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Abstract. Matlab has gained widespread acceptance among scientists.
Several dynamic aspects of the language contribute to its appeal, but also
provide many challenges. One such problem is caused by the copy seman-
tics of Matlab. Existing Matlab systems rely on reference-counting
schemes to create copies only when a shared array representation is up-
dated. This reduces array copies, but requires runtime checks.

We present a staged static analysis approach to determine when copies
are not required. The first stage uses two simple, intraprocedural anal-
yses, while the second stage combines a forward necessary copy analy-
sis with a backward copy placement analysis. Our approach eliminates
unneeded array copies without requiring reference counting or frequent
runtime checks.

We have implemented our approach in the McVM JIT. Our results
demonstrate that, for our benchmark set, there are significant overheads
for both existing reference-counted and naive copy-insertion approaches,
and that our staged approach is effective in avoiding unnecessary copies.

1 Introduction

MatlabTM1 is a popular programming language for scientists and engineers. It
was designed for sophisticated matrix and vector operations, which are common
in scientific applications. It is also a dynamic language with a simple syntax that
is familiar to most engineers and scientists. However, being a dynamic language,
Matlab presents significant compilation challenges. The problem addressed in
this paper is the efficient compilation of the array copy semantics defined by the
Matlab language. The basic semantics and types in Matlab are very simple.
Every variable is assumed to be an array (scalars are defined as 1x1 arrays) and
copy semantics is used for assignments of one array to another array, parameter
passing and for returning values from a function. Thus a statement of the form
a = b semantically means that a copy of b is made and that copy is assigned to
a. Similarly, for a call of the form a = foo(c), a copy of c is made and assigned
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to the parameter of the function foo, and the return value of foo is copied to
a. Naive implementations take exactly this approach.

However, in the current implementations of Matlab the copy semantics is
implemented lazily using a reference-count approach. The copies are not made
at the time of the assignment, rather an array is shared until an update to one
of the shared arrays occurs. At update time (for example a statement of the
form b(i) = x), if the array being updated (in this case b) is shared, a copy is
generated, and then the update is performed on that copy. We have verified that
this is the approach that Octave open-source system [1] takes (by examining and
instrumenting the source code). We have inferred that this approach (or a small
variation) is what the Mathworks’ closed-source implementation does based on
the user-level documentation [19, p. 9-2].

Although the reference-counting approach reduces unneeded copies at run-
time, it introduces many redundant checks, requires space for the reference
counts, and requires extra code to update the reference counts. This is clearly
costly in a garbage-collected VM, such as the recently developed McVM, a spe-
cializing JIT [8,9]. Furthermore, the reference-counting approach may generate
a redundant copy during an update of a variable, if the updated variable shares
an array only with dead variables.

Thus, our challenge was to develop a static analysis approach, suitable for
a JIT compiler, which could determine which copies were required, without re-
quiring reference counts and without the expense of dynamic checks. Since we
are in the context of a JIT compiler, we developed a staged approach. The first
phase applies very simple and inexpensive analyses to determine the obvious
cases where copies can be avoided. The second phase tackles the harder cases,
using a pair of more sophisticated static analyses: a forward analysis to locate all
places where an array update requires a copy (necessary copy analysis) and then
a backward analysis that moves the copies to the best location and which may
eliminate redundant copies (copy placement analysis). We have implemented our
analyses in the McJIT compiler as structured flow analyses on the low-level AST
intermediate representation used by McJIT.

To demonstrate the applicability of our approach, we have performed sev-
eral experiments to: (1) demonstrate the behaviour of the reference-counting
approaches, (2) to measure the overhead associated with the dynamic checks in
the reference-counting approach, and (3) demonstrate the effectiveness of our
static analysis approach. Our results show that actual needed copies are infre-
quent even though the number of dynamic checks can be quite large. We also
show that these redundant checks do contribute significant overheads. Finally, we
show that for our benchmark set, our static approach finds the needed number
of copies, without introducing any dynamic checks.

The paper is organized as follows. Sec. 2 describes the McLab project and how
this work fits into the project. Sec. 3 describes the simple first-stage analyses, and
Sec. 4 and Sec. 5 describe the second-stage forward and the backward analyses,
with examples. Sec. 6 discusses the experimental results of our approach; we
review some related work in Sec. 7, and Sec. 8 concludes the paper.
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2 Background

The work presented in this paper is a key component of our McLab system [2].
McLab provides an extensible set of compilation, analysis and execution tools
built around the core Matlab language. One goal of the McLab project is to
provide an open-source set of tools for the programming language and compiler
community so that researchers (including our group) can develop new domain-
specific language extensions and new compiler optimizations. A second goal is
to provide these new languages and compilers to scientists and engineers to both
provide languages more tailored to their needs and also better performance.

Generation
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Fig. 1. Overview of McLab (shaded boxes correspond to analyses in this paper)

The McLab framework is outlined in Fig. 1, with the shaded boxes indicat-
ing the components presented in this paper. The framework is comprised of an
extensible front-end, a high-level analysis and transformation engine and three
backends. Currently there is support for the core Matlab language and also
a complete extension supporting AspectMatlab[5].2 The front-end and the
extensions are built using our group’s extensible lexer, Metalexer [7], and Jas-
tAdd [11]. There are three backends: McFor, a FORTRAN code generator [18];
a Matlab generator (to use McLab as a source-to-source compiler); and McVM,

2 We use AspectMatlab for some dynamic measurements in Sec. 6.
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a virtual machine that includes a simple interpreter and a sophisticated type-
specialization-based JIT compiler, which generates LLVM [17] code.

The techniques presented in this paper are part of McJIT, the JIT compiler
for McVM. McJIT is built upon LLVM, the Boehm garbage collector [6], and
several numerical libraries [4,28]. For the purposes of this paper, it is important
to realize that McJIT specializes code based on the function argument types that
occur at runtime. When a function is called the VM checks to see if it already
has a compiled version corresponding to the current argument types. If it does
not, it applies a sequence of analyses including live variable analysis and type
inference. Finally, it generates LLVM code for this version.

When generating code McJIT assumes reference semantics, and not copy se-
mantics, for assignments between arrays and parameter passing. That is, arrays
are dealt with as pointers and only the pointers are copied. Clearly this does
not match the copy semantics specified for Matlab and thus the need for the
two shaded boxes in Fig. 1 in order to determine where copies are required and
the best location for the copies. These two analysis stages are the core of the
techniques presented in this paper. It is also important to note that the special-
ization and type inference in McJIT means that variables that certainly have
scalar types will be stored in LLVM registers and thus the copy analyses only
need to consider the remaining variables. The type-inference analysis is used to
disambiguate between function calls and array accesses since Matlab uses the
same syntax for both.

In the next section we introduce the first stage of our approach which is the
QuickCheck. Following that we introduce the second stage — the necessary copy
and copy placement analyses.

3 Quick Check

The QuickCheck phase (QC ) is a combination of two simple and fast analyses.
The first, written parameters analysis, is a forward analysis which determines the
parameters that may be modified by a function. The intuition is that during a
call of the function, the arguments passed to it from the caller need to be copied
to the corresponding formal parameters of the function only if the function may
modify the parameters. Read-only arguments do not need to be copied.

The analysis computes a set of pairs, where each pair represents a parameter
and the assignment statement that last defines the parameter. For example, the
entry (p1, d1) indicates that the last definition point for the parameter p1 is
the statement d1. The analysis begins with a set of initial definition pairs, one
pair for each parameter declaration. The analysis also builds a copy list, a list
of parameters which must be copied, which is initialized to the empty list. The
analysis is a forward flow analysis, using union as the merge operator. The key
flow equations are for assignment statements of two forms:

p = rhs: If the left-hand side (lhs) of the statement is a parameter p, then
this statement is redefining p, so all other definitions of p are killed and this
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new definition of p is generated. Note that according to the Matlab copy
semantics, such a statement is not creating an alias between p and rhs,
but rather p is a new copy; subsequent writes to p will write to this new
copy.

p(i) = rhs: If the lhs is an array index expression (i.e., the assignment state-
ment is writing to an element of p), and the array symbol p is a parameter,
it checks if the initial definition of the parameter reaches the current assign-
ment statement and if so, it inserts the parameter into the copy list.

At the end of the analysis, the copy list contains all the parameters that must
be copied before executing the body of the function.

The second analysis is copy replacement, a standard sort of copy propaga-
tion/elimination algorithm that is similar to the approach used by an APL com-
piler [27]. It determines when a copy variable can be replaced by the original
variable (copy propagation). If all the uses of the copy variable can be replaced by
the original variable then the copy statement defining the copy can be removed
after replacing all the uses of the copy with the original (copy elimination).

If the analysed function does not return an array and all the remaining copy
statements have been made redundant by the QC transformation, then there is
no need to apply a more sophisticated analysis. However, if copies do remain,
then phase 2 is applied, as outlined in the next two sections.

4 Necessary Copy Analysis

The necessary copy analysis is a forward analysis that collects information that
is used to determine whether a copy should be generated before an array is
modified. To simplify our description of the analysis, we consider only simple
assignment statements of the form lhs = rhs. It is straightforward to show that
our analysis works for both single (one lhs variable) and multiple assignment
statements (multiple lhs variables). We describe the analysis by defining the
following components.

Domain: the domain of the analysis’ flow facts is the set of pairs comprising
of an array reference variable and the ID of the statement that allocates the
memory for the array; henceforth called allocators. We write (a, s) if a may
reference the array allocated at statement s.

Problem Definition: at a program point p, a variable references a shared
array if the number of variables that reference the array is greater than one.
An array update via an array reference variable requires a copy if the variable
may reference a shared array at p and at least one of the other variables that
reference the same array is live after p.

Flow Function: out(Si) = gen(Si) ∪ (in(Si) − kill(Si)).
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Given the assignment statements of the forms:

Si : a = alloc (1)
Si : a = b (2)

Si : a(j) = x (3)
Si : a = f(arg1, arg2, ..., argn) (4)

where Si denotes a statement ID; alloc is a new memory allocation performed
by statement Si

3; a, b are array reference variables; x is a rvalue; f is a func-
tion, arg1, arg2, ..., argn denote the arguments passed to the function and the
corresponding formal parameters are denoted with p1, p2, ..., pn.

We partition in(Si) using allocators. The partition, Qi(m), containing flow
entries for allocator m is:

Qi(m) = {(x, y)|(x, y) ∈ in(Si) ∧ y = m} (5)

Now consider statements of type 2 above; if the variable b has a reaching def-
inition at Si then there must exist some (b, m) ∈ in(Si) and there exists a
non-empty Qi(m)((b, m) ∈ Qi(m)).

In addition, if b may reference a shared array at Si then |Qi(m)| > 1. Let us
call the set of all such Qi(m)s, Pi. We write Pi(a) for the set of Qis obtained by
partitioning in(Si) using the allocators of the variable a.

Considering statements of the form 3, Pi(a) �= ∅ implies that a copy of a must
be generated before executing Si and in that case, Si is a copy generator. This
means that after this statement a will point to a new copy and no other variable
will refer to this copy.

We are now ready to construct a table of gen and kill sets for the four assign-
ment statement kinds above. To simplify the table, we define

Killdefine(a) = {(x, s)|(x, s) ∈ in(Si) ∧ x = a}
Killdead = {(x, s)|(x, s) ∈ in(Si) ∧ not live(Si, x)}
Killupdate(a) = {(x, s)|(x, s) ∈ in(Si) ∧ x = a ∧ Pi(a) �= ∅}

Stmt Gen set Kill set

(1) {(x, s)|x = a ∧ s = Si ∧ live(Si, x)} Killdefine(a) ∪ Killdead

(2) {(x, s)|x = a ∧ (y, s) ∈ in(Si) ∧ y = b ∧ live(Si, x)} Killdefine(a) ∪ Killdead

(3) {(x, s)|x = a ∧ s = Si ∧ Pi(x) �= ∅} Killupdate(a) ∪ Killdead

(4) see gen(f) below Killdefine(a) ∪ Killdead

Computing the gen set for a function call is not straightforward. Certain built-
in functions allocate memory blocks for arrays; such functions are categorized
as alloc functions. A question that arises is: does the return value of the called
function reference the same shared array as a parameter of the function? If the
return value references the same array as a parameter of the function then this
sharing must be made explicit in the caller, after the function call statement.
Therefore, the gen set for a function call is defined as:
3 Functions such as zeros, ones, rand and magic are memory allocators in Matlab.
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gen(f) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(a, Si)}, if live(Si, a) and isAllocFunction(f)

{(x, s)|x = a ∧ (argj , s) ∈ in(Si) ∧ live(Si, x)},
if ret(f) aliases paramj(f), 0 < j ≤ size(params(f)),

{(a, Si)}, if ∀(p ∈ params(f)), not (ret(f) aliases p)

{(x, s)|x = a ∧ arg ∈ args(f) ∧ (arg, s) ∈ in(Si) ∧ live(Si, x)},
otherwise (e.g., if f is recursive)

The first alternative generates a flow entry (a, Si) if the rhs is an alloc function
and the lhs (a) is live after statement Si; this makes statement Si an allocator.
In the second alternative, the analysis requests for the result of the necessary
copy analysis on f from an analysis manager.4 The manager caches the result
of the previous analysis on a given function. From the result of the analysis on
f , we determine the return variables of f that are aliases to the parameters of
f and hence aliases to the arguments of f . This is explained in detail under the
next section on Initialization. The return variable of f corresponds to the lhs
(a) in statement type 4. Therefore we generate new flow entries from those of
the arguments that the return variable may reference according to the summary
information of f and provided that a is also live after Si. The third alternative
generates {(a, Si)}, if the return variable aliases no parameters of f . The fourth
alternative is conservative: new flow entries are generated from those of all the
arguments to f . This can happen if the call of f is recursive or f cannot be
analyzed because it is neither a user-defined function nor an alloc function.

We chose a simple strategy for recursion because recursive functions occur
rarely in Matlab. In a separate study by our group, we found that out of
15966 functions in 625 projects examined, only 48 functions (0.3%) are directly
recursive. None of the programs in our benchmarks had recursive functions.

Therefore, we expect that the conservative option in the definition of gen(f)
above will be rarely taken in practice.

Initialization: The input set for a function is initialized with a flow entry for
each parameter and an additional flow entry (a shadow entry) for each parameter
is also inserted. This is necessary in order to determine which of the parameters
(if any) return variable references. We use a shadow entry to detect when a
parameter that has not been assigned to any other variable is updated. At the
entry to a function, the input set is given as
in(entry) = {(p, s)|p ∈ params(f)∧ s = Sp}∪ {(p′, s)|p ∈ params(f)∧ s = Sp}.

We illustrate this scheme with an example. Given a function f , defined as:
function u = f(x, y)

u = x;
end

the in set at the entry of f is {(x, Sx), (x′, Sx), (y, Sy), (y′, Sy)} and at the end
of the function, the out set is {(u, Sx), (x, Sx), (x′, Sx), (y, Sy), (y′, Sy)}.
4 This uses the same analysis machinery as the type estimation in McJIT.
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We now know that u is an alias for x and encode this information as a
set of integers. An element of the set is an integer representing the input pa-
rameter that the output parameter may reference in the function. In this ex-
ample, the set is {1} since x is the first (1) parameter of f . This is useful
during a call of f . For instance, in c = f(a, b); we can determine that c is
an alias for the argument a by inspecting the summary information generated
for f .

4.1 if-else Statement

So far we have been considering sequences of statements. As our analysis is done
directly on a simplified AST, analyzing an if-else statement simply requires
that we analyze all the alternative blocks and merge the result at the end of the
if-else statement using the merge operator (∪).

4.2 Loops

We compute the input set reaching a loop and the output set exiting a loop using
standard flow analysis techniques, that is, we merge the input flow set from the
loop’s entry with the output set from the loop back-edge until a fixed point is
reached.

To analyse a loop more precisely, we implemented a context-sensitive loop
analysis [16], but found that real Matlab programs did not require the context-
sensitivity to achieve good results. The standard approach is sufficient for typical
Matlab programs.

5 Copy Placement Analysis

In the previous section, we described the forward analysis which determines
whether a copy should be generated before an array is updated. One could use
this analysis alone to insert the copy statements, but this may not lead to the
best placement of the copies and may lead to redundant copies. The backward
copy placement analysis determines a better placement of the copies, while at the
same time ensuring safe updates of a shared array. Examples of moving copies
include hoisting copies out of if-then constructs and out of loops.

The intuition behind this analysis is that often it is better to perform the
array copy close to the statement which created the sharing (i.e. statements
of the form a = b) rather than just before the array update statements (i.e.
statements of the form a(i) = b) that require the copy. In particular, if the
update statement is inside a loop, but the statement that created the sharing
is outside the loop, then it is much better to create the copy outside of the
loop. Thus, the copy placement analysis is a backward analysis that pushes
the necessary copies upwards, possibly as far as the statement that created the
sharing.
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5.1 Copy Placement Analysis Details

A copy entry is a three-tuple:

e =< copy loc, var, alloc site > (6)

where copy loc denotes the ID of the node that generates the copy, var de-
notes the variable containing a reference to the array that should be copied, and
alloc site is the allocation site where the array referenced by var was allocated.
We refer to the three components of the three-tuple as e.copy loc, e.var, and
e.alloc site.

Let C denote the set of all copies generated by a function.
Given a function, the analysis begins by traversing the block of statements

of the function backward. The domain of the analysis’ flow entries is the set of
copy objects and the merge operator is intersection (∩).

Define Cout as the set of copy objects at the exit of a block and Cin as the
set of copy objects at the entrance of a block. Since the analysis begins at the
end of a function, Cout is initialized to ∅. The rules for generating and placing
copies are described here.

Statement Sequence. Given a sequence of statements, we are given a Cout for
this block and the analysis traverses backwards through the block computing a
Cin for the block. As each statement is traversed the following rules are applied
for the different kinds of the assignment statements in the sequence. The sets
in(Si), Qi(m), Pi(a) are defined in Section 4.

Rule 1: array updates, Si : a(y) = x : Given that the array variable of the
lhs of statement Si is a, when a statement of this form is reached, we add a copy
for each partition for a shared array to the current copy set. Thus

Cin := Cin ∪
{

∅ if Pi(a) = ∅
{< s, x, y > |s = Si ∧ x = a ∧ Qi(y) ∈ Pi(x)} otherwise

Rule 2: array assignments, Sj : a = b : If ∀e ∈ Cin(e.var �= a and e.var �= b),
and ∀e ∈ Cout(e.var �= a and e.var �= b), we skip the current statement. However,
if in the current block, ∃e ∈ Cin(e.var = a or e.var = b), we remove e from
the current copy flow set Cin. This means that the copy has been placed at
its current location — the location specified in the copy entry e. Otherwise, if
∃e ∈ Cout(e.var = a or e.var = b), we perform the following:

if Pj(a) = ∅, this is usually the case, we move the copy from the statement
e.copy loc to Sj and remove e from the flow set. The copy e has now been finally
placed.

if Pj(a) �= ∅, ∀(Qi(m) ∈ Pj(a)), we add a runtime equality test for a against
the variable x (x �= a) of each member of Qi(m) at the statement e.copy loc.
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Since Pj(a) �= ∅, there is at least a definition of a that reaches this statement
and for which a references a shared array. In addition, because the copy e was
generated after the current block there are at least two different paths to the
statement e.copy loc, the current location of e. We place a copy of e at the
current statement Sj and remove e from the flow set. Note that two copies of e
have been placed; one at e.copy loc and another at Sj . However, runtime guards
have also been placed at e.copy loc, ensuring that only one of these two copies
materializes at runtime.

We expect that such guards will not usually be needed, and in fact none of
our benchmarks required any guards.

if-else Statements. Let Cif and Celse denote the set of copies generated in
an if and an else block respectively. First we compute

C′ := (Cout ∩ Celse ∩ Cif )

Then we compute the differences

C′
out := Cout \ C′; C′

else := Celse \ C′; C′
if := Cif \ C′

to separate those copies that do not intersect with those in other blocks but
should nevertheless be propagated upward. Since the copies in the intersection
will be relocated, they are removed from their current locations.

And finally,

Cin := C′
out ∪ C′

else ∪ C′
if ∪ {< s, e.var, e.alloc site > |s = SIF ∧ e ∈ C′}

Note that a copy object e with its first component set to SIF is attached to the
if-else statement SIF . That means if these copies remain at this location, the
copies should be generated before the if-else statement.

Loops. The main goal here is to identify copies that could be moved out of
a loop. To place copies generated in a loop, we apply the rules for statement
sequence and the if-else statement. The analysis propagates copies upward
from the inner-most loop to the outer-most loop and to the main sequence until
either loop dependencies exist in the current loop or it is no longer possible to
move the copy according to Rule 2 in Section 5.1.

A disadvantage of propagating the copy outside of the loop is that if none
of the loops that require copies is executed then we would have generated a
useless copy. However, the execution is still correct. For this reason, we assume
that a loop will always be executed and generate copies outside loops, wherever
possible. This is a reasonable assumption because a loop is typically programmed
to execute. With this assumption, there is no need to compute the intersection
of Cloop and Cout. Hence

Cin := Cout ∪ {< s, e.var, e.alloc site > |s = Sloop ∧ e ∈ Cloop})
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5.2 Using the Analyses

This section illustrates how the combination of the forward and the backward
analyses is used to determine the actual copies that should be generated. First
consider the following program, test3. Fig. 2(a) shows the result of the forward
analysis.

1 function test3()
2 a = [1:5];
3 b = a;
4 i = 1;
5 if ( i > 2) % I
6 a(1) = 100;
7 else
8 a(1) = 700;
9 end

10 a(1) = 200;
11 disp(a); disp(b);
12 end

# Gen set In Out
2 {(a, S2)} ∅ {(a, S2)}
3 {(b, S2)} {(a, S2)} {(a, S2)(b, S2)}
6 {(a, S6)} {(a, S2), (b, S2)} {(b, S2)(a, S6)}
8 {(a, S8)} {(a, S2), (b, S2)} {(b, S2), (a, S8)}
10 ∅ {(b, S2), (a, S6), (a, S8)} {(b, S2), (a, S6), (a, S8)}

(a) Necessary Copy Analysis Result

# Cout Cin Current Result
10 ∅ ∅ ∅
8 ∅ {< S8, a, S2 >} {(a, S8)}
6 ∅ {< S6, a, S2 >} {(a, S6)}
I ∅ {< SI , a, S2 >} {(a, SI)}
3 {< SI , a, S2 >} ∅ {(a, SI)}
2 ∅ ∅ {(a, SI)}

(b) Copy Placement Analysis Result

Fig. 2. Introductory example for Copy Placement Analysis

Fig. 2(b) gives the result of the backward analysis. The I used in Fig. 2 stands
for the if-else statement in test3. The analysis begins from line 12 of test3.
The out set Cout is initially empty. At line 10, Cout is still empty. When the
if-else statement is reached, a copy of Cout (∅) is passed to the Else block and
another copy is passed to the If block. The copy {< S8, a, S2 > is generated
in the Else block because |Q(S2) = {(a, S2), (b, S2)}| = 2, hence Pi(a) �= ∅.
Similarly < S6, a, S2 > is generated in the If block.

By applying the rule for if-else statement described in Section 5.1, the
outputs of the If and the Else blocks are merged to obtain the result at SI (the
if-else statement). Applying Rule 2 for statement sequence (Section 5.1) in S3,
< SI , a, S2 > is removed from Cin and the analysis terminates at S2. The final
result is that a copy must be generated before the if-else statement instead of
generating two copies, one in each block of the if-else statement. This example
illustrates how common copies generated in the alternative blocks of an if-else
statement could be combined and propagated upward to reduce code size.

The second example, tridisolve is a Matlab function from [10]. The forward
analysis information is shown in Fig. 3(a). The table shows the gen and in sets
at each relevant assignment statement of tridisolve. The results in different loop
iterations are shown using a subscript to represent loop iteration. For example,
the row number 252 refers to the result at the statement labelled S25 in the
second iteration. The analysis reached a fixed point after the third iteration.

At the function’s entry, the in set is initialized with two flow entries for
each parameter of the function as outlined in Sec. 4. The analysis continues
by generating the gen, in and out sets according to the rules specified in Sec-
tion 4. Notice that statement S25 is an allocator because P25(b) �= ∅ since
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function x = tridisolve(a,b,c,d)
% TRIDISOLVE Solve tridiagonal system of equations.
20: x = d;
21: n = length(x);

for j = 1:n−1 %F 1
mu = a(j)/b(j);

25: b(j+1) = b(j+1) − mu∗c(j);
26: x(j+1) = x(j+1) − mu∗x(j);

end
29: x(n) = x(n)/b(n);

for j = n−1:−1:1 %F 2
31: x(j) = (x(j)−c(j)∗x(j+1))/b(j);

end

# Gen In

20 {(x, Sd, 0)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d, Sd, 0),
(d′, Sd, 0)}

251 {(b, S25, 1)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0),
(x, Sd, 0)}

261 {(x, S26, 1)} {(a, Sa, 0), (a′, Sa, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (x, Sd, 0),
(b, S25, 1)}

252 {(b, S25, 2)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0),
(x, Sd, 0), (b, S25, 1), (x, S26, 1)}

262 {(x, S26, 2)} {(a, Sa, 0), (a′, Sa, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (x, Sd, 0),
(b, S25, 2), (x, S26, 1)}

253 {(b, S25, 3)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0),
(x, Sd, 0), (b, S25, 2), (x, S26, 2)}

263 {(x, S26, 3)} {(a, Sa, 0), (a′, Sa, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (x, Sd, 0),
(b, S25, 3), (x, S26, 2)}

29 {(x, S29, 0)} {(a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (x, Sd, 0),
(b, S25, 3), (x, S26, 3)}

311 ∅ {(a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (b, S25, 3),
(x, S29, 0)}

312 ∅ {(a′, Sa, 0), (b, Sb, 0), (b′, Sb, 0), (c, Sc, 0), (c′, Sc, 0), (d′, Sd, 0), (b, S25, 3),
(x, S29, 0)}

(a) Necessary Copy Analysis Result

# Cout Cin Current Result
31 ∅ ∅ ∅
F2 ∅ ∅ ∅
29 ∅ {(S29, a, Sd)} {(x, S29)}
26 {(S29, x, Sd)} {(S26, x, Sd)} {(x, S29), (x, S26)}
25 {(S29, x, Sd)} {(S25, b, Sb), (S26, x, Sd)} {(x, S29), (x, S26), (b, S25)}
F1 {(S29, x, Sd)} {(SF1 , x, Sd), (S25, b, Sb)} {(x, SF1), (b, S25)}
20 ∅ {(S25, b, Sb)} {(x, SF1), (b, S25)}
0 ∅ ∅ {(x, SF1), (b, S0)}

(b) Copy Placement Analysis Result

Fig. 3. Example for tridisolve

|Q25(Sb)| = |{(b, Sb, 0), (b′, Sb, 0)}| > 1. Similarly, S26 and S29 are also alloca-
tors. This means that generating a copy of the array referenced by the variable b
just before executing the statement S25 ensures a safe update of the array. The
same is true of the array referenced by the variable x in lines 26 and 29. How-
ever, are these the best points in the program to generate those copies? Could
the number of copies be reduced? We provide the answers to these questions
when we examine the results of the backward analysis.
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Fig. 3(b) shows the copy placement analysis information at each relevant
statement of tridisolve. Recall that the placement analysis works by traversing
the statements in each block of a function backward. In the case of tridisolve,
the analysis begins in line 31 in the second for loop of the function. The set
Cout is passed to the loop body and is initially empty. The set Cin stores all
the copies generated in the block of the for statement. Line 31 is neither a
definition nor an allocator, therefore no changes are recorded at this stage of the
analysis.

At the beginning of loop F2, the analysis merges with the main path and
the result at this point is shown in row F2. Statement S29 generated a copy as
indicated by the forward analysis, therefore Cin is updated and the result set is
also updated. The analysis then branches off to the first loop and the current Cin

is passed to the loop’s body as Cout. The copies generated in loop F1 are stored
in Cin, which is then merged with Cout at the beginning of the loop to arrive at
the result in row F1. The result set is also updated accordingly; at this stage,
the number of copies has been reduced by 1 as shown in the column labelled
Current Result of Fig. 3(b). The copy flow set that reaches the beginning of
the function is non-empty. This suggests that the definition or the allocator of
the array variables of the remaining entries could not be reached. Therefore, the
array variables of the flow entries must be the parameters of the function and
the necessary copy should be generated at the function’s entry. Hence, a copy of
the array referenced by b must be generated at the entry of tridisolve.

6 Experimental Results

To evaluate the effectiveness of our approach, we set up experiments using bench-
marks collected from disparate sources, including those from [10,22,23]. Table 1
gives a short description of the benchmarks together with a summary of the re-
sults of our analyses, which we discuss in more detail in the following subsections.
For all our experiments, we ran the benchmarks with their smallest input size
on an AMD AthlonTM 64 X2 Dual Core Processor 3800+, 4GB RAM computer
running Linux operating system; GNU Octave, version 3.2.4; Matlab, version
7.9.0.529 (R2009b) and McVM/McJIT, version 0.5.

The purpose of our experiments was three-fold. First, we wanted to measure
the number of array updates and copies performed by the benchmarks at run-
time using existing systems (Sec. 6.1). Knowing the number of updates gives an
idea of how many dynamic checks a reference-counting-based (RC) scheme for
lazy copying, such as used by Octave and Mathworks’ Matlab, need to perform.
Recall that our approach does not usually require any dynamic checks. Knowing
the number of copies generated by such systems allows us to verify that our
approach does not increase the number of copies as compared to the RC ap-
proaches. Secondly, we would like to measure the amount of overhead generated
in RC systems (Sec. 6.2). Finally, we would like to assess the impact of our static
analyses in terms of their ability to minimize the number of copies (Sec. 6.3).
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6.1 Dynamic Counts of Array Updates and Copies

Our first measurements were designed to measure the number of array updates
and array copies that are required by existing RC systems, Octave and Math-
works’ Matlab. Since we had access to the open-source Octave system we were
able to instrument the interpreter and make the measurements directly. How-
ever, the Mathworks’ implementation of Matlab is a proprietary system and
thus we were unable to instrument it to make direct measurements. Instead, we
developed an alternative approach by instrumenting the benchmark programs
themselves via aspects using our AspectMatlab compiler amc [5]. Our aspect5

defines all the patterns for the relevant points in a Matlab program including
all array definitions, array updates, and function calls. It also specifies the ac-
tions that should be taken at these points in the source program. In effect, the
aspect computes all of the information that a RC scheme would have, and thus
can determine, at runtime, when an array update triggers a copy because the
number of references to the array is greater than one. The aspect thus counts
all array updates and all copies that would be required by a RC system.

Table 1. Benchmarks and the results of the copy analysis6

# Copies
# Array Lower Bound With Analyses

Benchmark Updates Aspect Octave Naive QC CA

adpt adaptive quadrature using Simpson’s rule 19624 0 0 12223 12223 0
capr capacitance of a transmission line using finite

difference and Gauss-Seidel iteration
9790800 10000 10000 40000 20000 10000

clos transitive closure of a directed graph 2954 0 0 2 2 0
crni Crank-Nicholson solution to the one-

dimensional heat equation
21143907 4598 6898 11495 6897 4598

dich Dirichlet solution to Laplace’s equation 6935292 0 0 0 0 0
fdtd 3D FDTD of a hexahedral cavity with con-

ducting walls
803 0 0 5400 5400 0

fft fast fourier transform 44038144 1 1 2 2 1
fiff finite-difference solution to the wave equation 12243000 0 0 0 0 0
mbrt mandelbrot set 5929 0 0 0 0 0
nb1d N-body problem coded using 1d arrays for the

displacement vectors.
55020 0 0 10984 10980 0

nb3d N-body problem coded using 3d arrays for the
displacement vectors.

4878 0 0 5860 5858 0

nfrc computes a newton fractal in the complex
plane -2..2,-2i..2i

12800 0 0 6400 6400 0

trid Solve tridiagonal system of equations 2998 2 2 5 2 2

In Table 1 the column labelled # Array Updates gives the total num-
ber of array updates executed. The column # Copies shows the number of
copies generated by the benchmarks under Octave (reported as Octave in the
table) and Matlab (column labelled Aspect). The column # Copies is split
into two: Lower Bound and With Analyses. The number of copies gener-
ated by Octave and Matlab (Aspect) are considered the expected lower bounds

5 This aspect is available at: www.sable.mcgill.ca/mclab/mcvm mcjit.html
6 The benchmarks are also available at: www.sable.mcgill.ca/mclab/mcvm mcjit.html
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(since they perform copies lazily, and only when required) and are therefore
grouped under Lower Bound in the table.7

At a high-level, the results in Table 1 show that our benchmarks often perform
a significant number of array updates, but very few updates trigger copies. We
observed that no copies were generated in ten out of the thirteen benchmarks.
This low rate for array copies is not surprising because Matlab programmers
tend to avoid copying large objects and often only read from function parameters.
With Analyses comprises of three columns, Naive, QC, and CA representing
respectively, the number of copies generated in our naive system, with the QC
phase, and with the copy analysis phase. We return to these results in Sec. 6.3.

6.2 The Overhead of Dynamic Checks

With RC approaches a dynamic check is needed for each array update, in order to
test if a copy is needed. Our counts indicated that several of our benchmarks had
a high number of updates, but no copies were required. We wanted to measure
the overhead for all of these redundant dynamic checks. The ideal measurement
would have been to time the redundant checks in a JIT-based system that used
reference-counting, such as Mathworks’ Matlab. Unfortunately we do not have
access to such a system. Instead we performed two similar experiments, as re-
ported in Table 2, for three benchmarks with a high number of updates and no
required copies (dich, fiff and mbrt).

Table 2. Overhead of Dynamic Checks

McVM Octave(O)
McJIT McJIT(+RC) Overhead(%) Time(s) Overhead

Bmark time(s) # LLVM time(s) # LLVM time size O(+RC) O(-RC) (%)

dich 0.18 546 0.27 625 47.37 14.47 425.05 408.08 4.16
fiff 0.39 388 0.52 415 33.72 6.96 468.64 438.69 6.83
mbrt 5.06 262 5.65 271 11.69 3.44 34.91 31.95 9.29

We first created a version of Octave that does not insert dynamic checks before
array update statements. In general this is not safe, but for these three bench-
marks we knew no copies were needed, and thus removing the checks allowed us
to measure the overhead without breaking the benchmarks. The column labelled
O(+RC) gives the execution time with dynamic checks and the column labelled
O(-RC) gives the times when we artificially removed the checks. The difference
gives us the overhead, which is between 4% and 9% for these benchmarks. Al-
though this is not a huge percentage, it is not negligible. Furthermore, we felt
that the absolute time for the checks was significant and would be even more
significant in a JIT system which has many fewer other overheads.

To measure overheads in a JIT context, we modified McJIT to include enough
reference-counting machinery to measure the overhead of the checks (remember

7 Note that for the benchmark crni Octave performs 6898 copies, whereas the lower
bound according to the Aspect is 4598. We verified that Octave is doing some spu-
rious copies in this case, and that the Aspect number is the true lower bound.
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that McVM is garbage-collected and does not normally have reference counts).
For the modified McVM we added a field to the array object representation to
store reference counts (which is set to zero for the purposes of this experiment)
and we generated LLVM code for a runtime check before each array update state-
ment. Table 2 shows, in time and code size, the amount of overhead generated by
redundant checks. The column labelled McJIT is the original McJIT and the
column labelled McJIT(+RC) is the modified version with the added checks.
We measured code size using the number of LLVM instructions (# LLVM) and
execution time overhead in seconds. For these benchmarks the code size overhead
was 3% to 14% and the running time overhead ranged from 12% to 47%.

Our conclusions is that the dynamic checks for a RC scheme can be quite
significant in both execution time and code size, especially in the context of a
JIT. Thus, although the original motivation of our work was to enable a garbage-
collected VM that did not require reference counts, we think that our analyses
could also be useful to eliminate unneeded checks in RC systems.

6.3 Impact of Our Analyses

Let us now return to the number of copies required by our analyses, which are
given in the last three columns of Table 1. As a reminder, our goal was to achieve
the same number of copies as the lower bound.

The column labelled Naive gives the number of copies required with a naive
implementation of Matlab’s copy semantics, where a copy is inserted for each
parameter, each return value and each copy statement, where the lhs is an array.
Clearly this approach leads to many more copies than the lower bound.

The column labelled CA gives the number of copies when both phases of our
static analyses are enabled. We were very pleased to see that for our benchmarks,
the static analyses achieved the same number of copies as the lower bound, with-
out requiring any dynamic checks. The column labelled QC shows the number
of copies when only the QuickCheck phase is enabled. Although the QuickCheck
does eliminate many unneeded copies, it does not achieve the lower bound. Thus,
the second stage is really required in many cases.

To show the impact copies have on execution performance, we measured the
total bytes of array data copied by a benchmark together with its corresponding
execution time. These are shown in Fig. 4 and Table 3 for Naive, QC and CA.
The columns Naive

QC and Naive
CA of Table 3 show respectively how many times

QC and CA perform better than Naive. The table shows that CA generally
outperforms QC and Naive. Copying large arrays affects execution performance
and the results in Table 3 validate this claim. Where a significant number of
bytes were copied by the naive implementation, for example, capr, crni and
fdtd, CA performs better than both Naive and QC. In the three benchmarks
that do not generate copies, the performance of CA is comparable to Naive and
QC. This shows that the overhead of CA is low. It is therefore clear from the
results of our experiments that the naive implementation generates significant
overhead and is therefore unsuitable for an high-performance system.
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Fig. 4. The total bytes of array data copied by the benchmarks under the three options

Table 3. Benchmarks against the total execution times in seconds

Bmark Naive QC CA Naive
QC

Naive
CA

Bmark Naive QC CA Naive
QC

Naive
CA

adpt 1.57 1.57 1.61 1.00 0.98 fiff 0.39 0.39 0.39 0.99 0.99

capr 1.54 0.91 0.58 1.70 2.66 mbrt 5.06 5.12 5.04 0.99 1.00

clos 0.49 0.49 0.48 0.99 1.01 nb1d 0.48 0.48 0.45 1.00 1.07

crni 135.09 140.35 131.62 0.96 1.03 nb3d 0.48 0.48 0.36 1.00 1.35

dich 0.18 0.18 0.18 1.00 1.00 nfrc 3.23 3.23 3.25 1.00 0.99

fdtd 3.79 3.78 2.80 1.00 1.35 trid 1.57 1.04 1.02 1.51 1.53

fft 1.50 1.50 1.47 1.00 1.02

Impact of the First Phase. We measured the number of functions that are
completely resolved by the first phase of our approach — in terms of finding all
the necessary copies required to guarantee copy semantics. We found that out
of the 23 functions in the benchmark set, the first stage (i.e., QuickCheck) was
only able to resolve about 17% of the functions. None of the benchmarks was
resolved completely by QC. The main reason for this poor performance is that
the first phase cannot resolve functions that return arrays to their callers. And
like most Matlab programs, most of the functions in the benchmarks return
arrays. This really shows that the second stage is actually required to completely
determine the needed copies by typical Matlab programs.

So, the bottom line is that a very low fraction of array updates result in
copies, and frequently no copies are necessary. For our benchmark set, our static
analysis determined the needed number of copies, while at the same time avoiding
all the overhead of dynamic checks. Furthermore, our approach does not require
reference counting and thus enables an efficient implementation of array copy
semantics in garbage-collected systems like McVM.

7 Related Work

Redundant copy elimination is a hard problem and implementations of languages
such as Python [3] are able to avoid copy elimination optimizations by providing
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multiple data structures: some with copy semantics and others with reference
semantics. Programmers decide when to use mutable data structures. However,
efficient implementations of languages like the Matlab programming language
that use copy semantics require copy elimination optimization. The problem is
similar to the aggregate update problem in functional languages [12,14,21,24,26].
To modify an aggregate in a strict functional language, a copy of the aggregate
must be made. This is in contrast with the imperative programming languages
where an aggregate may be modified multiple times.

APL [15] is one of the oldest array-based languages. Weigang [27] describes
a range of optimizations for APL compiler, including a copy optimization that
finds uses of a copy of a variable and replaces the copy with the original variable
wherever possible. We implemented this optimization as part of our QuickCheck
phase. We found the optimization effective at enabling the elimination of redun-
dant copy statements by the dead-code optimizer. However, this optimization
is unable to eliminate redundant copies of arguments and return values. Hudak
and Bloss [14] use an approach based on abstract interpretation and conventional
flow analysis to detect cases where an aggregate may be modified in place. Their
method combines static analysis and dynamic techniques. It involves a rear-
rangement of the execution order or an optimized version of reference counting,
where the static analysis fails. Our approach is based on flow analysis but we do
not change the execution order of a program.

Interprocedural aliasing and the side-effect problem [20] is related to the copy
elimination problem. By using call by reference semantics, when an argument is
passed to a function during a call, the parameter becomes an alias for the argu-
ment in the caller and if the argument contains an array reference, the referenced
array becomes a shared array; any updates via the parameter in the callee up-
dates the same array referenced by the corresponding argument in the caller.
Without performing a separate and expensive flow analysis, our approach eas-
ily detects aliasing and side effects in functions. Wand and Clinger present [26]
interprocedural flow analyses for aliasing and liveness based on set constraints.
They present two operational semantics: the first one permits destructive up-
dates of arrays while the other does not. They also define a transformation from
a strict functional language to a language that allows destructive updates. Like
Wand and Clinger, our approach combines liveness analysis with flow analysis.
However, unlike Wand and Clinger, our analyses are intraprocedural and have
been implemented in a JIT compiler for an imperative language.

The work of Goyal and Paige [13] on copy optimization for SETL [25] is par-
ticularly interesting. Their approach combines a RC scheme with static analysis.
A combination of must-alias and live-variable analyses is used to identify dead
variables and the program points where a statement that redefines a dead vari-
able can be inserted to facilitate destructive updates. Like our approach, this
technique is capable of eliminating the redundant copying of a shared location
that can occur during an update of the location; however, it is different from
our approach. In particular, it generates dynamic checks to detect when to make
copies. As mentioned in Sec. 6, our approach rarely generates dynamic checks.
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8 Conclusions and Future Work

In this paper we have presented an approach for using static analysis to deter-
mine where to insert array copies in order to implement the array copy semantics
in Matlab. Unlike previous approaches, which used a reference-counting scheme
and dynamic checks, our approach is implemented as a pair of static analysis
phases in the McJIT compiler. The first phase implements simple analyses for
detecting read-only parameters and standard copy elimination, whereas the sec-
ond phase consists a forward necessary copy analysis that determines which
array update statements trigger copies, and a backward copy placement analy-
sis that determines good places to insert the array copies. All of these analyses
have been implemented as structured-based analyses on the McJIT intermediate
representation.

Our approach does not require frequent dynamic checks, nor do we need the
space and time overheads to maintain the reference counts. Our approach is
particularly appealing in the context of a garbage-collected VM, such as the one
we are working with. However, similar techniques could be used in a reference-
counting-based system to remove redundant checks. Our experimental results
validate that, on our benchmark set, we do not introduce any more copies than
the reference-counting approach, and we eliminate all dynamic checks.
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