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Abstract. Parallelization and optimization of the MATLAB programming lan-
guage presents several challenges due to the dynamic natureof MATLAB . Since
MATLAB does not have static type declarations, neither the shape and size of
arrays, nor the loop bounds are known at compile-time. This means that many
standard array dependence tests and associated transformations cannot be applied
straight-forwardly. On the other hand, many MATLAB programs operate on arrays
using loops and thus are ideal candidates for loop transformations and possibly
loop vectorization/parallelization.
This paper presents a new framework, McFLAT , which uses profile-based training
runs to determine likely loop-bounds ranges for which specialized versions of the
loops may be generated. The main idea is to collect information about observed
loop bounds and hot loops using training data which is then used to heuristically
decide upon which loops and which ranges are worth specializing using a variety
of loop transformations.
Our McFLAT framework has been implemented as part of the McLAB extensible
compiler toolkit. Currently, McFLAT , is used to automatically transform ordi-
nary MATLAB code into specialized MATLAB code with transformations applied
to it. This specialized code can be executed on any MATLAB system, and we re-
port results for four execution engines, Mathwork’s proprietary MATLAB system,
the GNU Octave open-source interpreter, McLAB ’s McVM interpreter and the
McVM JIT. For several benchmarks, we observed significant speedups for the
specialized versions, and noted that loop transformationshad different impacts
depending on the loop range and execution engine.

1 Introduction

MATLAB is an important programming language for scientists and engineers [17]. Al-
though the dynamic nature and lack of static type declarations makes it easy to de-
fine programs, MATLAB programs are often difficult to optimize and parallelize. The
McLAB system [2] is being defined to provide an open and extensible optimizing and
parallelizing compiler and virtual machine for MATLAB and extensions of MATLAB

such as ASPECTMATLAB [7]. As an important part of McLAB, we are developing a
framework for loop dependence tests and loop transformations, McFLAT , which is the
topic of this paper.

⋆ This work was supported, in part, by NSERC.



Due to the dynamic nature of MATLAB , there is very little static information about
array dimensions and loop bounds. Furthermore, many of the scientific codes written in
MATLAB can be applied to very different sized data sets. Thus, our design of McFLAT

is based on a profiling phase which collects information about loop bounds over many
different runs. We then have a heuristic engine which identifies important loop bound
ranges and then a specializer which produces specialized code for each important range.
The specializer applies loop dependence tests and loop transformations specific to the
input range. Currently, for each important range, we exhaustively generate all legal
specializations, but the ultimate goal is to combine this framework with a machine
learning approach which will automatically generate a goodspecialization for the given
range.

This paper describes our initial design and implementationof McFLAT and provides
some exploratory experimental data obtained by using McFLAT to generate different
versions of code which we execute on four different systems,Mathworks’ MATLAB

implementation (which includes a JIT), the GNU Octave open-source interpreter [1],
our McVM interpreter and our McVM JIT [13]. Interestingly, this shows that different
optimizations are beneficial for different ranges and on different MATLAB execution en-
gines. This implies that specialization for both the range and intended execution engine
is a good approach in the context of MATLAB .

The remainder of this paper is organized as follows. In Section 2 we give a high-
level view of McFLAT , and in Section 3 we provide more details of each important
component. We apply our framework to a selection of benchmarks and report on the
experimental results in Section 4. Finally, we discuss related work in Section 5 and
conclude in Section 6.

2 Overview of Our Approach

The overall structure of the McFLAT framework is outlined in Figure 1. Our ultimate
goal is to embed this framework in our McJIT system, however currently it is a stand-
alone source-to-source framework which uses the McLAB front-end. The user provides
both the MATLAB program which they wish to optimize and a collection of represen-
tative inputs (top of Figure 1). The output of the system is a collection of specialized
programs (bottom of Figure 1), where each specialized program has a different set of
transformations applied. The system also outputs a dependence summary for each loop,
which is useful for compiler developers.

The design of the system is centered around the idea that a MATLAB program is
likely to be used on very different sized inputs, and hence atrun-time loops will have
very different loop bounds. Thus, our objective is to find important ranges for each
loop nest, and to specialize the code for those ranges. Knowing the ranges for each
specialization also enables us to use very fast and simple dependence testers.

The important phases of McFLAT , as illustrated in Figure 1, are theInstrumenter,
which injects the profiling code, theRange Estimatorwhich decides which ranges are
important, and theDependence Analyzer and Loop Transformer Engine. In the next
section we look at each of these components in more detail.
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Fig. 1. Structure of the McFLAT Framework.

3 Important Components of McFLAT

In this section we provide an overview of the key components of our McFLAT frame-
work, and we briefly discuss parallel loop detection and somecurrent limitations of the
framework.

3.1 Instrumenter

As illustrated in the phase labeledInstrument and Profile in Figure 1, theInstrumenter
component is used to automatically inject instrumentationand profiling code into a
MATLAB source file. This injection is done on the high-level structured IR produced
by the McLAB front-end. In particular, we inject instrumentation to associate a unique
loop number to each loop, and we inject instrumentation to gather, for each loop, the
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lower bound of the iteration, the loop increment, the upper bound of the iteration, the
nesting level of the loop, the time spent executing the loop,and a list of variables that
are written to in the loop body.

The MATLAB program resulting from this instrumentation is functionally equiva-
lent to the original code, but emits additional informationthat generates training data
required for the next phase.

When the instrumented program is executed using a MATLAB virtual machine, the
profile information is written to an .xml file. This .xml file ispersistent, and so multiple
runs can be made, and each run will add new information to the .xml file. The loop
profiling information .xml file is then used as an input to the next component.

3.2 Range Estimator

The Range Estimatoris the first important component of the main part of McFLAT ,
theAnalysis and Transformations phase in Figure 1. The Range Estimator reads the
loop profiling information and determines which are the important ranges for each loop.
The important ranges are identified using Algorithm 1. The input to this algorithm is a
hash table containing all the observed values for all the loops and the output is a list of
important ranges. The basic idea is that for each loop, we extract the observed values
for that loop, partition the value space into regions and subregions, and then identify
subregions which contain more values than a threshold.

Algorithm 1 Algorithm for range estimation
Data Items
H (K,V) : Hash table with loop numbers as keys and list of observed values
ProcedureprocessLoopData(LoopID)
l← lookup(LoopID, H)// get all observed values for loop with LoopID
sort(l)
importantRanges← empty
R← computeRegions(min(l), max(l))
// for each large region
for all r in R do

// for each subregion (divide R into 10 equal parts)
for all sR in Rdo

if numInRegion(l,sR)≥ threshold then
PredVal← maxval(sR)
add PredVal to importantRanges

end if
end for

end for
return(importantRanges)

We determine the regions and subregions as illustrated in Figure 2. The regions are
powers of 10, starting with the largest power of 10 that is less than the smallest observed
value, and ending with the smallest power of 10 that is greater than the highest observed
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value. For example, if the observed upper bounds were in the range 120 to 80000, then
we would choose regions of size 100, 1000, 10000 and 100000. Each region is further
subdivided into 10 subregions. A subregion is considered important if the number of
observed values are above a threshold, which can be set by theuser. For our experiments
we used a threshold of 30 % . When an important region is identified, the maximum
observed value from the region is added to the list of important ranges.

1000−10000

Region Observed values arranged in sub−regions

1         100    200      300     400      500      600    700    800     900    1000

1000     2000   3000    4000   5000    6000    7000     8000     9000   10000

100−1000

Fig. 2.Pictorial Example of Ranges and Subranges

3.3 Dependence Analysis

During this phase, McFLAT calculates dependences between all the statements in the
loop body against all the predicted important ranges for that loop. It maintains various
data structures supporting dependence analysis. This information is used in subsequent
loop transformation phases.

The data dependence testing problem is that of determining whether two references
to the same array within a nest of loops may reference to the same element of that
array [4,21].

Since we have identified the upper loop bounds via our profiling, we have chosen
very simple and efficient dependence testers: theBanerjee’s Extended GCD(Greatest
Common Divisor) test[8] and theSingle Variable Per Constraint Test[4]. Currently,
we have found these sufficient for our small benchmarks, but we can easily add further
tests as needed.

3.4 Loop Transformations

In our framework programmers can either suggest the type of transformation that they
need to apply through optional loop annotations, or it will automatically determine and
apply a transformation or a combination of transformationswhich are legal for a loop.

McFLAT implements following loop transformations that have been shown to be
useful for two important goals, parallelism and efficient use of memory hierarchy [15]:
loop interchangeand loop reversal. For automatic detection and application of above
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mentioned loop transformations, we use the unimodular transformation model pre-
sented in [20]. Loop interchange and reversal are modeled aselementary matrix trans-
formations, combinations of these transformations can simply be represented as product
of elementary transformation matrices. An elementary transformation or a compound
transformation is considered to be legal if the transformeddistance vectors are lexico-
graphically positive.

Apart from automatically testing the legality of loop interchange and reversal, our
framework supports a larger set of transformations which can be specified by the user.
This allows us to use our system as a test bed for programmers with which they can
suggest different transformations and observe the effect of different transformations on
different loops. Programmers just have to annotate the loopbody with the type of trans-
formation that they need to apply on the loop. Our framework checks for the presence of
annotations, if a loop annotation is present it computes thedependence information us-
ing the predicted loop bounds for that loop and applies the transformations if there is no
dependency between the loop statements. The current set of transformations supported
by annotations is:loop fission, loop fusion, loop interchangeandloop reversal.

3.5 Parallelism Detection

Efficient parallelization of a sequential program is a challenging task. Currently our
McFLAT framework automatically detects whether afor loop can be automatically
converted to aparfor loop or not. The framework performs parallelization tests on the
loops based on the dependence information calculated in thedependence analysis and
instrumentation phase. A loop is classified as a parallel loop according to MATLAB ’s
semantics [17], since the generated code is targeted for theMATLAB system. Thus, a
loop is classified as a parallel for-loop if it satisfies the following conditions.

– There should be no flow dependency between the same array access within the loop
body. i.e. distance vectors for all the same array accesses should be zero.

– Within the list of indices for the arrays accessed in the loop, exactly one index
involves the loop index variable.

– Other variables used to index an array should remain constant over the entire exe-
cution of the loop. The loop index variable cannot be combined with itself to form
an index expression.

– Loop index variables must have consecutively increasing integers.
– The value of the loop index variable should not be modified inside the loop body.

3.6 Current Limitations of Mc FLAT

At present, our framework implements a limited set of loop transformations. It only
handles perfectly nested loops which have affine accesses and whose dependences can
be summarized by distance vectors. As we develop the framework we will add further
dependence tests and transformations, as well as transformations to enable more paral-
lelization. However, since we also wish to put this framework into our JIT compiler, we
must be careful not to include overly expensive analyses.
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4 Experimental Results

In this section we demonstrate the use of McFLAT through two exploratory performance
studies on a set of MATLAB benchmarks. Our ultimate goal is to integrate McFLAT with
a machine learning approach, however these example studiesprovide some interesting
initial data. The first study examines performance and speedups of transformed pro-
grams, applying our dependence testers and standard loop transformations for a variety
of input ranges. The second study looks at the performance ofbenchmarks when we
automatically introduceparfor constructs.

4.1 Benchmarks and Static Information

Table 1 summarizes our collection of 10 benchmarks, taken from the McLab and Uni-
versity of Stuttgart benchmark suites. These benchmarks have a very modest size, but
yet perform interesting calculations and demonstrate someinteresting behaviours. For
each benchmark we give the name, description, source of the benchmark, the number of
functions, number of loop nests, number of loops that can be automatically converted
to parallel for loops.

BenchmarkSource of # Lines # # # Par. Benchmark
Name Benchmark Code Func.LoopsLoops Description

Crni McLab 65 2 4 1 Finds the
Benchmarks Crank-Nicholoson Sol.

Mbrt McLab 26 2 1 0 Computes mandelbrot set.
Benchmarks

Fiff McLab 40 1 2 0 Finds the finite-difference solution
Benchmarks to the wave equation.

Hnormal McLab 30 1 1 1 Normalises array of homogeneous coordinates.
Benchmarks

Nb1d McLab 73 1 1 0 Simulates the gravitational
Benchmarks movement of a set of objects.

Interpol Uni of Stutt 187 5 5 0 Compares the stability
and complexity of Lagrange interpolation.

Lagrcheb Uni of Stutt 70 1 2 2 Computes Lagrangian and Chebyshev
polynomial for comparison.

Fourier Uni of Stutt 81 3 3 2 Compute the Fourier transform
with the trapezoidal integration rule.

Linear Uni of Stutt 56 1 2 1 Computes the linear iterator.
EigenValueUni of Stutt 50 2 1 0 Computes the eigenvalues

of the transition matrix.

Table 1.Benchmarks
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4.2 Performance Study for Standard Loop Transformations

BenchmarkTrans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % SpeedupTime % SpeedupTime % Speedup

Crni N 60ms 3.41s
R 60ms 0.0 % 3.21s 5.8%

Mbrt N 1.91s 9.40s
I 1.98s -3.6 % 9.55s -1.6%
R 1.91s 0.0 % 9.25s 1.5%
(I+R) 1.97s -3.4% 9.32s 0.8%

Fiff NN 400ms 880ms
RN 405ms-1.25% 830ms5.6%

Hnormal N 1.85s 4.52s
R 1.84s 0.5% 4.48s 0.8%

Nb1d N 40ms 2.53s
Interpol N 44.70s 60.35s
Lagrcheb NN 140ms 280ms 450ms

RR 138ms1.4% 270ms3.5% 420ms6.6%
RN 143ms-2.1% 280ms0.0% 450ms0.0%
NR 143ms-2.1% 280ms0.0% 430ms4.4%

Fourier NNN 50ms 1.31s
FN 40ms 20.0% 1.49s -13.7%
RRN 50ms 0.0% 1.25s 4.5%
(F+R)N 60ms -20.0% 1.31s 0.0%
RNN 50ms 0.0% 1.21s 7.6%
NRN 50ms 0.0% 1.25s 4.5%

Linear NN 336ms 640ms 2.60s
IN 566ms-68.4% 890ms-39.0% 3.67s -38.4%
IR 610ms-81.5% 850ms-32.8% 3.42s -31.5%
NR 320ms4.7% 600ms6.2% 2.51s 3.4%

EigenValueN 80ms 310ms 1.10s
I 100ms-25.0% 370ms-19.3% 1.18s -7.27%
R 90ms -12.5% 290ms6.4% 1.10s 0.0%
(I+R) 90ms -12.5% 280ms9.6% 1.08s 1.81%

Table 2.Mathworks’ MATLAB Execution Times and Speedups

For our initial study, we ran the benchmarks on an AMD Athlon™64 X2 Dual Core
Processor 3800+, 4GB RAM computer running the Linux operating system; GNU Oc-
tave, version 3.2.4; MATLAB , version 7.9.0.529 (R2009b) and McVM/McJIT, version
0.5.

For each benchmark we ran a number of training runs through the instrumenter and
profiler. For these experiments instrumented code was executed only on Mathworks’
MATLAB to generate profile information. Then we used our dependenceanalyzer and
loop transformer to generate a set of output files, one outputfile for each combination
of possible transformations. For example, if the input file had two loops, and loop re-
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BenchmarkTrans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % SpeedupTime % SpeedupTime % Speedup

Crni N 5.46s 1102s
R 5.46s 0 % 1101s0.09%

Mbrt N 289.8s 2000s
I 300s -3.5 % 2000s0%
R 289.8s0 % 2000s0%
(I+R) 300s -3.5% 2000s0%

Fiff NN 6.44s 251s
RN 6.41s 0.46% 253s -0.7%

Hnormal N 7.34s 13.4s
R 7.48s -1.9% 13.6s -1.4%

Nb1d N 2.56s 7.89s
Interpol N 3524s 5238s
Lagrcheb NN 630ms 1.28s 1.95s

RR 630ms0% 1.27s 0.7% 1.94s 0.51%
RN 630ms0% 1.27s 0.7% 1.94s 0.51%
NR 630ms0% 1.27s 0.7% 1.94s 0.51%

Fourier NNN 120ms 4.24s
FFN 120ms0% 4.28s -0.9%
RRN 120ms0% 4.31s -1.6%
FRN 120ms0% 4.19s 1.1%
RNN 110ms8.3% 4.26s -0.4%
NRN 120ms0% 4.25s -0.2%

Linear NN 6.58s 352s 1496s
IN 6.65s -1.0% 381s -8.2% 1443s3.5%
IR 6.65s -1.0% 382s -8.5% 1422s4.9%
NR 6.56s 0.3% 369s -4.8% 1389s7.1%

EigenValueN 240ms 106s 460s
I 230ms4.1% 127s -19.8% 502s -9.1%
R 230ms4.1% 116s -9.4% 486s -5.6%
(I+R) 230ms4.1% 126s -18.8% 507s -10.2%

Table 3.Octave Execution Times and Speedups

versal could be applied to both loops, then we would produce four different output files
corresponding to: (1) no reversals, (2) reversing only loop1, (3) reversing only loop 2,
and (4) reversing both loops. For our experiments, we used a combination of both the
modes that McFLAT provides for applying loop transformations i.e.Automatic mode
andProgrammer annotated mode.

Each output file has a specialized section for each predictedimportant range, plus a
dynamic guard around each specialized section to ensure that the correct version is run
for a given input.

We report the results for four different MATLAB execution engines, the Mathworks’
MATLAB (which contains a JIT) (Table 2), the GNU Octave interpreter(Table 3), the
McVM interepreter, and the McVM JIT (McJIT) (Table 4).
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McVm(JIT) McVM(Interpreter)
BenchmarkTrans Pred. Range 1 Pred. Range 2 Pred. Range 1 Pred. Range 2
Name Applied Time % SpeedupTime % SpeedupTime %SpeedupTime % Speedup
Crni N 4.00s 1074s 7.12s 1386.2s

R 4.00s 0.0 % 820s 23.6% 6.35s10.8% 1341.5 3.2%
Mbrt N 98.37s 675s 384s 2491s

I 101s -3.3 % 714s -5.8% 344s 10.4 % 2286s 8.2%
R 110s -12.6 % 781s -15.6% 342s 10.9% 2370s 4.8%
(I+R) 106s -8.16% 738s -9.35% 346s 9.8% 2375s 4.6%

Fiff NN 260ms 500ms 7.38s 7.46s
RN 260ms-1.95% 460ms8% 6.95s5.8% 7.25s 2.8%

Hnormal N 5.00s 8.93s 7.23s 11.6s
R 4.96s 0.8% 8.05s 10.9% 7.11s1.6% 12.24s -5.5%

Nb1d N 850ms 4.10s 1.41s 4.24s

Table 4.McVM Execution Times and Speedups

In each table, the column labeledTrans. Appliedindicates which transformations
are applied to the loops in the benchmark, whereN indicates that no transformation is
applied,R indicates Loop Reversal is applied,F represents Loop fusion andI is repre-
sentative of Loop Interchange.NN indicates that there are two loops in the benchmark
and no transformation is applied on any of them. Similarly,IR shows there are two
loops, Interchange is applied on the first loop and reversal on the second loop.I+R
indicates one loop nest on which interchange is applied and then reversal.

Depending on the benchmark we had two or three different ranges that were identi-
fied by the range predictor. The ranges appear in the tables inincreasing value, soPred.
Range 1corresponds to the lowest range andPred Range 3corresponds to the highest
range. We chose one input for each identified range and timed it for each loop trans-
formation version. In each table we give the speedup (positive) or slowdown (negative)
achieved as compared to the version with no transformations. We indicate in bold the
version that gave the best performance for each range.

Let us consider first the execution time for Mathworks’ MATLAB , as given in Ta-
ble 2. Somewhat surprisingly to us, it turns out that loop reversal alone always gives
performance speed-up on the higher ranges. Whereas, on lower ranges there is either no
speed up or performance de-gradation in some of the benchmarks. This implies that it
may be worth having a specialized version of the loops, with important loops reversed
for higher data ranges.

MATLAB accesses arrays in column-major order, and MATLAB programmers nor-
mally write their loops in that fashion, so always applying loop interchange degrades
the performance of the program. Performance degrades more for loops which involve
array dependencies. However, the degradation impact is lower at higher ranges perhaps
due to cache misses in both the cases, that is transformed andoriginal loop. Loop in-
terchange degradation impact is less for loops that invoke afunction whose value is
written to an array, for example, Mbrt.
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Loop fusion was only applied once (in Fourier) where it givesa performance speed-
up on lower ranges. However, as the loop bounds and accessed arrays get bigger then
performance degrades.

Now consider the execution time for Octave, given in Table 3.Octave is a pure
interpreter and you will note that the absolute execution times are often an order of
magnitude slower than Mathworks’ system, which has a JIT accelerator. The applied
transformations also seem to have very little impact on performance, particularly on the
lower ranges. For higher ranges, no fixed behavior is observed, for some benchmarks
there is a performance improvement whereas for others performance degrades.

We were also interested in how the transformations would impact our group’s McVM,
both in pure interpreter mode, and with the JIT. We couldn’t run all the benchmarks on
McVM because the benchmarks use some library functions which are not currently
supported. However, Table 4 lists the results on the subset of benchmarks currently
supported. Once again loop reversal can make a significant impact on the higher ranges
for the JIT, and actually also seems beneficial for the McVM(interpreter).

4.3 Performance study for Parallel For Loops

In Table 5 we report the execution time and speedups with MATLAB ’s parfor loop-
ing construct. We ran the benchmarks on an Intel ™Core(TM) i7Processor (4 cores),
5.8GB RAM computer running a Linux operating system; MATLAB , version 7.9.0.529
(R2009b). For these experiments we initialized the MATLAB worker pool to size 4.

The term pN indicates that there is one loop in the benchmark,which is parallelized
and no loop transformation is applied on it. (pF) means two loops are fused and then
fused loop is parallelized. Note that it is not possible to combine loop reversal and par-
allelization with the MATLAB parfor construct as the MATLAB specifications require
that the loop index expression must increase.

We have reported execution times of various combinations ofparallel and sequential
loops, to study the effect of parallelizing a loop in the context of MATLAB programming
language.

For most of the benchmarks we observed that MATLAB ’s parfor loop does not of-
ten give significant performance benefits, and in some cases causes severe performance
degradation. This is likely due to the parallel execution model supported by MATLAB

which requires significant data copying to and from worker threads.

5 Related Work

Of course there is a rich body of research on the topics of dependence analysis, loop
transformations and parallelization. In our related work we attempt to cover a represen-
tative subset that, to the best of our knowledge, covers the prior work in the area of our
paper.

Banerjee [9], Wolfe and Lam [20, 21] have modeled a subset of loop transforma-
tions like loop reversal, loop interchange and skewing as unimodular matrices and have
devised tests to figure out the legality of these transformations. Our framework also
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BenchmarkTrans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % SpeedupTime % SpeedupTime % Speedup

Crni N 280ms 13.41s
pN 1.03s -257% 14.20s-5.9%
R 290ms-3.5 % 13.30s0.8%

Hnormal N 800ms 1.70s
pN 70.5s -8712 % 71.3s -4094%
R 780ms2.5% 1.68s 1.1%

Lagrcheb NN 120ms 200ms 280ms
(pN)(pN) 140ms-16.6% 180ms10.0% 250ms10.7%
N(pN) 110ms8.3% 180ms10.0% 250ms10.7%
(pN)N 120ms0.0% 180ms10.0% 260ms7.1%
R(pN) 120ms0.0% 180ms10.0% 250ms10.7%
(pN)R 120ms0.0% 180ms10.0% 250ms10.7%
RR 120ms0.0% 200ms0.0% 270ms3.5%
RN 130ms-8.3% 200ms0.0% 270ms3.5%
NR 130ms-8.3% 200ms0.0% 270ms3.5%

Fourier NNN 170ms 680ms
(pN)NN 50ms 70% 720ms-5.8%
(pN)(pN)N 200ms-17.6% 720ms-5.8%
N(pN)N 50ms 70% 720s -5.8%
(pF)N 50ms 70% 720ms-5.8%
R(pN)N 50ms 70% 710ms-4.4%
(pN)RN 50ms 70% 680ms0.0%
FN 20ms 88.2% 690ms-1.4%
RRN 170ms0.0% 680ms0.0%
(F+R)N 170ms0.0% 680ms0.0%
RNN 170ms0.0% 680ms0.0%
NRN 170ms0.0% 680ms0.0%

Linear NN 150ms 7.40s 29.8s
N(pN) 150ms0.0% 7.20s 2.7% 30.2s -1.3%
I(pN) 390ms0.0% 10.30s-39.1% 40.2s -34.8%
IN 370ms-146.6% 10.30s-39.1% 37.6s -26.1%
IR 370ms-146.6% 10.30s-39.1% 37.6s -26.1%
NR 160ms-6.6% 7.20s 2.7% 29.4s 1.34%

Table 5.Mathworks’ MATLAB Execution Times and Speedups with Parallel Loops

uses unimodular transformations model to apply and test thelegality of a loop trans-
formation or a combination of loop transformations, but ourintent is to specialize for
different predicted loop bounds.

Quantitative models based on memory cost analysis have beenused to select optimal
loop transformations [18]. Memory cost analysis chooses anoptimal transformation
based on the number of distinct cache lines and the number of distinct pages accessed
by the iterations of a loop. Our framework is a preliminary step towards building a
self-learning system that selects optimal transformations based on loop bounds and
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profiled program features that have been beneficial in the past for a transformation or a
combination of transformations.

A dimension abstraction approach for vectorization in MATLAB presented in [10]
discovers whether dimensions of an expression will be legalif vectorization occurs. The
dimensionality abstraction provides a representation of the shape of an expression if a
loop containing the expression was vectorized. To improve vectorization in cases which
have incompatible vectorized dimensionality, a loop pattern database is provided which
is capable of resolving obstructing dimensionality disagreements.

Another framework, presented in [22] predicts the impact ofoptimizations for some
objective (e.g., performance, code size or energy). The framework consists of three
types of models: optimization models, code models and resource models. By integrating
these models, a benefit value is produced that represents thebenefit of applying an
optimization in a code context for the objective represented by the resources. McFLAT

is the first step towards developing a self-learning system which would use its past
experience in selecting optimal loop transformations.

5.1 Automatic Parallelization

Static automatic parallelism extraction have been achieved in the past [11, 16]. Un-
fortunately, many parallelization opportunities could still not be discovered by static
analysis approach due to lack of information at the source code level. Tournavitis et. al.
have used a profiling-based parallelism detection method that enhances static data de-
pendence analysis with dynamic information, resulting in larger amounts of parallelism
uncovered from sequential programs [19]. Our approach is also based on profiling-
based parallelism detection but in the context of MATLAB programming language and
within the constraints of MATLAB parallel loops.

5.2 Adaptive Compilation

Heuristics and statistical methods have already been used in determining compiler op-
timization sequences. For example, Cooper et. al. [14] developed a technique using
genetic algorithms to find ”good” compiler optimization sequences for code size reduc-
tion. Profile-based techniques have also been used in the past to suggest recompilation
with additional optimizations. The Jalopeño JVM uses adaption system that can invoke
a compiler when profiling data suggests that recompiling a method with additional op-
timization will be more beneficial [6]. Our work is a first steptowards developing an
adaptive system that applies loop transformations based onpredicted data from previous
execution runs and profiled information about the programs.

Previously work has been done on JIT compilation for MATLAB . MaJIC [5], com-
bines JIT-compilation with an offline code cache maintainedthrough speculative compi-
lation of Matlab code into C/Fortran. It derives the most benefit from optimizations such
as array bounds check removals and register allocation. Mathworks introduced MAT-
LAB JIT-Accelerator [3], in MATLAB 6.5, that has accelerated the execution of MAT-
LAB code. McVM [12,13] is also an effort towards JIT compilationfor MATLAB , it uses
function specializations based on run-time type of their arguments. The McVM(JIT) has
shown performance speed-ups against MATLAB for some of our benchmarks. McFLAT ,
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the framework presented in this paper uses profiled program features and heuristically
determines loop bounds ranges to generate specialized versions of loops in the program.

6 Conclusions and Future Work

In this paper, we have described a new framework, McFLAT , which uses profile-based
training runs to collect information about loop bounds and ranges, and then applies a
range estimator to estimate which ranges are most important. Specialized versions of
the loops are then generated for each predicated range. The generated MATLAB code
can be run on any MATLAB virtual machine or interpreter.

Results obtained on four execution engines (MATLAB , GNU Octave, McVM(JIT)
and McVM(interpreter) suggest that the impact of differentloop transformations on
different loop bounds is different and also depends on the execution engine. We were
somewhat surprised that loop reversal was fairly useful forseveral execution engines,
especially on large ranges. Although the tool detected quite a few parallel loops and
transformed them to MATLAB ’s parfor construct, the execution benefit was very lim-
ited and sometimes very detrimental. Thus, our McJIT compiler will likely support a
different parallel implementation which has lower overheads.

Although McFLAT is already a useful stand-alone tool, in our overall plan it is a
preliminary step towards developing a self-learning system that will be part of McJIT
and which will decide on whether to apply a loop transformation or not depending on
the benefits that the system has seen in the past. Our initial exploratory experiments
validate that different loop transformations are beneficial for different ranges. Future
work will focus on extracting more information about the program features from profil-
ing, maintaining a mapping between loop bounds, program features and effective loop
transformations and making use of past experience to make future decisions on whether
to apply transformations or not.

References

1. GNU Octave.http://www.gnu.org/software/octave/index.html.
2. McLab: An Extensible Compiler Framework for Matlab. Homepagehttp://www.

sable.mcgill.ca/mclab/.
3. Accelerating Matlab, 2002. http://www.mathworks.com/company/newsletters/digest/sept02/accel-

matlab.pdf.
4. A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles, Techniques and Tools. Addison

Wesley, 1985.
5. G. Almasi and D. A. Padua. MaJIC: A MATLAB Just-In-Time Compiler. InLanguages and

Compilers for Parallel Computing. Springer Berlin / Heidelberg, 2001.
6. M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive Optimization in the

Jalapeño JVM. InOOPSLA ’00: Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 47–65, New
York, NY, USA, 2000. ACM.

7. T. Aslam, J. Doherty, A. Dubrau, and L. Hendren. AspectMatlab: An Aspect-Oriented Sci-
entific Programming Language. InProceedings of 9th International Conference on Aspect-
Oriented Software Development, pages 181–192, March 2010.

14



8. U. K. Banerjee.Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Norwell, MA, USA, 1988.

9. U. K. Banerjee. Loop Transformations for Restructuring Compilers: The Foundations.
Kluwer Academic Publishers, Norwell, MA, USA, 1993.

10. N. Birkbeck, J. Levesque, and J. N. Amaral. A Dimension Abstraction Approach to Vec-
torization in Matlab. InCGO ’07: Proceedings of the International Symposium on Code
Generation and Optimization, pages 115–130, Washington, DC, USA, 2007. IEEE Com-
puter Society.

11. M. G. Burke and R. K. Cytron. Interprocedural DependenceAnalysis and Parallelization.
SIGPLAN Not., 39(4):139–154, 2004.

12. M. Chevalier-Boisvert. McVM: An Optimizing Virtual Machine for the MATLAB Program-
ming Language. Master’s thesis, McGill University, August2009.

13. M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge. Optimizing MATLAB through Just-
In-Time Specialization. InInternational Conference on Compiler Construction, pages 46–
65, March 2010.

14. K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for Reduced Code Space using
Genetic Algorithms. InLCTES ’99: Proceedings of the ACM SIGPLAN 1999 workshop on
Languages, Compilers, and Tools for Embedded Systems, pages 1–9, New York, NY, USA,
1999. ACM.

15. M. S. Lam and M. E. Wolf. A Data Locality Optimizing Algorithm. InPLDI’91: Program-
ming Language Design and Implementation, volume 39, pages 442–459, New York, NY,
USA, 2004. ACM.

16. A. W. Lim and M. S. Lam. Maximizing Parallelism and Minimizing Synchronization with
Affine Transforms. InPOPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 201–214, New York, NY, USA, 1997.
ACM.

17. Matlab. The Language Of Technical Computing. Home pagehttp://www.mathworks.
com/products/matlab/.

18. V. Sarkar. Automatic Selection of High-Order Transformations in the IBM XL FORTRAN
compilers.IBM J. Res. Dev., 41(3):233–264, 1997.

19. G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle. Towards a Holistic Approach to
Auto-Parallelization: Integrating Profile-Priven Parallelism Detection and Machine-Learning
based Mapping. InPLDI’09: Programming Languages Design and Implementation, vol-
ume 44, pages 177–187, New York, NY, USA, 2009. ACM.

20. M. E. Wolf and M. S. Lam. A Loop Transformation Theory and an Algorithm to Maximize
Parallelism.IEEE Trans. Parallel Distrib. Syst., 2(4):452–471, 1991.

21. M. J. Wolfe.Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge, MA,
USA, 1990.

22. M. Zhao, B. Childers, and M. L. Soffa. Predicting the Impact of Optimizations for Embedded
Systems. InProceedings of the 2003 ACM SIGPLAN Conference on Language,Compiler,
and Tool Support for Embedded Systems, volume 38, pages 1–11, San Diego, CA, USA,
2003. ACM.

15


