
There's Nothing Wrong with
Out-of-Thin-Air:

Compiler Optimization and Memory
Models

Clark Verbrugge*
Allan Kielstra†

Yi Zhang*

*McGill University
†IBM Toronto Lab

MSPC, June 5, 2011

2

Introduction
● Memory (consistency) models

– Important part of concurrent systems
● Concurrent hardware
● Concurrent languages

– Define ordering, visibility of R/W

MSPC, June 5, 2011

3

Introduction
● Java Memory Model

– Revised in 2005
● Well-defined semantics
● Allow most/reasonable compiler optimizations

– Multiple flaws
● Proposed fixes

MSPC, June 5, 2011

4

Introduction
● Java Memory Model

– Revised in 2005
● Well-defined semantics
● Allow most/reasonable compiler optimizations

– Multiple flaws
● Proposed fixes

● Fundamental concerns for optimization

MSPC, June 5, 2011

5

Contents
● Two problems the JMM creates for

optimization
1. Racey programs
2. Non-racey programs

● A language proposal
– Example

● Conclusions & Future Work

6

The Problem (1)
● “Out-of-Thin-Air”

– A consequence of simplistic MM semantics

Thread 1
r1 = x;
y = r1;

Thread 2
r2 = y
x = r2;

r1 == r2 == ...?

x = y = 0;

[Manson et al., 2005]

MSPC, June 5, 2011

7

The Problem (1)
● “Out-of-Thin-Air”

– A consequence of simplistic MM semantics

Thread 1
r1 = x;
y = r1;

Thread 2
r2 = y
x = r2;

r1 == r2 == ...?

x = y = 0;

[Manson et al., 2005]

MSPC, June 5, 2011

8

The Problem (1)
● “Out-of-Thin-Air”

– A consequence of simplistic MM semantics

Thread 1
r1 = x;
y = r1;

Thread 2
r2 = y
x = r2;

r1 == r2 == ...?

x = y = 0;

[Manson et al., 2005]

MSPC, June 5, 2011

9

The Problem (1)
● “Out-of-Thin-Air”

– A consequence of simplistic MM semantics

Thread 1
r1 = x;
y = r1;

Thread 2
r2 = y
x = r2;

r1 == r2 == ...?

x = y = 0;

[Manson et al., 2005]

MSPC, June 5, 2011

10

The Problem (1)
● “Out-of-Thin-Air”

– A consequence of simplistic MM semantics

Thread 1
r1 = x;
y = r1;

Thread 2
r2 = y
x = r2;

r1 == r2 == 42

x = y = 0;

[Manson et al., 2005]

MSPC, June 5, 2011

11

The Problem (1)
● “Out-of-Thin-Air”

– A consequence of simplistic MM semantics

– Avoid out-of-thin-air values
● Ensure causality for all visible values

Thread 1
r1 = x;
y = r1;

Thread 2
r2 = y
x = r2;

r1 == r2 == 42

x = y = 0;

[Manson et al., 2005]

MSPC, June 5, 2011

12

The Problem with the Solution (1)
● What about compiler optimization?

– Remember, we want to allow many opts!
– But compiler opts reuse space...

● Speculative optimizations
● Advanced, algorithmic improvements

– e.g. ...

MSPC, June 5, 2011

13

The Problem with the Solution (1)

● If lots of true values, a more efficient version:

– Fewer writes!
– But now there are out-of-thin-air values...

● x.f contains UPPER...n vs 0..n

x.f = 0;
for (int i=0;i<UPPER;i++) {
 if (x.a[i]) ++x.f;
}

x.f = UPPER;
for (int i=0;i<UPPER;i++) {
 if (!x.a[i]) --x.f;
}

MSPC, June 5, 2011

14

The Problem with the Solution (1)
● A surprisingly deep problem!

– Traditional compiler opts only promise functional
equivalence

● Same input, same output

MSPC, June 5, 2011

15

The Problem with the Solution (1)
● Out-of-thin-air guarantees opens this up

– A variable which cannot be proved thread-private,
may be arbitrarily observed

● And so must not contain out-of-thin-air values

MSPC, June 5, 2011

16

The Problem (2)
● What about “correct” programs?

– Program has no data races (DRF)

MSPC, June 5, 2011

17

The Problem (2)
● What about “correct” programs?

– Program has no data races (DRF)
– Good programmer!

● Give a reward

MSPC, June 5, 2011

18

The Solution (2)
● Sequential Consistency for DRF

– A wonderful property!
● Program is correctly synchronized
● Correctly synchronized implies DRF
● DRF implies SC
● Programmer understands behaviour!

MSPC, June 5, 2011

19

The Solution (2)
● Sequential Consistency for DRF

– A wonderful property!
● Program is correctly synchronized
● Correctly synchronized implies DRF
● DRF implies SC
● Programmer understands behaviour!

– Considered The Fundamental Property
● C++, Java, ...

MSPC, June 5, 2011

20

The Problem with the Solution (2)
● DRF is a runtime property

– Not a static one

– Above program is DRF through divergence
● Notice write to y (resp. x) is not dependent on the loop...

Thread 1

do {
 r1 = x;
} while (!r1);
y = 42;

Thread 2

do {
 r2 = y;
} while (!r2);
x = 42;

x = y = 0;

[Manson et al., 2005]

MSPC, June 5, 2011

21

The Problem with the Solution (2)
● DRF is a runtime property

– Not a static one

– No longer DRF...
● Disallow these opts?

Thread 1
y = 42;
do {
 r1 = x;
} while (!r1);

Thread 2
x = 42;
do {
 r2 = y;
} while (!r2);

x = y = 0;

[Manson et al., 2005]

MSPC, June 5, 2011

22

The Problem with the Solution (2)
● Lots of optimizations move code through control-

flow
– Partial Redundancy Elimination
– Global code scheduling
–

● New step in optimization strategy
– Determine runtime control flow

● Step 1: Solve the halting problem...

MSPC, June 5, 2011

23

The Problem with the Solutions
● Of course we can handle both problems:

– Conservative race detection
– DRF-preserving optimizations

● Expensive
– Accurate conflict detection is hard!

● Optimization quality depends on conflict detection

MSPC, June 5, 2011

24

A Solution to the Problem with the
Solutions

● Why not make visibility guarantees explicit?
– Statically declare shared data
– Compiler knows what it can do

● Race-free by design
● Borrow ideas from OpenMP, UPC, etc.

– Not backward compatible in general

MSPC, June 5, 2011

25

A Race-Free Java
● Syntactic change:

– Use “volatile” declaration for all shared data

● Semantic change:
– All non-volatile data is thread-specific

● Every thread has its own copy

MSPC, June 5, 2011

26

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

MSPC, June 5, 2011

27

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

MSPC, June 5, 2011

T1 T2Shared

w

a

w

a

v

28

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x

MSPC, June 5, 2011

29

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

MSPC, June 5, 2011

30

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x

MSPC, June 5, 2011

31

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x P x

MSPC, June 5, 2011

32

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x P x

Q x

MSPC, June 5, 2011

33

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x P x

Q x Q x

MSPC, June 5, 2011

34

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x P x

Q x Q x

MSPC, June 5, 2011

35

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x P x

Q x Q x

MSPC, June 5, 2011

36

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x P x

Q x Q x

MSPC, June 5, 2011

37

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x P x

Q x Q x

MSPC, June 5, 2011

38

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x P x

Q x Q x

MSPC, June 5, 2011

39

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x P x

Q x Q x

MSPC, June 5, 2011

40

A Race-Free Java

class Q {
 volatile Object x;
}

volatile class P {
 Object x;
}

volatile P v;
P w;
Q a;

Thread 1
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

Thread 2
v = new P();
w = new P();
a = new Q();
v.x = w;
w.x = v;
a.x = w;

T1 T2Shared

w

a

w

a

v

P x P x

P x P x

Q x Q x

MSPC, June 5, 2011

41

A Race-Free Java
● SC and DRF as a language given
● Makes correctness a baseline

– Still can optimize
● Reduce/eliminate volatile requirements
● But starting from a trivially known safe state

MSPC, June 5, 2011

42

A Race-Free Java
● Lots of issues to think about

– Shared to/from local
– Different copy in/out semantics?
– Type system changes
– GC impact
– Synchronization (locks)

● Separate atomicity from visibility requirements

MSPC, June 5, 2011

43

Conclusions
● Need to do something

– JMM too restrictive
● Observability requirements are subtle

– Conservative safety restricts optimization

● Basic dichotomy in optimization approach
a) Start from unknown, prove safe, optimize
b) Start from trivially safe, optimize

MSPC, June 5, 2011

44

Future Work
● Fully develop the language

– Explore larger examples
● Need to show programmability too!

– Prototype compiler
● Work underway using JikesRVM

● Optimize thread-local/specific data
– Including copy-in/out models

MSPC, June 5, 2011

45

Thank You

Questions?

MSPC, June 5, 2011

