Kind Analysis for MATLAB

Jesse Doherty, Laurie Hendren and Soroush Radpour

McGill University
[jdoherl,hendren,sradpo]@cs.mcgill.ca

Abstract 1. Introduction

MATLAB is a popular dynamic programming language used MATLAB is a popular dynamic programming language used
for scientific and numerical programming. As a language, it for scientific and numerical programming with a very large
has evolved from a small scripting language intended as anand increasing user base. The most recent data from Math-
interactive interface to numerical libraries, to a very piap Works shows that the number of users oRMAB was 1
language supporting many language features and librariesmillion in 2004, with the number of users doubling every
The overloaded syntax and dynamic nature of the language,1.5 to 2 years.Certainly it is one of the key languages used
plus the somewhat organic addition of language featuresin education, research and development for scientific and en
over the years, makes static analysis of modermrTMAB gineering applications. There are currently over 1200 ook
quite challenging. based on MTLAB and its companion software, Simulink

A fundamental problem in MTLAB is determining the (nttp:/iwww.mathworks.com/support/books ). This large
kind of an identifier. Does an identifier refer to a variable, a and diverse collection of books illustrates the many scien-
named function or a prefix? Although this is a trivial problem tific areas which rely on computational approaches and use
for most programming languages, it was not clear how to do MATLAB.

this properly in MATLAB . Furthermore, there was no simple
explanation of kind analysis suitable forAviLAB program-
mers, nor a publicly-available implementation suitable fo
compiler researchers.

This paper explains the required background efiviag,

Given the importance of MrLAB there is a real lack of
publicly-available compiler toolkits for analyzing AMLAB
programs, thus hindering development in the research com-
munity for new optimization, program understanding, refac
toring and verification tools. All of these tools need a good

clarifies the kind assignment program, and proposes someframework for program analysis. However, the dynamic na-
general guidelines for developing good kind analyses. @ase ture of the language, the overloaded syntax, plus the some-
on these foundations we present our design and implementawhat organic addition of language features over the years,

tion of a variety of kind analyses, including an approach tha
matches the intended behaviour of moderamas 7 and
two potentially better alternatives.

We have implemented all the variations of the kind anal-
ysis in McL AB, our extensible compiler framework, and we

makes static analysis of modermvLAB quite challenging.
This paper tackles the foundational problem of determin-
ing whether an identifier refers to a prefix, a variable, a
named function. We call thikind analysis It might seem
surprising that this is a problem worth investigating, but

present an empirical evaluation of the various analyses on awhile building our McLAB [7] system for analyzing M-

large set of benchmark programs.

Categories and Subject Descriptors D.3.4 [Processors
Compilers

General Terms  Experimentation, Languages, Performance
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LAB we found that this was a crucial concept to understand
correctly, and a crucial first phase of our analysis framéwor
Without knowing the correct kinds of identifiers one can-
not even build a very specific intermediate representation
(IR). For example, an expression of the forag)* " could
correspond to four different meanings depending on whether
“a” is a variable or a named function, and whethet Is
variable or named function. If both are variables, then this
is a simple array access of array’, indexed by variable
“i . If both are named functions, then this is a call to func-
tion “a”, with an argument which is the result of a call to
function “i ”. The two other cases correspond to when one

1From  www.mathworks.com/company/newsletters/news_notes/
clevescorner/jan06.pdf



identifier is a variable and the other is a function. Cleady,

and since there is no accessible formal definition of the lan-

build an IR that is suitable for further analyses one would guage, we provide the essence oAiMMAB semantics in Sec-

like to explicitly represent these different cases.

tion 3. This information is needed to completely understand

Since MATLAB does not have type declarations, and since the problem and solution in this paper, and may also be use-

it does not syntactically distinguish between array/Na@ga
accesses and function calls, older versions effhB and
other interpreter-based implementations such as Ocfave[8

ful for those interested in working on other compiler prob-
lems for MATLAB.

Given there was no documentation for kind analysis, we

actually determine the meaning of identifiers completely at developed a large set of test programs designed to expose

runtime. In such systems an expression suchagip ” is
stored as a very unspecific fashion such agasameter-

the intended semantics of MiLAB 7 kind analysis, and we
designed and implemented a flow analysis which matches

ized expressignand the meaning of that expression is de- those semantics. This analysis is neither flow-insengitire
termined, at runtime, by the interpreter. Each identifier is fully flow-sensitive, but is defined by a depth-first travérsa
looked up first in the current workspace, and if it is found over the AST This analysis is presented in Section 4.

then the identifier refers to that variable. If it is not in the

By defining and implementing a kind analysis to match

current workspace, then it is looked up in the current path of MATLAB 7, we noted several bugs which we reported to

function definitions. If it is found, then the identifier rege

MathWorks, and we also found some issues which caused

to that named function, and if it is still not found then itis a us to rethink kind analysis and to suggest some alternatives

runtime error.

In Section 5 we present our alternatives. The first alterna-

Having these dynamic semantics to determine the mean-tive is a flow-sensitive analysis very similar in spirit teeth
ing of identifiers is very easy to implement in an interpreter MATLAB 7 analysis, and the second alternative is a flow-
but it has two main disadvantages. First, it is quite diffi- insensitive approach.

cult for programmers and IDEs to determine the meaning

We have implemented both theAviLAB 7 approach and

of identifiers. Secondly, with such completely dynamic se- our alternatives in our MLAB extensible compiler frame-
mantics it is hard for a JIT compiler to produce very effi- work, where it now forms the basis for all subsequent static

cient code. Thus, in more modern versions oATMAB the

analyses. We examined the results of the analyses on a

semantics have been changed to include a static kind assignlarge suite of M\TLAB programs collected from a variety

ment to identifiers. In systems such asAB 7, when a
function is first loaded (JIT-compiled), a static kind arsidy

of sources and the results of those results are presented and
evaluated in Section 6. We found that our alternative flow-

is applied which assigns a kind to each identifier in the body sensitive analysis provided a cleaner specification wthile a
of the function. The kind analysis also raises compile-time the same time matching the originalAviLAB 7 approach
errors for situations in which an identifier is used as both a except in cases where our approach detected more static er-

function and variable within the same function body.

It is important to note that the static kind analysis in
MATLAB 7 is not a static approximation of the old dy-
namic semantics, but effectively defines a new semantics
for MATLAB. The new semantics will reject some programs
that would previously execute in the old semantics, and it
changes the meaning of some programs, particularly those
that make use of other dynamic features suchegs * and
“assignin ". Thus, to properly understand the meaning of a
MATLAB program, and to correctly implement compilers for
modern versions of MTLAB such as MTLAB 7, it is im-
portant to have a clear definition and implementation of kind
analysis. We were unable to find either, and so our defini-
tion and implementation of kind analysis is the topic of this
paper.

We first give a motivating example in Section 2. This il-
lustrates the difference between the dynamic and static se-
mantics and also shows the confusion caused when an IDE

does not understand the analysis, and when a programmer

rors.

The main contributions of this paper are:

* We identify static kind analysis as an important concept
that must be clearly defined and understood byrhhB
programmers and compiler developers. We also provide a
summary of MATLAB semantics so other researchers can
understand both the kind analyses in this paper and other
analyses they may wish to develop.

* We present an algorithm to compute kinds which matches
the intended semantics of MLAB 7.

* We point out weaknesses of the current kind semant-
ics/analyses and suggest two alternatives, a flow-seasitiv
approach and a flow-insensitive approach.

* We implemented all variations of the kind analysis and
we present a comparison of the results, and we discuss
the pros and cons of each approach. The implementation
is part of a publicly-available toolkit.

does not understand the dEﬂmt'(.)n.Of the kind analyS|S (Or 21t took us some time to discover this, as we were expectirfgeed flow-
even knows that such an analysis is performed by the Sys-sensitive or flow-insensitive approach.

tem).
As many compiler writers are not familiar with NfLAB ,

3These were acknowledged as bugs by MathWorks and the &igopite-
sented in the paper fixes those bugs.

4 http://www.sable.mcgill.ca/mclab/download_mclab.htm |



2. Motivating Example

To demonstrate the problem of not having a clear definition
of kind analysis, consider the toy example for thaiMAB
function “iassigni " given in Figure 1(a). This is the display
produced with MiTLAB 7.11 IDE. The IDE signals that
there are potential problems with this function via the red
bar on the right. When the user clicks on the red bar, the
warnings and explanation given in Figure 1(b) are displayed
These warnings would make sense if all occurrences of the
identifier “i ” refer to variables. However, the IDE appears
to be oblivious of kind analysis, and in fact the warnings are
not correct, and when the user attempts to call the function,
a completely different error occurs, as listed in Figure).1(c
What is going on?

To try and understand the problem, the user might type
the statements one by one into the read-eval-print loop. Fig
ure 1(d) shows such an interaction. Each line beginning
with “>>" is a user input. The user starts by clearing the
workspace. The user then checks the binding of identifier
“i "using the commandwhich i ”. This returns the fact that
“i " refers to a built-in named function in one of the standard
toolboxes (returning the mathematical valueforThe user
then types in the previously troublesome statemest i ”.

This actually has a well defined meaning; it first evaluates
the right-hand-side, which is a call to the built-in functio
called ", and then assigns the value to a variable called
“i . Since variables are not declared inAWLAB, they are
created upon their first definition. The user then verifies tha
“i " is now a variable using another call tevtich i ”. Fi-
nally, the call to display is done, which displays the valfie o
the variable i*”.

The root of all this confusion is that the semantics of
name lookups depends on whether or not a static kind anal-
ysis is being used. When the functioassigni " is called,
the JIT compiler is invoked and a kind analysis is applied.
This kind analysis will determine that the first use of tor-
responds to a call of the named library functiof,‘whereas
the assignment toi * corresponds to a variable. This kind
conflict results in the error message.

However, when the user enters the same computation
line-by-line into the read-eval-print loop the kind anadys
is not applied to the whole computation, which results in
dynamic lookup semantics.

There are two important points demonstrated by this
example. First, it shows that all tools, including optimiz-
ing compilers, program-understanding tools and refaotpri
tools need to correctly implement kind analysis. In thissgas
the IDE apparently does not perform kind analysis (or does
not integrate it correctly). Thus, it assumes that all oecur
rences of '” are variables, does not correctly identify the
kind conflict, and gives misleading warning messages. In

50lder versions of MTLAB and interpreter-based systems like Octave do
not have a kind analysis, in these systems the function booiyldvbe
interpreted using the dynamic lookup semantics.

-
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(a) Function definition

Line2: i = i;
Line2:i = i;
4 Line 2: Assignment to 'I' might be unnecessary.

Explanation =

code accesses the value of the named variable
before it sets that variable. Sometimes, this
message results from an error in the code logic or a
typographical error. Other times, M-Lint generates
this message incomectly because MATLAB has
functions, such as 1oad and eval, which can set

M-Lint returns this message because it appears the H
1

new variables in the workspace without M-Lint
detecting it.

(b) IDE warnings

>> jassigni()

??? Error:  File: iassigni.m Line: 2 Column: 4

"i" previously appeared to be used as a function or
command, conflicting with a variable.

A possible cause of this error is that you forgot to
initialize the variable, or you have initialized it
implicitly using load or eval.

(c) error when executed

>> clear

>> which i

built-in (C:\MATLAB\R2010b\toolbox\matlab\elmat\i)
>> =i

i =0 + 1.0000i

>> which i
i is a variable.

>> display(i)
i =0 + 1.0000i

(d) read-eval-print execution

Figure 1. Motivating toy example

the case of optimizing compilers the kinds of identifiers are
needed for building correct call graphs and for correctly ap
plying many transformations such as inlining. In the case of
tools like refactoring tools, refactoring transformasanust




ensure that the refactoring does not change the kind of anPrivate directories: A directory may contain a directory

identifier and does not introduce a kind conflict.

namedprivate/

Second, this example shows that the dynamic semanticspacrage directories:Package directories start with a ‘+,

for identifier lookup that programmers may expect from hav-
ing performed a computation in the read-eval-print loop are
not valid within function and script definitions. Thus, pro-

grammers must be given some simple rules so they can de-

termine the kind of identifiers in function/script definitis.
This will make it easier for them to ensure they are us-
ing identifiers consistently within a function/script andlw
make the programs easier to understand.

Although this is just one toy example, it does demonstrate
that it is important for both MTLAB programmers and the
compiler/toolkit developers to have a clear understanding
and clean implementation of kind analysis. In Section 4 we
present a kind analysis that matches the curreariMB

7 semantics and in the subsequent section we present some

alternative kind analyses.

3. The Essence of MATLAB

In this section we provide a brief overview of the semantics
of MATLAB, concentrating on the rules for resolving iden-
tifiers® For the purposes of this paper we are concentrating
on the non object-oriented part of WiLAB and we assume
that all functions are either defined a;M.AB source or are
well-defined built-in functions.

At a high level, a MATLAB computation executes relative
to a pair<library, env> wherelibrary is a collection of
named function/script definitions, amhvis a mapping of
variable names to values. We define tibeary andenvin
more detail in the next two subsections.

3.1 MATLAB library of function/script definitions

MATLAB functions and scripts are stored in directories with
a specific format. A directorgl, may contain:

.m source files:Each file of the form.m contains either: (a)
a script, which is simply a sequence ofAvLAB state-
ments; or (b) a sequence of function definitions. If the
file .m defines functions, then the first function defined
in the file should be called (although even if it is not
calledf itis known by that name in MTLAB). The first
function is known as th@rimary function Subsequent
functions aresubfunctionsThe primary and subfunctions
within £m are visible to each other, but only the primary
function is visible to functions defined in other files.

Functions may be nested, following the usual static scop-
ing semantics of nested functions. That is, given some
nested functior , all enclosing functions, and all func-
tions declared in the same nested scope are visible within
the body ofr .

6Since we were unable to find any official language specifinatiocu-
ments, these semantics have been determined from readindeusl doc-
umentation [6], and observing the behaviour oAMAB 7.11.

for example+rmypkg/ . The primary function in each file
f.m defined inside a package directory corresponds
to a function nameg.f . To refer to this function one
must use the fully qualified name, or an equivalentimport
declaration. Package directories may be nested.

Type-specialized directories:lt is possible to overload
function declarations using type-specialized directrie
These directories have names of the fa@typename>,
for example@int32/ . The primary function in a filem
contained in a directory@typename/ matches calls to
f(al,...) , Where the run-time type of the primary (first)
argument iypename .

The lookup of a script/function is performed relative to:
f, the current function/script being executedurcefile the
file in which f is defined;fdir, the directory containing the
last called non-private function (calling scripts or ptiwa
functions does not chanddir); dir, the current directory;
andpath a list of other directories. When looking up func-
tion/script names, first is searched for a nested function,
thensourcefilds searched for a subfunction, then the private
directory offdir is searched, thedir is searched, followed
by the directories opath

Inthe case where there is both a non-specialized and type-
specialized function matching a call, the non-specialized
version will be selected if it is defined as a nested, subfunc-
tion or private function, otherwise the specialized fuowti
takes precedence.

The current directory and path do not normally change
during the execution of the program. This is particulanhetr
if the application has been written in a way that makes it
somewhat portable. However, there do exist run-time func-
tions which allowdir andpathto change at run-time.

3.2 Environment and Values

The environmenteny, corresponds to the MLAB notion

of a workspace. The environment maps variable names to
values. We can think of the environment as consisting of the
following four parts:

Main workspace: This is the initial workspace, a mapping
of variable names to values, which is acted upon by
commands entered into the main read-eval-print loop.

Function call workspace stack:A call to a function cre-
ates and pushes a new workspace, which becomes the
current workspace. A return from a function pops the
workspace, restoring back the new top of the stack as
the current workspace. In the case of a stack frame cor-
responding to a nested function, there are the usual dis-
play pointers to the stack frame workspaces correspond-
ing to the outer scopes. A call to a script does not create a



new workspace, but rather uses the workspace of the lastquite expensive. The basic idea is quite simple, as outlined
called function (i.e. the topmost stack frame). in “generalLookup " below. First a lookup in the current

Globals: The globals structure maps global variable names environment is performed, and if the identifier is found then

to values. There is one such globals structure shared bythe lookup returns a variable. If the identifier is not found i
all functions. A variablex” is local within a functionun-  the environment, then a lookup in the library is performed
til a call to “global) " occurs within the function body. and if an entry is found, then the lookup returns a named

Currently itis possible for a function body to contain both  function/script.

local and global uses ok". However, the current version ~ 9eneralLookup(id,env, lib)

of MATLAB issues warnings that future versions will not réti);lszlstl)gES;ISgr’]\sz\cll))env))
allow this. Presumably this means that in future versions  eise i ( existsinLib (id ., lib ))
a call to ‘global(x) " will have to dominate all other oc- return (lookuplnLib(id, lib))

currences of X" within the function body. else _ _ _
error ('Undefined variable or function)’

Persistents: The persistents structure maps (fufjyalified - }
functionname x variablename) to values. Persistent
variables are like global variables, but are associate wit

a specific named function only. Within function™ a 4. Kind Analysis

variable %” is made persistent through a caplefsist- A kind analysis for MaTLAB must perform two functions:
ent(x) ". Calls to persistent may only occur in function (1) it must assign a kind to each identifier occurrence in the
bodies (and not scripts) and a call teefsistent(x) " body of functions/scripts; and (2) it must detect clashes in
must dominate all other occurrences a&f in the func- kind assignments within a function/script body and produce
tion body. appropriate errors/warnings.

Since we were not able to find any formal description of

A MATLAB value can be one of the following types: the semantics, nor any description of the kind analysis (or
array, function handle, struct or cell array. even the existence of such an analysis), we developed an ex-

We can think of the basic types as being arrays and func-tensive set of test cases and observed the behaviounof M
tion handles. Arrays are homogeneous (i.e. all elements hav LAB 7.11. Based on those observations we have defined the
the same type) and the elements must have some numeridollowing kind analysis, which appears to replicate the se-
type (double, int32, char, .). In particular, the elements of mantics of MATLAB 7. By defining this analysis precisely
arrays cannot be handles, structs or cell arrays. Arrays hav we can both implement it in our own MLAB system and
a shape and contents, and arrays are mutable. A scalar isise it as the basis for subsequent static analyses. In fgct, a
simply a 1x1 array. A function handle refers to a closure, system attempting to match the semantics of modent-M
where the closure consists of a reference to the function andLAB systems mustimplement this kind analysis (or an equiv-
a reference to a workspace that maps free variables to val-alent one), otherwise the meaning of identifiers at run-time
ues. A function handle is created by either taking the handle may not be correct.
of a named function (for examplen “= @sin; ") or by cre- Our kind analysis assigns to each identifier one of the
ating a handle to an anonymous function (for examples following abstract values:

@C0c+1); 7). . Ip: Itis not known if the identifier refers to a named func-
Structs and cell arrays are heterogeneous and provide a tion/script or a variable. At run-time, an identifier with

way of aggregating data. Structs do not have explicit types this kind must be looked up with the general lookup func-

butare constructed using calls like = struct(x exp1.,- tion, first looking in the environment and then in the li-
brary.

yv.exp2) ", which would create a structure with two fields,

w_n [TAR1]

x" initialized to the value denoted byekp1” and “y” ini- _ - _ _
tialized to the value denoted byp2”. Each field can con- FN: The identifier refers to a named function/script. At run-
tain any type (array' hand|e' struct or cell array)_ Celaysr t|me, an identifier with th|S k|nd is |00ked up dil’eCt|y -in
have the same rectangular structure as arrays, but their ele ~ the library. Thus, even if a variable with this name exists
ments are cells instead of numeric values, where each cell ~ at run-time, the named function/scriptis useffiat run-
can contain any type. Thus cell arrays allow one to create  fime a function/script with this name does not exist in the
heterogeneous and nested arrays. Cell arrays are accessed current library, then it is an undefined function error.

using “a(..) " which denotes the cells or{... }" which VAR: The identifier refers to a variable. At run-time a vari-

denotes the contents of the cells. able with this kind is looked up in the environment only.

3.3 General Identifier Lookup Semantics 7 A variable may exist due to the use of dynamic features aveila MAT-
LAB, such as éval " and “assignin ". In older versions of MTLAB,

_m th?_rea_d'eval'prir_]t loop of MTFABa the_me‘_aning of an  which did not have a kind analysis, such dynamically-crbatariables
identifier is determined at run-time, which is potentially would shadow the function of the same name.



If at run-time a variable with this name is not in the envi-
ronment, then it is an undefined variable error.

PREFIX: The identifier refers to a package, as the prefix of a
fully-qualified function name. For example in the expres-
sionmypkg.f , mypkg would have the kind REFIX.

At the end of the analysis each identifier will be assigned
one of the valuesd, FN, VAR, or PREFIX or a compile-
time error signaling a kind clash will be raised. During the
analysis we use two further abstract values:

UNDEF: This is a special value used when analyzing func-

tions and is used to denote the fact that the identifier has

not yet occurred in any statements already analyzed. If
the analysis ends without a compile-time error, then there
will be no UNDEF values since every identifier will be
visited at least once.

MAY VAR: This is a special value to indicate that the iden-
tifier might be a R. It is used when an identifier is ex-
plicitly mentioned by afbad ” command. In this case the
identifier may or may not refer to a variable, depending
on whether or not the variable exists in the loaded file.
The MAY VAR value is also used as an initial approxi-
mation when analyzing script bodies. At the end of the
analysis if any identifier remains mapped toaMVAR,
its final kind is set to b because a general lookup should
be used.

followed by the then " part, followed by the &ise " part;

and in loops first the condition/header is visited and then
the body. In the case of functions with inner functions,
these are processed recursively, first the body of the outer
function, followed by a recursive analysis of all functions
which are immediately nested. As the AST is traversed an
abstract kind is assigned to each identifier.

Finalize kind assignments:The final step is to finalize the
kind assignments for identifier occurrences based on ei-
ther the final kind abstraction (functions) or the kinds
computed during the traversal (scripts).

The analysis for functions and scripts differ from each
other in terms of the initial approximation and the finaliza-
tion step (the first and third steps). The actual traversdl an
kind approximation rules (i.e. the second step) are the same
in both cases. We first present the approach for both func-
tions (Section 4.1) and scripts (Section 4.2), and thenajive
example to illustrate the rules, and the differences batwee
functions and scripts (Section 4.3).

4.1 Kind analysis for functions

For functions, the initial kind approximation starts byigas

ing VAR to each input and output parameter, andDgF

to all other identifiers (indicating no occurrence of identi
fier has been visited yet). Then, each statement is processed
using a depth-first traversal of the AST, updating the kind

These abstract values are ordered as shown in Figure 2approximation using the following rules and the mengg (

and based on this ordering theoperation is defined, which
is the join of the two values where it exists, agrebr other-
wise. For example, there is no join fom® and F, so the
result iserror.

Although discovering the structure and details of the anal-
ysis was quite challenging, in the end the analysis itself is
quite straight-forward, and consists of three steps:

Initialize: The initial kinds are set such that there is an
initial value, kind[id] for each identifier occurring in the
function/script.

Traverse function/script updating the kind abstraction:
This is a simple traversal of the AST representation of the
function/script based on the program structure, updating
the kind abstractions, and detecting compile-time kind
errors.

The traversal order is a simple depth-first traversal of the

operation defined in Figure 2.

Variable Definition: If identifier “x” is being defined (ie.
“x" is being used as an Ivalue on the left-hand side
of an assignment statement), of”‘is an argument to
“global(x) " Or “persistent(x) " then “x” must be a

variable in this statement. Hence the following rule is

used:

kind[x] + kind[x] > VAR

Note that if the previous approximation féind[x] was

FN, then this indicates a compile-time kind error because
there must be another place where the identifier was
bound to a named function and the currenfiMAB
semantics disallow an identifier being used both as a
variable and a named function/script. Thus, in this case
the analysis terminates with an error.

AST. Sequences of statements are visited in the orderCell Array Access: If identifier “x” is being used in a cell

found in the sequence; in assignment statements first the

right-hand side is visited, followed by the left-hand side;
in expressions the sub-expressions are visited fiesft-
to-right; in “if ” statements the condition is visited first,

8We should note that is important to always visit the sub-esgions first,
even when processing the left-hand side of an assignmenteveloping
our algorithm, we uncovered a bug in theaM.AB 7.11 implementation of
kind analysis. Consider the examplsjZe(size(i))=1 ". In this case
the sub-expression should first be evaluated. Sisée"“" is a function

array access (either as an rvalue or Ivalue), theh *“
must be a variable. This is one case where the syntactic

in the library, it has kind K. Then the outer use ofsize ” should be
processed, which is a definition of a variable, and so the khmlld be
VAR, which is a kind clash. This clash is not reported by the aurre
MATLAB 7.11 implementation and MathWorks has acknowledged tfet th
is a bug.

9This traversal is made more explicit when we compare thisagmh with
our proposed flow-sensitive analysis in the next section.



PREFIX  FN VAR I UNDEF D MAYVAR  PREFIX FN VAR
\ T / UNDEF UNDEF ID MAYVAR  PREFIX FN VAR
MAYVAR ID ID ID MAYVAR  PREFIX FN VAR
MAYVAR | MAYVAR MAYVAR MAYVAR PREFIX FN VAR

D PREFIX PREFIX PREFIX PREFIX PREFIX error error

FN FN FN FN error FN error

VAR VAR VAR VAR error error VAR

UNDEF

Figure 2. Merge (<) operation for kind analysis

structure clearly disambiguates between a variable and a
named function. The same analysis rule as\Mariable
Definitionis used:

kind|x] + kind[z] > VAR

Handle Expression or Command Statementif identifier

w_n

x" occurs in a handle expression (i.e. an expression of
the form “@x) or as the name of a command (i.e. in a
statement of the form x arg), ther™must be a named
function/script:® Hence the following rule is used:

kind[z] « kind[z] < FN

Note that if the previous approximation féind[x] is
VAR, a compile-time error is raised f% < FN evaluates
to error).

Variable Use: If the identifier is a use ofx” (i.e. occurs

as an rvalue), then we first check to see if #igd|x] is

one of UINDEF or ID, in which case no previous statement
has given this identifier a specific kind. In particular, this
means no previously analyzed statement has made this
identifier a \AR. If the identifier is in the library, we know
that this occurrence of the identifier must refer to a named
function. If the identifier is not in the library as a function
then we check to see if it is the name of a class/package.
Hence given identifierx”, and the current libraryiib ",

the following rule is used:

if  ((kind[z] € {ID, UNDEF})&(existsfunction(x,lib)))
kind|z]

elseif ((kind[x] € {ID, UNDEF})& (existspackage(x,lib))
kind[z] < PREFIX

+~ FN

else
kind[z] « kind[z] < 1D

Explicit Load: MATLAB allows loading variables from

savedmat files. Thus, a statement of the fornodd(-
'mydata’,’x’) "will attempt to load the value of variable

10|n MATLAB a function call of the formfoo(’'mystring’)
argument is a string, may also be writtlem mystring
ond alternative implicitly treatsnystring

, Where the
, where the sec-
as a string and not a variable.

This is a very natural syntax for some commands, especladiget used in
the read-eval-print loop, for example one can ademydata instead of
cd(’'mydata’)
function and not a variable.

. When used as a command, it clearly references a named

w_n

x" from the file “mydata ". If the load succeeds (i.ex"

is defined in the file) then the variable will be defined in
the workspace, but otherwise it will not. Thus, we have to
represent the situation where a variable may or may not
exist. For this situation we use the special abstract value
MAY VAR. In particular, note that if a subsequent state-
ment finds the kind to bens, then this is not considered
to be an error, and the kind will updated ta.F

kind[z] + kind[z] < MAY VAR

Variable Binding an “end”: There is one remaining corner

case, which is not at all obvious. In AtLAB, one can
use the keywordénd” to denote the last index of an ar-
ray. For example, if &” is an array and " is a hamed
function, then the value denoted bgnd” in the expres-
sion “a(f(end)) " is the index of the last element 0&™.
However, in order to bindehd” to the correct identifier,
we need to know which is the closest enclosing variable

name.

We have followed the intended MLAB 7 seman-
tics. Assume we are analyzing identifier”“in an ex-
pression of the formid _1Gd 2 ..Gd k (x (id _m..

(id _n(... end)...) " and that all ofid _mto id .n have
already been processed. If any of the more closely nested
identifiers (id .’ to “id _n") have the kind VR, then the
“end” has been bound.

If the “end” has not already been bound by a®/ then
there are three cases:

FN : If the kind of “x” is FN, then *” is not binding
the “end”, so the kind of %” does not change and
the analysis proceeds to the next outer level. If this
was the outermost level, then an error is produced
indicating that there is no variable bindingnt”.

VAR : If the kind of “x” is VAR, then %” is the binding
var, and the kind remains asaR and the binding
process terminates.

MAY VAR, ID or UNDEF: In this case the analysis needs
to determine if X" is the only remaining possibility to
bind “end” or not. If there are any outer identifiers (
“id 1" to “id k") that have kind AR, ID, MAY VAR
or UNDEF, then there is no way to determine which

identifier binds €nd”, and a kind error is generated to



indicate that the binding ofehd” is ambiguoust! If it somewhat arbitrarily chooses the outermost one. If eeith
there are no such outer identifiers, thehis the only identifier is in the library, then it issues an ambiguity efrfo
remaining possibility to bind theethd”, so its kind is The script case also differs from the function case in
changed to ¥R, even though it is not certain that the how the final kinds are assigned to identifier occurrences.
identifier is a variable (i.e. it has not been explicity Unlike in the function case, where the final kind values
assigned to). In the krLAB 7 implementation the  are used, in the script case the values that were computed
kind is changed without generating any warning, but during the analysis are used. Thus, when analyzing scripts
in our suggested alternative analyses we generate athe kind analysis decorates each identifier occurrence with
warning for this case. the current value ofkind[id]. The final kind assignment
makes a final pass through the AST adjusting the kind values
After traversing the complete AST of a function, the 2aS follows. Any i(_jentifier occurrence which had a kind of
final kind assignments are made to the identifiers. In the VAR Of MAYVAR is set to be b.** Note, however, that the
case of functions, all occurrences of an identifiet are analysis rules will still give compile-time errors for olovis
given the same kind, based on the final values computedMismatching of kinds.
by the kind analysis (this is not the case for scripts). The for each id occurrence in do
exact assignment is as follows, assuming that the final kind It id.kind in {VAR, MAYVAR}

. . . . id.kind = ID
assignment is stored in the mappingd ". else
for each id occurrence in o id-kind = Fn
if kind[id] in {ID, MAYVAR} .
id.kind = Ip 4.3 lllustrative Examples

else

id _kind = kind[id] In order to illustrate the kind analysis, and also to demon-

strate the differences between functions and scriptsjdens
the examples in Figure 3.

4.2 Kind analysis for scripts 4.3.1 Kind analysis for “nyf unc”

Scripts in MATLAB are simply a sequence of MILAB state-
ments. A script is called either from the main read-evatpri

Ioo!o, orfromafgnctlon oranotherscnpt. In t.he first case th rameters, followed by the function name, an optional list
script executes in the main workspace, and in the othercase§nput parameters, and then the function body which is ter-

it executes using the topmost stack workspace. The static i ated with the keywordehd”. The function “myfunc ” in

k|n|(_jka?r?ly3|s of ?fscrlgt mu;‘i t"’.‘"ﬁ. |r|1to tcop&dgraﬂor(;;hat, Figure 3(a) has one output parameter”);' and two input
uniike the case of lunctons, the Iniial Set or variables parameterssize ” and “i ”. Parameters have no types, and

!mown. Thus the |n|t|a_l set approximation for all |qlent|ﬁer variables within the function body are declared implicitly
is MAY VAR, representing the situation that the variable may upon first definition
or may not exist. Given this initial approximation the same The kind analys'is for fhyfunc ” is summarized in Fig-

rules are applied as with the function case. n ure 3(c). The table lists all the identifiers occurring in the

Thgre IS one_add|t|onal twist in handling Fhe”d ex- function definition. The initialization sets the parameter
pression for scripts. The rule used for functions may gen- (7,

) o : - r”, “size " and “i ")) to VAR, and all other identifiers to
erate too many errors because many identifiers in scripts

: UNDEF.
hf':lve_ Fhe_klnq MYV“AR’,, and thus there may be many am- The body of the function is then traversed, applying the
biguities in binding &nd”. For example, a script may have a analysis rules. For example, at line 8, identifiet s de-

ftgterpﬁnt ofk'_[hg ;(/I)Arm\s;ze(a(gpd)) W,h.ere thh 4 fand fined, so its kind is set to AR. At line 9 there are two iden-
size “have kind MAYVAR. SINCe Size 1S a fibrary func- tifier uses, §” and “magic ”. Following the rule for uses,s”
tion and a” is not a library function, it is very likely (but not is already a WR, S0 nothing needs to be done. At this point

certain) that the programmer intendesh¢” to bind to “a”. “magic " is still UNDEF, so a lookup is made in the library.
Since ‘magic " is in the standard MTLAB library, its kind

Thus, within scripts, the current MLAB 7 implementation
is set to . The analysis continues until the complete func-

In MATLAB the declaration of a function starts with the key-
word “function " followed by an optional list of output pa-

checks if one of the identifiers is in the library and the other
is not. If this is the case, it binds therd” to the identifier

not in the library. If both identifiers are in the library, the  12in our alternative approaches we are slightly more rigartiis issue a
warning in the case where one identifier is in the library dreddther is not,
and we issue an error when both identifiers are in the librad/vae also

11Note that we have implemented the intended™aB 7 semantics for issue an error when neither identifier is in the library.

the ambiguous case and not the current implementationAnuys 7.11, 13This seems like a strange decision to us, and we think thisjusape an
which has an acknowledged bug. The curremtAB 7 implementation artifact of how scripts interact with the current JIT corepiin MATLAB 7.
only finds an ambiguous binding if the ambiguous identifiehesimmedi- We suggest an alternative approach in the flow-sensitivigsinave present

ately nesting one and thus misses some ambiguous bindings. in the next section.
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(d) Kind analysis foimyscript

Figure 3. Kind analysis for a function and script (Note that to savecephe kinds in the table use only the first letter of the
kind.)

tion body has been traversed, producing the final kind ap- 9 in “myscript ", “magic " may be a variable, as denoted by

proximation shown at the bottom of the table. Identifiers “ MAY VAR. Hence, we cannot sharpen the kind estimation. In
“size 7,17, "“s”,“a", “fp " and “fp2 " are VAR, and the re- fact, it is only at lines 11 and 17, where there are explicit
maining identifiers are I¥. uses of the @ operator, where we can determine that an

The finalization phase traverses through the AST anno- identifier has kind K.
tating each identifier occurrence with the kind found in the  The finalization phase traverses through the AST final-
final approximation. In Figure 3(a) we have putthe final kind izing the kind assignment of each identifier occurrence us-

values for identifier occurrence. ing the information computed at the statement. AdRvand
MAY VAR values are coarsened tp,land all R values re-
4.3.2 Kind analysis for “nyscri pt” main. Note that unlike the case of functions, different oc-

currences of the same identifier in a script can be given dif-
ferent kinds. For example, at line 1@isplay " is an ID,
whereas at line 18display ” is a FN. This means that if
the “myscript " script were to be executed in an environ-
ment where display " was a variable, the statement at line
16 would refer to the variable, whereas the statement at line
18 would refer to the named functidf.

MATLAB scripts are simply a sequence ofaWLAB state-
ments. The run-time meaning of identifiers in the script body
can depend on the context in which the script is called. Most
importantly, the free identifiers may or may not refer to ex-
isting variables.

The analysis for fhyscript ” is summarized in Fig-
ure 3(d). In the case of scripts we do not know the con-
text in which the script will be called, and thus we have to 4 3 3 Implications of the differences in kind analysis
assume that every identifier may or may not be a variable. for scripts and functions

This corresponds precisely to theAMVAR abstraction, so i o i
all identifiers are initialized to My VAR. There are two important implications of the differences be-

The body of the script is then analyzed. Because all of tween the kind analysis for functions and scripts. Firstig,

the identifiers have an initial value of At VAR, the anal-  Kind analysis in scripts is likely to produce much less pre-

ysis can detect many fewer cases where an identifier mustcise (and hence less useful) kind information. This has-nhega

refer to. a . For. exarpp.le,,’ at line 9 Inmyﬂfnc we Cou_ld 14This is another “feature” of the existing MLAB 7 semantics that we
_determ_me tha_t Slncer.nagltf was not a variable, and S_mce think is problematic, and which we address in our upcoming-Bensitive
it was in the library, its kind becameNt However, at line analysis.




tive impact on our ability to effectively analyze and optrai improved, and in this section we describe the features of the
code in scripts. Secondly, one cannot easily inline scripts MATLAB 7 algorithm that we think are problematic, and the
(at the source code level), because the kind assignment (andwo different approaches we suggest.

hence the identifier lookup results) could be quite differen As we discuss our approaches, it is important to keep in
when the code is inlined into a function. This means that any mind the requirements for a good kind analysis. Firstly, the
inlining in a compiler are most easily done after the kind as- kind analysis should be very simple to understand for the
signment has been done, and the kinds that were computegrogrammers, so that it is trivial for a programmer (or an

in the script body must be retained in the inlined code. IDE) to determine the kind of each identifier. Likewise, the
) ) ) kind analysis should be simple and efficient to implement.
4.3.4 How kind analysis changes the semantics of Ideally the IDE should compute the kinds as the user edits,
MATLAB and perhaps colour code the identifiers to distinguish vari-

The introduction of the kind analysis in modern versions of ables from functions.
MATLAB has changed the semantics of the language in two  Related to this first point, we think the kind analysis for
ways. The first change is that some programs that previouslyfunctions and scripts should be as similar to each other as
computed a value will cause a compile-time kind error when possible. We found it very confusing that the kind analysis
first load/compiled by the JIT compiler. This was demon- for functions and scripts for MrLAB 7 produce quite dif-
strated by our motivating example in Figure 1. This exam- ferent final results.
ple would run under the old dynamic name lookup (as we  Secondly, we think that the kind analysis should be ex-
demonstrated using the eval-print-loop), but triggersralki  plicitly flow-sensitive or explicitly flow-insensitive. Teh
error when compiled using modernaviLag 7.11. MATLAB 7 kind analysis gives the illusion of being flow-
The second change is due to the fact that the kind anal-sensitive, since it is computed by a depth-first traversal of
ysis assigns a specific kind to identifiers, and then at run- the AST. However, it is not completely flow-sensitive as it
time performs a lookup of only that kind. Thus, programs does not handle control-flow merge points. For example,
may compute different results as compared to the dynamicconsider the program snippets in Figure 5. We can see from

lookup. For example, consider the program in Figure 4. this example that the WrLAB 7 kind analysis igraversal-
With a purely dynamic lookupsim” denotes the function ~ sensitive In the case of conditionals, it first analyzes the

“sum” at line 2 and the variablestim” at line 4. This is “then " branch and then analyzes these " branch. For ex-

because line 3 indirectly assigns teuf”. Such indirect ~ ample, in Figure 5(a), on thehén " branch “sum” gets the

assignments may be via calls to dynamic functionsdike kind FN, and then there is a kind mismatch when thige* ”

or via calls to scripts. branch is evaluated, because naw” is being assigned-to

With a kind analysis, a static decision must be taken about and is therefore a AR. However, the semantically equiva-
whether sum” denotes a ¥R or FN. Since there is no direct  lent snippet in Figure 5(b) gives a different answer. In this

assignment tosum”, and “sum” is in the library, “sum” will case thethen ” branch determines thattim” is a VAR, and

denote the functionstm” at both line 2 and line 4, even then the else branch also determines it iss&VWVe think

though a variablesum” exists at runtime at line 4. that whatever analysis you use should give the same result
for both the (a) and (b) variations. The analysis shouldeeith

1 function [r] = KindEx(a) give an error for both variations (as with our flow-sensitive

2 x =a +sum();

s eval('sum = ones (10):): analysis), or it should assigm¥ for both cases (as with our
4 1 =sum); . flow-insensitive analysis).
5 end . .
1 if (exp) 1 if (Texp)
Figure 4. Example of dynamic lookup versus lookup with 2 o = sum(10); 2 ISum(10) =
: : 3 else 3 else
kind analySlS 4 sum(10) = ...; 4 . =sum(10);
5 endif 5 endif
Since kind analysis changes the semantics, both program- (a) (b)

mers and compiler-based tools must be aware of kind anal - — -
ysis and must implement it correctly in order to match the ~ Figure 5. Anomaly due to traversal-sensitive analysis

semantics of MTLAB 7.11. Thirdly, we don't think that the kind analysis should

. . silently make assumptions about the binding efd” for

5. Alternative Kind Analyses the cases where there is some uncertainty, but where there is
Our original goal for this research was to clearly underdtan a common case where an assumption is usually correct. We
the MATLAB 7 kind analysis and to provide an algorithmand agree that it is practical to handle to common cases without
implementation for it. In the previous section we have ac- resorting to errors, but we believe that warnings should be
complished that. However, as we specified and implementedissued in cases where such assumptions are being made. For
the algorithm we were struck by ways in which it could be example, in the case fokize(a(end)) ", where ‘“size " is



FN and “a” is either MAY VAR or ID, it makes sense to bind , analyzeFile( fileAst )

“end” to “a” and to therefore assumea™is VAR, since this 2 switch on type of fileAst
is the common case. However, in such situations, the usér Casf Ecl”p,ts N

. L . 4 global inScript = true
should be warned that this assumption is being made. . AnalyzeScript ( fileAst )

Finally, we are mindful that there are a lot of existings
MATLAB programs and MTLAB programmers. In our al- 7 case Function
ternate approaches we wish to keep the same spirit of tHe g?t:;:cf:r}sicr:lplfile:Asf?lsfeunctionList
MATLAB 7 kind analysis. We aim provide alternative analy-lz AnalyzeFunction( f,{} )
ses which are cleaner and easier to understand thanhie M 1,
LAB 7 approach, while at the same time produce the sanrefunction AnalyzeScript( script )
results for almost all real MrLAB programs. 3 names = all name uses in script

In Section 5.1 we outline a flow-sensitive approach, |r15 initial = { (N:MAYVAR) | n € names}
Section 5.2 we outline flow-insensitive approach, and in
Section 5.3 we provide a summary of how thes\lag 7 7 out = Analyze( script .body, initial )

approach and our two approaches compare. 1o for eachnode in  script

for each name in node.kind

i . . . 2
5.1 Flow-Sensitive Kind Analysis ” 1 out[namet (Var, MaYVAR)
We have implemented both theAViLAB 7 and our alterna- 22 set out[name] =

tive analyses using our structure-based flow analysis franfé  retum out
work in McLAB. These analyses are structured as traversa}[s
over the AST. Listing 1 gives the top-level structure of oug
implementation of the MTLAB 7 analysis. 27 in = copy(outer)

The procedureinalyzeFile is applied to a file, which in 2 removeall (n:FUN) from in

. . . .20 pl={(nN:VAR) | n€ node.inArgs}
turn applies the appropriate analyses for scripts or fonsti ;5 = { (n:var) | n € node.outArgs
Note that since the MrLAaB 7 kind analysis for scripts s initial = (p1 = p2)<in
has special requirements (for example, the analysis needSZt
store results for each identifier occurrence), there is bailo * i
variable to indicate whether a script of function is being, or eachn in node.nested
analyzed. 36 outN = AnalyzeFunction( nested, out )

Both AnaylzeScript and AnalyzeFunctionhave three phases, ¥ for each (name:kind in outN _
first the kind abstractions are initialized, then the body of 'f S‘:t"NOH‘t?r'gi]E\fR and out{NJin {10, MAYVAR}
the script/function is analyzed, and lastly the final magpm40
of the identifiers is madeanalyzeFunctioralso handles the case 1 for each name in out
of nested functions. @2 if out[name]== M VAR

Listing 2 gives the top-level rules for our flow-sensitive’’ retumse;ufm[name] -
semantics. The overall structure of the analysis is very-sim —_ ,
lar to the MATLAB 7 version. However, there Zre two no}tl_able Listing 1. Top-level Analysis Rules - MrLAB 7
differences in these top-level rules.

First, we have decided that there is no need for the analy-the kind was anything else at that program point (including
sis of scripts to keep their kind results at each programtpoin VAR), then it is mapped tod. As you can see in Figure 6(b),
and thus there is no need for a global variable to differémtia this results is almost all identifiers being mappedto |
between analyzing scripts and functions. In contrast, our proposed analysis takes the kind results

Second, we see no reason why the final mapping of kinds as collected by analyzing the whole script body, and maps it
for scripts needs to be different than for functions, as it is to create one final kind mapping that is used for all program
in the MATLAB 7 semantics. Thus, in our flow-sensitive points. These values are shown on the last row of the table in
version we use the same final mapping of kinds for functions Figure 6(a). There appears to be no good reason to throw
and scripts (i.e. we use the final result after analyzing the away the information that an identifier is aAR, so we
body, except that My VAR must be mapped tadlbecause  retain that information, and we only mapAVIVAR to ID
the general lookup should be used for these identifiers). (the same rule as used for functions). It is clear that thd kin

We can see the impact of these changes in the analysignformation, as shown in Figure 6(c), is much more useful.
of scripts by revisiting theryscript " example. Figure 6(a) Many more identifier uses can be determined to b&.V
shows the kind analysis. The MLAB 7 semantics uses Furthermore, the kind assignment is consistent across the
the kind analysis results associated with each statemmuht, a whole script body. In particulargisplay " has a kind of i
maps that information to eitheplof FN. If the kind was at both lines 16 and 18, whereas it had different kinds using
FN at that program point, then the result is.FHowever, if the the MATLAB 7 approach.

function AnalyzeFunction( fun, outer )

out = Analyze( node.body, initial )
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s = size(i);
a =magic(s);
if (mod(s,2)==1)
fp = @sin;
r =fp(a);
else
r = coqa);
end
display (r);
fp2 = @display;
display (r);

(b) final mapping: NMLAB 7

1

2

3

4

5

6

7

s S =size(i);
9 a =magic(s);
10 if (mod(s,2)==1)
11 fp = @sin;
12 r =fp(a);
13 else

14 r = coga);
15 end

16 display (r);
17 fp2 = @display;
18 display (r);
19
(c) final mapping: flow-sensitive

Figure 6.

AnalyzeFile ( fileAst )
switch on type of fileAst
case Script
AnalyzeScript ( fileAst )

1
2
3
4
5
6 case Functions

7 for each f in fileAst . functionList
8 AnalyzeFunction( f,{} )

9

10 function AnalyzeScript( script )

11

12 names = all name uses in script

13 initial = { (n:MAYVAR) | n € names}
14

15 out = Analyze( script .body,
16

17 for each namein out

18 if out[name] == MaY VAR

19 set out[name] =0

20 return out

21

22 function AnalyzeFunction( fun, outer )
23

initial )

Listing 2. Top-level Analysis Rules - Flow-sensitive

Listing 3 gives the core analysis rules for theMAB 7
approach, and Listing 4 gives the rules for our flow-senssitiv
approach!® We have already explained the basieAB 7
rules in some detail in Section 4. The interesting diffeesnc
here are the way in the control-flow constructs are handled.

For example, consider thesimt case. The MTLAB 7
analysis visits the condition, the then part and the elst par
propagating kind information as it goes. In contrast, the ent uses of an identifier are used to determine its kind. This
flow-sensitive approach takes control-flow into account. It definition is exactly the same as how different uses deter-
analyzes the condition and uses that output as the input tomine kind in the flow-sensitivity analysis. If an identifier i
both the then and else parts, and then merges the outputsassigned to, it should be aa¥; if a handle is taken of it, it

15Note that statements assigning to flow sets do not denotesapithe
flow set, one flow set is propagated, and copies are creatgdpnising an

explicitly call to the copy function.

Kind analysis for script, MTLAB 7 approach vs. flow-sensitive

Similarly, the flow-sensitive analysis of the loops imple-
ments a proper fixed-point computatith.

We have made one other small improvement in the flow-
sensitive analysis. We feel that when a programmer explic-
itly loads a variable using thedad ” function with the name
of avariable as a string constant (i.ead(mydata’,’x’) ",
we should treat this the same as a direct assignment to the
variable, and assign it a kind ofA%. Even though the
“load " may not create the variable, the programmer’s ob-
vious intent is that the identifier should be a variable. This
is also consistent with the fact that a variable only needs to
be defined on one control-flow path to be assigned the kind
VAR.

5.2 Flow-Insensitive Kind Analysis

The flow-sensitive kind analysis provides a simpler defi-
nition of the kind semantics than the AviLAB 7 version.
However, to understand the analysis a programmer must rea-
son about control-flow and merge points in their programs.
One question that arises is: is the added complexity of flow-
sensitivity necessary? An alternative way of looking at the
kind analysis is in a flow-insensitive way. Simply look at ev-
ery occurrence of an identifier and determine its kind based
on how it was used, or give an error if it was used in an
inconsistent way. This definition is simple to understanhd, i
should be simple to implement and it should be efficient to
execute.

To formalize this definition we need to define how differ-

18For this particular analysis the fixed-point computatiotyareeds one
iteration, but we have expressed it using our standard loajysis frame-
work.
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Analyze( node, in )
switch on type of node
case WhileStmt
outl = Analyze( node.cond, in )
out2 = Analyze( node.body, outl )
out = out2

case IfStmt
outl = Analyze( node.cond, in )
out2 = Analyze( node.thehody, outl )
out3 = Analyze( node.elskody, out2 )

out = out3
case List
out = in

for n in node. list
out = Analyze( n, out )

case AssignmentStmt
out = Analyze( node.RHS, in )
for each Ivalue in node.LHS
out = Analyze( Ivalue . subExpressions, out )
out = out< {(lvalue:VAR)}

case ParameterizedExpr
if ( !containsEnds( node ) )
outl = Analyze( node.arguments, in )
out2 = Analyze( node. target , outl )
out = out2
else
(out, hasgnd) = AnalyzeExprWithEnds( node, in, null )

case CelllndexExpr
if ( !containsEnds( node ) )
outl = in x {(node.target:¥R)}
out = Analyze( node.arguments, outl )
else
(out, boundTob) = AnalyzeExprWithEnds( arg, in, node )

case NameExpr
if in[node.namef {UNDEF, ID}
if existsfunction (node.name, library)
out = in i {(node.name:R)}
else if existspackage (node.name, library)
out = in i {(node.name:REFIX) }
else
out = in i {(node.namen) }

case HandleExpr

out = in i {(node.name:R)}
case CommandStmt

out = in i {(node.cmdName:®)}

case GlobalStmt or PersistentStmt
out =in
for each name in node.names
out = out< {(name:\AR)}

case Load
for i = 2:size (load.arg)
if load.arg[i] is a string
if load.arg[i] does not start with—
out = in x {(load.arg[i]:MAY VAR) }

if ( inScript ) node.kind = copy(outklse node.kind = out
return out

Listing 3. Main Analysis Rules: MTLAB 7
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Analyze( node, in )
switch on type of node
case WhileStmt
out = Analyze( node.cond, in )
previousin = in
do
previousOut = out
outBody = Analyze( node.body, previousOut )
newln = out > previousin
out = Analyze( node.cond, newin)
while( out != previousOut )

case IfStmt
condOut = Analyze( node.cond, in )
thenin = copy(condOut)
elseln = copy(condOut)
thenOut = Analyze( node.thdmdy, thenin )
elseOut = Analyze( node.eldmdy, elseln )
out = thenOutx elseOut

case Load
for i = 2:size(load.arg)
if load.arg[i] is a string
if load.arg[i] does not start with—'
out = in x {(load.arg[i]:VAR) }

node.kind = out
return out

Listing 4. Main Analysis Rules - modified flow-sensitive

should be a R; if it's explicitly loaded, it should be a AR;
if it is in the library, it should be a R; if it's cell indexed or
has an énd” bound to it, it should be a Mr. The difference
is in the ordering of when these cases are applied.

Even though this analysis will be flow-insensitive, some
care is needed when ordering how identifiers get assigned a
kind. To demonstrate this, we present the following simple
program:

i=3;
X =i

A programmer would expect this program to execute
without issue. It's reasonable to expect this even though “
is a function defined in the MrLAB library. However, if
the flow-insensitive analysis were to look at the occurrence
of “i " on line 2 before the one on line 1, this would be an
error. It's an error because first we determined thattas
kind FN, then we saw an occurrence of it being assigned
to. This causes us to try to makés kind VAR, but as was
seen in Section 4, this would cause a kind conflict error.
Alternatively, if the analysis saw line 1 before line 2, it
would cause no error. The behavior of the kind analysis
should be deterministic, so an ordering needs to be defined.
This ordering should not cause reasonable programs, such as
our example, to be rejected. Finally, the ordering should be
defined in a simple and clear way.

Rather than define an ordering to how nodes are visited,
the flow-insensitive analysis defines five phases. Each phase
conceptually represents a traversal of all nodes in the AST,



and each phase performs one case for determining the KinGunction AnalyzeFunction( fun, outer )

of identifiers. These phases performed in the following orde -
3

1. Assign \AR to all identifiers on the left-hand side of as- «
signments; identifiers mentioned in mad ", “ global °
“persistent

", or identifiers indexed with cell indexing. |

. Assign I to all identifiers that have a handle taken of®
them or used for command syntax. °

10
11
12

. Assign I to all identifiers that are notAR and are in
the library as a function or®erix if it is in the library as

a package. 14

. Check that all énd” expressions can be bound without’
ambiguity and issue an error for ambiguous cases.

17

. For each unambiguousrid” expression select the cor- *
rect identifier to bind to theehd”. If the selected identi-
fier has kind b, change it to kind ¥R and issue a warn- =z

ing. If there is no selected identifier, issue an error. 22
23

The first three phases can be thought of in the followingf
way. First all obvious variables are found, then all obviouzsz
functions, then the less obvious functions. Each of these

phases is run completely, and if any phase tries to assignsa

kind to an identifiers that already has a conflicting kindnthe*
a kind conflict error occurs. 22
The fourth and fifth phases handle the case for binding
“end” expressions. The fourth phase processes all expres-
sions containingénd” to ensure that there is no ambiguity in >
choosing the binding identifier. The fifth phase then rwisitjz
the unambiguous expressions containiagd”, determines
which identifier binds theénd”. If the binding identifier has s
kind 1D, it assigns it the kind WR and issues a warning. If jz
there is no binding identifier, then it issues an error. "
The fourth and fifth stages must be conceptually separate

37

in = copy(outer)

remove all (n:FUN) from in

outl ={ (n:VAR) | n € node.inArgs}
out2 ={ (n:VAR) | n € node.outArgst
out = (outlp< out2)e<in
AnalyzeBody (fun.body)

for eachn in node.nested
outN = AnalyzeFunction( nested, out )
for each (name:kind in outN
if outN[name]==\AR and out[N] in {ID, MAY VAR}
set out[name] = ¥R

function AnalyzeScript( script )

names = all name uses in script
initial = { (n:MAYVAR) | n € names}
AnayzeBody(script.body)

function AnalyzeBody( body )

outl = out
for each AssignmentStmt,Load,Global, Persistent , Cellindex niodéody
outl = Analyze( node, outl )

out2 = outl
for each HandleExpr handle in body
out2 = Analyze( handle, out2 )

out3 = out2
for each NameExpr name in body
out3 = Analyze( name, out3 )

out4 = out3
for each ParameterizedExpr exp in body
if hasEnd(exp)
out4 = AmbiguityCheck( name, out4 )

out5 = out4
for each ParameterizedExpr exp in body
if hasEnd(exp)
out5 = Analyze( name, out5 )

passes because we do not want traversal order to mattersIf

44

we were to change the kind of some identifiefrom 1D

out = outb

to VAR during the fourth pass, this could affect a subsequent
ambiguity check involving. This would mean that different
traversal orders could give different results. To prevbig, t

Listing 5. Ordering of Flow-Insensitive Analysis

In the flow-sensitive analysis, this code would have been

all of the ambiguity checks are completed in the fourth pass flagged as causing an error. This is because line 1 is visited

and then all unambiguous bindings and changes of kinds
from ID to VAR are made in the fifth pass.
Pseudo-code that demonstrates this ordering is given in

before line 2 and on line 1 the occurrence of fs treated
as a function call. When it reaches line 2, the flow-sensitive
analysis tries to makea " a VAR, which causes the error. In

Listing 5. This pseudo-code gives the top-level rule for an- the flow-insensitive version, this code would not be flagged.

alyzing functions and scripts. Listing 6 presents the main
analysis rules for the flow-insensitive analysis. It's impo
tant to note that there are no rules for nodes like"“and

It simply treats " as a variable. Presumably, at runtime,
if this variable had no value, it would cause a variable-not-
defined error. This means the flow-insensitive analysis pro-

while ". Traversal over these nodes is captured in the top- yjdes fewer static guarantees. However, if an error ocdurre

level rules.

It's important to note that this ordering has a preference
for assigning MR. This causes some differences over the
flow-sensitive analysis when it comes to error reporting. Fo

at runtime, the kind information could be used to give a more
precise error since it knew that it was expecting a variable t
be defined.

Even though the analysis is described as five passes

example, the following code: through the code, our implementation optimizes this by in-

troducing some new abstract values and implements one

X
i pass through the code that handles the first three phases,

i
3;
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function Analyze( node, in )
switch on type of node
case AssignmentStmt
for each Ivalue in node.LHS
out = out {(lvalue:VAR)}

case NameExpr
if in[node.namef {UNDEF, ID} and node.namee library
out = in 1 {(node.name:R) }
else
out = in xt {(node.namen) }

case HandleExpr
out = in 1 {(node.name:R) }

case Load
for i = 2:size (load.arg)
if load.arg[i] is a string
if load.arg[i] does not start with—
out = in x {(load.arg[i]:\AR) }

node.kind = out
Listing 6. Main Analysis Rules - modified flow-insensitive

The second block of five situations represents cases
where there are two statements involving identifief “
where there is sequential control flow between the two state-
ments. Again the first four situations give identical result
for all three analyses, but the fifth ong,D, gives a different
result for the flow-insensitive analysis (as discussed @ th
previous subsection).

The final block of six situations corresponds to cases
where there are two statements involving identifiet, but
there is no control flow between them. These exhibit more
differences between the analyses. The two c8d&s and
U, |D are particularly interesting. In both of these caseé’s “
should be a K on one branch and aa% on the other branch,
and thus there should be a kind conflict. The strange traversa
strategy of the MTLAB 7 approach finds the error in second
case, but not in the first, whereas the flow-sensitive apjproac
correctly finds errors in both cases. The flow-insensitive
approach ignores any control flow and does not signal an
error in either case, but gives a kind oAN because there
exists an assignment to™

and a second pass through only the expressions that contair@' Empirical Study

“end” expression.
We believe that the flow-insensitive analysis is more suit-

In order to experiment with our analyses we gathered a large
number of MATLAB projectst’ The benchmarks come from

able for use in an IDE because the analysis does not depend wide variety of application areas including Computatlona

on the order of visiting the nodes, and it is quite easy to up-
date the results if the user adds a new statement.

5.3 Summary of Analysis Differences

We have presented three algorithms for kind analysis and
discussed their differences. Table 1 gives an overall sum-
mary of the key differences. The leftmost column gives a
name to each situation, wheBestands for a definition,)
stands for a use, arld stands for a function handle. There
are also two specializations of usé, stands for an iden-
tifier which corresponds to a function in the library adg
stands for an identifier that does not correspond to a fumctio
in the library.

For each situation we give a small snippet of code which
corresponds to the situation, and the analysis resulth&tr t
piece of code for each of the three analyses. For thglvB
7 and flow-sensitive analyses we give the analysis results
that would be computed during the propogation phase of the
analysis, and then the final kind assignment. For the flow-
insensitive analysis we give only the final result.

The first block of five situations represents cases when
there is only one statement involving identifief *All three
analyses compute exactly the same result for the first four
situations. However, the fifth situatioft,,, does show a
difference. This is the case where the variabl&i$ binding
and ‘end”, and “i " has kind UINDEF or ID. The MATLAB
7 approach silently determines that'‘is a VAR, whereas
our two approaches warn that this kind assignment is being
made.

Physics, Statistics, Computational Biology, Geometm-Li
ear Algebra, Signal Processing and Image Processing. We
analyzed 3057 projects composed of 11692 functions and
2307 scripts. The projects vary in size between 283 files in
one project to a single file. A summary of the size distribu-
tion of the benchmarks is given in Table 2 which shows that
the benchmarks tend to be small to medium in size. How-
ever, we have also found 9 large and 2 very large bench-
marks. The benchmarks presented here are the most down-
loaded projects among the mentioned categories which may
mean that the average code quality is higher than many less
used project3®

Benchmark Category | # Benchmarks
Single (1 file) 2067

Small (2-9 files) 859

Medium (10-49 files) 120

Large (50-99 files) 9

Very Large ¢ 100 files) | 2

Total 3057

Table 2. Distribution of size of the benchmarks

17Benchmarks were obtained from individual contributorsspprojects
from  http://www.mathworks.com/matlabcentral/fileexchange
http://people.sc.fsu.edu/ ~jburkardt/m\_src/m\_src.html
http://www.csse.uwa.edu.au/ ~ pk/Research/MatlabFns/
http://www.mathtools.net/MATLAB/

18We continue to add to the benchmark set, further contribatiare most
welcome.

and



Flow-

Name Code MTLAB 7 Flow-Sensitive Insensitive
D i = /] S1 Prop  Final Prop  Final Final
S1| VAR VAR S1| VAR VAR S* | VAR
U =i/ S1 Prop  Final Prop  Final Final
" Si| Ip ID S1| Ip ID S* ID
U =i/ S1 Prop  Final Prop  Final Final
! SI| FN FN SI| FN  FN S| FN
H = @i /l S1 Prop  Final Prop  Final Final
S1| FN FN S1| FN FN S* FN
E | = iend) // S1 ] Prop Final Prop Final Final
v S1| VAR VAR S1| Ip Vvarwarn S* | var,warn
= ST Prop  Final Prop  Final Enal
DU .- S1| VAR VAR S1| VAR VAR S VaR
=ill 82 S2 | VAR VAR S2 | VAR VAR
= ST Prop Final Prop Final Final
DH - S1| VAR error S1| VAR  error S error
= @i Il S2 S2 | error error S2 | error error
= @i TSI Prop Final Prop Final Final
HD S1 FN error S1 FN error S T error
1= Il S2 S2 | error error S2 | error error
=1 /ST Prop  Final Prop  Final Final
U,D S1 ID VAR S1| Ip VAR S* VAR
i= Il S2 S2 | VAR VAR S2 | VAR VAR
=1 /7SI Prop Final Prop Final Final
u,D S1 FN error S1 FN error ST Var
i= Il S2 S2 | error error S2 | error error
G i
i= /I S1 Prop  Final Prop _Final .
S1| VAR VAR Final
D|Un else S1| VAR VAR
_ S2 ID VAR S* | VAR
=i/l s2 S2 | VAR VAR
end /| S3 S3 | VAR VAR
T (e :
=i/l s1 Prop  Final Prop _ Final -
S1 ID VAR Final
Un|D else S1 ID VAR -
i= Il S2 S2 | VAR VAR S2| VAR VAR S VAR
end /| S3 S3 | VAR VAR
T (e i
N - Prop Final
= s Prop _Final S1| VAR error Final
D|U; else S1| VAR VAR .-
=i/ s2 s2 | VAR VAR S2 FN error S VAR
end // S3 S3 | error  error
G i
=i/l S1 Prop Final Prop Final .
S1 FN error Final
U;|D else S1 FN error s2 | var error ST Var
i= Il S2 S2 | error  error
end // S3 S3 | error  error
G i
) - Prop Final
i = /I S1 Prop Final .
DIH | else S1| Var _ error 2; \f:ANR b = ;'P;I
= @i Il S2 S2 | error error s3 | error  error
end /[ S3
T (e i
=@ /st Prop _Final ST PFrﬁp eﬁgil Final
H|D else S1 FN error
C S2 | VAR  error S* | error
1= Il S2 S2 | error error
end // S3 S3 | error error

Table 1. Comparative Summary of the thrkimd analyses




We ran the three kind analyses on all files in the bench-  The number of identifiers found to beiRvas exactly the
marks, and we categorized all identifiers based on their kind same for all three approaches. All of the remaining differ-
assignment. The cumulative results for both functions in Ta ences come from assigning\N instead of May VAR (which

ble 3 and scripts in Table 4. is mapped tobd when analysis ends) to load arguments.
) ] Perhaps the most interesting aspect of the results is the
6.1 Kind results for functions small differences between the results using the original

Table 3 gives the results for the functions. For functions MATLAB 7 semantics and our proposed approaches. Our
we counted the number of identifiers (not identifier occur- goal was to design cleaner approaches, to make the results
rences). For example, fomyfunc ” in Figure 3(a) there are  of kind analysis easier to understand, but to avoid breaking
12 identifiers and we would have counted AR/and 5 R, the working codes as much as possible. Based on our results
meaning that we found 7 variables and 5 named functions.we feel that we achieved that, and we can recommend the
Overall, we found that about 58% of the identifiers were improved approaches to be used in future versions of the
variables and about 40% were named functions. Only 1.2% MATLAB language.

of the identifiers remained uncategorized)kfter the kind
analysis. The three different kind analyses had only smal
differences in their outputs, which is what we intended. We Table 4 gives the results for the scripts. Recall that inTM
examined all benchmarks where the results differed in order LAB 7 approach, a variable inside a script can only have final
to determine the cause of the difference. kinds of ID, FN or error, and that one identifier can actually
have different kinds at different program points. However,

1 6.2 Kind results for scripts

Kind #1d. (Matlab) | #1d. (FS) | # Id. (FI) in our two alternative approaches we update the kind of all
VAR 107327 107340 | 107345 occurrences of an identifier based on the final kind analysis
FN 75486 75486 75486 results, and we retain thea® kind.

ID 2357 2333 2333 Because the MTLAB 7 results are program-point spe-
PREFIX 12 12 12 cific, for scripts we counted the kinds for each identifier oc-
error 1 3 0 currence. For example, for the script in Figure 6, we would
warn 0 9 / count the kind for the 22 identifier occurrences as summa-
Total 185183 185183 | 185183 rized in the comments. We have also reported, for theM

LAB 7 case, the kinds both before and after the final mapping
Table 3. Cumulative Results for Kind Analysis of 11698 (post-process) of kinds.

functions
Kind | #ld. Matlab | #Id. Matlab | #ld. FS| #Id. FI

Let us first summarize the differences in the number of raw post-process
errors found. The flow-insensitive (FI) approach did not | VAR 153563 0 154065| 154075
find any kind errors in any of the benchmarks. The flow- | FN 1 1 3 3
insensitive approach can only find kind clashes for very ex- | 1D 69027 222590 68413 | 68413
plicit situations such aBH, HD, D|H, andH|D. The fact error 0 0 0 0
that no such kind error occurs in any of the benchmarks | warn 0 0 110 100
may mean that programmers find those rules easy to follow| Total 222591 222591 222591 222591

and are unlikely to make this sort of error. TheaAM AB

7 approach found only one more kind error than the flow- Taple 4. Cumulative Results for Kind Analysis of 2305

insensitive approach, and this correspondedlth|® case. scripts

As we expected, the flow-sensitive (FS) approach caught

more programming errors. The two extra errors that were  The results for scripts are very different than for func-

only found using the flow-sensitive approach were of type tions, with almost all of the identifiers being given the kind

D|U;. ID inthe MATLAB 7 approach (even though before the post-
Both our flow-sensitive and flow-insensitive approaches process step many identifiers had been determined to be

issue warnings when arerid” expression causes an identi- VAR). Since almost all identifiers will have kina] which

fier to be given the type AR (the E,, situation). The flow- have an expensive general lookup, the runtime overheads for

insensitive version finds fewer such warnings. The two warn- resolving names in scripts will be higher than for functions

ings which are caught by the flow-sensitive approach, but This lack of accurate static information about the idertfie

not by the flow-insensitive approach, are in situations wher in scripts also implies that any subsequent static analysis

there is an assignment to the identifier later in the program. of the script will have limited precision. In both our flow-

In the flow-insensitive case all assignments are analyzedsensitive and flow-insensitive approaches, we find a signif-

first, so when the end expression is analyzedithel[x] is icant number of ¥R identifiers, which improves the situa-

already \AR, and no warning is issued. tion. Furthermore, keeping thea® kind makes the behavior




for scripts more similar to functions and as a result makes th raising a compile-time error. Octave uses the completely dy
language easier to understand. This will also help in subse-namic semantics - at run-time the right-hand-siderefers
guent static analysis and compilation of the code. to a function and the left-hand-side™refers to a variable.

It is also interesting to note that the flow-sensitive and  There have also been research systems which had impres-
flow-insensitive analysis compute the same kinds for almost sive static type inference analyses for subsets afMB,
all identifier occurrences in the scripts. Again like in func including the FALCONJ[9], MAGICA[4] and MaJIC[1] sys-
tions, the flow-insensitive approach found fewer warnings. tems. More recently the McFor[5] and McVM[2] systems
Both of them manage to find slightly moreaR instances have implemented variations on type and shape analysis in
than the MaTLAB 7 approach (before post-processing) be- the context of ahead-of-time and JIT compilers for subsets
cause of our treatment of explicit loads to named variables of MATLAB. This paper is really addressing a simpler, but
(remember that we useA® instead of MAY VAR). The two fundamental, problem for a modern version oAMAB . To
cases of K is from a code that references an identifier match the semantics of MLAB 7, the kind analysis must
twice and then takes a function handle of the identifier. In be first be run to assign kinds to identifiers and to create
scripts MAaTLAB keeps copy of the kind at each program- an appropriately specialized IR on which the more complex
point so the previous occurrences of the identifier don't see shape analyses can be applied. Our hope is that a wide va-
the change of kind to i. riety of static analyses, including similar sophisticatgole

Even with our improved analysis for scripts it is in- inference algorithms, can be implemented more easily and
evitable that many identifiers will not be able to be assigned for a larger language subset starting with our infrastnectu
a kind more precise tharpl The overall numbers show a
similar trend to what we observed in theyscript ” exam- .
ple from Figure 6. In that example, 5 of the 12 identifiers 8. Conclusions
are given a final kind of b (size,i,magic, mod and cos). In ~ This paper has presented the problem of defining and imple-
all of these cases there are no explicit statements witlein th menting kind analyses for MrLAB. When we started our
body of the script which can determine if these have kind Project for developing an open and extensible compiler and
VAR or FN. Indeed, whether they area¥ or FN depends analysis framework for MTLAB we did not imagine that
on the context from which they are called. If the identifier is this was a potential paper topic - we expected it to be trivial

a variable in the caller's workspace, then the identifiet wil o build a good intermediate representation and that a decen
refer to a variable, and if it is not in the caller's workspace front-end could resolve all the identifiers. However, theeno

the identifier will refer to a named function. Thus, there re- We learned about MrLAB, the more we realized that this is

main overheads for using scripts, both in the extra lookups actually a foundational problem and that a good solution to

required and in the possible imprecision of subsequent anal this problem was imperative as a starting point for all other
yses. static analyses.

Our first objective was to specify the kind analysis as it is
implemented in MATLAB 7. As there is no written language
7. Related Work standard for MTLAB, we accomplished this by developing
This paper tackles a very basic problem, giving a meaning a large set of tests that were designed to expose the sabtleti
to identifiers in a program. With many languages these are of the kind analysis. Based on these tests we developed a
trivial issues that are dealt with by standard front-endioar kind analysis which appears to match the intended MB
and symbol table modules. Even reasonably complicated sit-7 semantics. In this process we discovered several bugs or
uations, such as properly disambiguating package names irinconsistencies in the MrLAB 7 implementation, which we
Java, usually have quite clear specifications and statiestyp reported to MathWorks.
to work with. However, as we discovered when building our ~ While developing the MTLAB 7 kind analysis algo-

MATLAB infrastructure, the kind analysis problem forniv rithm, we found aspects of the approach that we thought
LAB was not obvious and we could find no documentation could be improved. Thus, we also designed two new vari-
or prior work on this problem. ations of the kind analysis, one flow-sensitive analysid, an

There are other open MLAB-like systems such as another flow-insensitive analysis. In both cases we incorpo
Octave[8] and Scilab[3]. Octave uses a syntax mostly com- rated improvements to the analysis, especially in the-treat
patible with MATLAB, whereas Scilab defines a somewhat ment of scripts.
different syntax. Both of these systems concentrate on pro- Our objective was to keep the general intention of the
viding an interpreter for a MrLAB-like language, rather ~ MATLAB 7 kind analysis, but to have cleaner specifications
than providing a static analysis framework. Thus, all of the which would be easier for programmers to understand and
complexities of deciding the meaning of an identifier are for tool implementers to implement.
deferred until runtime and these systems do not use a kind We implemented all three kind analyses in oucvhB

analysis. For example, in Octave, the exampleiof 4 compiler framework, and evaluated the three analyses on a
from the motivating example of Figure 1 executes without large number of MTLAB 7 programs which come from a



wide variety of sources. We were quite pleased to see thatReferences
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