
Kind Analysis for MATLAB

Jesse Doherty, Laurie Hendren and Soroush Radpour

McGill University

[jdoher1,hendren,sradpo]@cs.mcgill.ca

Abstract
MATLAB is a popular dynamic programming language used
for scientific and numerical programming. As a language, it
has evolved from a small scripting language intended as an
interactive interface to numerical libraries, to a very popular
language supporting many language features and libraries.
The overloaded syntax and dynamic nature of the language,
plus the somewhat organic addition of language features
over the years, makes static analysis of modern MATLAB

quite challenging.
A fundamental problem in MATLAB is determining the

kind of an identifier. Does an identifier refer to a variable, a
named function or a prefix? Although this is a trivial problem
for most programming languages, it was not clear how to do
this properly in MATLAB . Furthermore, there was no simple
explanation of kind analysis suitable for MATLAB program-
mers, nor a publicly-available implementation suitable for
compiler researchers.

This paper explains the required background of MATLAB ,
clarifies the kind assignment program, and proposes some
general guidelines for developing good kind analyses. Based
on these foundations we present our design and implementa-
tion of a variety of kind analyses, including an approach that
matches the intended behaviour of modern MATLAB 7 and
two potentially better alternatives.

We have implemented all the variations of the kind anal-
ysis in MCLAB, our extensible compiler framework, and we
present an empirical evaluation of the various analyses on a
large set of benchmark programs.

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers

General Terms Experimentation, Languages, Performance

Keywords MATLAB, Name Resolution, Kind Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright © 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

1. Introduction
MATLAB is a popular dynamic programming language used
for scientific and numerical programming with a very large
and increasing user base. The most recent data from Math-
Works shows that the number of users of MATLAB was 1
million in 2004, with the number of users doubling every
1.5 to 2 years.1 Certainly it is one of the key languages used
in education, research and development for scientific and en-
gineering applications. There are currently over 1200 books
based on MATLAB and its companion software, Simulink
(http://www.mathworks.com/support/books). This large
and diverse collection of books illustrates the many scien-
tific areas which rely on computational approaches and use
MATLAB .

Given the importance of MATLAB there is a real lack of
publicly-available compiler toolkits for analyzing MATLAB

programs, thus hindering development in the research com-
munity for new optimization, program understanding, refac-
toring and verification tools. All of these tools need a good
framework for program analysis. However, the dynamic na-
ture of the language, the overloaded syntax, plus the some-
what organic addition of language features over the years,
makes static analysis of modern MATLAB quite challenging.

This paper tackles the foundational problem of determin-
ing whether an identifier refers to a prefix, a variable, a
named function. We call thiskind analysis. It might seem
surprising that this is a problem worth investigating, but
while building our MCLAB [7] system for analyzing MAT-
LAB we found that this was a crucial concept to understand
correctly, and a crucial first phase of our analysis framework.

Without knowing the correct kinds of identifiers one can-
not even build a very specific intermediate representation
(IR). For example, an expression of the form “a(i) ” could
correspond to four different meanings depending on whether
“a” is a variable or a named function, and whether “i ” is
variable or named function. If both are variables, then this
is a simple array access of array “a”, indexed by variable
“ i ”. If both are named functions, then this is a call to func-
tion “a”, with an argument which is the result of a call to
function “i ”. The two other cases correspond to when one

1 From www.mathworks.com/company/newsletters/news_notes/
clevescorner/jan06.pdf .

identifier is a variable and the other is a function. Clearly,to
build an IR that is suitable for further analyses one would
like to explicitly represent these different cases.

Since MATLAB does not have type declarations, and since
it does not syntactically distinguish between array/variable
accesses and function calls, older versions of MATLAB and
other interpreter-based implementations such as Octave[8]
actually determine the meaning of identifiers completely at
runtime. In such systems an expression such as “a(i) ” is
stored as a very unspecific fashion such as aparameter-
ized expression, and the meaning of that expression is de-
termined, at runtime, by the interpreter. Each identifier is
looked up first in the current workspace, and if it is found
then the identifier refers to that variable. If it is not in the
current workspace, then it is looked up in the current path of
function definitions. If it is found, then the identifier refers
to that named function, and if it is still not found then it is a
runtime error.

Having these dynamic semantics to determine the mean-
ing of identifiers is very easy to implement in an interpreter,
but it has two main disadvantages. First, it is quite diffi-
cult for programmers and IDEs to determine the meaning
of identifiers. Secondly, with such completely dynamic se-
mantics it is hard for a JIT compiler to produce very effi-
cient code. Thus, in more modern versions of MATLAB the
semantics have been changed to include a static kind assign-
ment to identifiers. In systems such as MATLAB 7, when a
function is first loaded (JIT-compiled), a static kind analysis
is applied which assigns a kind to each identifier in the body
of the function. The kind analysis also raises compile-time
errors for situations in which an identifier is used as both a
function and variable within the same function body.

It is important to note that the static kind analysis in
MATLAB 7 is not a static approximation of the old dy-
namic semantics, but effectively defines a new semantics
for MATLAB . The new semantics will reject some programs
that would previously execute in the old semantics, and it
changes the meaning of some programs, particularly those
that make use of other dynamic features such as “eval ” and
“assignin ”. Thus, to properly understand the meaning of a
MATLAB program, and to correctly implement compilers for
modern versions of MATLAB such as MATLAB 7, it is im-
portant to have a clear definition and implementation of kind
analysis. We were unable to find either, and so our defini-
tion and implementation of kind analysis is the topic of this
paper.

We first give a motivating example in Section 2. This il-
lustrates the difference between the dynamic and static se-
mantics and also shows the confusion caused when an IDE
does not understand the analysis, and when a programmer
does not understand the definition of the kind analysis (or
even knows that such an analysis is performed by the sys-
tem).

As many compiler writers are not familiar with MATLAB ,

and since there is no accessible formal definition of the lan-
guage, we provide the essence of MATLAB semantics in Sec-
tion 3. This information is needed to completely understand
the problem and solution in this paper, and may also be use-
ful for those interested in working on other compiler prob-
lems for MATLAB .

Given there was no documentation for kind analysis, we
developed a large set of test programs designed to expose
the intended semantics of MATLAB 7 kind analysis, and we
designed and implemented a flow analysis which matches
those semantics. This analysis is neither flow-insensitivenor
fully flow-sensitive, but is defined by a depth-first traversal
over the AST.2 This analysis is presented in Section 4.

By defining and implementing a kind analysis to match
MATLAB 7, we noted several bugs which we reported to
MathWorks3, and we also found some issues which caused
us to rethink kind analysis and to suggest some alternatives.
In Section 5 we present our alternatives. The first alterna-
tive is a flow-sensitive analysis very similar in spirit to the
MATLAB 7 analysis, and the second alternative is a flow-
insensitive approach.

We have implemented both the MATLAB 7 approach and
our alternatives in our MCLAB extensible compiler frame-
work, where it now forms the basis for all subsequent static
analyses. We examined the results of the analyses on a
large suite of MATLAB programs collected from a variety
of sources and the results of those results are presented and
evaluated in Section 6. We found that our alternative flow-
sensitive analysis provided a cleaner specification while at
the same time matching the original MATLAB 7 approach
except in cases where our approach detected more static er-
rors.

The main contributions of this paper are:

• We identify static kind analysis as an important concept
that must be clearly defined and understood by MATLAB

programmers and compiler developers. We also provide a
summary of MATLAB semantics so other researchers can
understand both the kind analyses in this paper and other
analyses they may wish to develop.

• We present an algorithm to compute kinds which matches
the intended semantics of MATLAB 7.

• We point out weaknesses of the current kind semant-
ics/analyses and suggest two alternatives, a flow-sensitive
approach and a flow-insensitive approach.

• We implemented all variations of the kind analysis and
we present a comparison of the results, and we discuss
the pros and cons of each approach. The implementation
is part of a publicly-available toolkit.4.

2 It took us some time to discover this, as we were expecting either a flow-
sensitive or flow-insensitive approach.
3 These were acknowledged as bugs by MathWorks and the algorithm pre-
sented in the paper fixes those bugs.
4 http://www.sable.mcgill.ca/mclab/download_mclab.htm l

2. Motivating Example
To demonstrate the problem of not having a clear definition
of kind analysis, consider the toy example for the MATLAB

function “iassigni ” given in Figure 1(a). This is the display
produced with MATLAB 7.11 IDE. The IDE signals that
there are potential problems with this function via the red
bar on the right. When the user clicks on the red bar, the
warnings and explanation given in Figure 1(b) are displayed.
These warnings would make sense if all occurrences of the
identifier “i ” refer to variables. However, the IDE appears
to be oblivious of kind analysis, and in fact the warnings are
not correct, and when the user attempts to call the function,
a completely different error occurs, as listed in Figure 1(c).
What is going on?

To try and understand the problem, the user might type
the statements one by one into the read-eval-print loop. Fig-
ure 1(d) shows such an interaction. Each line beginning
with “>>” is a user input. The user starts by clearing the
workspace. The user then checks the binding of identifier
“ i ” using the command “which i ”. This returns the fact that
“ i ” refers to a built-in named function in one of the standard
toolboxes (returning the mathematical value fori). The user
then types in the previously troublesome statement “i = i ”.
This actually has a well defined meaning; it first evaluates
the right-hand-side, which is a call to the built-in function
called “i ”, and then assigns the value to a variable called
“ i ”. Since variables are not declared in MATLAB , they are
created upon their first definition. The user then verifies that
“ i ” is now a variable using another call to “which i ”. Fi-
nally, the call to display is done, which displays the value of
the variable “i ”.

The root of all this confusion is that the semantics of
name lookups depends on whether or not a static kind anal-
ysis is being used. When the function “iassigni ” is called,
the JIT compiler is invoked and a kind analysis is applied.
This kind analysis will determine that the first use of “i ” cor-
responds to a call of the named library function “i ”, whereas
the assignment to “i ” corresponds to a variable. This kind
conflict results in the error message.

However, when the user enters the same computation
line-by-line into the read-eval-print loop the kind analysis
is not applied to the whole computation, which results in
dynamic lookup semantics.5

There are two important points demonstrated by this
example. First, it shows that all tools, including optimiz-
ing compilers, program-understanding tools and refactoring
tools need to correctly implement kind analysis. In this case,
the IDE apparently does not perform kind analysis (or does
not integrate it correctly). Thus, it assumes that all occur-
rences of “i ” are variables, does not correctly identify the
kind conflict, and gives misleading warning messages. In

5 Older versions of MATLAB and interpreter-based systems like Octave do
not have a kind analysis, in these systems the function body would be
interpreted using the dynamic lookup semantics.

(a) Function definition

(b) IDE warnings

>> iassigni()
??? Error: File: iassigni.m Line: 2 Column: 4
"i" previously appeared to be used as a function or
command, conflicting with a variable.
A possible cause of this error is that you forgot to
initialize the variable, or you have initialized it
implicitly using load or eval.

(c) error when executed

>> clear

>> which i
built-in (C:\MATLAB\R2010b\toolbox\matlab\elmat\i)

>> i = i
i = 0 + 1.0000i

>> which i
i is a variable.

>> display(i)
i = 0 + 1.0000i

(d) read-eval-print execution

Figure 1. Motivating toy example

the case of optimizing compilers the kinds of identifiers are
needed for building correct call graphs and for correctly ap-
plying many transformations such as inlining. In the case of
tools like refactoring tools, refactoring transformations must

ensure that the refactoring does not change the kind of an
identifier and does not introduce a kind conflict.

Second, this example shows that the dynamic semantics
for identifier lookup that programmers may expect from hav-
ing performed a computation in the read-eval-print loop are
not valid within function and script definitions. Thus, pro-
grammers must be given some simple rules so they can de-
termine the kind of identifiers in function/script definitions.
This will make it easier for them to ensure they are us-
ing identifiers consistently within a function/script and will
make the programs easier to understand.

Although this is just one toy example, it does demonstrate
that it is important for both MATLAB programmers and the
compiler/toolkit developers to have a clear understanding
and clean implementation of kind analysis. In Section 4 we
present a kind analysis that matches the current MATLAB

7 semantics and in the subsequent section we present some
alternative kind analyses.

3. The Essence of MATLAB
In this section we provide a brief overview of the semantics
of MATLAB , concentrating on the rules for resolving iden-
tifiers.6 For the purposes of this paper we are concentrating
on the non object-oriented part of MATLAB and we assume
that all functions are either defined as MATLAB source or are
well-defined built-in functions.

At a high level, a MATLAB computation executes relative
to a pair<library, env> where library is a collection of
named function/script definitions, andenv is a mapping of
variable names to values. We define thelibrary andenv in
more detail in the next two subsections.

3.1 MATLAB library of function/script definitions

MATLAB functions and scripts are stored in directories with
a specific format. A directoryd, may contain:

.m source files:Each file of the formf.m contains either: (a)
a script, which is simply a sequence of MATLAB state-
ments; or (b) a sequence of function definitions. If the
file f.m defines functions, then the first function defined
in the file should be calledf (although even if it is not
calledf it is known by that name in MATLAB). The first
function is known as theprimary function. Subsequent
functions aresubfunctions. The primary and subfunctions
within f.m are visible to each other, but only the primary
function is visible to functions defined in other.m files.

Functions may be nested, following the usual static scop-
ing semantics of nested functions. That is, given some
nested functionf’ , all enclosing functions, and all func-
tions declared in the same nested scope are visible within
the body off’ .

6 Since we were unable to find any official language specification docu-
ments, these semantics have been determined from reading user-level doc-
umentation [6], and observing the behaviour of MATLAB 7.11.

Private directories: A directory may contain a directory
namedprivate/ .

Package directories:Package directories start with a ‘+’,
for example+mypkg/ . The primary function in each file
f.m defined inside a package directory+p corresponds
to a function namedp.f . To refer to this function one
must use the fully qualified name, or an equivalent import
declaration. Package directories may be nested.

Type-specialized directories:It is possible to overload
function declarations using type-specialized directories.
These directories have names of the form@<typename>,
for example@int32/ . The primary function in a filef.m
contained in a directory@typename/ matches calls to
f(a1,...) , where the run-time type of the primary (first)
argument istypename .

The lookup of a script/function is performed relative to:
f, the current function/script being executed;sourcefile, the
file in which f is defined;fdir, the directory containing the
last called non-private function (calling scripts or private
functions does not changefdir); dir, the current directory;
andpath, a list of other directories. When looking up func-
tion/script names, firstf is searched for a nested function,
thensourcefileis searched for a subfunction, then the private
directory of fdir is searched, thendir is searched, followed
by the directories onpath.

In the case where there is both a non-specialized and type-
specialized function matching a call, the non-specialized
version will be selected if it is defined as a nested, subfunc-
tion or private function, otherwise the specialized function
takes precedence.

The current directory and path do not normally change
during the execution of the program. This is particularly true
if the application has been written in a way that makes it
somewhat portable. However, there do exist run-time func-
tions which allowdir andpathto change at run-time.

3.2 Environment and Values

The environment,env, corresponds to the MATLAB notion
of a workspace. The environment maps variable names to
values. We can think of the environment as consisting of the
following four parts:

Main workspace: This is the initial workspace, a mapping
of variable names to values, which is acted upon by
commands entered into the main read-eval-print loop.

Function call workspace stack:A call to a function cre-
ates and pushes a new workspace, which becomes the
current workspace. A return from a function pops the
workspace, restoring back the new top of the stack as
the current workspace. In the case of a stack frame cor-
responding to a nested function, there are the usual dis-
play pointers to the stack frame workspaces correspond-
ing to the outer scopes. A call to a script does not create a

new workspace, but rather uses the workspace of the last
called function (i.e. the topmost stack frame).

Globals: The globals structure maps global variable names
to values. There is one such globals structure shared by
all functions. A variable “x” is local within a function un-
til a call to “global(x) ” occurs within the function body.
Currently it is possible for a function body to contain both
local and global uses of “x”. However, the current version
of MATLAB issues warnings that future versions will not
allow this. Presumably this means that in future versions
a call to “global(x) ” will have to dominate all other oc-
currences of “x” within the function body.

Persistents:The persistents structure maps (fullyqualified-
function name x variablename) to values. Persistent
variables are like global variables, but are associated with
a specific named function only. Within function “f ”, a
variable “x” is made persistent through a call “persist-

ent(x) ”. Calls to persistent may only occur in function
bodies (and not scripts) and a call to “persistent(x) ”
must dominate all other occurrences of “x” in the func-
tion body.

A M ATLAB value can be one of the following types:
array, function handle, struct or cell array.

We can think of the basic types as being arrays and func-
tion handles. Arrays are homogeneous (i.e. all elements have
the same type) and the elements must have some numeric
type (double, int32, char,. . .). In particular, the elements of
arrays cannot be handles, structs or cell arrays. Arrays have
a shape and contents, and arrays are mutable. A scalar is
simply a 1x1 array. A function handle refers to a closure,
where the closure consists of a reference to the function and
a reference to a workspace that maps free variables to val-
ues. A function handle is created by either taking the handle
of a named function (for example, “h = @sin; ”) or by cre-
ating a handle to an anonymous function (for example, “h =

@(x)(x+1); ”).
Structs and cell arrays are heterogeneous and provide a

way of aggregating data. Structs do not have explicit types
but are constructed using calls like “a = struct(’x’,exp1,-

’y’,exp2) ”, which would create a structure with two fields,
“x” initialized to the value denoted by “exp1 ” and “y” ini-
tialized to the value denoted by “exp2 ”. Each field can con-
tain any type (array, handle, struct or cell array). Cell arrays
have the same rectangular structure as arrays, but their ele-
ments are cells instead of numeric values, where each cell
can contain any type. Thus cell arrays allow one to create
heterogeneous and nested arrays. Cell arrays are accessed
using “a(...) ” which denotes the cells or “a{... }” which
denotes the contents of the cells.

3.3 General Identifier Lookup Semantics

In the read-eval-print loop of MATLAB , the meaning of an
identifier is determined at run-time, which is potentially

quite expensive. The basic idea is quite simple, as outlined
in “generalLookup ” below. First a lookup in the current
environment is performed, and if the identifier is found then
the lookup returns a variable. If the identifier is not found in
the environment, then a lookup in the library is performed
and if an entry is found, then the lookup returns a named
function/script.
generalLookup(id ,env, lib)
{ if (existsInEnv (id ,env))

return (lookupInEnv(id ,env))
else if (existsInLib (id , lib))

return (lookupInLib(id , lib))
else

error (”Undefined variable or function ”)
}

4. Kind Analysis
A kind analysis for MATLAB must perform two functions:
(1) it must assign a kind to each identifier occurrence in the
body of functions/scripts; and (2) it must detect clashes in
kind assignments within a function/script body and produce
appropriate errors/warnings.

Since we were not able to find any formal description of
the semantics, nor any description of the kind analysis (or
even the existence of such an analysis), we developed an ex-
tensive set of test cases and observed the behaviour of MAT-
LAB 7.11. Based on those observations we have defined the
following kind analysis, which appears to replicate the se-
mantics of MATLAB 7. By defining this analysis precisely
we can both implement it in our own MATLAB system and
use it as the basis for subsequent static analyses. In fact, any
system attempting to match the semantics of modern MAT-
LAB systems must implement this kind analysis (or an equiv-
alent one), otherwise the meaning of identifiers at run-time
may not be correct.

Our kind analysis assigns to each identifier one of the
following abstract values:

ID: It is not known if the identifier refers to a named func-
tion/script or a variable. At run-time, an identifier with
this kind must be looked up with the general lookup func-
tion, first looking in the environment and then in the li-
brary.

FN: The identifier refers to a named function/script. At run-
time, an identifier with this kind is looked up directly in
the library. Thus, even if a variable with this name exists
at run-time, the named function/script is used.7 If at run-
time a function/script with this name does not exist in the
current library, then it is an undefined function error.

VAR: The identifier refers to a variable. At run-time a vari-
able with this kind is looked up in the environment only.

7 A variable may exist due to the use of dynamic features available in MAT-
LAB , such as “eval ” and “assignin ”. In older versions of MATLAB ,
which did not have a kind analysis, such dynamically-created variables
would shadow the function of the same name.

If at run-time a variable with this name is not in the envi-
ronment, then it is an undefined variable error.

PREFIX: The identifier refers to a package, as the prefix of a
fully-qualified function name. For example in the expres-
sionmypkg.f , mypkg would have the kind PREFIX.

At the end of the analysis each identifier will be assigned
one of the values ID, FN, VAR, or PREFIX or a compile-
time error signaling a kind clash will be raised. During the
analysis we use two further abstract values:

UNDEF: This is a special value used when analyzing func-
tions and is used to denote the fact that the identifier has
not yet occurred in any statements already analyzed. If
the analysis ends without a compile-time error, then there
will be no UNDEF values since every identifier will be
visited at least once.

MAY VAR: This is a special value to indicate that the iden-
tifier might be a VAR. It is used when an identifier is ex-
plicitly mentioned by a “load ” command. In this case the
identifier may or may not refer to a variable, depending
on whether or not the variable exists in the loaded file.
The MAY VAR value is also used as an initial approxi-
mation when analyzing script bodies. At the end of the
analysis if any identifier remains mapped to MAY VAR,
its final kind is set to ID because a general lookup should
be used.

These abstract values are ordered as shown in Figure 2,
and based on this ordering the./ operation is defined, which
is the join of the two values where it exists, anderror other-
wise. For example, there is no join for VAR and FN, so the
result iserror .

Although discovering the structure and details of the anal-
ysis was quite challenging, in the end the analysis itself is
quite straight-forward, and consists of three steps:

Initialize: The initial kinds are set such that there is an
initial value,kind[id] for each identifier occurring in the
function/script.

Traverse function/script updating the kind abstraction:
This is a simple traversal of the AST representation of the
function/script based on the program structure, updating
the kind abstractions, and detecting compile-time kind
errors.

The traversal order is a simple depth-first traversal of the
AST. Sequences of statements are visited in the order
found in the sequence; in assignment statements first the
right-hand side is visited, followed by the left-hand side;
in expressions the sub-expressions are visited first8, left-
to-right; in “if ” statements the condition is visited first,

8 We should note that is important to always visit the sub-expressions first,
even when processing the left-hand side of an assignment. Indeveloping
our algorithm, we uncovered a bug in the MATLAB 7.11 implementation of
kind analysis. Consider the example, “size(size(i))=1 ”. In this case
the sub-expression should first be evaluated. Since “size ” is a function

followed by the “then ” part, followed by the “else ” part;
and in loops first the condition/header is visited and then
the body. In the case of functions with inner functions,
these are processed recursively, first the body of the outer
function, followed by a recursive analysis of all functions
which are immediately nested. As the AST is traversed an
abstract kind is assigned to each identifier.9

Finalize kind assignments:The final step is to finalize the
kind assignments for identifier occurrences based on ei-
ther the final kind abstraction (functions) or the kinds
computed during the traversal (scripts).

The analysis for functions and scripts differ from each
other in terms of the initial approximation and the finaliza-
tion step (the first and third steps). The actual traversal and
kind approximation rules (i.e. the second step) are the same
in both cases. We first present the approach for both func-
tions (Section 4.1) and scripts (Section 4.2), and then givean
example to illustrate the rules, and the differences between
functions and scripts (Section 4.3).

4.1 Kind analysis for functions

For functions, the initial kind approximation starts by assign-
ing VAR to each input and output parameter, and UNDEF

to all other identifiers (indicating no occurrence of identi-
fier has been visited yet). Then, each statement is processed
using a depth-first traversal of the AST, updating the kind
approximation using the following rules and the merge (./)
operation defined in Figure 2.

Variable Definition: If identifier “x” is being defined (ie.
“x” is being used as an lvalue on the left-hand side
of an assignment statement), or “x” is an argument to
“global(x) ” or “ persistent(x) ”, then “x” must be a
variable in this statement. Hence the following rule is
used:

kind[x]← kind[x] ./ VAR

Note that if the previous approximation forkind[x] was
FN, then this indicates a compile-time kind error because
there must be another place where the identifier was
bound to a named function and the current MATLAB

semantics disallow an identifier being used both as a
variable and a named function/script. Thus, in this case
the analysis terminates with an error.

Cell Array Access: If identifier “x” is being used in a cell
array access (either as an rvalue or lvalue), then “x”
must be a variable. This is one case where the syntactic

in the library, it has kind FN. Then the outer use of “size ” should be
processed, which is a definition of a variable, and so the kindshould be
VAR, which is a kind clash. This clash is not reported by the current
MATLAB 7.11 implementation and MathWorks has acknowledged that this
is a bug.
9 This traversal is made more explicit when we compare this approach with
our proposed flow-sensitive analysis in the next section.

P

AYVAR

REFIX NF ARV

M

NDEFU

ID

./ UNDEF ID MAY VAR PREFIX FN VAR

UNDEF UNDEF ID MAY VAR PREFIX FN VAR

ID ID ID MAY VAR PREFIX FN VAR

MAY VAR MAY VAR MAY VAR MAY VAR PREFIX FN VAR

PREFIX PREFIX PREFIX PREFIX PREFIX error error
FN FN FN FN error FN error
VAR VAR VAR VAR error error VAR

Figure 2. Merge (./) operation for kind analysis

structure clearly disambiguates between a variable and a
named function. The same analysis rule as forVariable
Definitionis used:

kind[x]← kind[x] ./ VAR

Handle Expression or Command Statement:If identifier
“x” occurs in a handle expression (i.e. an expression of
the form “@x”) or as the name of a command (i.e. in a
statement of the form x arg), then “x” must be a named
function/script.10 Hence the following rule is used:

kind[x]← kind[x] ./ FN

Note that if the previous approximation forkind[x] is
VAR, a compile-time error is raised (VAR ./ FN evaluates
to error).

Variable Use: If the identifier is a use of “x” (i.e. occurs
as an rvalue), then we first check to see if thekind[x] is
one of UNDEF or ID, in which case no previous statement
has given this identifier a specific kind. In particular, this
means no previously analyzed statement has made this
identifier a VAR. If the identifier is in the library, we know
that this occurrence of the identifier must refer to a named
function. If the identifier is not in the library as a function,
then we check to see if it is the name of a class/package.
Hence given identifier “x”, and the current library “lib ”,
the following rule is used:

if ((kind[x] ∈ {ID, UNDEF})&(existsfunction(x,lib)))

kind[x]← FN

elseif((kind[x] ∈ {ID, UNDEF})&(existspackage(x,lib)))

kind[x]← PREFIX

else

kind[x]← kind[x] ./ ID

Explicit Load: MATLAB allows loading variables from
saved.mat files. Thus, a statement of the form “load(-

’mydata’,’x’) ” will attempt to load the value of variable

10 In MATLAB a function call of the formfoo(’mystring’) , where the
argument is a string, may also be writtenfoo mystring , where the sec-
ond alternative implicitly treatsmystring as a string and not a variable.
This is a very natural syntax for some commands, especially those used in
the read-eval-print loop, for example one can usecd mydata instead of
cd(’mydata’) . When used as a command, it clearly references a named
function and not a variable.

“x” from the file “mydata ”. If the load succeeds (i.e. “x”
is defined in the file) then the variable will be defined in
the workspace, but otherwise it will not. Thus, we have to
represent the situation where a variable may or may not
exist. For this situation we use the special abstract value
MAY VAR. In particular, note that if a subsequent state-
ment finds the kind to be FN, then this is not considered
to be an error, and the kind will updated to FN.

kind[x]← kind[x] ./ MAY VAR

Variable Binding an “ end”: There is one remaining corner
case, which is not at all obvious. In MATLAB , one can
use the keyword “end ” to denote the last index of an ar-
ray. For example, if “a” is an array and “f ” is a named
function, then the value denoted by “end ” in the expres-
sion “a(f(end)) ” is the index of the last element of “a”.
However, in order to bind “end ” to the correct identifier,
we need to know which is the closest enclosing variable
name.

We have followed the intended MATLAB 7 seman-
tics. Assume we are analyzing identifier “x” in an ex-
pression of the form “id 1(id 2 ...(id k (x (id m...

(id n(... end)...) ”, and that all ofid m to id n have
already been processed. If any of the more closely nested
identifiers (“id m” to “ id n”) have the kind VAR, then the
“end ” has been bound.

If the “end ” has not already been bound by a VAR, then
there are three cases:

FN : If the kind of “x” is FN, then “x” is not binding
the “end ”, so the kind of “x” does not change and
the analysis proceeds to the next outer level. If this
was the outermost level, then an error is produced
indicating that there is no variable binding “end ”.

VAR : If the kind of “x” is VAR, then “x” is the binding
var, and the kind remains as VAR and the binding
process terminates.

MAY VAR, ID or UNDEF: In this case the analysis needs
to determine if “x” is the only remaining possibility to
bind “end ” or not. If there are any outer identifiers (
“ id 1” to “ id k”) that have kind VAR, ID, MAY VAR

or UNDEF, then there is no way to determine which
identifier binds “end ”, and a kind error is generated to

indicate that the binding of “end ” is ambiguous.11 If
there are no such outer identifiers, then “x” is the only
remaining possibility to bind the “end ”, so its kind is
changed to VAR, even though it is not certain that the
identifier is a variable (i.e. it has not been explicitly
assigned to). In the MATLAB 7 implementation the
kind is changed without generating any warning, but
in our suggested alternative analyses we generate a
warning for this case.

After traversing the complete AST of a function, the
final kind assignments are made to the identifiers. In the
case of functions, all occurrences of an identifier “x” are
given the same kind, based on the final values computed
by the kind analysis (this is not the case for scripts). The
exact assignment is as follows, assuming that the final kind
assignment is stored in the mapping “kind ”.

for each id occurrence in fdo
if kind[id] in {ID, MAY VAR}

id .kind = ID
else /* kind[id] in {VAR, FN, PREFIX} * /

id .kind = kind[id]

4.2 Kind analysis for scripts

Scripts in MATLAB are simply a sequence of MATLAB state-
ments. A script is called either from the main read-eval-print
loop, or from a function or another script. In the first case the
script executes in the main workspace, and in the other cases
it executes using the topmost stack workspace. The static
kind analysis of a script must take into consideration that,
unlike the case of functions, the initial set of variables isnot
known. Thus the initial set approximation for all identifiers
is MAY VAR, representing the situation that the variable may
or may not exist. Given this initial approximation the same
rules are applied as with the function case.

There is one additional twist in handling the “end ” ex-
pression for scripts. The rule used for functions may gen-
erate too many errors because many identifiers in scripts
have the kind MAY VAR, and thus there may be many am-
biguities in binding “end ”. For example, a script may have a
statement of the form “size(a(end)) ” where both “a” and
“size ” have kind MAY VAR. Since “size ” is a library func-
tion and “a” is not a library function, it is very likely (but not
certain) that the programmer intended “end ” to bind to “a”.
Thus, within scripts, the current MATLAB 7 implementation
checks if one of the identifiers is in the library and the other
is not. If this is the case, it binds the “end ” to the identifier
not in the library. If both identifiers are in the library, then

11Note that we have implemented the intended MATLAB 7 semantics for
the ambiguous case and not the current implementation in MATLAB 7.11,
which has an acknowledged bug. The current MATLAB 7 implementation
only finds an ambiguous binding if the ambiguous identifier isthe immedi-
ately nesting one and thus misses some ambiguous bindings.

it somewhat arbitrarily chooses the outermost one. If neither
identifier is in the library, then it issues an ambiguity error.12

The script case also differs from the function case in
how the final kinds are assigned to identifier occurrences.
Unlike in the function case, where the final kind values
are used, in the script case the values that were computed
during the analysis are used. Thus, when analyzing scripts
the kind analysis decorates each identifier occurrence with
the current value ofkind[id]. The final kind assignment
makes a final pass through the AST adjusting the kind values
as follows. Any identifier occurrence which had a kind of
VAR or MAY VAR is set to be ID.13 Note, however, that the
analysis rules will still give compile-time errors for obvious
mismatching of kinds.
for each id occurrence in sdo

if id .kind in {VAR, MAY VAR}
id .kind = ID

else /* id . kind must beFN, it can' t be ID or UNDEF*/
id .kind = FN

4.3 Illustrative Examples

In order to illustrate the kind analysis, and also to demon-
strate the differences between functions and scripts, consider
the examples in Figure 3.

4.3.1 Kind analysis for “myfunc”

In MATLAB the declaration of a function starts with the key-
word “function ” followed by an optional list of output pa-
rameters, followed by the function name, an optional list
input parameters, and then the function body which is ter-
minated with the keyword “end ”. The function “myfunc ” in
Figure 3(a) has one output parameter (“r ”), and two input
parameters “size ” and “i ”. Parameters have no types, and
variables within the function body are declared implicitly
upon first definition.

The kind analysis for “myfunc ” is summarized in Fig-
ure 3(c). The table lists all the identifiers occurring in the
function definition. The initialization sets the parameters
(“ r ”, “ size ” and “i ”)) to VAR, and all other identifiers to
UNDEF.

The body of the function is then traversed, applying the
analysis rules. For example, at line 8, identifier “s” is de-
fined, so its kind is set to VAR. At line 9 there are two iden-
tifier uses, “s” and “magic ”. Following the rule for uses, “s”
is already a VAR, so nothing needs to be done. At this point
“magic ” is still U NDEF, so a lookup is made in the library.
Since “magic ” is in the standard MATLAB library, its kind
is set to FN. The analysis continues until the complete func-

12 In our alternative approaches we are slightly more rigorous. We issue a
warning in the case where one identifier is in the library and the other is not,
and we issue an error when both identifiers are in the library and we also
issue an error when neither identifier is in the library.
13This seems like a strange decision to us, and we think this mayjust be an
artifact of how scripts interact with the current JIT compiler in MATLAB 7.
We suggest an alternative approach in the flow-sensitive analysis we present
in the next section.

1 function [r] = myfunc(size, i)
2 % Returns sin or cos of magic
3 % square with dim. size (i)
4 % If size (i) is odd,
5 % return sin of magic square
6 % else
7 % return cos of magic square
8 s = size(i); % s:VAR, size:VAR, i:VAR

9 a = magic(s); % s:VAR, magic:FN, a:VAR

10 if (mod(s,2)==1) % mod:FN, s:VAR

11 fp = @sin; % fp:VAR, sin:FN

12 r = fp(a); % r:VAR, fp:VAR, a:VAR

13 else
14 r = cos(a); % r:VAR, cos:FN, a:VAR

15 end
16 display (r); % display:FN, r:VAR

17 fp2 = @display;% fp2:VAR, display:FN

18 display (r); % display:FN, r:VAR

19 end
(a) myfunc.m

1 % Assumes prev defn of size and i
2 % Returns sin or cos of magic
3 % square with dim. size (i)
4 % If size (i) is odd,
5 % return sin of magic square
6 % else
7 % return cos of magic square
8 s = size(i); % s:ID, size :ID, i : ID

9 a = magic(s); % a:ID, magic:ID, s:ID

10 if (mod(s,2)==1) % mod:ID, s:ID

11 fp = @sin;% fp:ID, sin:FN

12 r = fp(a); % r: ID, fp:ID, a:ID

13 else
14 r = cos(a); % r:ID, cos:ID, a:ID

15 end
16 display (r); % display:ID, r: ID

17 fp2 = @display;% fp2:ID, display :FN

18 display (r); % display:FN, r: ID

19 % end of script

(b) myscript.m

S
tm

t#

r si
ze

i s m
ag

ic
a m

od
si

n
co

s
fp di

sp
la

y

fp
2

init V V V U U U U U U U U U
8 V V V V U U U U U U U U
9 V V V V F V U U U U U U
10 V V V V F V F U U U U U
11 V V V V F V F F U V U U
12 V V V V F V F F U V U U
14 V V V V F V F F F V U U
16 V V V V F V F F F V F U
17 V V V V F V F F F V F V
18 V V V V F V F F F V F V

final V V V V F V F F F V F V

(c) Kind analysis formyfunc

S
tm

t#

r si
ze

i s m
ag

ic

a m
od

si
n

co
s

fp di
sp

la
y

fp
2

init M M M M M M M M M M M M
8 M M M V M M M M M M M M
9 M M M V M V M M M M M M
10 M M M V M V M M M M M M
11 M M M V M V M F M V M M
12 V M M V M V M F M V M M
14 V M M V M V M F M V M M
16 V M M V M V M F M V M M
17 V M M V M V M F M V F M
18 V M M V M V M F M V F V

(d) Kind analysis formyscript

Figure 3. Kind analysis for a function and script (Note that to save space the kinds in the table use only the first letter of the
kind.)

tion body has been traversed, producing the final kind ap-
proximation shown at the bottom of the table. Identifiers “r ”,
“size ”, “ i ”, “ s”, “ a”, “ fp ” and “fp2 ” are VAR, and the re-
maining identifiers are FN.

The finalization phase traverses through the AST anno-
tating each identifier occurrence with the kind found in the
final approximation. In Figure 3(a) we have put the final kind
values for identifier occurrence.

4.3.2 Kind analysis for “myscript”

MATLAB scripts are simply a sequence of MATLAB state-
ments. The run-time meaning of identifiers in the script body
can depend on the context in which the script is called. Most
importantly, the free identifiers may or may not refer to ex-
isting variables.

The analysis for “myscript ” is summarized in Fig-
ure 3(d). In the case of scripts we do not know the con-
text in which the script will be called, and thus we have to
assume that every identifier may or may not be a variable.
This corresponds precisely to the MAY VAR abstraction, so
all identifiers are initialized to MAY VAR.

The body of the script is then analyzed. Because all of
the identifiers have an initial value of MAY VAR, the anal-
ysis can detect many fewer cases where an identifier must
refer to a FN. For example, at line 9 in “myfunc ” we could
determine that since “magic ” was not a variable, and since
it was in the library, its kind became FN. However, at line

9 in “myscript ”, “ magic ” may be a variable, as denoted by
MAY VAR. Hence, we cannot sharpen the kind estimation. In
fact, it is only at lines 11 and 17, where there are explicit
uses of the “@” operator, where we can determine that an
identifier has kind FN.

The finalization phase traverses through the AST final-
izing the kind assignment of each identifier occurrence us-
ing the information computed at the statement. All VAR and
MAY VAR values are coarsened to ID, and all FN values re-
main. Note that unlike the case of functions, different oc-
currences of the same identifier in a script can be given dif-
ferent kinds. For example, at line 16 “display ” is an ID,
whereas at line 18 “display ” is a FN. This means that if
the “myscript ” script were to be executed in an environ-
ment where “display ” was a variable, the statement at line
16 would refer to the variable, whereas the statement at line
18 would refer to the named function.14

4.3.3 Implications of the differences in kind analysis
for scripts and functions

There are two important implications of the differences be-
tween the kind analysis for functions and scripts. Firstly,the
kind analysis in scripts is likely to produce much less pre-
cise (and hence less useful) kind information. This has nega-

14This is another “feature” of the existing MATLAB 7 semantics that we
think is problematic, and which we address in our upcoming flow-sensitive
analysis.

tive impact on our ability to effectively analyze and optimize
code in scripts. Secondly, one cannot easily inline scripts
(at the source code level), because the kind assignment (and
hence the identifier lookup results) could be quite different
when the code is inlined into a function. This means that any
inlining in a compiler are most easily done after the kind as-
signment has been done, and the kinds that were computed
in the script body must be retained in the inlined code.

4.3.4 How kind analysis changes the semantics of
MATLAB

The introduction of the kind analysis in modern versions of
MATLAB has changed the semantics of the language in two
ways. The first change is that some programs that previously
computed a value will cause a compile-time kind error when
first load/compiled by the JIT compiler. This was demon-
strated by our motivating example in Figure 1. This exam-
ple would run under the old dynamic name lookup (as we
demonstrated using the eval-print-loop), but triggers a kind
error when compiled using modern MATLAB 7.11.

The second change is due to the fact that the kind anal-
ysis assigns a specific kind to identifiers, and then at run-
time performs a lookup of only that kind. Thus, programs
may compute different results as compared to the dynamic
lookup. For example, consider the program in Figure 4.

With a purely dynamic lookup “sum” denotes the function
“sum” at line 2 and the variable “sum” at line 4. This is
because line 3 indirectly assigns to “sum”. Such indirect
assignments may be via calls to dynamic functions likeeval

or via calls to scripts.
With a kind analysis, a static decision must be taken about

whether “sum” denotes a VAR or FN. Since there is no direct
assignment to “sum”, and “sum” is in the library, “sum” will
denote the function “sum” at both line 2 and line 4, even
though a variable “sum” exists at runtime at line 4.

1 function [r] = KindEx(a)
2 x = a + sum(j);
3 eval(' sum = ones (10); ');
4 r = sum(x);
5 end

Figure 4. Example of dynamic lookup versus lookup with
kind analysis

Since kind analysis changes the semantics, both program-
mers and compiler-based tools must be aware of kind anal-
ysis and must implement it correctly in order to match the
semantics of MATLAB 7.11.

5. Alternative Kind Analyses
Our original goal for this research was to clearly understand
the MATLAB 7 kind analysis and to provide an algorithm and
implementation for it. In the previous section we have ac-
complished that. However, as we specified and implemented
the algorithm we were struck by ways in which it could be

improved, and in this section we describe the features of the
MATLAB 7 algorithm that we think are problematic, and the
two different approaches we suggest.

As we discuss our approaches, it is important to keep in
mind the requirements for a good kind analysis. Firstly, the
kind analysis should be very simple to understand for the
programmers, so that it is trivial for a programmer (or an
IDE) to determine the kind of each identifier. Likewise, the
kind analysis should be simple and efficient to implement.
Ideally the IDE should compute the kinds as the user edits,
and perhaps colour code the identifiers to distinguish vari-
ables from functions.

Related to this first point, we think the kind analysis for
functions and scripts should be as similar to each other as
possible. We found it very confusing that the kind analysis
for functions and scripts for MATLAB 7 produce quite dif-
ferent final results.

Secondly, we think that the kind analysis should be ex-
plicitly flow-sensitive or explicitly flow-insensitive. The
MATLAB 7 kind analysis gives the illusion of being flow-
sensitive, since it is computed by a depth-first traversal of
the AST. However, it is not completely flow-sensitive as it
does not handle control-flow merge points. For example,
consider the program snippets in Figure 5. We can see from
this example that the MATLAB 7 kind analysis istraversal-
sensitive. In the case of conditionals, it first analyzes the
“ then ” branch and then analyzes the “else ” branch. For ex-
ample, in Figure 5(a), on the “then ” branch “sum” gets the
kind FN, and then there is a kind mismatch when the “else ”
branch is evaluated, because now “sum” is being assigned-to
and is therefore a VAR. However, the semantically equiva-
lent snippet in Figure 5(b) gives a different answer. In this
case the “then ” branch determines that “sum” is a VAR, and
then the else branch also determines it is a VAR. We think
that whatever analysis you use should give the same result
for both the (a) and (b) variations. The analysis should either
give an error for both variations (as with our flow-sensitive
analysis), or it should assign VAR for both cases (as with our
flow-insensitive analysis).

1 if (exp)
2 ... = sum(10); % sum:FN

3 else
4 sum(10) = ...; % *error*
5 endif

1 if (! exp)
2 sum(10) = ...; % sum:VAR

3 else
4 ... = sum(10); % sum:VAR

5 endif

(a) (b)

Figure 5. Anomaly due to traversal-sensitive analysis

Thirdly, we don’t think that the kind analysis should
silently make assumptions about the binding of “end ” for
the cases where there is some uncertainty, but where there is
a common case where an assumption is usually correct. We
agree that it is practical to handle to common cases without
resorting to errors, but we believe that warnings should be
issued in cases where such assumptions are being made. For
example, in the case for “size(a(end)) ”, where “size ” is

FN and “a” is either MAY VAR or ID, it makes sense to bind
“end ” to “ a” and to therefore assume “a” is VAR, since this
is the common case. However, in such situations, the user
should be warned that this assumption is being made.

Finally, we are mindful that there are a lot of existing
MATLAB programs and MATLAB programmers. In our al-
ternate approaches we wish to keep the same spirit of the
MATLAB 7 kind analysis. We aim provide alternative analy-
ses which are cleaner and easier to understand than the MAT-
LAB 7 approach, while at the same time produce the same
results for almost all real MATLAB programs.

In Section 5.1 we outline a flow-sensitive approach, in
Section 5.2 we outline flow-insensitive approach, and in
Section 5.3 we provide a summary of how the MATLAB 7
approach and our two approaches compare.

5.1 Flow-Sensitive Kind Analysis

We have implemented both the MATLAB 7 and our alterna-
tive analyses using our structure-based flow analysis frame-
work in MCLAB. These analyses are structured as traversals
over the AST. Listing 1 gives the top-level structure of our
implementation of the MATLAB 7 analysis.

The procedureAnalyzeFile is applied to a file, which in
turn applies the appropriate analyses for scripts or functions.
Note that since the MATLAB 7 kind analysis for scripts
has special requirements (for example, the analysis needs to
store results for each identifier occurrence), there is a global
variable to indicate whether a script of function is being
analyzed.

Both AnaylzeScript and AnalyzeFunctionhave three phases,
first the kind abstractions are initialized, then the body of
the script/function is analyzed, and lastly the final mapping
of the identifiers is made.AnalyzeFunctionalso handles the case
of nested functions.

Listing 2 gives the top-level rules for our flow-sensitive
semantics. The overall structure of the analysis is very simi-
lar to the MATLAB 7 version. However, there are two notable
differences in these top-level rules.

First, we have decided that there is no need for the analy-
sis of scripts to keep their kind results at each program point
and thus there is no need for a global variable to differentiate
between analyzing scripts and functions.

Second, we see no reason why the final mapping of kinds
for scripts needs to be different than for functions, as it is
in the MATLAB 7 semantics. Thus, in our flow-sensitive
version we use the same final mapping of kinds for functions
and scripts (i.e. we use the final result after analyzing the
body, except that MAY VAR must be mapped to ID because
the general lookup should be used for these identifiers).

We can see the impact of these changes in the analysis
of scripts by revisiting the “myscript ” example. Figure 6(a)
shows the kind analysis. The MATLAB 7 semantics uses
the kind analysis results associated with each statement, and
maps that information to either ID of FN. If the kind was
FN at that program point, then the result is FN. However, if

1 AnalyzeFile (fileAst)
2 switch on type of fileAst
3 case Script
4 global inScript = true
5 AnalyzeScript (fileAst)
6

7 case Function
8 global inScript = false
9 for each f in fileAst . functionList

10 AnalyzeFunction(f ,{})
11

12 function AnalyzeScript (script)
13 # initialize all names to MAY VAR

14 names = all name uses in script
15 initial = { 〈n:MAY VAR〉 | n ∈ names}
16 # analyze body
17 out = Analyze(script .body, initial)
18 # map each name corresponding to VAR , MAY VAR to ID
19 for each node in script
20 for each name in node.kind
21 if out[name]∈{VAR, MAY VAR}
22 set out[name] = ID
23 return out
24

25 function AnalyzeFunction(fun , outer)
26 # initialize all params to VAR

27 in = copy(outer)
28 remove all 〈n:FUN〉 from in
29 p1 = { 〈n:VAR〉 | n ∈ node.inArgs}
30 p2 = { 〈n:VAR〉 | n ∈ node.outArgs}
31 initial = (p1 ./ p2)./ in
32 # analyze the function body
33 out = Analyze(node.body, initial)
34 # analyze nested functions
35 for each n in node.nested
36 outN = AnalyzeFunction(nested , out)
37 for each 〈name:kind〉 in outN
38 if outN[name]==VAR and out[N] in {ID, MAY VAR}
39 set out[name] = VAR

40 # map MAY VAR to ID in output
41 for each name in out
42 if out [name] == MAY VAR

43 set out[name] = ID
44 return out

Listing 1. Top-level Analysis Rules - MATLAB 7

the kind was anything else at that program point (including
VAR), then it is mapped to ID. As you can see in Figure 6(b),
this results is almost all identifiers being mapped to ID.

In contrast, our proposed analysis takes the kind results
as collected by analyzing the whole script body, and maps it
to create one final kind mapping that is used for all program
points. These values are shown on the last row of the table in
Figure 6(a). There appears to be no good reason to throw
away the information that an identifier is a VAR, so we
retain that information, and we only map MAY VAR to ID
(the same rule as used for functions). It is clear that the kind
information, as shown in Figure 6(c), is much more useful.
Many more identifier uses can be determined to be VAR.
Furthermore, the kind assignment is consistent across the
whole script body. In particular, “display ” has a kind of FN
at both lines 16 and 18, whereas it had different kinds using
the the MATLAB 7 approach.

S
tm

t#

r si
ze

i s m
ag

ic

a m
od

si
n

co
s

fp di
sp

la
y

fp
2

init M M M M M M M M M M M M
8 M M M V M M M M M M M M
9 M M M V M V M M M M M M
10 M M M V M V M M M M M M
11 M M M V M V M F M V M M
12 V M M V M V M F M V M M
14 V M M V M V M F M V M M
16 V M M V M V M F M V M M
17 V M M V M V M F M V F M
18 V M M V M V M F M V F V

final V I I V I V I F I V F V

1 % Assumes prev defn of size and i
2 % Returns sin or cos of magic
3 % square with dim. size (i)
4 % If size (i) is odd,
5 % return sin of magic square
6 % else
7 % return cos of magic square
8 s = size(i); % s:ID, size : ID, i : I D

9 a = magic(s); % a:ID, magic:ID, s:ID
10 if (mod(s,2)==1) % mod:ID, s:ID
11 fp = @sin;% fp:ID, sin:FN

12 r = fp(a); % r:ID, fp:ID, a:ID
13 else
14 r = cos(a); % r:ID, cos:ID, a:ID
15 end
16 display (r); % display : ID, r: ID

17 fp2 = @display;% fp2:ID, display :FN

18 display (r); % display :FN, r:ID

19 % end of script

1 % Assumes prev defn of size and i
2 % Returns sin or cos of magic
3 % square with dim. size (i)
4 % If size (i) is odd,
5 % return sin of magic square
6 % else
7 % return cos of magic square
8 s = size(i); % s:VAR, size:ID, i:I D

9 a = magic(s); % a:VAR, magic:ID, s:VAR

10 if (mod(s,2)==1) % mod:ID, s:VAR

11 fp = @sin;% fp:VAR, sin:FN

12 r = fp(a); % r:VAR, fp:VAR, a:VAR

13 else
14 r = cos(a); % r:VAR, cos:ID, a:VAR

15 end
16 display (r); % display :FN, r:VAR

17 fp2 = @display;% fp2:VAR, display:FN

18 display (r); % display :FN, r:VAR

19 % end of script

(a) kind analysis (b) final mapping: MATLAB 7 (c) final mapping: flow-sensitive

Figure 6. Kind analysis for script, MATLAB 7 approach vs. flow-sensitive

1 AnalyzeFile (fileAst)
2 switch on type of fileAst
3 case Script
4 AnalyzeScript (fileAst)
5

6 case Functions
7 for each f in fileAst . functionList
8 AnalyzeFunction(f ,{})
9

10 function AnalyzeScript (script)
11 # initialize all names to MAY VAR

12 names = all name uses in script
13 initial = { 〈n:MAY VAR〉 | n ∈ names}
14 # analyze body
15 out = Analyze(script .body, initial)
16 # map MAY VAR to ID in output
17 for each name in out
18 if out[name] == MAY VAR

19 set out[name] = ID
20 return out
21

22 function AnalyzeFunction(fun, outer)
23 # ... same as before ...

Listing 2. Top-level Analysis Rules - Flow-sensitive

Listing 3 gives the core analysis rules for the MATLAB 7
approach, and Listing 4 gives the rules for our flow-sensitive
approach.15 We have already explained the basic MATLAB 7
rules in some detail in Section 4. The interesting differences
here are the way in the control-flow constructs are handled.

For example, consider theIfStmt case. The MATLAB 7
analysis visits the condition, the then part and the else part,
propagating kind information as it goes. In contrast, the
flow-sensitive approach takes control-flow into account. It
analyzes the condition and uses that output as the input to
both the then and else parts, and then merges the outputs.

15Note that statements assigning to flow sets do not denote copies of the
flow set, one flow set is propagated, and copies are created only by using an
explicitly call to the copy function.

Similarly, the flow-sensitive analysis of the loops imple-
ments a proper fixed-point computation.16

We have made one other small improvement in the flow-
sensitive analysis. We feel that when a programmer explic-
itly loads a variable using the “load ” function with the name
of a variable as a string constant (i.e. “load(’mydata’,’x’) ”),
we should treat this the same as a direct assignment to the
variable, and assign it a kind of VAR. Even though the
“ load ” may not create the variable, the programmer’s ob-
vious intent is that the identifier should be a variable. This
is also consistent with the fact that a variable only needs to
be defined on one control-flow path to be assigned the kind
VAR.

5.2 Flow-Insensitive Kind Analysis

The flow-sensitive kind analysis provides a simpler defi-
nition of the kind semantics than the MATLAB 7 version.
However, to understand the analysis a programmer must rea-
son about control-flow and merge points in their programs.
One question that arises is: is the added complexity of flow-
sensitivity necessary? An alternative way of looking at the
kind analysis is in a flow-insensitive way. Simply look at ev-
ery occurrence of an identifier and determine its kind based
on how it was used, or give an error if it was used in an
inconsistent way. This definition is simple to understand, it
should be simple to implement and it should be efficient to
execute.

To formalize this definition we need to define how differ-
ent uses of an identifier are used to determine its kind. This
definition is exactly the same as how different uses deter-
mine kind in the flow-sensitivity analysis. If an identifier is
assigned to, it should be a VAR; if a handle is taken of it, it

16For this particular analysis the fixed-point computation only needs one
iteration, but we have expressed it using our standard loop analysis frame-
work.

1 Analyze(node, in)
2 switch on type of node
3 case WhileStmt
4 out1 = Analyze(node.cond, in)
5 out2 = Analyze(node.body, out1)
6 out = out2
7

8 case IfStmt
9 out1 = Analyze(node.cond, in)

10 out2 = Analyze(node.thenbody, out1)
11 out3 = Analyze(node.elsebody , out2)
12 out = out3
13

14 case List
15 out = in
16 for n in node. list
17 out = Analyze(n, out)
18

19 case AssignmentStmt
20 out = Analyze(node.RHS, in)
21 for each lvalue in node.LHS
22 out = Analyze(lvalue . subExpressions , out)
23 out = out ./ {〈lvalue:VAR〉}
24

25 case ParameterizedExpr
26 if (!containsEnds(node))
27 out1 = Analyze(node.arguments, in)
28 out2 = Analyze(node. target , out1)
29 out = out2
30 else
31 (out , hasEnd) = AnalyzeExprWithEnds(node, in , null)
32

33 case CellIndexExpr
34 if (!containsEnds(node))
35 out1 = in ./ {〈node.target:VAR〉}
36 out = Analyze(node.arguments, out1)
37 else
38 (out ,boundToID) = AnalyzeExprWithEnds(arg, in, node)
39

40 case NameExpr
41 if in [node.name]∈ {UNDEF, ID}
42 if existsfunction (node.name, library)
43 out = in ./ {〈node.name:FN〉}
44 else if existspackage (node.name, library)
45 out = in ./ {〈node.name:PREFIX〉}
46 else
47 out = in ./ {〈node.name:ID〉}
48

49 case HandleExpr
50 out = in ./ {〈node.name:FN〉}
51 case CommandStmt
52 out = in ./ {〈node.cmdName:FN〉}
53

54 case GlobalStmt or PersistentStmt
55 out = in
56 for each name in node.names
57 out = out ./ {〈name:VAR〉}
58

59 case Load
60 for i = 2: size (load . arg)
61 if load . arg [i] is a string
62 if load . arg [i] does not start with'−'
63 out = in ./ {〈load.arg[i]:MAY VAR〉}
64

65 if (inScript) node.kind = copy(out)else node.kind = out
66 return out

Listing 3. Main Analysis Rules: MATLAB 7

1 Analyze(node, in)
2 switch on type of node
3 case WhileStmt
4 out = Analyze(node.cond, in)
5 previousIn = in
6 do
7 previousOut = out
8 outBody = Analyze(node.body, previousOut)
9 newIn = out ./ previousIn

10 out = Analyze(node.cond, newIn)
11 while(out != previousOut)
12

13 case IfStmt
14 condOut = Analyze(node.cond, in)
15 thenIn = copy(condOut)
16 elseIn = copy(condOut)
17 thenOut = Analyze(node.thenbody, thenIn)
18 elseOut = Analyze(node.elsebody , elseIn)
19 out = thenOut./ elseOut
20

21 # ... other cases are the same ...
22

23 case Load
24 for i = 2: size (load . arg)
25 if load . arg [i] is a string
26 if load . arg[i] does not start with'−'
27 out = in ./ {〈load.arg[i]:VAR〉}
28

29 node.kind = out
30 return out

Listing 4. Main Analysis Rules - modified flow-sensitive

should be a FN; if it’s explicitly loaded, it should be a VAR;
if it is in the library, it should be a FN; if it’s cell indexed or
has an “end ” bound to it, it should be a VAR. The difference
is in the ordering of when these cases are applied.

Even though this analysis will be flow-insensitive, some
care is needed when ordering how identifiers get assigned a
kind. To demonstrate this, we present the following simple
program:

1 i = 3;
2 x = i ;

A programmer would expect this program to execute
without issue. It’s reasonable to expect this even though “i ”
is a function defined in the MATLAB library. However, if
the flow-insensitive analysis were to look at the occurrence
of “ i ” on line 2 before the one on line 1, this would be an
error. It’s an error because first we determined that “i ” has
kind FN, then we saw an occurrence of it being assigned
to. This causes us to try to makei ’s kind VAR, but as was
seen in Section 4, this would cause a kind conflict error.
Alternatively, if the analysis saw line 1 before line 2, it
would cause no error. The behavior of the kind analysis
should be deterministic, so an ordering needs to be defined.
This ordering should not cause reasonable programs, such as
our example, to be rejected. Finally, the ordering should be
defined in a simple and clear way.

Rather than define an ordering to how nodes are visited,
the flow-insensitive analysis defines five phases. Each phase
conceptually represents a traversal of all nodes in the AST,

and each phase performs one case for determining the kind
of identifiers. These phases performed in the following order.

1. Assign VAR to all identifiers on the left-hand side of as-
signments; identifiers mentioned in a “load ”, “ global ”,
“persistent ”; or identifiers indexed with cell indexing.

2. Assign FN to all identifiers that have a handle taken of
them or used for command syntax.

3. Assign FN to all identifiers that are not VAR and are in
the library as a function or PREFIX if it is in the library as
a package.

4. Check that all “end ” expressions can be bound without
ambiguity and issue an error for ambiguous cases.

5. For each unambiguous “end ” expression select the cor-
rect identifier to bind to the “end ”. If the selected identi-
fier has kind ID, change it to kind VAR and issue a warn-
ing. If there is no selected identifier, issue an error.

The first three phases can be thought of in the following
way. First all obvious variables are found, then all obvious
functions, then the less obvious functions. Each of these
phases is run completely, and if any phase tries to assign a
kind to an identifiers that already has a conflicting kind, then
a kind conflict error occurs.

The fourth and fifth phases handle the case for binding
“end ” expressions. The fourth phase processes all expres-
sions containing “end ” to ensure that there is no ambiguity in
choosing the binding identifier. The fifth phase then revisits
the unambiguous expressions containing “end ”, determines
which identifier binds the “end ”. If the binding identifier has
kind ID, it assigns it the kind VAR and issues a warning. If
there is no binding identifier, then it issues an error.

The fourth and fifth stages must be conceptually separate
passes because we do not want traversal order to matter. If
we were to change the kind of some identifierx from ID
to VAR during the fourth pass, this could affect a subsequent
ambiguity check involvingx. This would mean that different
traversal orders could give different results. To prevent this,
all of the ambiguity checks are completed in the fourth pass
and then all unambiguous bindings and changes of kinds
from ID to VAR are made in the fifth pass.

Pseudo-code that demonstrates this ordering is given in
Listing 5. This pseudo-code gives the top-level rule for an-
alyzing functions and scripts. Listing 6 presents the main
analysis rules for the flow-insensitive analysis. It’s impor-
tant to note that there are no rules for nodes like “if ” and
“while ”. Traversal over these nodes is captured in the top-
level rules.

It’s important to note that this ordering has a preference
for assigning VAR. This causes some differences over the
flow-sensitive analysis when it comes to error reporting. For
example, the following code:

1 x = i ;
2 i = 3;

1 function AnalyzeFunction(fun , outer)
2 in = copy(outer)
3 remove all 〈n:FUN〉 from in
4 out1 ={ 〈n:VAR〉 | n∈ node.inArgs}
5 out2 ={ 〈n:VAR〉 | n∈ node.outArgs}
6 out = (out1 ./ out2)./ in
7 AnalyzeBody(fun.body)
8

9 for each n in node.nested
10 outN = AnalyzeFunction(nested , out)
11 for each 〈name:kind〉 in outN
12 if outN[name]==VAR and out[N] in {ID, MAY VAR}
13 set out[name] = VAR

14

15 function AnalyzeScript (script)
16 # initialize all names to MAY VAR

17 names = all name uses in script
18 initial = { 〈n:MAY VAR〉 | n ∈ names}
19 AnayzeBody(script.body)
20

21 function AnalyzeBody(body)
22 out1 = out
23 for each AssignmentStmt,Load,Global, Persistent , CellIndex nodein body
24 out1 = Analyze(node, out1)
25

26 out2 = out1
27 for each HandleExpr handle in body
28 out2 = Analyze(handle , out2)
29

30 out3 = out2
31 for each NameExpr name in body
32 out3 = Analyze(name, out3)
33

34 out4 = out3
35 for each ParameterizedExpr exp in body
36 if hasEnd(exp)
37 out4 = AmbiguityCheck(name, out4)
38

39 out5 = out4
40 for each ParameterizedExpr exp in body
41 if hasEnd(exp)
42 out5 = Analyze(name, out5)
43

44 out = out5

Listing 5. Ordering of Flow-Insensitive Analysis

In the flow-sensitive analysis, this code would have been
flagged as causing an error. This is because line 1 is visited
before line 2 and on line 1 the occurrence of “i ” is treated
as a function call. When it reaches line 2, the flow-sensitive
analysis tries to make “i ” a VAR, which causes the error. In
the flow-insensitive version, this code would not be flagged.
It simply treats “i ” as a variable. Presumably, at runtime,
if this variable had no value, it would cause a variable-not-
defined error. This means the flow-insensitive analysis pro-
vides fewer static guarantees. However, if an error occurred
at runtime, the kind information could be used to give a more
precise error since it knew that it was expecting a variable to
be defined.

Even though the analysis is described as five passes
through the code, our implementation optimizes this by in-
troducing some new abstract values and implements one
pass through the code that handles the first three phases,

1 function Analyze(node, in)
2 switch on type of node
3 case AssignmentStmt
4 for each lvalue in node.LHS
5 out = out ./ {〈lvalue:VAR〉}
6

7 case NameExpr
8 if in [node.name]∈ {UNDEF, ID} and node.name∈ library
9 out = in ./ {〈node.name:FN〉}

10 else
11 out = in ./ {〈node.name:ID〉}
12

13 case HandleExpr
14 out = in ./ {〈node.name:FN〉}
15

16 case Load
17 for i = 2: size (load . arg)
18 if load . arg [i] is a string
19 if load . arg [i] does not start with'−'
20 out = in ./ {〈load.arg[i]:VAR〉}
21

22 # ... ParameterizedExpr , GlobalStmt, PersistentStmt , CellIndex same ..
23

24 node.kind = out

Listing 6. Main Analysis Rules - modified flow-insensitive

and a second pass through only the expressions that contain
“end ” expression.

We believe that the flow-insensitive analysis is more suit-
able for use in an IDE because the analysis does not depend
on the order of visiting the nodes, and it is quite easy to up-
date the results if the user adds a new statement.

5.3 Summary of Analysis Differences

We have presented three algorithms for kind analysis and
discussed their differences. Table 1 gives an overall sum-
mary of the key differences. The leftmost column gives a
name to each situation, whereD stands for a definition,U
stands for a use, andH stands for a function handle. There
are also two specializations of uses,Ul stands for an iden-
tifier which corresponds to a function in the library andUn

stands for an identifier that does not correspond to a function
in the library.

For each situation we give a small snippet of code which
corresponds to the situation, and the analysis results for that
piece of code for each of the three analyses. For the MATLAB

7 and flow-sensitive analyses we give the analysis results
that would be computed during the propogation phase of the
analysis, and then the final kind assignment. For the flow-
insensitive analysis we give only the final result.

The first block of five situations represents cases when
there is only one statement involving identifier “i ”. All three
analyses compute exactly the same result for the first four
situations. However, the fifth situation,Eu, does show a
difference. This is the case where the variable “i ” is binding
and “end ”, and “i ” has kind UNDEF or ID. The MATLAB

7 approach silently determines that “i ” is a VAR, whereas
our two approaches warn that this kind assignment is being
made.

The second block of five situations represents cases
where there are two statements involving identifier “i ”
where there is sequential control flow between the two state-
ments. Again the first four situations give identical results
for all three analyses, but the fifth one,UlD, gives a different
result for the flow-insensitive analysis (as discussed in the
previous subsection).

The final block of six situations corresponds to cases
where there are two statements involving identifier “i ”, but
there is no control flow between them. These exhibit more
differences between the analyses. The two casesD||Ul and
Ul||D are particularly interesting. In both of these cases “i ”
should be a FN on one branch and a VAR on the other branch,
and thus there should be a kind conflict. The strange traversal
strategy of the MATLAB 7 approach finds the error in second
case, but not in the first, whereas the flow-sensitive approach
correctly finds errors in both cases. The flow-insensitive
approach ignores any control flow and does not signal an
error in either case, but gives a kind of VAR because there
exists an assignment to “i ”.

6. Empirical Study
In order to experiment with our analyses we gathered a large
number of MATLAB projects.17 The benchmarks come from
a wide variety of application areas including Computational
Physics, Statistics, Computational Biology, Geometry, Lin-
ear Algebra, Signal Processing and Image Processing. We
analyzed 3057 projects composed of 11692 functions and
2307 scripts. The projects vary in size between 283 files in
one project to a single file. A summary of the size distribu-
tion of the benchmarks is given in Table 2 which shows that
the benchmarks tend to be small to medium in size. How-
ever, we have also found 9 large and 2 very large bench-
marks. The benchmarks presented here are the most down-
loaded projects among the mentioned categories which may
mean that the average code quality is higher than many less
used projects.18

Benchmark Category # Benchmarks
Single (1 file) 2067
Small (2-9 files) 859
Medium (10-49 files) 120
Large (50-99 files) 9
Very Large (≥ 100 files) 2
Total 3057

Table 2. Distribution of size of the benchmarks

17Benchmarks were obtained from individual contributors plus projects
from http://www.mathworks.com/matlabcentral/fileexchange ,
http://people.sc.fsu.edu/ ˜ jburkardt/m_src/m_src.html ,
http://www.csse.uwa.edu.au/ ˜ pk/Research/MatlabFns/ and
http://www.mathtools.net/MATLAB/ .
18We continue to add to the benchmark set, further contributions are most
welcome.

Flow-
Name Code MATLAB 7 Flow-Sensitive Insensitive

D i = // S1 Prop Final
S1 VAR VAR

Prop Final
S1 VAR VAR

Final
S* VAR

Un
= i // S1 Prop Final

S1 ID ID

Prop Final
S1 ID ID

Final
S* ID

Ul
= i // S1 Prop Final

S1 FN FN

Prop Final
S1 FN FN

Final
S* FN

H = @i // S1 Prop Final
S1 FN FN

Prop Final
S1 FN FN

Final
S* FN

Eu
= i(end) // S1 Prop Final

S1 VAR VAR

Prop Final
S1 ID VAR,warn

Final
S* VAR,warn

DU
i = // S1
...

= i // S2

Prop Final
S1 VAR VAR

S2 VAR VAR

Prop Final
S1 VAR VAR

S2 VAR VAR

Final
S* VAR

DH
i = // S1
...

= @i // S2

Prop Final
S1 VAR error
S2 error error

Prop Final
S1 VAR error
S2 error error

Final
S* error

HD
= @i // S1

...
i = // S2

Prop Final
S1 FN error
S2 error error

Prop Final
S1 FN error
S2 error error

Final
S* error

UnD
= i // S1

...
i = // S2

Prop Final
S1 ID VAR

S2 VAR VAR

Prop Final
S1 ID VAR

S2 VAR VAR

Final
S* VAR

UlD
= i // S1

...
i = // S2

Prop Final
S1 FN error
S2 error error

Prop Final
S1 FN error
S2 error error

Final
S* VAR

D||Un

if (e)
i = // S1

else
= i // S2

end // S3

Prop Final
S1 VAR VAR

S2 VAR VAR

Prop Final
S1 VAR VAR

S2 ID VAR

S3 VAR VAR

Final
S* VAR

Un||D

if (e)
= i // S1

else
i = // S2

end // S3

Prop Final
S1 ID VAR

S2 VAR VAR

Prop Final
S1 ID VAR

S2 VAR VAR

S3 VAR VAR

Final
S* VAR

D||Ul

if (e)
i = // S1

else
= i // S2

end // S3

Prop Final
S1 VAR VAR

S2 VAR VAR

Prop Final
S1 VAR error
S2 FN error
S3 error error

Final
S* VAR

Ul||D

if (e)
= i // S1

else
i = // S2

end // S3

Prop Final
S1 FN error
S2 error error

Prop Final
S1 FN error
S2 VAR error
S3 error error

Final
S* VAR

D||H

if (e)
i = // S1

else
= @i // S2

end // S3

Prop Final
S1 VAR error
S2 error error

Prop Final
S1 VAR error
S2 FN error
S3 error error

Final
S* error

H||D

if (e)
= @i // S1

else
i = // S2

end // S3

Prop Final
S1 FN error
S2 error error

Prop Final
S1 FN error
S2 VAR error
S3 error error

Final
S* error

Table 1. Comparative Summary of the threekind analyses

We ran the three kind analyses on all files in the bench-
marks, and we categorized all identifiers based on their kind
assignment. The cumulative results for both functions in Ta-
ble 3 and scripts in Table 4.

6.1 Kind results for functions

Table 3 gives the results for the functions. For functions
we counted the number of identifiers (not identifier occur-
rences). For example, for “myfunc ” in Figure 3(a) there are
12 identifiers and we would have counted 7 VAR and 5 FN,
meaning that we found 7 variables and 5 named functions.
Overall, we found that about 58% of the identifiers were
variables and about 40% were named functions. Only 1.2%
of the identifiers remained uncategorized (ID) after the kind
analysis. The three different kind analyses had only small
differences in their outputs, which is what we intended. We
examined all benchmarks where the results differed in order
to determine the cause of the difference.

Kind # Id. (Matlab) # Id. (FS) # Id. (FI)
VAR 107327 107340 107345
FN 75486 75486 75486
ID 2357 2333 2333
PREFIX 12 12 12
error 1 3 0
warn 0 9 7
Total 185183 185183 185183

Table 3. Cumulative Results for Kind Analysis of 11698
functions

Let us first summarize the differences in the number of
errors found. The flow-insensitive (FI) approach did not
find any kind errors in any of the benchmarks. The flow-
insensitive approach can only find kind clashes for very ex-
plicit situations such asDH, HD, D||H, andH||D. The fact
that no such kind error occurs in any of the benchmarks
may mean that programmers find those rules easy to follow
and are unlikely to make this sort of error. The MATLAB

7 approach found only one more kind error than the flow-
insensitive approach, and this corresponded to aUl||D case.
As we expected, the flow-sensitive (FS) approach caught
more programming errors. The two extra errors that were
only found using the flow-sensitive approach were of type
D||Ul.

Both our flow-sensitive and flow-insensitive approaches
issue warnings when an “end ” expression causes an identi-
fier to be given the type VAR (the Eu situation). The flow-
insensitive version finds fewer such warnings. The two warn-
ings which are caught by the flow-sensitive approach, but
not by the flow-insensitive approach, are in situations where
there is an assignment to the identifier later in the program.
In the flow-insensitive case all assignments are analyzed
first, so when the end expression is analyzed thekind[x] is
already VAR, and no warning is issued.

The number of identifiers found to be FN was exactly the
same for all three approaches. All of the remaining differ-
ences come from assigning VAR instead of MAY VAR (which
is mapped to ID when analysis ends) to load arguments.

Perhaps the most interesting aspect of the results is the
small differences between the results using the original
MATLAB 7 semantics and our proposed approaches. Our
goal was to design cleaner approaches, to make the results
of kind analysis easier to understand, but to avoid breaking
the working codes as much as possible. Based on our results
we feel that we achieved that, and we can recommend the
improved approaches to be used in future versions of the
MATLAB language.

6.2 Kind results for scripts

Table 4 gives the results for the scripts. Recall that in MAT-
LAB 7 approach, a variable inside a script can only have final
kinds of ID, FN or error , and that one identifier can actually
have different kinds at different program points. However,
in our two alternative approaches we update the kind of all
occurrences of an identifier based on the final kind analysis
results, and we retain the VAR kind.

Because the MATLAB 7 results are program-point spe-
cific, for scripts we counted the kinds for each identifier oc-
currence. For example, for the script in Figure 6, we would
count the kind for the 22 identifier occurrences as summa-
rized in the comments. We have also reported, for the MAT-
LAB 7 case, the kinds both before and after the final mapping
(post-process) of kinds.

Kind #Id. Matlab #Id. Matlab #Id. FS #Id. FI
raw post-process

VAR 153563 0 154065 154075
FN 1 1 3 3
ID 69027 222590 68413 68413
error 0 0 0 0
warn 0 0 110 100
Total 222591 222591 222591 222591

Table 4. Cumulative Results for Kind Analysis of 2305
scripts

The results for scripts are very different than for func-
tions, with almost all of the identifiers being given the kind
ID in the MATLAB 7 approach (even though before the post-
process step many identifiers had been determined to be
VAR). Since almost all identifiers will have kind ID, which
have an expensive general lookup, the runtime overheads for
resolving names in scripts will be higher than for functions.
This lack of accurate static information about the identifiers
in scripts also implies that any subsequent static analysis
of the script will have limited precision. In both our flow-
sensitive and flow-insensitive approaches, we find a signif-
icant number of VAR identifiers, which improves the situa-
tion. Furthermore, keeping the VAR kind makes the behavior

for scripts more similar to functions and as a result makes the
language easier to understand. This will also help in subse-
quent static analysis and compilation of the code.

It is also interesting to note that the flow-sensitive and
flow-insensitive analysis compute the same kinds for almost
all identifier occurrences in the scripts. Again like in func-
tions, the flow-insensitive approach found fewer warnings.
Both of them manage to find slightly more VAR instances
than the MATLAB 7 approach (before post-processing) be-
cause of our treatment of explicit loads to named variables
(remember that we use VAR instead of MAY VAR). The two
cases of FN is from a code that references an identifier
twice and then takes a function handle of the identifier. In
scripts MATLAB keeps copy of the kind at each program-
point so the previous occurrences of the identifier don’t see
the change of kind to FN.

Even with our improved analysis for scripts it is in-
evitable that many identifiers will not be able to be assigned
a kind more precise than ID. The overall numbers show a
similar trend to what we observed in the “myscript ” exam-
ple from Figure 6. In that example, 5 of the 12 identifiers
are given a final kind of ID (size,i,magic, mod and cos). In
all of these cases there are no explicit statements within the
body of the script which can determine if these have kind
VAR or FN. Indeed, whether they are VAR or FN depends
on the context from which they are called. If the identifier is
a variable in the caller’s workspace, then the identifier will
refer to a variable, and if it is not in the caller’s workspace,
the identifier will refer to a named function. Thus, there re-
main overheads for using scripts, both in the extra lookups
required and in the possible imprecision of subsequent anal-
yses.

7. Related Work
This paper tackles a very basic problem, giving a meaning
to identifiers in a program. With many languages these are
trivial issues that are dealt with by standard front-end parsing
and symbol table modules. Even reasonably complicated sit-
uations, such as properly disambiguating package names in
Java, usually have quite clear specifications and static types
to work with. However, as we discovered when building our
MATLAB infrastructure, the kind analysis problem for MAT-
LAB was not obvious and we could find no documentation
or prior work on this problem.

There are other open MATLAB -like systems such as
Octave[8] and Scilab[3]. Octave uses a syntax mostly com-
patible with MATLAB , whereas Scilab defines a somewhat
different syntax. Both of these systems concentrate on pro-
viding an interpreter for a MATLAB -like language, rather
than providing a static analysis framework. Thus, all of the
complexities of deciding the meaning of an identifier are
deferred until runtime and these systems do not use a kind
analysis. For example, in Octave, the example of “i = i ”
from the motivating example of Figure 1 executes without

raising a compile-time error. Octave uses the completely dy-
namic semantics - at run-time the right-hand-side “i ” refers
to a function and the left-hand-side “i ” refers to a variable.

There have also been research systems which had impres-
sive static type inference analyses for subsets of MATLAB ,
including the FALCON[9], MAGICA[4] and MaJIC[1] sys-
tems. More recently the McFor[5] and McVM[2] systems
have implemented variations on type and shape analysis in
the context of ahead-of-time and JIT compilers for subsets
of MATLAB . This paper is really addressing a simpler, but
fundamental, problem for a modern version of MATLAB . To
match the semantics of MATLAB 7, the kind analysis must
be first be run to assign kinds to identifiers and to create
an appropriately specialized IR on which the more complex
shape analyses can be applied. Our hope is that a wide va-
riety of static analyses, including similar sophisticatedtype
inference algorithms, can be implemented more easily and
for a larger language subset starting with our infrastructure.

8. Conclusions
This paper has presented the problem of defining and imple-
menting kind analyses for MATLAB . When we started our
project for developing an open and extensible compiler and
analysis framework for MATLAB we did not imagine that
this was a potential paper topic - we expected it to be trivial
to build a good intermediate representation and that a decent
front-end could resolve all the identifiers. However, the more
we learned about MATLAB , the more we realized that this is
actually a foundational problem and that a good solution to
this problem was imperative as a starting point for all other
static analyses.

Our first objective was to specify the kind analysis as it is
implemented in MATLAB 7. As there is no written language
standard for MATLAB , we accomplished this by developing
a large set of tests that were designed to expose the subtleties
of the kind analysis. Based on these tests we developed a
kind analysis which appears to match the intended MATLAB

7 semantics. In this process we discovered several bugs or
inconsistencies in the MATLAB 7 implementation, which we
reported to MathWorks.

While developing the MATLAB 7 kind analysis algo-
rithm, we found aspects of the approach that we thought
could be improved. Thus, we also designed two new vari-
ations of the kind analysis, one flow-sensitive analysis, and
another flow-insensitive analysis. In both cases we incorpo-
rated improvements to the analysis, especially in the treat-
ment of scripts.

Our objective was to keep the general intention of the
MATLAB 7 kind analysis, but to have cleaner specifications
which would be easier for programmers to understand and
for tool implementers to implement.

We implemented all three kind analyses in our MCLAB

compiler framework, and evaluated the three analyses on a
large number of MATLAB 7 programs which come from a

wide variety of sources. We were quite pleased to see that
our cleaner kind analyses did not differ in many cases from
the original MATLAB 7 approach.

Although as compiler researchers we tend to prefer the
flow-sensitive analysis because it gives more precise results
and is able to detect a few more compile-time warnings
and errors, we think that the flow-insensitive approach has
important practical merits. It is almost as good as the flow-
sensitive analysis in finding kind warnings and errors, it is
probably simpler to explain to MATLAB programmers, and
it is likely more suitable for implementing in an IDE. Thus,
we would recommend that the flow-insensitive definition of
kind analysis be adopted for MATLAB , and that a standard
be developed based on that definition.

As compiler researchers more familiar with imperative
and object-oriented languages, which normally have an of-
ficial language specification, we had to spend consider-
able time and effort understanding the implicit semantics
of MATLAB , and formulating those semantics more explic-
itly in a way that we could understand in the context of static
analysis. Thus, we hope that another key contribution of this
paper is explaining the essence of MATLAB so that other
compiler researchers can benefit from our experience.

The techniques presented in this paper now form the
foundation of our analysis framework[7]. Based on kind
analysis we are able to build a good intermediate repre-
sentation suitable for further analysis development, bothin
the field of optimizations and for other applications such as
refactoring tools.

Acknowledgements
This work was done with support from NSERC (Canada),
McGill University (Canada), and The Leverhulme Trust
(UK). Many thanks to the many McGill students who have
worked on building the MCLAB framework, and the OOP-
SLA reviewers who had many useful suggestions.

References
[1] G. Almási and D. Padua. MaJIC: compiling MATLAB for

speed and responsiveness. InPLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language
design and implementation, pages 294–303, New York, NY,
USA, 2002. ACM.

[2] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge. Opti-
mizing MATLAB through Just-In-Time Specialization. InIn-
ternational Conference on Compiler Construction, pages 46–
65, March 2010.

[3] INRIA. Scilab, 2009. http://www.scilab.org/
platform/ .

[4] P. G. Joisha and P. Banerjee. Correctly detecting intrinsic type
errors in typeless languages such as MATLAB. InAPL ’01:
Proceedings of the 2001 conference on APL, pages 7–21, New
York, NY, USA, 2001. ACM.

[5] J. Li. McFOR: A MATLAB to FORTRAN 95 compiler. Mas-
ter’s thesis, McGill University, Montreal, Canada, 2009.

[6] MathWorks. MATLAB Documentation, 2010. http://
www.mathworks.com/ .

[7] McLAB. McLAB. http://www.sable.mcgill.ca/
mclab/ .

[8] Octave. GNU Octave. http://www.gnu.org/
software/octave/index.html .

[9] L. D. Rose and D. Padua. Techniques for the translation of
MATLAB programs into Fortran 90.ACM Trans. Program.
Lang. Syst., 21(2):286–323, 1999.

