Typing Aspects for MATLAB-

Laurie Hendren
Sable Research Group, School of Computer Science, McGill University

hendren@cs.

ABSTRACT

The MATLAB programming language is heavily used in many sci-
entific and engineering domains. Part of the appeal of thgulage

is that one can quickly prototype numerical algorithms withre-
quiring any static type declarations. However, this lackygfe
information is detrimental to both the programmer in terrhsaft-
ware reliability and understanding, and to the compilelemmis of
generating efficient code.

This paper introduces the idea of adding typing aspectsAo-M
LAB programs. A typing aspect can be used to: (1) capture the
runtime types of variables, and (2) to check runtime typesreg
either a declared type or against a previously capturedmertype.
Typing aspects can be can be used: (1) solely as documentgt)o
to log type errors, or (3) to catch type errors at runtime.

Categories and Subject Descriptors
D.3.3 [Programming Lang.]: [Language Constructs and Features]

General Terms
Experimentation, Languages, Performance

Keywords
Typing aspects, Dynamic type assertionsyTMAB

1. INTRODUCTION

MATLAB is a popular dynamic programming language used for
scientific and numerical programming with a very large and in
creasing user base. The most recent data from MathWorkssshow
that the number of users of MLAB was 1 million in 2004, with
the number of users doubling every 1.5 to 2 yéarGertainly it
is one of the key languages used in education, research apt de
opment for scientific and engineering applications. Theeecar-
rently over 1200 books based onAVLAB and its companion soft-
ware, Simulink it t p: // www. mat hwor ks. coni support/

*This work supported by NSERC and the Leverhulme Trust.

'From www. mat hwor ks. coml conpany/ newsl| et t er s/
news_not es/ cl evescor ner/jan06. pdf.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

DSAL’11,March 22, 2011, Pernambuco, Brazil.

Copyright 2011 ACM 978-1-4503-0648-5/11/03 ...$10.00.

mcgill.ca

books). This large and diverse collection of books illustrates th
many scientific areas which rely on computational approaeimel
use MATLAB.

One of the key features of NMfLAB is that it has no statically-
declared types. The lack of type declarations is often cemetl
an advantage for fast prototyping. However, having no czlyi-
declared types also has many disadvantages, includingvega-
pacts on developing reliable and reusable programs, aratineg
impacts on performance.

From the programmer’s point of view, aMlLAB function of-
ten actually has many implicit assumptions about the typean
ables, especially parameters. For example, it may be asktirag
a parameter” is a scalar, a parametea” is a two-dimensional
matrix, or that a parametef " is a function handle (a reference to
a function and closure). If the function is called with argnts
of the wrong types, runtime errors or unexpected results otay
cur. Thus, from both the reliability perspective, as welpasgram
reusability, making these assumptions explicit and chiglekaould
be beneficial.

The lack of static types also negatively impacts perforreaid-
though the original MTLAB systems were interpreted, both the
proprietary Mathworks system[2] and the open-source M{ljab
systems now contain JIT compilers. JIT compilers, and atoéad
time compilers, require type information to produce effitieode.

In this paper we introduce the idea ofAvLAB typing aspects.
The idea is that one can annotatentilAB functions with aspect
type statements (henceforth referred t@pgpe statements) which
serve two main purposes. First,aflype statement is used to verify
that the runtime type matches a specified type, where théfiguec
type may be given at various levels of refinement. Secondly, a
atype statement is used to capture all or part of the runtime type,
which can be used in subsequeatype statements.

Sinceatype statements are not part of standard\iMAB, but
are rather a declarative way of specifying dynamic type ktiea
weaver is required to convert tlatype statements to native M-
LAB. The weaver converts eaatype statement into standard -
LAB code which performs the appropriate check and action.

We have identified three levels of woven target code, coomesp
ing to different levels of runtime checking. The most rigasdevel
introduces dynamic checks which raise runtime errors whgpea
mismatch is detected. The middle level makes the dynamickshe
but only logs runtime type errors. The least rigorous lenéio-
duces comments, similar in spirit to the style of comments th
MATLAB programmers often insert by hand.

The remainder of this paper is structured as follows. SeQio
gives an overview of the different types inAviLAB and provides
some motivating examples. Section 3 introduces the syntdx a

semantics of the proposedype statements. Section 4 discusses
related work, and Section 5 gives conclusions and futuréwor

2. BACKGROUND

The MATLAB programming language was originally designed as
an interactive interface to numerical libraries and hag onle data

uinté4:complext A real number can be represented either aimtin
or float, whereint can be eithesignedor unsigned andfloat can
be eithersingleor doubleprecision.

2.2 Structs and Cell Arrays

Structs and cell arrays are heterogeneous and provide afway o
aggregating data. Structs do not have explicit types butane

type, matrix .2 Over the years the language has been extended, andstycted using calls liked=st ruct (* x’ , expl,’y’, exp2)”,

it now includes a variety of data types, and is used for sulisia
programming projects. As illustrated in Figure 1, aMAB value
can either balata or a function handlef@handle). Data comes in
three varietiesarray, cellarray andstruct.

any

A

data fnhandle

’ (array-type H (cellarray-type H (struct-typé ‘

Figure 1: High-level MATLAB types

2.1 Arrays

Arrays are homogeneous (i.e. all elements have the samg type 2.4

and the elements must be some scalar tyfmilfle int32, char,
...). In particular, the elements of arrays cannot be handias;ts

or cell arrays. Arrays have a shape and contents, and arrays a
mutable. By default, the type of array elements is doubld,euen
scalar variables are arrays X 1 arrays). For example, a statement
of the form “a = 3” defines al x 1 array of type double, even
though an integer literal was used in the statement. Howéver
is possible to explicitly create other types. For examjie,dtate-
ment‘b = ui nt 64(3) "creates a x 1 array of unsigned 64-bit
integers.

The base types in MrLAB can be ordered as presented in Fig-
ure 2% The leaves in this ordering correspond to possible runtime
types, whereas the interior nodes represent groups oédstigpes,
which we will use in the typing aspects. At the top (left-haside
of the figure) of the ordering we use ™ to indicate all possible
base types. As indicated by the second level of the ordekitrg;-
LAB distinguishes betweemumerictypes versughar andlogical
types. Strings are effectively x n arrays ofchar. For example,
the statements’ = ’ cat’ "assigns a x 3 array of characters to
variable ‘s”. Logical types are used to represent boolean values.
For example, the statemertt “= i sequal (3, 2+1) "would as-
sign al x 1 array of logical to variablel§”.

Within thenumerictypes, there are two groupsal andcomplex
Note that these types do not imply floating point numberssbeote
to distinguish values that are representing real numbers gart)
versus values representing imaginary numbers (two paes,eal
and imaginary parts). Thus, it is perfectly possible to @acom-
plex number in which the two parts are represented as urgigne
64-bit integers. For example, the statemert & conpl ex(
ui nt 64(3), uint64(4))” creates al x 1 array with type

~ o o b~ w

2See http://ww. mat hwor ks. com conmpany/
newsl etters/ news_not es/ cl evescor ner/ dec04.
htm .

3This ordering was created by examining user-levairMas doc-
umentation, in particular the set of pre-defined functimrgdsting
types such asi“si nt eger ”.

which would create a structure with two fieldg,"initialized to the
value denoted byéxpl” and “y” initialized to the value denoted
by “exp2”. Each field can contain any type (array, handle, struct
or cell array). Cell arrays have the same rectangular streicts ar-
rays, but their elements are cells instead of numeric valubsre
each cell can contain any type. Thus cell arrays allow onedate
heterogeneous and nested arrays. Cell arrays are accessgd u
“a(...)" which denotes the cells ora{ . . . } " which denotes
the contents of the cells.

2.3 Function Handles

A function handle refers to a closure, where the closure con-
sists of a reference to the function and a reference to a wades
that maps free variables to values. A function handle istecehy
either taking the handle of a named function (for example,=
@i n; ") or by creating a handle to an anonymous function (for
example,h = @x) (x+1);").

Implicit types in MarLag functions

Although some MTLAB functions can operate on values of any
type (for example, the built-in functions' ze”), most functions
actually have some implicit requirements about the typetheif
input and output parameters. If the function is providechvitiite
“wrong” input types, it may produce undesired results or rfaly
in a completely non-obvious way.

Consider the functionEx1” given in Listing 1. This function
has one input parameten™, and one output parameter ™. The
comments describe the purpose of the function and from tw@se
ments one could deduce that*should be some sort of scalar num-
ber, and that the output will be a vector.
function [r] = Ex1(n)

% Ex1(n) creates a vector of n values containing
% the values [sin (1), sin(2), ..., sin(n)]
for i=1:n
r(i) = sin(i);

end

end

Listing 1: Example MATLAB function

Figure 3 shows an interactive MLAB session, testing the be-
haviour of various input types fom®. The lines starting with %"
are user input. The lines starting withris = " are the results
from evaluating the input expression.

Note that the first two examples in Figure 3 demonstrate the ex
pected input and behaviour. Remember that values are bultlefa
double in MaTLAB. The next five examples show the behaviour
when other input types are used (int32, char, fnhandle, tmp
and logical). These all result in either a warning or an evainun-
time error. Not all of the error messages are simple to inétrfor
example, the error messa@?? Undefined function or method
‘_colonobj’ for input arguments of type ‘function_handles' not
easy to interpret. The last example shows howrhMas often uses
only part of an input. In this case the programmer has pravaie

“This type is represented in MLAB as cl ass=doubl e,
attri but e=conpl ex.

char

int8
intl6
int32
int64
uint8
uintl6
uint32
uint64

signed<

unsigne

float ———

int:complex<

float:complex<

single
double

signed:comple<

unsigned:comple:

int8:complex
int16:complex
int32:complex
int64:complex
uint8:complex
uint16:complex
uint32:complex
uint64:complex
single:complex

double:complex

Figure 2: Ordering of base-types

logical
*
real
numeric
complex
>> Ex1(3)
ans = 0. 8415 0. 9093 0.1411
>> Ex1(2.3)
ans = 0.8415 0. 9093

>> Ex1(int32(3))
??? Undefined function or nethod
argunments of type 'int32 .
Error in ==> Ex1 at 6
b(i) = sin(i);

"sin’ for input

>> Ex1('c¢’)
??? For col on operator with char operands,
and | ast operands nust be char.
Error in ==> Ex1 at 2
for i=1:n

first

>> Ex1(@i n)
??? Undefined function or nmethod ' _col onobj’ for
i nput argunments of type 'function_handle’.
Error in ==> Ex1 at 2
for i=1:n

>> Ex1(conpl ex(1,2))

Warni ng: Col on operands nust be real scalars.
> 1n Ex1 at 2

ans = 0.8415

>> Ex1(true)

War ni ng: Col on operands shoul d not be | ogical.
> 1n Ex1 at 2

ans = 0.8415

>> Ex1([3,4,5])

ans = 0.8415 0.9093 0. 1411

Figure 3: Interactive session testing inputs to Ex1”

array, { 3, 4, 5] " instead of the expected scalar. When this value
is used by the colon operator, it uses only the first elemettef
array ignores the other values.

function y = sturm(X,BC,F,G,R)

% STURM Solve the Sturnbkiouville equation:

% d(FdY/dX)/dX— G«Y = R using linear finite elements.
% INPUT:

% X — aone-dimensional grid-point array of length N.

% BC-—is a2 by 3 matrix [Al, B1, C1; An, Bn, Cn]

% Alex Pletzer : pletzer@pppl.gov (Aug. 97/July 99).

Listing 2: Example of types in comments

The “Ex1” example demonstrates that even though there may be
a very simple type specification intended by the programtherg
is no simple way for the programmer to specify and check those
types. Furthermore, the errors and warnings raised atnentiay
not be simple to understand and may appear at a differentgrog
point than expected.

MATLAB programmers often provide comments which indicate
the expected type of the input and output parameters. Fon-exa
ple, consider thest ur ni function taken from a set of publicly-
available applications, as shown in Listing Zlearly the program-
mer has quite precise specifications for each input parayraie
has no formal way of specifying these requirements.

3. TYPING ASPECTS

Typing aspects are our solution to specifying and capturéhg
evant typing information in MTLAB programs. The key to our
approach is thatype statement which is used both to capture the
runtime types of variables, as well as perform a type cheeinag
atype specification. Eactype statement is composed of the name
(or pattern) of a variable, and a type specification for tlaiable.
The expected type can be very generic, or more specificyolp
the structure of MTLAB types as specified in the previous section.

5Source frommwy. mat ht ool s. net/sturm m

© © N O UM W N P

Let us start with an example, adding typing information te th
small example from Listing 1. Listing 3 gives a modified pragy;
with theatype statements addéd.

function [r] = Ex1(n)
% Ex1(n) creates a vector of n values containing
% the values [sin (1), sin (2), ..., sin(n)]

atype(‘n’,’ scalar of float");

for i=1:n

r(i) = sin(i);

end

atype(‘r’,
end

array [n.value] of n.basetypé);

Listing 3: Example MATLAB function with atype statements

In general, we suggest oraype statement for each input and
return parameter. Thatype statements for input parameters should
be inserted at the earliest point at which the parameterfisitidy
defined (in the case of an optional parameter, this may not thea
top of the function), and thatype statements for return parameters
should be inserted at the last point before control retutors fthe
function.

In Listing 3 theatype statement on line 4 specifies that
should be a scalar (syntactic sugar doray [1,1] of float) and
that it should have a base tyfleat. One could also use the more
restrictive base type aflouble, but in fact the function is well-
defined for bottdouble andsingle Note that as well as specifying
the runtime type check, tretype statement also captures relevant
context information about the value and types of the vagialbh
this example, we use the captured information baset ype”
and ‘n. val ue” on line 8. Specifically, theatype statement on
line 8 specifies the type of the return parameter,. “This type
specification says that ” is a vector with size fi. val ue” and
with base type equal to the runtime base type of the inpunpetier
“n”. Thus, a call of the formEx1(2. 0) "will return a1 x 2 array
of doublevalues, and a call of the fornEx1(si ngl e(2.0))"
will return al x 2 array ofsinglevalues’

"

3.1 Syntax of atype statements

Figure 4 gives the syntax rules for théype statement. At the
top-level an atype statement specifiggarnamé and a type spec-
ification, (type-spef. A (varnameé can be an identifier, or a pattern
denoting a set of identifiers. The pattern can be the wildtard
or a string starting or ending withx”. This allows one to match on
all variables, or all variables with specific prefixes or suffi. The
(type-spegcan be ‘any”, which indicates any type, qtype-speg
can be something more specific. If the parameter should corre
spond to a function handle, thefirthandl e” should be used. To
specify any kind of data (i.e. not a function handlejat a” can
be used.

Quite often the programmer will want to specify the data type
with more refinement than justiat a”. An (array-type specifica-
tionis eithera$cal ar "or“ar r ay”, and an optiona{base-type.
The specifications fotbase-typeg follow the natural grouping of
MATLAB types as specified earlier in Figure 2. Note that the pro-
grammer can choose the appropriate level of refinement. A bas

5Note that we have required that each argument is given agg str

(atype-stmt::= atype (" ‘'’ (varnamé *’ ' ‘', ‘'’ (type-speg
(RN) L

(varname == (identifier)
| (identifier-pattern

(identifier-pattern == ‘*’
| *‘[a-zA-Z0-9]+
| ‘[a-zA-Z][a-zA-Z0-9]* ‘x’

(type-speg::= any
dat

fnhandle
(identifier) . type

—~
o

atg) ::= data

(array-type
cellarray-type
struct-type

(array-type ::= scalar [of(base-typ¥]
| array [dims] [of (base-typg]

(base-typg::= ‘*’

1

char
logical
énumeric}
identifier) ‘. ’ basetype
(diml = ‘I | gdi’m-list) ‘1’
{ o] * (dim-list) ‘]
‘[(dim-listy *, " .. ." ‘]’
{ dim-list) *, " . ..] (dim-list) ‘]’

identifier) . * dims *

<d|im_<|<ijsi%>: o ’<((j(ijrinn>1-list>

(dim) = **’
| (integer-literal)
| ‘<’ (identifier) ‘>’
| (identifier ‘. " value
| (identifier) ‘. * (identifier)

(cellarray-typé ::= cellarray fdims] [of (type-spe}]
(struct-type ::= struct [with {’ (struct-field-lis} ‘} ']

(struct-field-lisy ::= (struct-field-type
| (struct-field-type‘, * (struct-field-lis

(struct-field-type ::= (identifier) *: * (type-spef
Figure 4: atype syntax rules

type of “” is most general representing any base type, whereas
“ui nt 32" is a completely refined type representing unsigned 32-
bit integers. Programmers may also want an intermediateerefi
ment, for exampleriuner i ¢” specifies any real or complex type,
and ‘i nt " represents any integer type.

A “scal ar " has implicit dimensions of x 1, whereas an ar-
ray may specify the dimensions. A dimension specificatioy bea

as indicated by the quote marks. We have done this so that thevery refined, for example[*10, 20] " specifies al0 x 20 array;
atype statement can be implemented either through a weaver, suchor very general, for exampld " . .]" specifies any number of

as the one in AspectMatlab [4], or can be implemented as d-stan
alone library.

“In MATLAB the default type of literals idouble and vectors are
represented by x n arrays.

dimensions with any siZ&One may also want intermediate refine-
ment, for example[‘*, *] ” specifies a 2-dimensional array of any

8This is equivalent to giving no dimension specification.

© N o U A W NP

B R B N O N

N o UM W NP

size; ‘{ 10, =] " specifies a 2-dimensional array with exactly 10
rows and any number of columns; ar[dl'0, 20, . . .] " specifies

an array with at least 3 dimensions, where the first two difnogiss

are “10” and “20". In addition, dimensions can use the notation
“<n>" to capture the value of a dimension. Those values can then
be used in subsequeatype statements. For example, consider the
the specification in Listing 4 that expectsax m input array ‘a”,

anm x p input array b” and returns am x p output array f ”.

function [r] =foo(a, b)) 1
atype(‘a’,' array[<n>,<m>]of real "); 2
atype(‘b’," array[a.m,<p>]of a.basetype); 3
% ... 4
% body of foo 5
% ... 6
atype(‘r’,' array[a.m,b.p] of a.basetype); 7

end 8

9

Listing 4: Capturing dimension values <n>, <m> and <p>

For each variablex” matching anatype statement, the values
“x. type”and “x. val ue” are captured, representing the runtime
type and value ofX”, as observed at the point of tlatype state-
ment. These values can be used in subseqaiype statements.
For example, if one wanted to ensure that return parametdrad
the same type as input parametat in function “f 00", one could
use the specification in Listing 5.

function [r] =foo(a)
atype(‘'a’,’ any’);
% ...
% body of foo
% ...
atype(‘'r’,'a. type’);
end

Listing 5: Using the captured type, a.type

In addition, for eaclatype statement matching array types, the
dimensions and base type are captured. These can be usedyin ma
ways, for example to specify that the input parameter is aayar
of any integer type and the the output array is an array ofadhses
dimensions one could use the specification in Listing 6.

function [r] =foo(a)
atype(‘a’, ‘array [...] of int");
% ...
% body of foo
% ...
atype(‘r’,
end

array[a.dims] of int ");

Listing 6: Using the captured dimensions, a.dims

Returning to the example in Listing 4 we can see a use of the
captured base type o&". The base type ofd” is defined ageal,
which means that runtime base type can be any type bedainn
the ordering in Figure 2, for exampiet32 or double. Theatype
statements forld” and “r ” specify the base types in terms of the
runtime base type ofd”. Thus, if “a” has runtime base typat32,
then ‘b” and “r ” should also have runtime base tyjo¢32.

Although most parameters in MLAB programs are either ar-
rays or function handles, some parameters are cell arragtsumts.

In the case of cell arrays, th®ase-typg part of the specification
applies to all elements of the cell array. Since a cell aray loe

heterogeneous, the runtime check to verify these types eaxb
pensive, and so should be used sparingly.

Listing 7 gives an example with two input parameters and one
return parameter. The first input paramete™, is ann x m cell
array where each cell contains a struct with mhauble fields, “x”
and ‘y”. The second input parameterf, *; is a function handle.
The return parameterr *, is am x n cell array with the same base
type as ta”.

function [r] =foo(ca,)

atype(‘ca’, ‘cellarray [<n>,<m>]of

struct with { x: double, y: double });

atype(’'f’, fnhandle);

% ...

% body of foo

% ...

atype(‘r’,'
end

cellarray [ca.m,ca.n]of ca basetypé);

Listing 7: Function handle and cell array example

3.2 Semantics of atype statements

We have defined three levels of semantics for dhge state-
ments. The least rigorous is to use them for documentation pu
poses. They provide a concise notation for documentingrihe i
tended types of parameters. However, our real intendedparis
to use them to capture runtime types and to check the typastgai
the specification. The two more rigorous semantics reqtniee t
three steps as described below.

Capture runtime type: If no variable matchegvarname, then
an unmatched variable error is raised. Otherwise, the run-
time typev.typeand valuev.valueof each variables match-
ing (varnamé is stored in a type workspace, and subsequent
atype statements can refer to these values. Furthermore,
based on the stored type, subsequampe statements can
also query the dimensions and base type usidgnsand
v.basetype

Check against static specification:If the first step succeeded, then
the runtime type is checked against the static specification
given in (type-speg If the runtime type is not consistent
with the specification, then a runtime type error is raised.

Bind free variables: If the runtime type is consistent, then any
free type variables in the dimensions specification are oun
to the actual values in the runtime type. These type varsable
exist in a namespace distinct from the ordinary program vari
ables and may only be accessed in otitgpe specifications.
Repeated free variables must have the same runtime values,
so a specification of the format ype(’ a’', " array[<n>,
<n>] of nuneric’ ”defines a square matrix.

The difference between the two checking semantics is hawserr
are handled. In the less rigorous approach the errors agedodput
execution continues normally. This is useful if you merebnivto
observe potential type problems, but not change the fumicigp
of the program. For the most rigorous approach the runtime ty
errors raise real runtime exceptions that will cause thgnam to
terminate unless they are explicitly caught and handled.

3.3 Implementation strategies

There are two main implementation strategies. The one vaeifav
is weaving via the AspectMatlab compiler. With this strgtezach

atype statement is first checked for syntactic and semantic wlidi

This paper has proposed typing aspects which provide a mecha

The syntax is as given in Figure 4. The semantic checks ensurenism for specifying, capturing and checking the dynamiet/m

that there is at least one matching variable for estgpe statement
and that any use of a type variable is defined along all pattissto
use. The compiler then replaces thtype statement with inlined
pure MATLAB code for each matching variable. For each variable
v, the compiler captures the valwezalueand runtime typev.type
and performs the dynamic type check. If the type check susxcee
then it creates bindings for any free type variables. Thieiited
code is quite straight-forward and can use mamythMAB built-in
primitives. The advantages of this approach include: (&)fttct
that the final code is pure NrLAB, which can be run and shipped
without any additional libraries, and it should have miniimapact
on the JIT compiler; and (2) the specifications can be syictkt
and semantically checked by the compiler.

The second approach is to implematgpe as a MATLAB func-
tion. This is quite possible to do asAvILAB supports some rather
invasive functions such a&val , eval i n andassi gni n, which
allow one to execute arbitrary MLAB code and to modify the
workspace of the calling function. The advantage of thiseggh
is that a separate compiler, including the matcher and wea/e
not needed. The disadvantages are: (1) the overheads eaviolv
extra function calls and the negative impact on the JIT duasto
ing eval i n andassi gni n; and (2) there are no syntactic and
semantic checks performed by the compiler, checks must be do
at runtime.

4. RELATED WORK

There are three main bodies of work related to this approach.
This first is work done on static type and shape analyses for-M
LAB such as the approaches used in McVM[5], MaJIC[3] and FAL-
CON [10]. Itis our hope that thetype statements could be used
to both simplify and improve those static approaches. Famgpte,
by addingatype statements to key library routines, the type estima-
tion for user programs using those libraries can be improved

The second main body of work is type inference for other dy-
namic languages, which is often combined with some anmotati
framework to aid in the inference. Two excellent examplethisf
approach are the work by Furr et al. on static type inference f
Ruby[8] and the work by Papi et al. on pluggable types for [Bva
The key novelty of our approach is thetype statements have been
designed to solve the kinds of array-based type problenisatka
specific to MaTLAB and are implemented using a weaving-based
approach.

The third body of work is work related to aspects. One might
wonder ifatype statements are truly aspects sincedhge state-
ments are explicitly inserted into the base program codanahde-
fined separately as with traditional aspect declaratioHswever,
using the notion of aspects supporting quantification, fiaet by
Filman and Friedman [7], we can say tlaype statements allow
quantification over variables in a function. Another asgiket ap-
proach used for supporting a pluggable type system was #e us
of sub-method reflection to implement a pluggable type syste
Squeak[6].

5. CONCLUSIONS AND FUTURE WORK

9Note that there is no technical reason whyalhpe specifications
couldn't be given separately and woven “after the first de€iniof
a specified variable" or “before returning from a specifiedcfu
tion". However, we believe that putting tla¢ype statement inline
is the best form of documentation and is very natural foxTMAB
programmers.

MATLAB. The approach has been specifically tailored to the types
and typical uses of MTLAB programs. The core of the technique
is theatype statement which can be used to capture and check types
at runtime. We have defined the syntax and semantics @ftiipe
statement and presented two alternative approaches fimtie-
mentation. The implementation we favour is based on the é&spe
Matlab compiler, and we are currently working on the weaving
based approach using this implementation.

Our future work will focus on designing the minimal optimize
instrumentation needed by the weaver. For example, onlyahe
ues and types needed by subsequeppe statements need to be
stored. We also hope to eliminate some dynamic checks based o
static type analyses. Finally, we intend to @dgpe statements to
aid in the documentation of standardxM.AB libraries, which will
in turn help in type analysis of MrLAB programs as required by
JIT compilers such as McVM and staticAVILAB -to-Fortran com-
pilers such as McFOR([1].

6. REFERENCES

[1] McLab: An Extensible Compiler Framework for MATLAB.
Home page
http://ww. sabl e. ntgill.cal/nclab/.
[2] Accelerating MATLAB, 2002ht t p:
[I www. mat hwor ks. com conpany/ newsl etters/
di gest/ sept 02/ accel _mat | ab. pdf.
G. Almasi and D. A. Padua. MaJIC: A MATLAB
Just-In-Time Compiler. lLanguages and Compilers for
Parallel Computing Springer Berlin / Heidelberg, 2001.
[4] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren.
AspectMatlab: An Aspect-Oriented Scientific Programming
Language. IrProceedings of 9th International Conference
on Aspect-Oriented Software Developm@uatges 181-192,
March 2010.
M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge.
Optimizing MATLAB through Just-In-Time Specialization.
In International Conference on Compiler Construction
pages 46-65, March 2010.
M. Denker, S. Ducasse, A. Lienhard, and P. Marschall.
Sub-method reflectiodournal of Object Technology
6(9):275-295, 2007.
R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. TecHnica
Report Technical Report 01.12, RICAS, 2001. Presented at
the Workshop on Advanced Separation of Concerns,
OOPSLA 2000.
M. Furr, J. hoon (David) An, J. S. Foster, and M. Hicks.
Static type inference for Ruby. Froceedings of the 2009
ACM symposium on Applied Computir@AC '09, pages
1859-1866, New York, NY, USA, 2009. ACM.
M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D.
Ernst. Practical pluggable types for Javal$$TA 2008,
Proceedings of the 2008 International Symposium on
Software Testing and Analysizages 201-212, Seattle, WA,
USA, July 22—-24, 2008.
L. D. Rose, K. Gallivan, E. Gallopoulos, B. A. Marsolfic
D. A. Padua. FALCON: A MATLAB Interactive
Restructuring Compiler. InCPC '95: Proceedings of the
8th International Workshop on Languages and Compilers for
Parallel Computing pages 269-288, London, UK, 1996.
Springer-Verlag.

(3]

(5]

(6]

(7]

(8]

[10]

