Algorithm 3

an accepting state (line 3), (2) it does not contain self-loops

(line 11) and (3) it does not visit a state more than twice
(line 1). ((3) assures that we visit each edge only once,
assuring termination.) When genDeps finds such a path p,
it adds a new dependency declaration to the global set D.
The dependency references the labels of all edges on p as
strong. Further, it references all those symbols a as weak,
which are not already strong on p and for which there is some
non-final state on p that has no a-self-loop in M. Although
such symbols cannot be part of a complete match, they can
avoid a complete match.

Figure 4 shows an example run of Algorithm 3. 4(a) shows
a state machine M. 4(b) shows the two paths P1 and P2
that Algorithm 3 discovers; 4(c) shows the two resulting
dependency declarations: D1 for P1 and D2 for P2. D1
does not reference b because b causes in M self-loops on all
non-final states along P1. D2, however, includes b because
state 2 has no b-self-loop: if M reads b while in state 2, M
will discard the partial match.

Assume now a program in which the advice that normally
triggers symbol c never matches at any joinpoint shadow. c
is necessary to reach the accepting state via P2. Therefore
c is strong in D2, and thus D2 is not activated for this pro-
gram. Hence, there is no active dependency that references
b, and it is safe to not monitor b, i.e. a and d only.

4.1.1 Correctness and Complexity of Algorithm 3

JavaMOP Extension abc.tm

Extension
abc.tmwpopt

ERE Patterns FTLTL Formula PTLTL Formula Tracematch

ERE Plugin FTLTL Plugin PTLTL Plugin Tracematch
back-end

Binary transition-
tree FSM

Vector-based
monitor

FTLTL
Translator

PTLTL
Translator

Finite-state
machine

Finite-state
machine

Finite-state
machine

Finite-state
machine

Algorithm 3 Algorithm 3

Dependency Declarations

Figure 5: Generating dependent advice in JavaMOP

and abc

One can prove that Algorithm 3 is correct, meaning that it
generates dependency declarations that are both sound and
complete, or in other words, the runtime monitor without
dependency annotations accepts exactly the same words as
the same monitor augmented with dependency annotations.
Due to space limitations we present the proof in our accom-
panying Technical Report [6].

The theoretical worst-case complexity of Algorithm 3 is
exponential in size of ∆ and linear in the size of Σ. How-
ever, our experiments show that, for usual specifications, ∆
will be very small: Algorithm 3 never generated more than
nine dependencies for our example specifications. It always
terminated within milliseconds.

4.1.2 Stability of Algorithm 3
In our Technical Report we further prove that genDeps is

stable, i.e. that it computes equivalent sets of dependency
declarations for equivalent finite-state machines:

Theorem 2 (Algorithm 3 is stable). Let M1 and M2 be
finite-state machines with L(M1) = L(M2). Let D1 and D2

be the set of dependency declarations that Algorithm 3 com-
putes for M1 respectively M2. Then it holds that D1 ≡ D2,
i.e. both dependency sets are logically equivalent.

4.2 Implementation in JavaMOP
The left-hand side of Figure 5 illustrates our implemen-

tation in JavaMOP. JavaMOP provides an extensible logic
framework for specification formalisms [10, 11]. Via logic
plug-ins, one can easily add new logics into JavaMOP and
then use these logics within specifications. JavaMOP has
several specification formalisms built-in, including extended
regular expressions (ERE), past-time and future-time linear
temporal logic (PTLTL/FTLTL), and context-free gram-
mars. In this paper we focus on generating dependency in-
formation for ERE, PTLTL and FTLTL. Those three logics
are finite-state, which allowed us to implement algorithms
to translate the monitor generated from a ERE, FTLTL or
PTLTL specification into a finite-state machine as defined
in Definition 1.

ERE. The monitoring code generated by the ERE plug-in
in JavaMOP is already a standard finite-state machine [10].
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FTLTL. JavaMOP’s FTLTL plug-in outputs a binary
transition tree finite-state machine (BTT-FSM) [10]. A BTT-
FSM is a state machine in which each state holds a Binary
Transition Tree, i.e. a Boolean function. The BTT-FSM de-
termines the target state of a transition by computing this
Boolean function when an event is received. We translate a
BTT-FSM into a standard finite-state machine by symboli-
cally computing its BTTs exhaustively in each state.

PTLTL. Unlike the ERE plug-in and the FTLTL plug-in,
the PTLTL plug-in in JavaMOP generates a monitor which
has a vector of bits as its internal state [10]. We implemented
an algorithm to exhaustively explore all possible states of the
PTLTL monitor in order to construct an equivalent finite-
state machine.

JavaMOP next applies the general Algorithm 3 to obtain
the dependency information from the state machine. Every
JavaMOP monitor supports both validation and violation
handlers. JavaMOP executes a monitor’s validation handler
when the monitor accepts a trace, and its violation handler
when it rejects a (partial) trace. We generate dependency
declarations for validation handlers using Algorithm 3 di-
rectly. For a violation handler we instead fix QF := {qr},
where qr is the state from which no accepting state can be
reached. JavaMOP uses minimized deterministic state ma-
chines and therefore qr is unique, and the property moni-
tored by JavaMOP is violated exactly when qr is reached.
We then emit the appropriate set of dependencies, depend-
ing on whether the monitor uses only a validation handler,
only a violation handler, or both.

JavaMOP writes AspectJ source code to disk. Our ex-
tension to JavaMOP adds dependency declarations to this
output and also modifies the output so that each generated
piece of advice is given a unique name. The dependency
declarations reference those names. In a second step, the
programmer can then use the dependent-advice extension of
abc to read this generated code again from disk and weave
monitoring code into a base program of her choice, making
full use of the optimizations that we explained in Section 3.

4.3 Implementation for tracematches
Tracematches use yet another data structure to imple-

ment their runtime monitors: they use constraints [1]. A
constraint x = o ∧ y 6= p on a state q encodes that every
binding that maps tracematch variable x to object o, and
does not map tracematch variable y to object p, is in q.
This allows tracematches to get around a current restriction
of JavaMOP: In JavaMOP, programmers may only specify
properties that bind all free variables to objects on the first

observed event. As we show in Section 5, this makes it im-
possible to express some monitor specifications in JavaMOP.

The nature of these automata gives them a different struc-
ture from JavaMOP’s automata. JavaMOP’s automata are
deterministic and minimized, and therefore have a unique
reject state (the only state from which no final state can
be reached). Tracematches however use non-deterministic
automata. They reject traces using “skip-loops” [1]. Every
state q holds a skip-loop with label a for every a for which
q has no “normal” a-self-loop. In addition, the initial state
q0 of a tracematch state machine has no loops because the
tracematch back-end assumes a Σ-loop on q0 implicitly.

Despite these differences we can still use Algorithm 3 when
transforming the state machine first: For each a ∈ Σ we add
an a-loop to q0; and we remove all skip-loops. Algorithm 3

is directly applicable to the resulting state machine.
Another notable difference of our tracematch-based imple-

mentation compared to JavaMOP is that for tracematches
we never write AspectJ source code to disk. Tracematches,
like dependent advice, are implemented as an extension to
abc, and they generate history-based aspects directly in the
form of Java bytecode. We therefore enhanced the abc

extension “abc.tm” for tracematches with another exten-
sion “abc.tmwpopt” for whole-program optimization (see the
right-hand side of Figure 5). This extension injects depen-
dency annotations directly into the back-end of our abc ex-
tension “abc.da” for dependent advice (after the “split” in
Figure 3). Every advice generated from a tracematch al-
ready carries a unique name, so we can re-use those names
when we generate the dependency declarations.

5. EXPERIMENTS
To validate our approach we applied a set of twelve speci-

fications for runtime monitoring to the current version 2006-
10-MR2 of the DaCapo benchmark suite [4]. This suite con-
sists of ten Java applications with some hundred thousand
lines of code each. We sought to determine whether or not
dependent advice can indeed yield a significantly lower run-
time overhead than normal advice in history-based aspects,
and if so, whether this optimization effect depends on the
code generation tool or specification formalism1 .

We first implemented all twelve specifications as trace-
matches, re-using some specifications from previous work [8].
Then we implemented plain AspectJ aspects for the same
specifications by hand. Hand-writing such aspects proved
time-consuming. In a second step, we augmented the hand-
coded aspects with dependency annotations, which appeared
comparatively simple. Next we wrote monitor specifica-
tions in the “extended regular expressions” (ERE) syntax
for JavaMOP. JavaMOP currently assumes that the first

monitored event in each specification binds all of the speci-
fication’s variables. Four of the twelve specifications do not
fulfil this requirement and JavaMOP therefore we could only
express the remaining eight specifications.

In the case of JavaMOP we were also interested to see
whether the choice of specification formalism impacts the
optimization results (as opposed to the choice of code gen-
eration tool). We therefore implemented the three speci-
fications FailSafeIter, HasNext and LeakingSync not only
in ERE but also in PTLTL and FTLTL. For each moni-
tor specification we had JavaMOP generate history-based
aspects with dependency annotations.

This gave us 12+(12-4)+3+3=26 history-based aspects
and twelve tracematches. We compiled each of the ten Da-
Capo benchmarks with all 38 inputs, one at a time, first with
optimizations for dependent advice disabled. When opti-
mizations are disabled, our compiler extension treats depen-
dent advice just as normal advice. To establish a baseline,
we further compiled each of the ten benchmarks without
any aspects present. Altogether this gave us ten unwoven
programs and 380 woven program versions.

1Note that in this paper we do not compare our results
to the ones from [8], because [8] essentially implements the
very same analyses, however specific to tracematches only.
Consequently, if our dependent-advise-based optimizations,
applied to tracematches, were compared to the tracematch-
specific ones in [8] on equal machines and JVMs, both would
yield the very same result.
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ASyncIter * only iterate a synchronized collection c

when holding a lock on c
ASyncIterM * only iterate a synchronized map m

when holding a lock on m
FailSafeEnum do not update a vector while iterating

over it at the same time
FailSafeEnumHT do not update a hash table while iter-

ating over its keys or elements
FailSafeIter do not update a collection while iterat-

ing over it at the same time
FailSafeIterM * do not update a map while iterating

over its keys or values
HasNext always call hasNext before calling next

on an Iterator
LeakingSync only access a synchronized collection or

map using its synchronized wrapper
Reader do not use a Reader after its Input-

Stream was closed
Writer do not use a Writer after its Output-

Stream was closed

Table 1: Monitor specifications that applied to our
benchmarks (benchmarks with “*” cannot be ex-
pressed in JavaMOP)

Because we felt that it would be overwhelming to report
results for so many programs, we first performed a simple
triage: We ran each of the 380 woven programs and deter-
mined their runtime overhead over the runtime of the re-
spective unwoven program. This way we could determine
72 woven programs that showed a runtime overhead of more
than 10%. The remainder of our discussion focuses on these
72 cases, spanning ten of our original twelve specifications.
Table 1 describes these ten remaining specifications.

5.1 Number of advice applications
We compiled all these 72 cases again, this time with opti-

mizations for dependent advice enabled. We show the com-
plete results of our experiments in Table 2 on page 10. The
first three columns state the names of the benchmark and
specification, and the specification formalism. Columns four
to seven show the number of advice applications that are
enabled, i.e. the number of entries in the weaving plan for
dependent advice that have a residue different from Never.
We report (1) the initial number of advice applications, (2)
the percentage after applying the Quick-check, (3) the per-
centage of advice applications at shadows reachable from
the benchmark’s main class, and (4) the percentage of ad-
vice applications enabled after applying the flow-insensitive
Orphan-shadows analysis. The value (3) is important as a
baseline for (4). This is because, if a shadow is unreach-
able, then it will always bind variables to empty points-to
sets, and hence this shadow will be removed by the flow-
insensitive analysis for trivial reasons. However, this re-
moved shadow will not yield any speedup, because it was un-
reachable. The staged analysis ends early when the Quick-
check already disables all advice applications, and therefore
does not determine (3) and (4) in such cases.

Our results show that the Quick-check is very successful
for LeakingSync and ASyncIter(M), which involve synchro-
nized collections. This is because all benchmarks except
hsqldb, lucene and xalan are single-threaded and therefore
create no synchronized collections at all. The other specifi-

cations have some matches for all strong advice. This is not
surprising either, because we here only consider benchmarks
with 10% runtime overhead or more. When all strong advice
match, the Quick-check is without effect.

The flow-insensitive analysis stage is very successful in
specifications that use multiple free variables, such as Fail-
Safe*, Reader and Writer. It is less successful for specifica-
tions that only use a single variable, such as HasNext. The
reason is simple: HasNext binds a single iterator and our op-
timization can only affect iterators on which a programmer
invokes hasNext() but never next(). This rarely holds.

Flow-sensitivity is required [8,9,23] to handle such speci-
fications more precisely. Other cases like bloat-FailSafeIter,
are notoriously [8,23] hard to handle, as they use very long-
lived objects, dynamic class loading or reflection. This leads
to many overlapping points-to sets, impeding our analysis.

In Section 4.1.2 we mentioned that the way in which we
generate dependency annotations is stable. As a result, the
effectiveness of the analysis does not depend on the source of
the dependency annotations. There are generally more ad-
vice applications for tracematches than for JavaMOP, sim-
ply because tracematches generate two to three additional
advice applications per shadow: tracematches use two addi-
tional advice for monitor synchronization and one to execute
the tracematch body [1, S. 4.7]. These pieces of advice have
no parameters, and hence cannot benefit from the Orphan-
shadows analysis, as there are no variable bindings for which
the analysis could determine disjoint points-to sets. Fortu-
nately, although these advice applications are not removed,
they effectively degenerate to a very efficient no-op at run-
time, yielding only a minimal runtime overhead.

Another reason for slightly differing numbers of remaining
advice applications is the fact that the different monitoring
implementations reference different parts of the JDK. Some
of these parts can confuse the points-to analysis.

Despite these problems in special cases, the fraction of
removed advice applications is generally very similar for
equal benchmarks and specifications, independent of the
code generation tool and specification formalism. In case
of JavaMOP, the number of disabled advice applications is
not only similar but equal for equal benchmarks and speci-
fications in all of ERE, PTLTL and FTLTL.

5.2 Reduction of runtime overhead
A reduction in the number of an aspect’s advice applica-

tions does not necessarily reflect a 1:1 reduction of the run-
time overhead caused by the aspect: If many optimized ad-
vice applications resided in dead code or code that is barely
executed, then the overhead may remain unaffected. We
therefore measured the actual runtime overhead of the op-
timized woven program over the un-woven program. The
eighth column in Table 2 shows the runtime of the un-woven
program (our baseline) in seconds, columns nine and ten
show the runtime overhead for the un-optimized, respec-
tively optimized version over this baseline in percent. A
value of >10h means that the benchmark ran longer than ten
hours and was aborted after this period of time. Overheads
below 10% appear in boldface. We ran the benchmarks on
Sun’s HotSpot VM (build 1.4.2 12, mixed mode), with 2GB
of maximal heap space on a machine with an AMD Athlon 64
X2 Dual Core Processor 3800+ running Ubuntu 7.10 (ker-
nel version 2.6.22-14). We used the -converge option of the
DaCapo harness, which measures the runtime of a single run
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filter: ≥10A→Z A→Z A→Z

benchm. specification formalism initial quick (%) reach. (%) flow-ins. (%) baseline (s) un-opt. (%) opt. (%)
antlr LeakingSync MOP-PTLTL 170 0 4.1 12 4
antlr Reader MOP-ERE 64 100 83 31 4.1 98 4

antlr Reader tracematches 167 100 82 44 4.1 398 21
antlr Writer MOP-ERE 273 79 12 7 4.1 79 4

antlr Writer tracematches 475 57 12 10 4.1 209 1
bloat ASyncIter hand-coded 1387 0 9.002 153 4

bloat ASyncIter tracematches 5977 0 9.002 1569 2

bloat ASyncIterM hand-coded 1450 0 9.002 159 8

bloat ASyncIterM tracematches 6166 0 9.002 2367 0
bloat FailSafeIter hand-coded 1535 100 68 67 9.002 390 388
bloat FailSafeIter MOP-ERE 1526 100 68 66 9.002 1563 1572
bloat FailSafeIter MOP-FTLTL 1526 100 68 66 9.002 1599 1561
bloat FailSafeIter MOP-PTLTL 1526 100 68 66 9.002 1322 1318
bloat FailSafeIter tracematches 5065 100 79 79 9.002 9150 9201
bloat FailSafeIterM hand-coded 1120 100 67 20 9.002 100621 2534
bloat FailSafeIterM tracematches 3832 100 91 76 9.002 >10h 16533
bloat HasNext hand-coded 947 100 68 68 9.002 1328 1322
bloat HasNext MOP-ERE 947 100 68 68 9.002 1460 1452
bloat HasNext MOP-FTLTL 947 100 68 68 9.002 1633 1641
bloat HasNext MOP-PTLTL 947 100 68 68 9.002 1058 1033
bloat HasNext tracematches 3328 100 68 68 9.002 1680 1692
bloat LeakingSync hand-coded 2145 0 9.002 39 5

bloat LeakingSync MOP-ERE 2145 0 9.002 58 0
bloat LeakingSync MOP-FTLTL 2145 0 9.002 58 0

bloat LeakingSync MOP-PTLTL 2145 0 9.002 275 4

bloat LeakingSync tracematches 8595 0 9.002 215 8
bloat Writer hand-coded 1153 100 57 56 9.002 36 34
bloat Writer MOP-ERE 663 100 46 3 9.002 119 112
bloat Writer tracematches 1774 100 43 30 9.002 449 452
chart LeakingSync hand-coded 920 0 14.651 29 0
chart LeakingSync MOP-ERE 920 0 14.651 58 -1

chart LeakingSync MOP-FTLTL 920 0 14.651 58 0

chart LeakingSync MOP-PTLTL 920 0 14.651 84 0

chart LeakingSync tracematches 3695 0 14.651 88 -1
fop FailSafeEnumHT hand-coded 205 100 9 0 2.398 13 3

fop FailSafeEnumHT tracematches 635 100 18 0 2.398 12 6

fop FailSafeIter MOP-FTLTL 288 100 17 0 2.398 13 12
fop FailSafeIter MOP-PTLTL 288 100 17 0 2.398 16 -1

fop FailSafeIterM tracematches 2265 100 9 9 2.398 15 13
fop LeakingSync hand-coded 2347 0 2.398 69 14
fop LeakingSync MOP-ERE 2347 0 2.398 124 4
fop LeakingSync MOP-FTLTL 2347 0 2.398 123 1

fop LeakingSync MOP-PTLTL 2347 0 2.398 217 3

fop LeakingSync tracematches 9403 0 2.398 241 5
fop Writer tracematches 1429 63 20 0 2.398 16 2

jython FailSafeEnumHT tracematches 539 100 100 89 11.054 170 47
jython FailSafeIterM tracematches 538 100 91 66 11.054 17 5

lucene FailSafeEnum hand-coded 61 100 70 8 30.878 15 2
lucene FailSafeEnum tracematches 218 100 71 54 30.878 20 4

lucene FailSafeIter tracematches 732 100 59 53 30.878 18 7

lucene LeakingSync hand-coded 652 100 56 0 30.878 48 0
lucene LeakingSync MOP-ERE 652 86 51 0 30.878 51 1

lucene LeakingSync MOP-FTLTL 652 86 51 0 30.878 53 -1

lucene LeakingSync MOP-PTLTL 652 86 51 0 30.878 102 -2

lucene LeakingSync tracematches 2631 100 65 0 30.878 206 0
lucene Reader hand-coded 136 100 24 0 30.878 28 1

lucene Reader tracematches 557 100 28 0 30.878 56 1

pmd ASyncIter tracematches 2213 0 13.059 36 3

pmd ASyncIterM hand-coded 556 0 13.059 11 0
pmd ASyncIterM tracematches 2354 0 13.059 53 -1

pmd FailSafeIter MOP-ERE 546 100 67 50 13.059 41 -4

pmd FailSafeIter MOP-FTLTL 546 100 67 50 13.059 37 -2
pmd FailSafeIter MOP-PTLTL 546 100 67 50 13.059 26 -4

pmd FailSafeIter tracematches 1823 100 93 88 13.059 139 25
pmd FailSafeIterM hand-coded 483 100 75 39 13.059 551 274
pmd FailSafeIterM tracematches 2078 100 97 88 13.059 >10h >10h
pmd HasNext hand-coded 346 100 71 70 13.059 33 36
pmd HasNext MOP-ERE 346 100 71 70 13.059 52 40
pmd HasNext MOP-FTLTL 346 100 71 70 13.059 43 47
pmd HasNext MOP-PTLTL 346 100 71 70 13.059 18 19
pmd HasNext tracematches 1223 100 83 82 13.059 70 71
pmd LeakingSync tracematches 3959 0 13.059 15 2

Table 2: Experimental results for cases with overhead of 10% or more: number of advice applications initially
in the program, after Quick-check, reachable from the program’s main class, and after the flow-insensitive
Orphan-shadows analysis; runtime of the un-woven program in seconds, runtime overhead of the woven un-
optimized and optimized program; overheads which are optimized to a value below 10% appear in boldface
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after the benchmark has reached a steady state.
Our optimizations were able to bring the overhead below

10% in 44 out of all 72 cases. Of the remaining cases there
were a few with significant reductions, e.g. FailSafeIterM.
However, the benchmarks where our analysis failed to dis-
able advice applications naturally show the same runtime
overhead before and after optimizations. None of the op-
timized benchmarks runs significantly slower than the un-
optimized versions, indicating that our implementation is
sound. Again, the choice of code generation tool and formal-
ism seems to have only a qualitative impact. Hand-coded
aspects are usually the fastest. After all, a programmer
can exploit domain knowledge which cannot be encoded in
current monitoring specifications. For instance a program-
mer knows that every Java iterator is only ever associated
with a single collection, and can therefore use an optimized
data structure, e.g. a mapping from iterators to collections.
Yet, the relative reduction in runtime caused by our opti-
mizations is consistent over all specification languages and
tools—it only depends on the property specification and the
program. In cases where the optimized program runs faster
than the un-instrumented one, this is caused by noise in the
measurements.

5.3 Compilation and analysis time
We ran our static optimizations on IBM’s J9 VM (build

2.3, J2RE 1.5.0 IBM J9 2.3 Linux amd64-64), with 3GB of
maximal heap space. Space limitations prevent us from in-
cluding detailed compilation times, nevertheless we wish to
give a brief overview. The Quick-check took never longer
than 3.3 seconds, on average it took 148 milliseconds. The
Flow-insensitive analysis took never longer than 17 seconds,
with an average of 1.4 seconds. A large factor is however the
points-to analysis that the flow-insensitive stage requires.
Computing points-to sets and context information can be
costly, and largely depends on the benchmark. In the worst
case, bloat-FailSafeIter, it took 58 minutes to compute. This
benchmark has many more shadows than any other bench-
mark and we therefore need to query the demand-driven
points-to analysis more often. On average, the points-to
analysis took 11 minutes. This may appear long, yet many of
our un-optimized benchmarks showed several minutes over-
head too. Optimizations clearly pay off in these cases.

Our Technical Report gives additional information about
the limitations of our approach.

5.4 Limitations of our approach
Our experiments brought to light the following limitations

of our approach. To evaluate our abstraction, Condition 3,
we need to enumerate all shadows in the woven program.
This means that we need compile-time access to the whole
program, which might not always be feasible. Furthermore,
our approach is limited to history-based aspects: Depen-
dencies only exist if the execution of one advice depends on
the execution of another advice. As we showed, in certain
domains such aspects are prevalent, but they may not be
in others. While our optimizations work well for patterns
that are assumed not to match in a program, e.g. safety
conditions (for which one assumes that they will usually not
be violated), they may work less well for aspects that im-
plement core functionality (and therefore are supposed to
match).

One limitation of our design is that one cannot express
dependencies of the form “execute advice a only if advice b
does not execute”. This limitation is intended: To disable a
we would have to prove that b does indeed execute, on every
program run. This property is undecidable in general and
at best very hard to determine for most programs. Never-
theless, such dependencies exist: When designing dependent
advice we studied existing aspects published on the web and
we found one instance of this pattern in DAJ [18].

Another important consideration is that one can break
a correct AspectJ program by annotating it with incorrect
dependency annotations. As we showed, one can assure cor-
rectness when generating dependent advice. However, when
a programmer writes dependent advice by hand, it is her
responsibility to assure correctness.

Furthermore, we wish to note that we do not treat aspect-
inheritance, advice-precedence or inter-aspect dependencies
in this paper. We leave these topics to future work.

5.5 Discussion
To conclude, dependent advice come at some compile-time

cost, however their use can yield significant run-time im-
provements. The success of the optimization depends on
the property that the history-based aspect monitors and on
the monitored program, but not on the particular monitor
implementation.

6. RELATED WORK
We next compare our work to earlier work on optimiza-

tions for runtime monitoring. In our Technical Report we
also discuss how our work can be applied to other aspect-
generating tools [5,16,19,24,26] and how it relates to expres-
sive pointcut languages like dataflow [21] and maybeShared
pointcuts [7] and LogicAJ [15].

Flow-insensitive tracematch optimizations. Our
work was largely inspired by earlier work of Bodden et.
al [8]. They were the first to propose a Quick-check and
a flow-insensitive pointer-based analysis to remove unneces-
sary monitor instrumentation, however their approach was
bound to tracematches only. The goal of this work was to
distill the essence of their approach and make the same pow-
erful optimizations available to history-based aspects gen-
erated from other sources (including hand-written aspects),
while at the same time not compromising on the good results
that the authors obtained for tracematches earlier. Our ap-
proach achieves exactly that: dependent advice allow opti-
mizations to be successful independently of the chosen code-
generation tool or specification formalism. Note that the
analyses that we present in Section 3 of this paper are just
as powerful as the ones presented in [8], however dependent
advice make them applicable to a broader context.

Flow-sensitive tracematch optimizations. Bodden
et al. also proposed a second optimization [9] for trace-
matches that is intra-procedural and flow-sensitive. Naeem
and Lhoták independently developed a fully inter-procedural
flow-sensitive version [23]. Flow-sensitive approaches are po-
tentially more precise than flow-insensitive ones, however
they require significantly more domain knowledge. A mini-
mal extension of dependent advice that encodes flow infor-
mation would be an interesting area for future work.

Monitor optimizations. Avgustinov et al. [3] proposed
optimizations to the runtime monitor itself: Leak elimina-

tion discards monitoring state for objects that have been
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garbage collected. Indexing provides for fast access to par-
tial matches. These optimizations are crucial to make run-
time monitoring feasible at all and therefore we enabled
them in all our experiments. The authors’ optimizations are
however complementary to ours. With leak elimination and
indexing disabled, our speedups would likely have been even
more significant, as there would have been more overhead to
remove. JavaMOP and PTQL [13] implement weaker vari-
ants of these optimizations.

7. CONCLUSIONS AND FUTURE WORK
In this work we presented dependent advice, a novel As-

pectJ language extension to aid the optimization of history-
based aspects. Dependent advice augment normal AspectJ
advice with dependency annotations. A dependent advice
only needs to execute when its dependencies are fulfilled.

We implemented a static flow-insensitive whole-program
analysis to approximate dependencies in the AspectBench
Compiler. Based on the analysis results, the compiler can
remove dispatch code for a dependent advice from locations
at which the advice’s dependencies cannot be fulfilled. As
our results show, this optimization can significantly lower
the runtime overhead of history-based aspects.

We modified code generators for specifications written in
four finite-state formalisms. We made them exploit domain
knowledge contained in the specification to automatically
augment their generated AspectJ code with dependency an-
notations. The code generation is “stable”, i.e. it generates
equivalent dependency annotations from equivalent specifi-
cations, independent of the particular specification formal-
ism. In result, the observed optimization effects are stable as
well. We believe that similar code generation should be pos-
sible for any modelling or specification language over which
reachability can efficiently be decided. It would be interest-
ing future work to determine if one can generate annotations
in a stable way for classes of these other languages too.

All tools, benchmarks, scripts and instructions required
to reproduce our experimental results are available at:

http://www.aspectbench.org/benchmarks/
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