
MetaLexer: A Modular Lexical Specification Language

Andrew Casey and Laurie Hendren
School of Computer Science

McGill University
3480 University Street

Montreal, Quebec, H3A 2A7
[acasey,hendren]@cs.mcgill.ca

ABSTRACT
Compiler toolkits make it possible to rapidly develop com-
pilers and translators for new programming languages. Al-
though there exist elegant toolkits for modular and extensi-
ble parsers, compiler developers must often resort to ad-hoc
solutions when extending or composing lexers. This paper
presents MetaLexer, a new modular lexical specification lan-
guage and associated tool.

MetaLexer allows programmers to define lexers in a mod-
ular fashion. MetaLexer modules can be used to break the
lexical specification of a language into a collection smaller
modular lexical specifications. Control is passed between the
modules using the concept of meta-tokens and meta-lexing.
MetaLexer modules are also extensible.

MetaLexer has two key features: it abstracts lexical state
transitions out of semantic actions and it makes modules
extensible by introducing multiple inheritance.

We have constructed a MetaLexer tool which converts
MetaLexer specifications to the popular JFlex lexical speci-
fication language and we have used our tool to create lexers
for three real programming languages and their extensions:
AspectJ (and two AspectJ extensions), Matlab (and the
AspectMatlab extension), and MetaLexer itself. The new
specifications are easier to read, are extensible, and require
much less action code than the originals.

Categories and Subject Descriptors
D.3.4 [Software]: Programming Languages—processors

General Terms
Languages

1. INTRODUCTION
Compiler-generator toolkits enable rapid development of

compilers by generating front-ends from lexical and parser
specifications. Lexers are intended to recognize simple regu-
lar languages and are typically used to perform tokenization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’11, March 21–25, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0605-8/11/03 ...$10.00.

for parsers. In practice, however, the languages handled by
lexers often consist of multiple sub-languages. For example,
in Java there are separate lexing rules for strings, comments,
and Javadoc specifications. These different sub-languages
are often dealt with by allowing a lexer to have different
states, each of which lexes a particular sublanguage.

Mixed-language programming is another area that requires
lexing of different sub-languages. Although this is not a
new concept1, mixed-language programming is growing in
popularity, especially in the web development community.
HTML documents often contain embedded JavaScript [33]
and CSS [32]. Languages like ASP [25] and JSP [30] go a
step further and mix general purpose languages with HTML.

Languages are often extended with new functionality. For
example, in aspect-oriented languages like AspectJ, new con-
structs are added to an existing programming language base.
In many cases these extensions have a very different lexical
structure from the base. For example, if the string “if*1”
is part of Java code, it should be tokenized as three tokens:
the keyword if, the operator * and the integer constant 1. If
this same string occurred in an AspectJ pointcut, it should
be be interpreted as a pattern that matches all identifiers
beginning with the substring “if” and ending with the sub-
string “1”. Clearly in this case the “if” is not a keyword
token.

Though there are some very nice tools for developing mod-
ular and extensible parsers, there appears to be a real lack
of tools for modular and extensible lexers that are sepa-
rate from the parser. As just one example, the abc As-
pectJ compiler[2] used two parser toolkits, Polyglot[7] and
JastAdd[12], to implement the AspectJ extensions to Java
and also to enable further AspectJ extensions. Building
the parser extensions using these toolkits was very natu-
ral. However, it turned out that the lexical structure of
the AspectJ-specific grammar is quite different from that of
Java and considerable work was needed to create an ad-hoc
solution for the lexer. Problems like this, plus the increas-
ing popularity of defining mixed languages inspired us to
develop a solution for modular and extensible lexers.

This paper introduces MetaLexer, a new lexical specifica-
tion language and associated tool, which provides a clean,
extensible and modular approach to lexing co-existing sub-
languages. MetaLexer is intended to be a more advanced
alternative to traditional tools, such as JFlex[21], and it has
been designed to work well with traditional parser-generator

1Since the early days of C, programmers have been inserting
blocks of assembly with asm regions [19]. Around the same
time, C was being embedded in Lex specifications [23].

tools. Thus, a MetaLexer-based lexer could, for example,
be used in existing or new projects with traditional parser-
generators such as yacc/bison or with more complete com-
piler systems such as JastAdd and Polyglot.

One of the main challenges was to find a mechanism to
naturally compose lexers for different sub-languages. Such
a composable specification allows one to: (1) define each
sub-language separately; (2) easily reuse previously defined
sub-language lexers; and (3) be able to easily extend ex-
isting specifications. Normally, the lexical rules in a tra-
ditional lexer-specification language are tightly coupled by
the lexer’s transition logic. Thus, in order to be able to de-
compose these specifications, such that there is one modular
sub-specification for each sub-language, one must invent a
way to lift out and abstract the state transition logic.

Solving this problem led to the main idea of our new ap-
proach, meta-lexing. The fundamental idea of meta-lexing
is that each pattern (rule) in an ordinary lexer can have an
associated meta-token. Then, sequences of meta-tokens can
be used to guide control flow. We call it meta-lexing because
recognizing the patterns of meta-tokens is a form of lexing at
the meta-token level. One could think of this as having two
levels of lexing, which are cooperating with each other. Con-
ceptually, there is a base-level lexer for each sub-language.
At a particular point in time, one of those sub-language lex-
ers will be active and will process the incoming character
stream and produce two output streams - a stream of ordi-
nary tokens as well as a stream of meta-tokens. As lexing
proceeds, the stream of meta-tokens is meta-lexed to rec-
ognize when transitions from one sub-language to another
should occur. In particular, we use the concept of an em-
bedding to specify when the metalexer should shift to a new
state and when it should shift back to the previous state.

Two key features distinguish MetaLexer from its prede-
cessors:

1. Lexical state transitions are lifted out of semantic ac-
tions (Section 2.1) and

2. modules support multiple inheritance (Section 2.2).

We have implemented a translator from MetaLexer to the
popular JFlex lexical-specification language and used it to
build lexers for three real programming languages: AspectJ
(and two extensions), Matlab (and the AspectMatlab ex-
tension), and MetaLexer itself. The new specifications are
easier to read and require much less lexer action code (e.g.
in C or Java) than the originals.2

The main contributions of this paper are:

• the definition of a new paradigm for modularly speci-
fying lexers based on the concept of meta-lexing;

• a tool implementing the new paradigm which trans-
lates metalexer specifications to a standard JFlex spec-
ification; and

• applications of the tool to three real-world program-
ming languages and their extensions.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the key features of MetaLexer in greater

2See http://www.sable.mcgill.ca/metalexer for the
MetaLexer implementation, documentation, and examples.

detail. Section 3 introduces MetaLexer syntax using a prac-
tical example. Section 4 outlines the implementation of the
MetaLexer-to-JFlex translator. Section 5 describes our ex-
perience building lexers for AspectJ, Matlab, and Meta-
Lexer. Section 6 discusses related work. Finally, Section 7
summarizes our conclusions and suggests opportunities for
future work.

2. KEY FEATURES
In this section we describe the key features that distin-

guish MetaLexer from its predecessors, and at the same time
introduce some high-level examples to illustrate the ideas.
In Section 2.1 we introduce our notion of meta-tokens/meta-
lexing and the concept of two kinds of specifications: compo-
nents to specify lexers for sub-languages and layouts to spec-
ify the transitions between sub-languages. As one of our ob-
jectives was to support extensible specifications, MetaLexer
also supports inheritance, which is introduced in Section 2.2.

2.1 Key Feature: State Transitions
Practical lexers nearly always make use of lexical states

to handle different regions of the input according to differ-
ent rules. The transitions between these states are buried
in the semantic actions associated with rules and are tool-
dependent.

For example, Listing 1 shows a JFlex lexer with three
states: initial, within a class, and within a string. Whenever
an opening quotation mark is seen, whether in the initial
state or within a class, the lexer transitions to the string
state. It remains in the string state until a closing quotation
mark is seen. The previous state must be stored in a variable
so that the lexer can return once the closing quote has been
seen.

<YYINITIAL > {
\" { yybegin(STRING_STATE); prev =

YYINITIAL; }
/* other rules related to lexing in the

initial state */
}
<CLASS > {

\" { yybegin(STRING_STATE); prev = CLASS; }
/* other rules related to lexing within a

class */
}
<STRING_STATE > {

\" { yybegin(prev); return STRING(text); }
/* other rules building up text buffer */

}

Listing 1: JFlex State Transitions

In other words, when in state CLASS, transition to state
STRING STATE upon seeing the " token; transition back
upon seeing the matching " token. As in this example, lexer
transitions can often be described by rules of the form when
in state S1, transition to state S2 upon seeing token(s) T1;
transition back upon seeing token(s) T2.

In our simple example, it is just one token that signals en-
tering and leaving a state, but it is often the case that state
transitions occur upon observing a particular sequence of
tokens. Furthermore, transitions are often stack-based, like
method calls. When a transition is triggered, the trigger-
ing lexical state is saved so that it can be restored once a
terminating sequence of tokens is observed.

MetaLexer makes these rules explicit by associating“meta-
tokens” with rules and then using a “meta-lexer” to match

patterns of meta-tokens and trigger corresponding transi-
tions. This organization gives rise to two different types of
modules: components and layouts.

A component contains rules for matching tokens. It cor-
responds to a single lexical state in a traditional lexer.

A layout contains rules for transitioning amongst compo-
nents by matching meta-tokens.

For example, Figure 1 shows a possible organization of
a Matlab lexer. A (square) layout – Matlab – refers to
three (rounded) components – Base, String, and Comment.
Each of the components describes a lexical state and the
layout describes their interaction. Note that we illustrate
the actual syntax used within layouts and components in
the next section (Section 3).

Matlab

Base String Comment

Figure 1: Layout (square) and components
(rounded) for Matlab

This division of specifications into components and layouts
promotes modularity because components are more reusable
than layouts. For example, many languages have the same
rules for lexing strings, numbers, comments, etc. Factoring
out the more reusable components from the more language-
specific layouts reduces coupling.

For example, Figure 2 extends Figure 1 to show how a
second layout – Lang X – might share some components in
common with the original layout – Matlab. In particular, the
other lexer might treat strings the same way, but comments
differently. If so, it could reuse the same string component,
but create its own comment component.

X

Lang X Matlab

Base String Comment

Figure 2: Two layouts sharing components

We have found that this sharing of modules is very useful
in practice. Components, in particular, are very reusable.
For example, the layouts of MetaLexer languages – compo-
nent and layout – use many of the same components (Sec-
tion 5.3). Additionally, the components of the abc language
inherit many of the same helper components (Section 5.1).

2.2 Key Feature: Inheritance
MetaLexer uses inheritance to achieve extensibility and

modularity. We have used these features extensively in our
own applications of MetaLexer. The following small exam-
ples illustrate the key ideas.

Figure 3 shows how inheritance can be used to extend an
existing lexer. Given an existing Matlab lexer, one might
wish to extend the syntax of strings, perhaps allowing new
escape sequences (normal Matlab strings support very few

escape sequences). One could do this by inheriting the String
component in a new String++ component that adds the new
escape sequences. Then one could inherit the Matlab layout
in a new Matlab++ layout which replaces all references to
String with references to String++. Note that this process
would leave the original Matlab lexer (i.e. layout and com-
ponents) intact.

Base String String++

Matlab Matlab++

Figure 3: Using inheritance to extend the syntax of
Matlab strings

On the other hand, Figure 4 shows how inheritance can
improve modularity by factoring out useful “helper” frag-
ments into separate layouts/components. In this case, since
the components Base and Class share rules in common (key-
words and comment syntax), these rules have been factored
out into “helper” components (shown with dashed borders)
that are then inherited by both true components. The same
modularity can be achieved with layouts.

Keywords
Comment
Delimiter

Base Class

Figure 4: Using inheritance to improve modularity

The inheritance mechanism in MetaLexer is specific to the
problem of lexing, and thus a key design goal was designing a
lightweight, but sufficiently expressive, mechanism for spec-
ifying the order in which newly inherited lexing rules are
combined with existing rules, and which rules take prece-
dence in the case of a conflict. We return to these details in
Section 3.2.

3. LANGUAGE
As we introduced in the previous section, MetaLexer ac-

tually consists of two specification languages: one for com-
ponents and one for layouts. Components take the place of
lexical states; they contain the lexical rules. Layouts specify
the interaction of the components, the transitions between
the lexical states. This section introduces the syntax of both
languages, and provides illustrative examples.3

3.1 Example
We begin with an example. Suppose we want to write a

parser for Java property files. A property consists of a key
and a value, separated by an equals sign. The key is an
alphanumeric identifier and the value is a string that starts
after the equals sign and ends at the end of the line. Each

3The complete specification and longer examples may be
found at www.sable.mcgill.ca/metalexer.

line contains a key-value pair, a comment (from ‘#’ to end-
of-line), or whitespace. Listing 2 shows a sample properties
file. It specifies three key-value pairs: (name, ‘properties’),
(date, ‘2009/09/21’), and (owner, ‘root’). Everything else is
ignored.

#some properties
name=properties
date =2009/09/21

#some more properties
owner=root

Listing 2: Syntax Example – A Properties File

Clearly, we could extract all of this information within the
lexer, but to be more illustrative we will tokenize the file for
a hypothetical parser.

Ultimately, we will create a number of components and
join them together using a layout. The overall structure
will be two sub-language components, key and value, and a
helper component util patterns. The main idea is that the
key component will handle most of the language, but the
small value sub-language will be used to recognize the values
that come after the "=" token. The top-level specification,
which also specifies the transitions between the components
will be given in the properties layout file.

Let’s first examine the key component (Listing 3) that will
be the workhorse of our lexer. This listing is fairly intuitive.
First, we specify the name of our component (%component).
Then we list methods that we plan to use, but we expect to
be defined elsewhere (%extern). After a separator, we specify
lexical rules. As one might expect, %%inherit specifies a
point at which other rules should be inherited, in this case
util patterns.mlc. Finally, we note that one of the rules is
followed by an extra identifier, ASSIGN. This is a meta-
token; it will be processed by the layout to determine if a
transition is necessary.

%component key
%extern "Token symbol(int)"
%extern "Token symbol(int , String)"
%extern "void error(String) throws LexerException"

%%

%% inherit util_patterns
{lineTerminator} {: /* ignore */ :}
{otherWhitespace} {: /* ignore */ :}
"=" {: return symbol(ASSIGN); :} ASSIGN
%:
{identifier} {: return symbol(KEY , yytext ()); :}
{comment} {: /* ignore */ :}
%:
<<ANY >> {: error("Unexpected character

’"+yytext ()+"’"); :}
<<EOF >> {: return symbol(EOF); :}

Listing 3: Syntax Example – key.mlc

Readers familiar with JFlex will note three main differ-
ences in the syntax of MetaLexer’s rules. First, MetaLexer
introduces a new (top-level) <<ANY>> pattern which is
used to designate the catchall rule (described below).4 Sec-
ond, each rule may optionally be followed by a meta-token

4We intentionally made the syntax of MetaLexer look like
the syntax of JFlex in order to make it easy for JFlex/Flex
programmers to adapt to MetaLexer.

declaration. Whenever the pattern is matched, in addition
to executing the action code, the component will send the
meta-token to the coordinating layout. Meta-tokens do not
need to be declared, nor do they need to be unique. Finally,
for disambiguation reasons, colons have been added inside
the curly brackets (see [8] for an explanation).

Now let us examine the small value component for lexing
the values that occur after the "=" token (Listing 4). It has
many of the same features as Listing 3 – a component name,
external declarations, inheritance of util patterns, meta-tokens
– but it also illustrates another MetaLexer construct, an %ap-

pend block. The append block means that the goal of the
whole component is to build up a single token. Instead of
returning tokens themselves, the rules call append() to con-
catenate strings onto a shared buffer. When the component
is ‘complete’ (as decided by the layout), the body of the
%append block will be executed and a single token will be re-
turned. In this case, we are using an append block to gather
up all of the characters that appear between the equals sign
and the end of the line (or file).

%component value

%extern "Token symbol(int , String , int , int , int ,
int)"

%append{
return symbol(VALUE , text , startLine , startCol ,

endLine , endCol);
%append}

%%

%% inherit util_patterns

{lineTerminator} {: :} LINE_TERMINATOR
%:
%:
<<ANY >> {: append(yytext ()); :}
<<EOF >> {: :} LINE_TERMINATOR

Listing 4: Syntax Example – value.mlc

Listing 5 shows the util patterns helper component that
is inherited by both key and value. The %helper directive
indicates that the module is only to be inherited, never used
directly. Notice how it encapsulates the code shared by the
key and value components so that the code does not have to
be duplicated. The pattern definitions themselves are just
as in JFlex.

%component util_patterns
%helper

lineTerminator = [\r\n] | "\r\n"
otherWhitespace = [\t\f\b]
identifier = [a-zA-Z][a-zA-Z0 -9_]*
comment = #[^\r\n]*

Listing 5: Syntax Example – util patterns.mlc

Finally, Listing 6 shows the properties layout that joins
everything together. It is the layout that we will compile into
a working lexer. Like a normal lexical specification (Flex,
JFlex, etc), the layout begins with a free-form header. In
MetaLexer, however, the header is split in two. The first
section is specific to the current layout, whereas the second
section will be inherited by any layout that extends this one.

package properties;
%%
import static properties.TokenTypes .*;
%%
%layout properties

%option public "%public"
%option final "%final"
%option class "%class PropertiesLexer"
%option unicode "%unicode"
%option function "%function getNext"
%option type "%type Token"
%option pos_line "%line"
%option pos_column "%column"

%declare "Token symbol(int)"
%declare "Token symbol(int , String)"
%declare "Token symbol(int , String , int , int , int ,

int)"
%declare "void error(String) throws LexerException"
%{

private Token symbol(int symbolType) { ... }
private Token symbol(int symbolType , String

text) { ... }
private Token symbol(int symbolType , String

text , int startLine , int startCol , int
endLine , int endCol) { ...

private void error(String msg) throws
LexerException { ... }

%}

%lexthrow "LexerException"
%component key
%component value
%start key

%%

%%embed
%name key_value
%host key
%guest value
%start ASSIGN
%end LINE_TERMINATOR

Listing 6: Syntax Example – properties.mll

After the header sections comes the option section. It be-
gins with the layout name (%layout) and the lexer options
(%option). Each lexer option is given an identifier so that
it can be deleted or replaced in an extension of the layout.
The string part is passed directly to the underlying lexical
specification language. Following the options are declara-
tions in the underlying action implementation language (for
example, Java) (surrounded by %{ and %}). These meth-
ods will be added directly to the lexer class. Each one is
shared with the components of the lexer via a %declare di-
rective. The %lexthrow directive reflects the fact that, by
calling error(String), a lexer action may raise a LexerExcep-
tion. At the end of this section, the components to be used
are imported (%component) and a start component is specified
(%start). Until a transition occurs, the lexer will remain in
the start component.

The last section contains embeddings (i.e. transitions). In
this case, if an ASSIGN meta-token is seen while in the key
component, then the lexer will transition to the value com-
ponent. It will remain there until a LINE TERMINATOR
meta-token is seen and then transition back to the key com-
ponent. Note that embeddings naturally express stack-based
transitions between states.

In general, an embedding may be read as when in com-
ponent HOST, transition to component GUEST upon ob-

serving meta-pattern START; transition back upon observ-
ing meta-pattern END.

This simple example shows the important syntax of Meta-
Lexer. For a complete description of the syntax see [8].

3.2 Inheritance
Inheritance in MetaLexer must provide a simple and prin-

cipled way of adding functionality to an existing MetaLexer
specification for layouts or components.5

An %%inherit directive instructs MetaLexer to weave the
contents of the referenced module into the current module.
However, since the lexical specifications have internal struc-
ture and because the order of lexical rules is important, this
weaving process must conform to that structure. MetaLexer
splits up the inherited file and weaves its elements to the cor-
responding sections of the current module. That is, headers
go in the header section, options go in the option section,
rules go in the rules section, etc. Most inherited elements are
inserted at the ends of their corresponding sections. How-
ever, the order of embeddings and lexical rules matters, and
so MetaLexer supports well-defined mechanisms for specify-
ing where insertions should occur.

3.2.1 Inheritance for layouts
An inheritance directive in a layout indicates that another

layout should be inherited. It is of the form, %%inherit lay-
out.

When a layout inherits another layout, the inherited em-
beddings are not added to the end of the file. This would be
too inflexible. Instead, they are inserted at the location of
the corresponding %%inherit directive. This allows the child
layout to insert new embeddings both before and after the
inherited embeddings. Furthermore, it clarifies the relative
positions of the embeddings inherited from different parent
layouts.

Each inheritance directive is immediately followed by zero
or more unoption, replace, and unembed directives (in that
order).

Unoption directives filter out options from inherited lay-
outs. They are of the form, %unoption name.

Replace directives replace all references to one component
with references to another. This is very useful when a new
layout uses an extended version of a component used by an
inherited layout (as in the example in Figure 8 in Section
5). Replace directives are of the form, %replace component,
component.

Unembed directives filter out embeddings from inherited
layouts. They are of the form, %unembed name.

3.2.2 Inheritance for components
When a component inherits another component, the pro-

cess is more complicated. The key observation is that the
order of lexical rules matters, and we must have a way of
weaving in the inherited rules at the appropriate places. We
considered forcing the programmer to give a name to each
rule, thus exposing explicit named weaving points. How-
ever, we discovered a much less burdensome approach based

5We distinguish here between inheritance and subtyping,
though the two are often conflated. By inheritance, we mean
a mechanism for sharing code, as opposed to a way to facil-
itate polymorphism (by substituting a child instance for a
parent instance).

on structuring the rules into three categories and using a
separator to delineate the boundary between categories.

In the preceding example, the components contained an
additional separator – %:. This separator actually indicates
a boundary between different categories of rules. MetaLexer
has three such categories:

1. Acyclic rules can match only finitely many strings.
Conceptually, their minimal DFAs are acyclic.

2. Cyclic rules are neither Acyclic nor Cleanup rules.

3. Cleanup rules are either catchall – <<ANY>> – or
end-of-file – <<EOF>> – rules.

These categories always appear together and in order. A
new Acyclic-Cyclic-Cleanup group begins after the section
separator – %% – and after each %%inherit directive. We insti-
tuted this separation because insertion points are required
for new rules and the boundaries between these categories
are both natural and (in practice) sufficient.

We chose this particular division based on our observa-
tions concerning frequently used regular expressions. The
three categories correspond neatly to the most commonly
used types of regular expressions: acyclic regular expres-
sions are used to represent keywords and symbols; cyclic
regular expressions are used to represent identifiers and nu-
meric literals; and cleanup regular expressions generally per-
form error handling and other administration. Furthermore,
the order in which these categories are arranged is natural –
keywords usually precede identifiers, which usually precede
cleanup rules.

Acyclic 1

Cleanup 1

Cyclic 1

Acyclic 3

Cleanup 3

Cyclic 3

Acyclic 2

Cleanup 2

Cyclic 2Inherit

(a) a component (left) inheriting from a parent (right)

Acyclic 1

Cleanup 1

Cyclic 1

Acyclic 3

Cleanup 3

Cyclic 3

Acyclic 2

Cleanup 2

Cyclic 2

(b) ordering after weaving due to inheritance

Figure 5: Ordering of inherited rules for components

The conceptual rearrangement, which takes place during
the inheritance process, is illustrated by Figure 5. Fig-
ure 5(a) shows a component (left) inheriting rules from its
parent (right). The arrow from the left indicates the loca-
tion of the inherit statement. Figure 5(b) shows the order
of the rules in the flattened component (i.e. after inheri-
tance). Note that the woven version retains the three groups
(acyclic, cyclic and cleanup), and within each group the rules
are listed in the order they would appear by inlining the in-
herited rules at the point of the inherit directive.

To make this more concrete, consider an explicit exam-
ple of component inheritance. Figure 6(a) shows a com-
ponent that extends the component defined on the right
(parent_comp). The parent component has rules for some
keywords and a number token, but the new component adds
some new keywords and an identifier. Figure 6(b) shows the
result. Note the order of the keywords in Figure 6(b) – two
keywords precede the originals, but one follows. In this way,
we control the precedence of new rules. If they precede the
old rules then they have higher precedence; otherwise they
have lower precedence. Note also that the identifier rule
follows all of the keyword rules, even the inherited ones.

%component inheriting_comp
%%
new_keywd1 {: action5 :}
new_keywd2 {: action6 :}
%:
{identifier} {: action7 :}
%:
<<ANY>> {: action8 :}
<<EOF>> {: action9 :}

%%inherit parent_comp

new_keywd3 {: action10 :}

%component parent_comp
%%
keyword1 {: action1 :}
keyword2 {: action2 :}
keyword3 {: action3 :}
%:
{number} {: action4 :}

(a) a component (left) inheriting from a parent (right)

%%
new_keywd1 {: action5 :}
new_keywd2 {: action6 :}
keyword1 {: action1 :}
keyword2 {: action2 :}
keyword3 {: action3 :}
new_keywd3 {: action10 :}
%:
{identifier} {: action7 :}
{number} {: action4 :}
%:
<<ANY>> {: action8 :}
<<EOF>> {: action9 :}

(b) ordering after weaving due to inheritance

Figure 6: Explicit example of inheritance

In our experience we have found the boundaries between
these categories to be sufficient as insertion points for new
rules. That is, given a new rule and an arbitrary inser-
tion point into an existing list of rules, the same effect can
usually be achieved by inserting the new rule at one of the
boundaries. In general, new keywords and symbols should
be inserted before the existing acyclic section; new identi-
fiers and numeric literals should be inserted after the ex-
isting acyclic section but before the existing cyclic section;
and new cleanup code should be inserted after the existing

acyclic and cyclic sections but before the existing cleanup
section.

3.2.3 Multiple Inheritance
Since MetaLexer allows modules to inherit from multiple

parents, there may be conflicts. For example, pattern defi-
nitions, exceptions, and lexical rules can be declared in two
parents of a single component. Similarly, options, declara-
tions, and embeddings can be declared in two parents of a
single layout.

MetaLexer will warn when such a conflict occurs and re-
solve the conflict by choosing the first occurrence, given the
ordering defined above. This default behaviour is consistent
with JFlex and other traditional lexer systems.

4. IMPLEMENTATION
MetaLexer has been completely implemented using Java-

based tools including JFlex, Beaver, and JastAdd. The lex-
ing of MetaLexer’s component and layout languages was
originally done using JFlex, but it has since been boot-
strapped, so the current implementation is written in Meta-
Lexer itself. This section gives an overview of the organiza-
tion of a MetaLexer lexer.

Figure 7 shows the usual model for a lexer (e.g. JFlex).
Externally, the lexer reads a stream of characters and pro-
duces a stream of tokens. Internally, the lexer moves amongst
a number of lexical states that determine which set of lexical
rules will be used.

Characters Tokens
S1 S2

S3 S4

Figure 7: Data flow of a JFlex lexer

Figure 8 shows a MetaLexer lexer. Externally, it is very
similar to the usual model. Internally, however, it uses a
different mechanism to determine which set of lexical rules
will be used. In place of lexical states, it has components.
These components, in addition to producing tokens, pro-
duce meta-tokens that are consumed by the layout. Based
on this stream of meta-tokens, the layout determines which
component should be used. This process – choosing the cur-
rent component based on a stream of meta-tokens – we have
called meta-lexing.

Characters Tokens

Meta-
Tokens

Transitions

Layout

C1 C2

C3 C4

Figure 8: Data flow of a MetaLexer lexer

Our system compiles each MetaLexer component into JFlex
code.6 Perhaps the most difficult part of superimposing
the component abstraction onto an existing lexical system
like JFlex was introducing a new scope at the component
level. This was crucial to ensure that components would re-
main independent and composable. We accomplished this
by creating a non-static inner class within the lexer for each
component. This allowed each component to access its own
variables without having to worry about conflicts and also
allowed components to share access to variables declared at
the layout level.

Although components naturally translate to JFlex, the
meta-lexing performed by layouts required a different ap-
proach. The key difference is that unlike traditional JFLex
lexers, which match the longest-match, the semantics for
the meta-lexer call for the shortest-match (i.e. transition
as soon as any meta-pattern is matched). If longest-match
semantics were used, the meta-lexer would have to wait for
an additional meta-token before transitioning, to determine
whether a longer match was possible. If not, the lexer would
have to be rolled back because characters following the orig-
inal meta-token would have been lexed by the wrong com-
ponent.

To create a meta-lexer, we construct an NFA that starts
with a self-loop that matches any extraneous symbols and
then has ε-transitions to NFAs for each of the meta-patterns
(Figure 9). We then apply standard techniques to convert
it to a minimized DFA. One key point is that we must an-
notate each accepting state with its associated meta-pattern
identifier to enable the backwards matching phase described
below.

RBRACE

Meta-
Pattern 1

1

2

Meta-
Pattern N

N

ε

ε

ε

Σ

Figure 9: A high-level view of the ε-NFA generated
for a lexical state of the meta-lexer.

One interesting twist is that after a match we need to
determine which part of the matched string was the extra-
neous prefix recognized the initial self-loop and which was
the suffix part matched by the meta-pattern. We do this
using a backwards DFA which recognizes the meta-pattern
suffix.

Let us demonstrate the meta-lexing process with an ex-
ample. Suppose we have just transitioned into a component
that represents a Java class. Then, barring intervening start
meta-patterns, the next thing we are looking for is the clos-
ing brace that will end the component. Hence, we will be

6We have taken care not to rely on any JFlex-specific inter-
nals or syntax so that MetaLexer should be easy to retarget
to other lexer tools.

in an ε-NFA that looks something like Figure 9. However,
we are likely to see a lot of extraneous symbols before we
reach the end of the component – keywords, parentheses,
dots, etc. Our raw match might look like IF DOT WHILE RE-

TURN RBRACE7. While this is indeed the sequence of sym-
bols that we have matched, only the RBRACE was actually
matched by the meta-pattern. When we work backwards
through the match, we match against an ε-NFA like Fig-
ure 10, which picks out just the RBRACE.

RBRACE

Figure 10: A high-level view of the reverse ε-NFA
generated for a single meta-pattern.

The backwards matching of meta-patterns is accomplished
by building a DFA for the reverse of each meta-pattern. The
process is the same as for lexical states except that there is
only one meta-pattern in each ε-NFA and the self-loop is
omitted.

Each DFA can be represented by two arrays: one for
transitions and one for actions. The transitions array is
two-dimensional with states on one axis and symbols on
the other. The actions array is one-dimensional with an
element for each state. Hence, we can encode each DFA
as a pair of statically initialized Integer arrays. These are
both compact (especially when accepting-state transitions
are omitted) and quick to initialize (since no string parsing
is required).

We perform a small optimization that is very effective in
practice. Since the numbering of the DFA states is arbitrary,
we can shuffle all of the accepting states to the end (i.e. give
them the highest numbers). Then, when we print out the
transition table for the DFA, we can omit those rows (since
we are done as soon as we reach an accepting state) and
still have a contiguous matrix. Figure 11 shows a sample
renumbering.

1

2 3

4 5

(a) Original Numbering

1

2 4

3 5

(b) Revised Numbering

Figure 11: Renumbering DFA states to move ac-
cepting states to the end.

Since most meta-patterns consist of a single symbol, most
of the minimized DFAs consist of a single start state with
transitions to a variety of accepting states. That is, in prac-
tice, the meta-pattern DFAs tend to have only one non-

7Clearly, this is not a realistic trace of a Java class.

accepting state. As a result, most meta-pattern DFAs have
a single-row transition table.

5. CASE STUDIES
After we had built the first version of MetaLexer, we used

it to specify lexers for three real programming languages:
AspectJ (and extensions), Matlab (and the AspectMatlab
extension), and MetaLexer itself. We first did AspectJ and
Matlab, in order to refine and improve the MetaLexer spec-
ification, based on our experiences. Then, after we had fin-
ished improving MetaLexer, we implemented MetaLexer in
itself. After completion, the AspectMatlab team used Meta-
Lexer to create the lexer for AspectMatlab. These are all
non-trivial systems, and we were very encouraged with our
experiences and we hope that others will find MetaLexer
equally useful.

5.1 AspectJ
The AspectBench Compiler, abc [2], is an extensible re-

search compiler for AspectJ [20]. We used MetaLexer to
construct a new lexer for the core AspectJ language of abc
and two of its extensions: eaj (Extended AspectJ) and tm
(Tracematches) (see [1] for details on these extensions).

The existing abc lexer [16] (written in JFlex) breaks As-
pectJ into four sub-languages: java, aspect, pointcut, and
pointcut-if-expression. The first three correspond straight-
forwardly to parts of the AspectJ syntax. The last refers
to the bits of aspect syntax that appear within if pointcuts.
The nesting structure of these sub-languages is tracked on a
stack, which is pushed and popped when certain tokens are
observed.

In our MetaLexer implementation, we mimicked this ap-
proach. However, since the aspect and pointcut-if-expression
sub-languages differed only in their transitions, we were able
to capture their differences in the layout and eliminate the
pointcut-if-expression component. The resulting specifica-
tion for state transitions was very clear, and the key meta-
lexer transitions are given in Listing 7. In this listing, three
MetaLexer transitions (embeddings) are specified, named
perclause, declare and pointcut.

Note that the syntax for the transition (embedding) rules
is very simple – each embedding is just a listing of the follow-
ing elements: name, host, guest, start and end. Option-
ally, a pair element can be specified when proper nesting of
start and end symbols needs to be enforced.

To illustrate, let us consider the example of the perclause
transition (embedding) defined in Listing 7. This transition
specifies when the meta-lexer should transition from the as-

pect_decl sublanguage (the host) to the perclause sub-
language (the guest). The transition should trigger (start)
when a sequence of meta-tokens composed of one of the
“PER” tokens, followed by an LPAREN is recognized. The
transition should go back to the host sub-language (end)
when the matching RPAREN meta-token is recognized.

The perclause transition rule also illustrates the optional
pair element. Many lexing situations actually require some
notion of nesting. In this case, we only want to transition
back when we find the matching RPAREN (which is not
necessarily the first one). MetaLexer supports this through
the pair directive.8

8Another common case for the use of pairs is the proper
matching of begin comments and end comments. If one

%%embed
%name perclause
%host aspect_decl
%guest pointcut
%start [PERCFLOW PERCFLOWBELOW PERTARGET PERTHIS]

LPAREN
%end RPAREN
%pair LPAREN , RPAREN

%%embed
%name declare
%host aspect
%guest pointcut
%start DECLARE
%end SEMICOLON

%%embed
%name pointcut
%host java , aspect
%guest pointcut
%start POINTCUT
%end SEMICOLON

Listing 7: Extract – Embeddings from aspectj.mll

Another significant advantage of the MetaLexer imple-
mentation was that we were able to replace the ad-hoc ex-
tensibility mechanism implemented in abc, which had been
grafted onto the original lexer, with a more general and sys-
tematic approach.

For example, both the eaj and tm (tracematches) exten-
sions were very easy to implement with MetaLexer. The
eaj extension adds new global keywords (i.e. affecting all
sub-languages), pointcut keywords (i.e. affecting only the
pointcut sub-language), and transitions. The new keywords
were added by wrapping them in new components and then
inheriting them in extensions of the original components.
Listing 8 shows an example – the new global keywords are
inherited into a component extending the original aspect
component. This was done for each component that needed
the new keywords, then the extended layout performed the
necessary replacements (e.g. Listing 9). Finally, the new
embeddings were added to the extended layout.

%component eaj_aspect
%%
%% inherit eaj_global_keywords
%% inherit aspect

Listing 8: Extract – Adding New Global Keywords

%% inherit aspectj
%replace aspect , eaj_aspect
%replace aspect_decl , eaj_aspect_decl
%replace java , eaj_java
%replace java_decl , eaj_java_decl
%replace pointcut , eaj_pointcut
%replace pointcut2 , eaj_pointcut2

Listing 9: Extract – Replacing Components

The tm extension is similar – it extends eaj with a few
new keywords and a new embedding. This is accomplished
in exactly the same way (though inheriting from eaj rather
than aspectj). Since tm introduces substantially different

wants to support nested comments, then a pair directive
can be used. The pair directive is more expressive than
pure lexical analysis, but of course not more expressive than
the arbitrary action code that one routinely finds in lexers
to handle precisely this kind of matching.

language features, it might have benefited from new lexi-
cal rules as well. However, since the previous lexer could
not add new sub-languages, there was no way to implement
this. With MetaLexer, on the other hand, adding a new
sub-language would have been easy – particularly since trace
matches have clear start- and end-delimiters.

We did encounter one noteworthy obstacle when specify-
ing the abc lexer. Some of the embeddings (i.e. transitions)
in abc need to be conditional. For example, a pointcut ends
at a semicolon in a declare statement, but at a left brace if
it is defining before, after, or around advice. We solved this
problem by duplicating some components and then giving
the duplicates different transition rules.

5.2 MATLAB
The Sable Lab at McGill University is developing an opti-

mizing compiler framework for scientific programming lan-
guages called McLab [28]. In its first incarnation, McLab is
a compiler and virtual machine toolkit for Matlab [24] and
extensions of Matlab.

Unfortunately, the syntax of Matlab is rather convo-
luted, apparently having grown organically over the course
of decades. As a result, some features are not amenable
to normal lexing and LR parsing techniques. For this rea-
son, the McLab team has defined a cleaner and functionally
equivalent subset of the language, called Natlab.9

Originally, we specified the Natlab lexer using JFlex. How-
ever, the JFlex solution was both complex and not easy to
extend. Thus, we respecified the lexer using MetaLexer, in
order to get a cleaner and extensible solution for our McLab
toolkit.

Re-specifying Natlab in MetaLexer resulted in three sub-
stantial improvements. First, the new lexer is extensible.
Since the original development of the Natlab lexer, this ex-
tensibility has successfully been used by the AspectMatlab
team. Second, nearly all of the action code in the JFlex
lexer was eliminated in favour of MetaLexer language con-
structs. In fact, nearly all remaining code is for returning
tokens, appending to string buffers, and raising lexical er-
rors. Third, all lexical states were replaced by components.
These improvements are particularly gratifying in light of
Natlab’s inherent complexity.

5.3 MetaLexer
To show our confidence in MetaLexer, we decided to spec-

ify the lexers for MetaLexer itself (i.e. the lexers for the lay-
out and component languages) in MetaLexer. The benefits
were largely as described above: the specification is clearer;
all lexical states were eliminated; and the remaining action
code is limited to return, append, and error. Additionally,
rewriting the layout and component lexers in MetaLexer al-
lowed the two languages to share many of their components
and gave us ideas for improvements that were hard to see in
the complexity of the original.

5.4 Experience Summary
Our experiences have shown that MetaLexer has captured

the right abstractions for modular and clean specifications
for three real-world applications, AspectJ, Matlab and Meta-
Lexer itself. Both the AspectJ and Matlab examples have

9In fact, it was the exercise of trying to define a clean lexer
for Matlab/Natlab that motivated this whole MetaLexer
project.

also shown that MetaLexer enables modular specifications
for language extensions. The MetaLexer example demon-
strates reuse through the modular extensions, with compo-
nent sharing between the two sub-languages.

6. RELATED WORK
There has been a lot of work on compiler-generator tools

and many excellent approaches, each with its own strengths,
have been proposed. If we concentrate on work related to
extensible, modular, and composable lexing, this can be di-
vided into two main categories: those with separate lexers
and those without (i.e. with lexing and parsing integrated).

6.1 With a Separate Lexer
Traditionally, lexical analysis (i.e. tokenization) has been

performed separately from parsing. The two primary moti-
vations for the separation are performance and clarity. Per-
formance is improved because characters can be grouped
into tokens more quickly by the regular-expression-driven
lexer than by the CFG-driven parser. Clarity is improved
because separate tokenization allows the parser specification
to be written at a much higher level – without comments or
whitespace and with nice names for classes of tokens (e.g.
‘number’ or ‘identifier’).

At present, most extensible, modular, composable pars-
ing systems with separate lexers use ad-hoc techniques for
lexical analysis. There are, however, some exceptions.

6.1.1 Ad-Hoc
The Polyglot Parser Generator [7], developed by Brukman

and Myers, is an extension of the popular CUP parser gener-
ator [31] that adds extensibility. Unfortunately, it provides
neither composability, nor a corresponding lexer.

Ekman et al created JastAdd [12], an extensible, modular
attribute grammar system. JastAdd can be used to cre-
ate modular abstract syntax trees (ASTs) using any parser
that can construct an AST from JastAdd-generated classes.
Their JastAddJ extensible Java compiler [11] achieves some
level of extensibility and modularity by breaking existing
(lexer and parser) specifications into small fragments and
then selectively concatenating them back together for each
extension. Of course, the concatenation is not subject to
any checks and there is no way to delete existing rules.

The abc extensible AspectJ compiler [2], developed by
Avgustinov et al, uses an ad-hoc extensible lexer written
in JFlex [16]. It handles the multi-language structure of
AspectJ by breaking the language into four sub-languages:
java, aspect, pointcut, and pointcut-if-expression. Actions
attached to keywords tell the lexer when to switch sub-
languages. Extensions of the lexer can only add or remove
keywords and keyword actions.

6.1.2 ANTLR
The ANTLR parser generator [27], created by Terrence

Parr, aims to be a declarative way to specify the sort of
recursive descent parser that one would ordinarily build by
hand. Since hand-written lexers frequently match tokens
that cannot be captured by regular expressions (especially
bracketing), the Antlr lexer supports CFGs. Of course,
this eliminates the performance benefit of using a regular-
expression-based lexer.

Instead of lexical states, ANTLR uses semantic predicates
– boolean expressions that enable and disable rules. This

gives specification writers a powerful (if non-declarative)
way to apply lexical rules contextually.

ANTLR allows both lexer and parser extension using del-
egation [26]. A lexer can inherit one or more existing lexers
and will delegate to them, if none of its own tokens match.
There does not appear to be a way to manipulate the rela-
tive priority of the new and inherited lexer rules. Xtext is
a complete Eclipse-based system for generating editors and
IDEs based upon ANTLR 3 [3].

6.1.3 DSL-Specific
Some approaches are specifically tailored to rapid devel-

opment of domain-specific languages (DSLs). Systems like
MontiCore [22], [15] and MPS (the Meta Programming Sys-
tem) [10] allow developers to quickly plug together lexer,
parser, and semantic modules to create new DSLs from li-
braries of available behaviours. While these tools are well
suited to creating languages and editors for DSLs with lim-
ited syntax, they cannot be used to parse more general
multi-language programming like asm blocks or JSP.

6.2 Integrated Solutions with no Separate Lexer
Of course, the easiest way to make lexical analysis context-

sensitive is to integrate it with the (context-sensitive) parser.
If the parser is top-down, then this is accomplished by spec-
ifying lexical rules for terminals. If the parser is bottom-up,
then all terminals are characters (which amounts to return-
ing a token for each character).

6.2.1 Top-Down
The Rats! parser generator [14], created by Robert Grimm,

is a lexerless approach to extensible, modular, and compos-
able parsing (e.g. Jeannie [17]). Rats! discards CFGs in
favour of parsing expression grammars (PEGs). PEG spec-
ifications look like normal CFG specifications, but produc-
tions are tested in order and the parser backtracks over mis-
matches as needed. Rats! terminals are either individual
characters or strings matched by hand-written recognition
methods. There is no need for lexical states as tokenization
is handled separately for each non-terminal. Rats! has a
powerful module system that takes advantage of the com-
posability of PEGs. Unfortunately, all this power comes at
the expense of performance – Rats! is slower than ANTLR,
which is slower than LALR parsers [14].

Another system based upon PEGs is Neverlang, which
supports a very modular specification of individual language
components and support code [9].

The metafront system [4], developed by Brabrand et al,
is another top-down lexerless parsing system. It accom-
plishes context-dependent lexical analysis by associating a
regular expression with each terminal. In place of CFGs,
metafront uses “specificity grammars”, which resolve am-
biguity in favour of the “most specific” alternative. Since
specificity can be used to resolve any ambiguity, metafront
parsers are both extensible and composable.

6.2.2 Bottom-Up
The Copper lexer and parser generator [34], created by

Van Wyk and Schwerdfeger, uses a modified LALR parser
to pass context information to a DFA-based lexer. (We con-
sider it to be a lexerless approach since the lexer does not
operate independently of the parser.) Basically, the looka-
head information in the parser is used to tell the lexer what

subset of its lexical rules it should attempt to match. While
this approach retains the benefits of DFA tokenization, its
lexing is no longer constant with respect to the size of the
grammar because it depends on the sizes of the grammar’s
lookahead sets. Furthermore, special care must be taken
with lookahead tokens as, under certain circumstances, they
may need to be re-lexed after an LALR reduction.

The Copper system has recently been extended to handle
syntactic composition in a deterministic way [29].

Generalized LR (GLR) parsing is an alternative approach
that provides a graceful way to handle conflicts in LR gram-
mars (i.e. shift-reduce or reduce-reduce). Instead of raising
an error like a traditional LR parser, a GLR parser con-
structs all possible parse trees. It may return all of them
or it may apply a heuristic or a hand-written decision func-
tion to weed out undesirable parse trees. Unlike traditional
general CFG parsing, which is cubic in the size of the input,
GLR has linear execution time for conflict-free grammars –
it only slows down around ambiguities.

On its own, GLR does not address the problem of com-
posable parsing. However, it can be extended to scannerless
GLR (SGLR), in which the parser uses characters rather
than tokens as terminals. Since the class of CFGs is closed
under composition, it is easy to create extensible, compos-
able SGLR grammars. Furthermore, SGLR makes it very
straightforward to perform context-sensitive lexical analy-
sis. For example, Bravenboer and Visser recommend SGLR
for embedding domain-specific languages (DSLs) in general-
purpose programming languages [6]. Along similar lines,
Kats et al have used SGLR to support create rich editors
for multi-language programming in Eclipse [18]. Even more
relevantly, Bravenboer et al have recommended using SGLR
in the abc frontend [5].

6.3 The Position of MetaLexer
Although related techniques have many strengths, we be-

lieve that MetaLexer provides an elegant solution to a very
common situation. MetaLexer is a good fit for projects built
using a standard LR parsing tool, and which could benefit
from a more modular and extensible lexer than is easily spec-
ified with standard tools like JFlex. This is particularly true
for lexers which support several sub-languages. Since Meta-
Lexer uses much of the same notation as JFlex, users who
are already comfortable with JFlex should be able to easily
adapt and make use of the MetaLexer features.

7. CONCLUSIONS AND FUTURE WORK
The idea of creating compilers for languages with extensi-

ble syntax and compilers for mixed language programming
is growing in popularity. Numerous tools have sprung up
for extensible and composable parsing, attribute grammars,
and analyses, but still there is a gap. For developers using
traditional parser generators like yacc/bison or extensible
compiler frameworks like Polyglot and JastAdd, there was
no existing tool supporting modular and extensible lexers.
We were faced with this problem both in the development
of the abc framework for AspectJ and in the development
of our new extensible McLab system for Matlab. In both
cases we had elegant solutions for extensible parser and se-
mantic analyses through the use of Polyglot or JastAdd, but
we did not have elegant solutions for lexing.

Without MetaLexer the developer would either have to
develop a project-specific extensibility mechanism for the

lexer (which is eventually what the abc project did) or each
extension would have to have a complete copy of the lexer
rules (the initial solution for abc), with lexing changes and
additions made to that copy. Clearly such a copy and edit
process is not good software development practice.

To fill this gap, we developed the MetaLexer lexical speci-
fication language. It has two key features. First, it abstracts
lexical state transitions out of semantic actions. This makes
specifications clearer, easier to read, and more modular. Sec-
ond, it introduces multiple inheritance. This is useful for
both extension and code sharing. We found code sharing to
be quite useful when we implemented MetaLexer in itself,
since approximated a third of the modules could be shared
between the specifications for the component and layout lan-
guages.

We implemented a translator from MetaLexer to the pop-
ular JFlex lexical specification language and used it to create
lexers for three real programming languages: AspectJ (and
two extensions), Matlab and the AspectMatlab extension,
and MetaLexer itself. The new specifications are easier to
read and require much less action code than the originals.
Furthermore, rewriting JFlex specifications in MetaLexer
enabled us to see new solutions to existing lexer problems.

In its current state, MetaLexer is already a useful tool.
However, there is always room for improvement. Given that
we now have a fully functional version, we think it would be
worthwhile to optimize the MetaLexer compiler itself, as well
as the generated code. It would also be worthwhile to create
creating a second code generation engine that produces Flex
[13] specifications so that C++ programs can also make use
of MetaLexer. The similarity between Java and C++ and
between JFlex and Flex should make this straightforward.

Now that we have a composable lexer, it would be inter-
esting to investigate a corresponding composable LR parser
generation approach. Ideally, it would, like MetaLexer, be a
preprocessor for existing tools. With or without a compos-
able LR parser generator, it would be interesting to com-
pare the combination of MetaLexer and LR to scannerless
approaches like SGLR and PEGs. We built MetaLexer be-
cause we believe that LALR is frequently“good enough”and
that, when it is, the performance benefit of using it is sub-
stantial. The work of Bravenboer et al, expressing the syn-
tax of abc in SGLR [5], presents an excellent opportunity for
comparison. Furthermore, additional work will be required
to determine how often the combination of MetaLexer and
LALR is “good enough”.

Acknowledgments.
This work was supported by NSERC. We would also like
to thank the McLab team, whose challenging lexing and
parsing requirements inspired this work and gave it its first
practical test. In particular, we would like to thank Toheed
Aslam for being the first brave soul to extend a MetaLexer
specification. We also owe a debt of gratitude to Torbjörn
Ekman for his help with the JastAdd tool and to the creators
of JFlex for the inspiration their tool provided.

8. REFERENCES
[1] AspectBench Group. abc extensions.

http://www.aspectbench.org/extensions.

[2] P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc : An

extensible AspectJ compiler. In AOSD 2005:
Proceedings of the 4th International Conference on
Aspect-Oriented Software Development, pages 87–98,
New York, NY, USA, 2005. ACM.

[3] H. Behrens, M. Clay, S. Efftinge, M. Eysholdt,
P. Friese, J. Köhlein, K. Wannheden, S. Zarnekow, and
contributors. XText user guide. http://www.eclipse.
org/Xtext/documentation/1_0_1/xtext.pdf, 2010.

[4] C. Brabrand, M. I. Schwartzbach, and M. Vanggaard.
The metafront system: Extensible parsing and
transformation. In Proceedings of the 3rd ACM
SIGPLAN Workshop on Language Descriptions, Tools
and Applications, LDTA 2003, volume 82(3), pages
592–611, 2003.

[5] M. Bravenboer, Éric Tanter, and E. Visser.
Declarative, formal, and extensible syntax definition
for AspectJ. In OOPSLA 2006: Proceedings of the
21st Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 209–228, New York, NY,
USA, 2006. ACM.

[6] M. Bravenboer and E. Visser. Concrete syntax for
objects. domain-specific language embedding and
assimilation without restrictions. In OOPSLA 2004:
Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 365–383,
New York, NY, USA, 2004. ACM.

[7] M. Brukman and A. C. Myers. PPG: a parser
generator for extensible grammars. http://www.cs.
cornell.edu/Projects/polyglot/ppg.html.

[8] A. Casey. The MetaLexer lexer specification language.
Master’s thesis, McGill University, Montreal, QC, CA,
2009.

[9] W. Cazzola and D. Poletti. Dsl evolution through
composition. In Proceedings of the 7th ECOOP
Workshop on Reflection, AOP and Meta-Data for
Software Evolution, page to appear, 2010.

[10] S. Dmitriev. Language oriented programming: The
next programming paradigm. http://www.onboard.
jetbrains.com/is1/articles/04/10/lop/.

[11] T. Ekman and G. Hedin. The Jastadd extensible Java
compiler. SIGPLAN Not., 42(10):1–18, 2007.

[12] T. Ekman and G. Hedin. The JastAdd system:
Modular extensible compiler construction. Science of
Computer Programming, 69(1-3):14–26, Dec 2007.

[13] GNU. Flex: The fast lexical analyzer.
http://www.gnu.org/software/flex/.

[14] R. Grimm. Better extensibility through modular
syntax. In PLDI 2006: Proceedings of the 2006 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 38–51, New York,
NY, USA, 2006. ACM.

[15] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel. MontiCore: A framework for the
development of textual domain specific languages. In
ICSE Companion 2008: Companion of the 30th
International Conference on Software Engineering,
pages 925–926, New York, NY, USA, 2008. ACM.

[16] L. Hendren, O. de Moor, and A. S. Christensen. The
abc scanner and parser. Technical report,
Programming Tools Group, Oxford University and the

Sable research group, McGill University, Sep 2004.
http://abc.comlab.ox.ac.uk/documents/

scannerandparser.pdf.

[17] M. Hirzel and R. Grimm. Jeannie: Granting Java
Native Interface developers their wishes. ACM
SIGPLAN Notices, 42(10):19–38, 2007.

[18] L. Kats, K. T. Kalleberg, and E. Visser. Generating
editors for embedded languages. Technical Report
Series TUD-SERG-2008-006, Delft University of
Technology, Software Engineering Research Group,
2008. http://swerl.tudelft.nl/twiki/pub/Main/
TechnicalReports/TUD-SERG-2008-006.pdf.

[19] B. W. Kernighan and D. M. Ritchie. The C
Programming Language. Prentice-Hall, Englewood
Cliffs, New Jersey, 1978.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP 2001: Object-Oriented
Programming, pages 327–353. Springer-Verlag, 2001.

[21] G. Klein. JFlex: The fast scanner generator for Java.
http://jflex.de/.

[22] H. Krahn, B. Rumpe, and S. Völkel. Efficient editor
generation for compositional DSLs in Eclipse. In
Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling, 2007.

[23] M. Lesk and E. Schmidt. Lex: A lexical analyzer
generator. Comp. Sci. Tech. Rep. 39, Bell
Laboratories, Oct 1975.

[24] MathWorks. Matlab.
http://www.mathworks.com/products/matlab/.

[25] Microsoft. ASP. http://www.asp.net/.

[26] T. Parr. Composite grammars. http://www.antlr.
org/wiki/display/ANTLR3/Composite+Grammars.

[27] T. Parr. The Definitive ANTLR Reference: Building
Domain-Specific Languages. Pragmatic Bookshelf,
Raleigh, NC, 2007.

[28] Sable Lab. Mclab.
http://www.sable.mcgill.ca/mclab/.

[29] A. C. Schwerdfeger and E. R. V. Wyk. Verifiable
composition of deterministic grammars. In PLDI
2009: Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 199–210, New York, NY, USA,
2009. ACM.

[30] Sun Microsystems. JSP.
http://java.sun.com/products/jsp/.

[31] Technische Universität München. CUP: LALR parser
generator in Java.
http://www2.cs.tum.edu/projects/cup/.

[32] W3C. Cascading Style Sheets.
http://www.w3.org/Style/CSS/.

[33] W3C. Scripts in HTML4. http:
//www.w3.org/TR/html4/interact/scripts.html.

[34] E. R. V. Wyk and A. C. Schwerdfeger. Context-aware
scanning for parsing extensible languages. In GPCE
2007: Proceedings of the 6th International Conference
on Generative Programming and Component
Engineering, pages 63–72, New York, NY, USA, 2007.
ACM.

