
There is Nothing Wrong with Out-of-Thin-Air:
Compiler Optimization and Memory Models

Clark Verbrugge

School of Computer Science
McGill University
Montréal, Canada

clump@cs.mcgill.ca

Allan Kielstra

IBM Toronto Lab
Markham, Canada

kielstra@ca.ibm.com

Yi Zhang

School of Computer Science
McGill University
Montréal, Canada

yi.zhang6@mail.mcgill.ca

Abstract

Memory models are used in concurrent systems to specify visibil-
ity properties of shared data. A practical memory model, however,
must permit code optimization as well as provide a useful seman-
tics for programmers. Here we extend recent observations that the
current Java memory model imposes significant restrictions on the
ability to optimize code. Beyond the known and potentially cor-
rectable proof concerns illustrated by others we show that major
constraints on code generation and optimization can in fact be de-
rived from fundamental properties and guarantees provided by the
memory model. To address this and accommodate a better balance
between programmability and optimization we present ideas for a
simple concurrency semantics for Java that avoids basic problems
at a cost of backward compatibility.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.3.3 [Language Constructs
and Features]: Concurrent, distributed, and parallel languages;
D.3.4 [Processors]: Compilers

General Terms Languages, Design, Performance

Keywords memory consistency, compiler optimization

1. Introduction

The recently revised Java memory model (JMM) provides a precise
memory consistency model for a Java context [1]. The JMM tries to
satisfy perhaps three main goals: allowing compiler optimizations,
giving precise and useful formal guarantees to programmers writ-
ing “correct” concurrent programs, and giving a precise semantics
to concurrent programs even when “incorrect,” or containing data
races.

A precise semantics and guarantees of sequential consistency
(SC) for data-race-free (DRF) programs are extremely useful to
programmers and for helping define the allowable behaviours of
a Java virtual machine; Saraswat et al. consider the connection be-
tween DRF and SC as the Fundamental Property [2]. The impor-
tance of allowing compiler optimizations is also critical; Java vir-
tual machine implementations achieve impressive speeds due to a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MSPC’11, June 5, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0794-9/11/06. . . $10.00

wide array of compiler optimizations [3], and it is practically neces-
sary to allow current and potential future optimizations to co-exist
with any memory consistency model.

The JMM does not allow all compiler optimizations; certainly
some forms of code motion are forbidden, as described in the origi-
nal specification [1]. Manson et al. provide a proof that some basic
optimizations are allowed, but the actual scope of allowed versus
forbidden optimizations is far from clear. Other authors have since
demonstrated that through examination of the model subtleties,
other simple reordering-optimizations are also disallowed [4, 5].
Some of these concerns have been recently addressed, and repairs
to the model have been described [6]. Here we show that even
with improvements to the justification process to permit these opti-
mizations, other very basic problems exist. In particular, the often-
mentioned “out-of-thin-air” guarantee, as well as the necessity of
preserving sequential consistency for race-free programs result in
significant constraints on optimization, limiting important existing
techniques and imposing additional analysis costs.

As a possible solution we explore a conceptually simple modifi-
cation to Java semantics that guarantees lack of race-conditions by
construction. This design uses a syntactically trivial change to the
type system, enforcing behaviours akin to OpenMP [7], UPC [8]
or C# [9] data-sharing directives to ensure shared data are easily
distinguished by the compiler. The design we propose has similar
goals to the JMM, but takes the stance that program comprehension
by both developers and compiler writers must take priority. Our ap-
proach represents a basic shift in perspective—rather than starting
from a model which requires expensive and difficult-to-understand
conflict/race detection for basic safety, we start from an inherently
safe model, allowing compiler optimizations to more easily pre-
serve safety during transformation.

We make the following specific contributions:

• “Out-of-thin-air” values are a known consequence of code op-
timization and generation [2, 10]. We extend these observations
and show that disallowing such behaviour impacts large classes
of useful optimization that use or reuse space to improve perfor-
mance.

• We show that the most useful, basic guarantee of the JMM, ensur-
ing sequential consistency for race-free programs, imposes major
and arguably unacceptable constraints on program optimization.

• We propose a syntactically trivial change to the Java language
that enables practical preservation of race-free, sequentially con-
sistent execution. Our design simplifies preservation of safety
properties in optimization while still enabling advanced opti-
mizations, and could also be easily incorporated into different
concurrent language environments, such as C++ [10].

2. Related Work

Our work is intended to provide a simpler and more practical mem-
ory model that accommodates both programmers and compiler
writers. We build quite specifically on previous work on the Java
memory model, as well as on more generic consistency properties.

The current JMM [1] is a significant achievement, addressing
basic flaws found by Pugh [11] in the original specification, and in
particular relaxing the need for compilers to ensure a consistency
property slightly stronger than coherence [12]. The need to provide
a semantics for racey programs, however, make the justification
part of this specification quite complex. Close analysis by several
authors subsequently has resulted in identification of subtle flaws.
Cenciarelli et al. point out that some independent statements cannot
be reordered under the justification model in the JMM [4], and
Aspinall and S̆evc̆ı́k show a number of examples of disallowed code
changes, illustrating a variety of surprising consequences [5]. The
latter two authors have extended their work, demonstrating both
specific proof errors as well as offering modifications that eliminate
most of the problems [6, 13].

Much of the complexity in the JMM is unnecessary in the new
C++ model for multithreading, which provides no guarantees at
all for programs with race conditions [10]. Programs must be cor-
rectly synchronized to have defined semantics, and if so, sequen-
tial consistency is guaranteed. This is in keeping with the overall
emphasis on complete programmer control (and responsibility) in
C/C++ programming, and provides a dramatically simpler concep-
tual model.

The JMM and C++ consistency models, as well as many oth-
ers, focus on the data-race-free-0 (DRF0) property as core and de-
sireable behaviour [14]. Programs without races can be shown to
result in only sequentially consistent execution, provided the com-
piler treats synchronization points as kinds of code-motion barriers.
As we will argue in the next section, however, the dynamic nature
of race-freedom means even this basic guarantee is quite strong,
with significant implications for compilers.

The complexity and variety of memory models [15] has inspired
a number of efforts to unify designs, both for theoretical and practi-
cal exploration. Midkiff et al. also make the observation that mem-
ory models are too complex for programmers [16] and propose a
framework for exploring consistency models that separates pro-
grams and consistency specifications. The aim of their design is
to make prototyping and practical examination of consistency rules
easier. Arvind and Maessen describe a more abstract framework
for representing relaxed models based on different reordering rules
[17]. Store atomicity, is central to their model; associating individ-
ual loads and stores within a partial order of program events as
a means of proving serializability. Relaxation of this allows them
to represent weaker models as well. Ferreira et al. raise the ab-
straction level further in their general semantics, able to represent a
variety of weak memory models [18]. Their approach is parameter-
ized by a relation describing program equivalences, and they use a
particular instantiation of the relation to show DRF properties can
be preserved under several basic compiler optimizations. Interest-
ingly, they also make the point that out-of-thin-air is not necessarily
problematic, provided type-safety is preserved. Saraswat et al. de-
scribe another, more concrete operational framework for represent-
ing memory models, based on atomic actions and decomposition
rules for composite actions [2]. They also raise the issue of com-
plexity in ensuring race-freedom, as well as the impact of forbid-
ding out-of-thin-air values on compiler optimization, and point out
that out-of-thin-air values can easily arise from incremental long
word constructions. In Java avoiding out-of-thin-air values can be
seen as part of a security guarantee, ensuring data cannot leak to
unintended contexts. Our approach in this work is to provide sim-
ple (non-)observability guarantees, greatly reducing the cost and

complexity of determining whether out-of-thin-air data has been
exposed.

Our work is partly motivated by the complexity that determin-
ing data conflicts, and more specifically data races adds to analy-
sis. Static and dynamic approaches to this problem have been tried,
with the former having the advantage of avoiding runtime over-
head, and several static, type-based approaches have been explored
[19, 20]. These designs use the (sets of) locks that guard shared data
as types, ensuring that any potential runtime access respects the
type system by holding the required locks. Although this approach
has been shown to be quite effective, the resulting type systems
require non-trivial language extension, significant annotation, and
still require some form of escape mechanism to allow the program-
mer to perform (statically) type-unsafe activities. For more precise
data-race analysis, dynamic approaches that track actual control
flow and thread behaviour can be more accurate. Overhead is a con-
cern, however, and recent results have shown the performance loss
of performing precise, runtime verification can be reduced to an
impressive, but still quite significant 8-fold slowdown [21].

Designation of private versus shared data is a of course a
common concept in parallel and multi-process programming.
Our model essentially provides a Java embedding of a subset of
UPC [8], Titanium [22], or OpenMP [7] data sharing behaviours,
with a similar model to UPC in using a default private scope for
data and requiring explicit specification of shared memory. More
complex sharing models, such as the different OpenMP data initial-
ization modes (firstprivate or copyin) can also be supported. Other
designs for full implementations of OpenMP such as JOMP [23]
and the more recent JaMP [24] have concentrated on supporting
the parallel primitives more than the sharing directives, and are
based on parsing structured comment blocks containing standard
OpenMP directives. This approach is in fact the basis for a com-
plete Java OpenMP proposal [25]. This design avoids language
modifications, although it also necessarily involves co-existence
with the existing Java behaviours, and thus any benefit provided
through the higher-level, OpenMP model is dependent on pro-
grammers exercising appropriate restraint. By enforcing a simple,
race-free model we lose backward-compatibility, but can guarantee
sequential consistency and avoid the more complex memory model
concerns present in Java, as well as the memory consistency con-
cerns in full OpenMP implementations [26] which also complicate
analysis [27].

3. The Java Memory Model and Optimization

The Java memory model defines behaviour for race-free (correctly
synchronized) programs and for programs containing races. In the
former case sequential consistency is guaranteed, and in the latter
the behaviour can be determined through a defined process con-
sisting of two main components, happens-before consistency, and
a system for justifying well-behaved traces to guarantee causality
in the resulting execution. Unfortunately, these semantics, both in
terms of correctly synchronized and incorrectly synchronized pro-
grams impose strong constraints on optimization. Below we de-
scribe both concerns, beginning with limits due to potential races,
and following with limitations due to being race-free.

3.1 Out-of-thin-Air Guarantees

The semantics of programs containing data races is intended to
provide significant lattitude in optimization, while still ensuring
behaviour is bounded in some reasonable sense. Although the basic
happens-before consistency is a simple, easily understood model, a
conundrum introduced by the use of happens-before consistency is
the potential for causal cycles to exist, and in particular to allow
the validation of “out-of-thin-air” values. Manson et-al provide an
example of such an undesirable situation (Figure 1).

Thread 1 Thread 2
r1 = x; r2 = y;
y = r1; x = r2;

Figure 1. Example of an undesirable out-of-thin-air situation; any
value can be justified, e.g., r1==r2==42 [1].

Unfortunately, causal cycles can also be produced by com-
piler optimizations, so disallowing all cycles is not acceptable. A
complex system for justifying execution traces based on observed
writes in previous traces is instead used to eliminate the out-of-
thin-air problem, and ensures values read from a variable have a
well-defined causal write.

This approach, however, has a major impact on the ability of a
compiler to efficiently (re-)use space—-whenever data is stored in
a variable, it must comport with out-of-thin-air guarantees, and this
affects instances of storage reuse, storage in speculative execution,
as well as advanced, higher-level algorithmic optimizations. The
code at the top of Figure 2, for example, counts boolean true values
in an array. If a previous analyis has shown that most of the values
of x.a[] are true then an effective optimization would be to invert
the calculation, counting down rather than up and reducing the total
number of arithmetic operations. The optimized code is shown at
the bottom of Figure 2. Note that if n booleans in a are true, the
observable set of values of x.f in the original program are 0 . . . n.
In the optimized code the observed set of values are UPPER. . . n.
Both versions converge to the correct value; from an observer’s
perspective, however, the optimized code contains out-of-thin-air
values.

Original Code
x.f = 0;
for (int i = 0; i < UPPER; ++i) {

if (x.a[i]) ++x.f;
}

Optimized Code
x.f = UPPER;
for (int i = 0; i < UPPER; ++i) {

if (!x.a[i]) --x.f;
}

Figure 2. Reducing arithmetic operations.

The fundamental problem here is that in general compiler op-
timizations ensure only functional equivalence of optimized code.
The only guarantee of execution behaviour provided by standard,
single-threaded code optimization is that the optimized code will
have the same external side effects (output) as the unoptimized
code, given the same input. For concurrent programs this is not suf-
ficient, since the behaviour of a single thread of code may depend
on the behaviour of other threads.

For racey programs, this interaction becomes even more intri-
cate. The allowance of race conditions in the Java memory model
implies that a concurrent thread may at any point perform observa-
tions of the state of another thread’s computation. The ability of an
external thread to observe the internals of a computation means any
optimizing transformations must obey the requirements of the ob-
servational semantics. Any useful constraint on the external obser-
vations of a function computation will necessarily restrict the kinds
of functions that can be expressed, and thus the kinds of functional
equivalences that may be exploited by an optimization strategy.

3.2 Sequential Consistency and Divergence

An attractive property of the Java memory model is the DRF guar-
antee, ensuring sequential consistency for race-free, “correctly
synchronized” programs. This property is core to many memory
models, providing a simple programming model on the condition

that the program uses appropriate synchronization to avoid race-
conditions.

The difficulty with this approach, however, is that being race-
free is not a static property of the code. It is a dynamic one, depen-
dent on the behaviour of a sequentially consistent execution of the
same code. Code which under conservative, static analysis could re-
sult in a runtime race is not necessarily incorrect, as long as the race
could never occur in any sequentially consistent execution. This in-
troduces serious problems for optimization, making the application
of code transformations dependent on proving the precise runtime
behaviour (a complex and generally unsolvable problem), or being
forced to resort to simpler but less effective conservative approxi-
mations when such information is not available.

An example is in fact provided by Manson et al. to illustrate
a known reduction in optimization potential, the assumption that
execution continues forward to program exit. In a sequential con-
text the code used by each of the threads in the top part of Figure 3
would be optimized separately. Since the write to x (respectively y)
is not control or data dependent on earlier instructions, in each case
it could be transformed during optimization into the code shown on
the bottom of Figure 3.

Thread 1 Thread 2
do { do {

r1 = x; r2 = y;
} while(r1==0); } while(r2==0);
y = 42; x = 42;

Thread 1 Thread 2
y = 42; x = 42;
do { do {

r1 = x; r2 = y;
} while(r1==0); } while(r2==0);

Figure 3. Above is a program correctly synchronized through di-
vergence. Below, after optimization the program is now incorrectly
synchronized [1].

The original version of the program did not contain any data
races since neither thread would ever exit its loop. Divergence
within each thread is used to avoid execution of the actual race
condition at runtime, and thus the program is required to retain its
sequentially consistent semantics. The transformed version intro-
duces data races and new behaviour (termination), and so is not a
valid transformation under the Java memory model.

Manson et al. present this as a necessary restriction on Java op-
timization. The extent of the restriction is, however, quite large. In
particular, powerful, well-established optimizations like Partial Re-
dundancy Elimination, trace or other global instruction scheduling,
as well as many advanced speculative optimizations, may move ex-
pressions through control flow. Under the Java memory model to
able to safely apply these optimizations a compiler needs to en-
sure that data moved out of or into any one control flow is either
certainly not shared or if so is not being exposed prematurely.

Accurately detecting all statically conflicting data accesses is
difficult, dynamic conflicts even more so, and poses a particular
problem for heap-intensive programs where points-to analysis is
typically less precise. The problem is magnified for optimization,
which now needs to determine potential races based on the intended
code motion, and of course maintain or regenerate this information
after each transformation.

An essential complexity emerges from this, in that whether for
correctly or incorrectly synchronized programs basic optimizations
are now dependent on conflict detection. This adds significant addi-
tional cost and development complexity, and constrains optimiza-
tion effectiveness to the accuracy of the underlying conflict de-
tection. Although conflict and race-detection problems are being

aggressively examined in the research community [21, 28], and
recent work has also begun to develop efficient SC-preservation
techniques [29], it is also possible to avoid these problems linguis-
tically, modifying the language so the compiler does not need to
rely on conservative approximations in order to determine what is
potentially shared or not. In the next section we explore a simple
linguistic change to Java that has a large impact in terms of pro-
gramming paradigm and the availability of information to an opti-
mizing compiler.

4. Allowing Optimization

In a general sense, offering any useful semantics in the presence of
(potential) race conditions adds significant complexity to optimiza-
tion. If only fixed forms of behaviour are allowed then a compiler
must provide appropriate analysis to ensure it limits its activities
to those that preserve the required behaviour. Through shared vari-
ables (races) a thread is allowed uncontrolled observation of an-
other thread’s activities, and so to impose a semantics of observ-
ability is to impose a restriction on the observed thread’s potential
(optimized) execution. This is inherently unsatisfying from an opti-
mization perspective, adding extra cost and another source of con-
servativeness. Having no semantics for racey programs, however, is
not an acceptable solution either. Although it greatly relaxes con-
straints on optimization, it makes race conditions errors that should
not occur with correct input, and so care must still be taken in op-
timization to avoid introducing races through optimizing transfor-
mations. In both cases, on top of the complexity relegated to the
programmer of ensuring a base race-freedom there is additional,
non-trivial compiler cost.

The alternative we explore here is to change the Java seman-
tics in order to remove all possibility of race conditions, as well
as clearly identify shared data for compiler consideration. Below
we describe a modified semantics for concurrent Java programs
based on explicitly declaring all shared variables, and making use
of a trivial syntactic extension to the language (more accurately,
to the type/modifier system). This prototype design has limitations
with respect to backward compatibility for legacy code (containing
races), but has attractive features of a simple programming model,
a feasible implementation design, and permitting sequential-based
compiler optimizations without necessitating expensive conflict
analysis as a safety requirement. Additional costs are incurred as
well, although here we have the advantage that optimizations can
easily start from a certainly correct execution. Nevertheless, note
that our presentation here is intended to support a feasibility argu-
ment; significant work would still be required to fully, and more
formally address the complete range of Java concurrency concerns,
as well as investigate optimal implementation designs.

4.1 A Race-Free Execution Model

Our model is intended to supply two main features: a trivial mech-
anism for a programmer to ensure race-freedom, and an equally
trivial but effective method for an optimizing compiler to identify
shared as opposed to thread-private data. In Java, C++ and many
other multithreading language all heap and global variables are
thread-shared by default. For obvious reasons this programming
convenience is also a primary source of difficulty in ensuring race-
freedom as well as in identifying actual shared variable accesses
during optimization.

Our solution begins with a simple change to syntactically iden-
tify shared data. Unfortunately, although this improves the ability
of a compiler to prove the existence or non-existence of races, it is
not necessarily by itself sufficient. Purely static or ahead-of-time
analysis may still not be accurate enough, and furthermore this
still leaves the problem of defining the semantics of code that con-
tains race conditions. Our proposal is not only to identify shared

variables, but to enforce a separation of memory spaces between
threads so races are impossible. This is done by dynamically allo-
cating data either globally or in thread-local spaces, and using the
type system to manage movement to and from global space. Below
we describe first the overall design in detail, followed by discussion
of more subtle concerns.

Basic Model

Our changes involve only a few basic principles, and relatively triv-
ial changes to the language, and can be summarized as follows:

• All static and heap variables have thread-specific values by de-
fault. Two threads may thus access the same field, storing and
loading different values without conflict.

• All shared fields are explicitly tagged with the keyword volatile.
Such data behaves as current Java volatiles, with all implied vis-
ibility, atomicity, and ordering properties.

As an additional, syntactic convenience an object type can be
declarated volatile, meaning its content (fields) are all volatile by
default. We do not define atomicity over whole object access, how-
ever, leaving coarser atomicity to existing, lock-based control.

Our proposed model represents a significant internal, semantic
change in how data is stored and accessed. Java’s volatile keyword
is a natural choice for specifying shared variables, and so no deep
linguistic or syntactic changes are necessary. To maintain the clear
identification of shared and unshared data it is also important to
control how data can be moved from local to shared memory and/or
back, particularly in the case of references (pointers). Several mod-
els are available; trivially, assignment from a non-volatile variable
to a volatile can be disallowed unless the assigned type is an atomic
primitive type (extension to immutable constants such as String or
Integer would also be possible, as would copy-out semantics). By
this we permit publishing of local data, but only through variables
which can be value-copied with atomic operations.

The resulting execution model provides very useful guarantees.
Since shared data cannot be accessed except through volatile vari-
ables, the program is necessarily race-free. All non-volatile data
accesses only thread-specific (local) versions, and shared data is
properly protected as volatile. Since access to shared data is stati-
cally identifiable through the volatile modifier, compilers can triv-
ially identify the subset of data for which order access and/or poten-
tial out-of-thin-air visibility requires more expensive conflict anal-
ysis. Of course there are also significant overhead concerns in this
basic scheme. Volatile access has additional overhead, and ubiqui-
tous thread-local storage can be expensive as well. These are, how-
ever, semantic properties of the code, open to optimization, and
Section 4.2 discusses potentially efficient implementation designs.
Below we describe first an example to further illustrate the memory
separation, followed by a brief discussion of thread initialization
and copyin/out concerns.

Example

A small code example and resulting behaviour under our model
are shown in Figures 4 and 5 respectively. Interpreted with exist-
ing Java semantics (erasing or even propagating the volatile class
declaration to its fields), this program has several race conditions
and is thus incorrectly synchronized. Using our model of explic-
itly shared storage, however, the program is race-free and has clear
specification of shared versus unshared data.

Two classes are declared, one with a volatile modifier and one
without. Three variables are then declared; v is a volatile variable
of a volatile object, w is a normal variable referencing a volatile
object, and a is a normal variable referencing a normal object. We
discuss the case of a a volatile pointer to a normal object following
this example.

class Q { volatile class P {
volatile Object x; Object x;

} }

volatile P v;
P w;
Q a;

Thread 1 Thread 2
v = new P(); v = new P();
w = new P(); w = new P();
a = new Q(); a = new Q();
v.x = w; v.x = w;
w.x = v; w.x = v;
a.x = w; a.x = w;

Figure 4. Example using explicitly shared variables.

(a) (b)

Figure 5. Memory layout prior to the start of execution (a) and
one potential state after execution (b) of the code in Figure 4.
The surrounding dotted boxes show local and shared memories,
and the colours in the solid boxes indicate to which object each
memory location logically belongs. Arrows show stored values, and
grey/dashed lines show overridden assignments and data allocation.

The program begins with the memory layout shown on the left
side of Figure 5. If we (arbitrarily) assume a runtime synchroniza-
tion order in which Thread 1’s atomic write to v overwrites Thread
2’s, and symmetrically Thread 2’s assignment to v.x overwrites
Thread 1’s, then the execution terminates in the state shown on the
right of Figure 5. Note that the declaration of v as volatile implies
the reference itself lives in shared space, while the lack of such a
modifier for the declaration of w (even though the object is volatile)
means each thread has a local copy, with each having field content
in the shared space.

In our context the resulting execution is necessarily sequentially
consistent. The existence of duplicate, thread-specific data arguably
stretches the concept, but each shared variable is declared volatile
and although synchronization order allows for several execution
variations, ordering the writes of v and v.x, no race-conditions ex-
ist. Importantly, compiler optimizations can also easily recognize
shared and unshared data. This is of course a conservative approxi-
mation, and not all programs will use all shared data in all threads.
With safety as a baseline, however, it is much easier for optimiza-
tion to guarantee correctness, applying further analysis effort only
as required to refine behaviours where it is most profitable.

Shared to Local

The advantage of this design is in the easy separation of local
versus shared data. As described above, each thread has access to
and may indirectly reference shared data, but without the ability to
link shared to local it may not directly access data stored in other
threads. Data communication must then be by explicit publishing
of data, copying local data into and out of shared structures. This
represents a design choice meant to enforce clear and simple thread
communication, and of course prevents race-conditions. Syntactic
sugar could easily be defined for programmer specified transfer of

larger structures, and although deep-copying can be expensive the
design is amenable to optimizations similar to those applied to strict
pass-by-value or copy-in/copy-out semantic contexts.

The design as described roughly corresponds (memory model
considerations aside) to a Java embedding of the OpenMP pri-
vate directive as default, with volatile serving as a shared spec-
ifier. Copyin/out would allow expression of firstprivate, lastpri-
vate, and threadprivate models [7]. An alternative approach is to
allow shared reference to local data, but ensure that any local ac-
cess reaches only a thread’s own (thread-specific) version of the lo-
cal data. This could be accomplished through a thread local storage
mechanism like the existing Java ThreadLocal design (essentially
a hash table mapping thread ids to data values), or with greater com-
plexity but more efficiency through the use of segmented memory
designs. We discuss implementation concerns in more detail in the
next subsection.

Synchronization

Although our design has a large conceptual impact, it is mostly
orthogonal to the existing synchronization mechanisms in Java.
Locks and condition variables behave as before; since shared data
is always volatile, however, synchronized blocks function primar-
ily as atomicity specifications rather than combined with visibil-
ity/publishing properties.

Use of volatiles within synchronized blocks represents unnec-
essary overhead, since in most cases it is likely that locks are used
to correctly enforce mutual exclusion. In our design this therefore
induces an optimization problem in removing synchronization or-
der requirements on lock-based mutually-exclusion of volatile ac-
cesses. Synchronized blocks may allow the compiler to package
up the effects of multiple volatile accesses in a block, negating the
impact of adding memory fences to every volatile access. Again,
however, the optimization process can begin from an assumption of
race-free behaviour, directly applying optimization resources to the
improvement rather than to establishing the basic safety require-
ment.

4.2 Implementation Concerns

As a trivial transformation, our design would represent signifi-
cant overhead to existing concurrent programs. Naı̈vely convert-
ing all non-volatile variables to ThreadLocal types would be pro-
hibitively expensive, if only for the extra memory management
costs. As the default behaviour, however, significant improvements
are possible. Conceptually, each non-volatile variable access can be
thought of as predicated with the current thread identifier, a context
indirection already used in many execution models. Copy-on-write
approaches [30] can also be used to support firstprivate-like initial-
ization. Further work is of course needed to determine the practical
impact on GC and data locality.

Significant optimization is also possible. In many cases un-
shared variables may not be accessed by multiple threads, negating
the need to maintain thread-specific values or mappings. Identifi-
cation of such situations represents an analysis cost, although once
again one that can be applied as part of a performance improving
optimization rather than as a safety baseline. For example, C. Lin
et al. find only 8% of the fences used to guarantee sequential con-
sistency are really needed [31]. This implies significant potential in
reducing the cost of volatile access, and thus eliminating much of
the associated cost in practice.

5. Conclusions & Future Work

It is well-accepted that concurrent code should avoid data races
and use synchronization primitives to ensure correct, understand-
able behaviour. Enforcing this, however, both for programmers and

compilers is non-trivial, and in many cases the additional correct-
ness burden is as or more important than the performance improve-
ment. In this work we show how basic requirements to prevent
out-of-thin-air data, and to ensure sequentially consistent seman-
tics pose significant concerns for optimization.

Simple, safe models facilitate easy reasoning by both program-
mers and compilers. We describe ideas for an approach that guar-
antees race-free by design, as well as easy identification of shared
data, and offers an easily understood conceptual model. Semantic
changes are transparent to single-threaded programs, and correctly-
synchronized, race-free concurrent programs map directly (mod-
ulo conceptually-simple modifications to tag data in synchronized
blocks as volatile). As an initial exploration, performance and anal-
ysis requirements trade-offs exist of course; an important property
of our model, however, is that correct synchronization is guaranteed
by construction, readily apparent to both compiler and programmer.

Future work for our design mostly centers around developing a
prototype implementation to demonstrate feasibility, examine pro-
grammability, and establish optimization requirements. As men-
tioned in Section 4.2, the use of offset or segmented memory de-
scriptors has potential to simplify thread-specific access costs. At
the language level many improvements are possible. Of particu-
lar concern is the simplistic requirement for a duplicate (volatile)
object type-hierarchy. This may be mitigated by further language
modifications or compiler support to allow volatile object construc-
tions without corresponding static declarations.

Acknowledgments

This research was supported by the Natural Science and Engineer-
ing Research Council of Canada, and IBM Canada Ltd.

References

[1] Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In:
POPL’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, ACM (January 2005)
378–391

[2] Saraswat, V.A., Jagadeesan, R., Michael, M., von Praun, C.: A the-
ory of memory models. In: PPoPP ’07: Proceedings of the 12th ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, ACM (2007) 161–172

[3] Suganuma, T., Yasue, T., Kawahito, M., Komatsu, H., Nakatani, T.:
Design and evaluation of dynamic optimizations for a Java just-in-time
compiler. ACM Trans. Program. Lang. Syst. 27(4) (2005) 732–785

[4] Cenciarelli, P., Knapp, A., Sibilio, E.: The Java memory model:
Operationally, denotationally, axiomatically. In Nicola, R.D., ed.: 16th
European Symposium on Programming, ESOP’07. Volume 4421 of
Lecture Notes in Computer Science., Springer (2007) 331–346

[5] Aspinall, D., S̆evc̆ı́k, J.: Java memory model examples: Good, bad and
ugly. In: VAMP 2007. (Sep 2007)

[6] Ševčı́k, J., Aspinall, D.: On validity of program transformations
in the Java memory model. In: ECOOP ’08: Proceedings of the
22nd European conference on Object-Oriented Programming, Berlin,
Heidelberg, Springer-Verlag (2008) 27–51

[7] OpenMP Architecture Review Board: OpenMP application pro-
gram interface. http://www.openmp.org/mp-documents/

spec30.pdf (May 2008) Version 3.0.

[8] UPC Consortium: UPC language specifications v1.2. http:

//www.gwu.edu/˜upc/publications/LBNL-59208.pdf

(May 2005)

[9] Burckhardt, S., Baldassin, A., Leijen, D.: Concurrent programming
with revisions and isolation types. In: Proceedings of the ACM
international conference on Object oriented programming systems
languages and applications. OOPSLA ’10, ACM (2010) 691–707

[10] Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency mem-
ory model. In: PLDI ’08: Proceedings of the 2008 ACM SIGPLAN
conference on Programming language design and implementation,
ACM (2008) 68–78

[11] Pugh, W.: Fixing the Java memory model. In: JAVA ’99: Proceedings
of the ACM 1999 conference on Java Grande, ACM (1999) 89–98

[12] Gontmakher, A., Schuster, A.: Java consistency: Nonoperational char-
acterizations for Java memory behavior. ACM Trans. Comput. Syst.
18(4) (2000) 333–386

[13] Aspinall, D., Ševčı́k, J.: Formalising Java’s data race free guarantee.
In: TPHOLs’07: Proceedings of the 20th international conference on
Theorem proving in higher order logics, Berlin, Heidelberg, Springer-
Verlag (2007) 22–37

[14] Adve, S.V., Hill, M.D.: Weak ordering—a new definition. In: ISCA
’90: Proceedings of the 17th annual international symposium on Com-
puter Architecture, ACM (1990) 2–14

[15] Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A
tutorial. Computer 29 (1996) 66–76

[16] Midkiff, S.P., Lee, J., Padua, D.A.: A compiler for multiple memory
models. Concurrency and Computation: Practice & Experience 16(2-
3) (2004) 197–220

[17] Arvind, A., Maessen, J.W.: Memory model = instruction reordering
+ store atomicity. In: ISCA ’06: Proceedings of the 33rd annual
international symposium on Computer Architecture, Washington, DC,
USA, IEEE Computer Society (2006) 29–40

[18] Ferreira, R., Feng, X., Shao, Z.: Parameterized memory models and
concurrent separation logic. In: ESOP 2010: Proceedings of the 19th
European Symposium on Programming. (2010) 267–286

[19] Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe program-
ming: preventing data races and deadlocks. In: OOPSLA ’02, ACM
(2002) 211–230

[20] Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static
race detection for java. ACMTrans. Program. Lang. Syst. 28(2) (2006)
207–255

[21] Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic
race detection. In: PLDI ’09: Proceedings of the 2009 ACMSIGPLAN
conference on Programming language design and implementation,
ACM (2009) 121–133

[22] Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishna-
murthy, A., Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.:
Titanium: a high-performance Java dialect. Concurrency: Practice and
Experience 10(11–13) (September 1998) 825–836 Special Issue: Java
for High-performance Network Computing.

[23] Bull, J.M., Kambites, M.E.: JOMP—an OpenMP-like interface for
Java. In: JAVA ’00: Proceedings of the ACM 2000 conference on Java
Grande, ACM (2000) 44–53

[24] Klemm, M., Bezold, M., Veldema, R., Philippsen, M.: JaMP: an im-
plementation of OpenMP for a Java DSM. Concurrency and Compu-
tation: Practice & Experience 19(18) (2007) 2333–2352

[25] Klemm, M., Veldema, R., Bezold, M., Philippsen, M.: A proposal for
OpenMP for Java. OpenMP Shared Memory Parallel Programming
(2008) 409–421

[26] Bronevetsky, G., de Supinski, B.R.: Complete formal specification of
the OpenMP memory model. Int. J. Parallel Program. 35(4) (2007)
335–392

[27] Basumallik, A., Eigenmann, R.: Incorporation of OpenMP memory
consistency into conventional dataflow analysis. In: IWOMP’08:
Proceedings of the 4th international conference on OpenMP in a new
era of parallelism, Berlin, Heidelberg, Springer-Verlag (2008) 71–82

[28] Flanagan, C., Freund, S.N.: Adversarial memory for detecting de-
structive races. In: PLDI ’10: Proceedings of the 2010 ACM SIG-
PLAN conference on Programming language design and implementa-
tion, ACM (2010) 244–254

[29] Marino, D., Singh, A., Millstein, T., Musuvathi, M., Narayanasamy,
S.: A case for an SC-preserving compiler. In: PLDI ’11: Proceedings
of the 2011 ACM SIGPLAN conference on Programming language
design and implementation. (2011) to appear.

[30] Tozawa, A., Tatsubori, M., Onodera, T., Minamide, Y.: Copy-on-write
in the PHP language. In: POPL ’09: Proceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ACM (2009) 200–212

[31] Lin, C., Nagarajan, V., Gupta, R.: Efficient sequential consistency us-
ing conditional fences. In: Proceedings of the 19th international con-
ference on Parallel architectures and compilation techniques. PACT
’10, ACM (2010) 295–306

