
Typing Aspects for MATLAB∗

Laurie Hendren
Sable Research Group, School of Computer Science, McGill University

hendren@cs.mcgill.ca

ABSTRACT
The MATLAB programming language is heavily used in many sci-
entific and engineering domains. Part of the appeal of the language
is that one can quickly prototype numerical algorithms without re-
quiring any static type declarations. However, this lack oftype
information is detrimental to both the programmer in terms of soft-
ware reliability and understanding, and to the compiler in terms of
generating efficient code.

This paper introduces the idea of adding typing aspects to MAT-
LAB programs. A typing aspect can be used to: (1) capture the
runtime types of variables, and (2) to check runtime types against
either a declared type or against a previously captured runtime type.
Typing aspects can be can be used: (1) solely as documentation, (2)
to log type errors, or (3) to catch type errors at runtime.

Categories and Subject Descriptors
D.3.3 [Programming Lang.]: [Language Constructs and Features]

General Terms
Experimentation, Languages, Performance

Keywords
Typing aspects, Dynamic type assertions, MATLAB

1. INTRODUCTION
MATLAB is a popular dynamic programming language used for

scientific and numerical programming with a very large and in-
creasing user base. The most recent data from MathWorks shows
that the number of users of MATLAB was 1 million in 2004, with
the number of users doubling every 1.5 to 2 years.1 Certainly it
is one of the key languages used in education, research and devel-
opment for scientific and engineering applications. There are cur-
rently over 1200 books based on MATLAB and its companion soft-
ware, Simulink (http://www.mathworks.com/support/
∗This work supported by NSERC and the Leverhulme Trust.
1From www.mathworks.com/company/newsletters/
news_notes/clevescorner/jan06.pdf.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DSAL’11,March 22, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0648-5/11/03 ...$10.00.

books). This large and diverse collection of books illustrates the
many scientific areas which rely on computational approaches and
use MATLAB .

One of the key features of MATLAB is that it has no statically-
declared types. The lack of type declarations is often considered
an advantage for fast prototyping. However, having no statically-
declared types also has many disadvantages, including negative im-
pacts on developing reliable and reusable programs, and negative
impacts on performance.

From the programmer’s point of view, a MATLAB function of-
ten actually has many implicit assumptions about the types of vari-
ables, especially parameters. For example, it may be assumed that
a parameter “n” is a scalar, a parameter “a” is a two-dimensional
matrix, or that a parameter “f” is a function handle (a reference to
a function and closure). If the function is called with arguments
of the wrong types, runtime errors or unexpected results mayoc-
cur. Thus, from both the reliability perspective, as well asprogram
reusability, making these assumptions explicit and checkable would
be beneficial.

The lack of static types also negatively impacts performance. Al-
though the original MATLAB systems were interpreted, both the
proprietary Mathworks system[2] and the open-source McLab[1]
systems now contain JIT compilers. JIT compilers, and ahead-of-
time compilers, require type information to produce efficient code.

In this paper we introduce the idea of MATLAB typing aspects.
The idea is that one can annotate MATLAB functions with aspect
type statements (henceforth referred to asatypestatements) which
serve two main purposes. First, anatypestatement is used to verify
that the runtime type matches a specified type, where the specified
type may be given at various levels of refinement. Secondly, an
atype statement is used to capture all or part of the runtime type,
which can be used in subsequentatypestatements.

Sinceatype statements are not part of standard MATLAB , but
are rather a declarative way of specifying dynamic type checks, a
weaver is required to convert theatype statements to native MAT-
LAB . The weaver converts eachatypestatement into standard MAT-
LAB code which performs the appropriate check and action.

We have identified three levels of woven target code, correspond-
ing to different levels of runtime checking. The most rigorous level
introduces dynamic checks which raise runtime errors when atype
mismatch is detected. The middle level makes the dynamic checks,
but only logs runtime type errors. The least rigorous level intro-
duces comments, similar in spirit to the style of comments the
MATLAB programmers often insert by hand.

The remainder of this paper is structured as follows. Section 2
gives an overview of the different types in MATLAB and provides
some motivating examples. Section 3 introduces the syntax and

semantics of the proposedatype statements. Section 4 discusses
related work, and Section 5 gives conclusions and future work.

2. BACKGROUND
The MATLAB programming language was originally designed as

an interactive interface to numerical libraries and had only one data
type,matrix .2 Over the years the language has been extended, and
it now includes a variety of data types, and is used for substantial
programming projects. As illustrated in Figure 1, a MATLAB value
can either bedata or a function handle (fnhandle). Data comes in
three varieties:array , cellarray andstruct.

any

fnhandledata

〈struct-type〉〈cellarray-type〉〈array-type〉

Figure 1: High-level MATLAB types

2.1 Arrays
Arrays are homogeneous (i.e. all elements have the same type)

and the elements must be some scalar type (double, int32, char,
. . .). In particular, the elements of arrays cannot be handles, structs
or cell arrays. Arrays have a shape and contents, and arrays are
mutable. By default, the type of array elements is double, and even
scalar variables are arrays (1× 1 arrays). For example, a statement
of the form “a = 3” defines a1 × 1 array of type double, even
though an integer literal was used in the statement. However, it
is possible to explicitly create other types. For example, the state-
ment “b = uint64(3)” creates a1×1 array of unsigned 64-bit
integers.

The base types in MATLAB can be ordered as presented in Fig-
ure 2.3 The leaves in this ordering correspond to possible runtime
types, whereas the interior nodes represent groups of related types,
which we will use in the typing aspects. At the top (left-hand-side
of the figure) of the ordering we use “*” to indicate all possible
base types. As indicated by the second level of the ordering,MAT-
LAB distinguishes betweennumerictypes versuschar and logical
types. Strings are effectively1 × n arrays ofchar. For example,
the statement “s = ’cat’” assigns a1× 3 array of characters to
variable “s”. Logical types are used to represent boolean values.
For example, the statement “b = isequal(3,2+1)” would as-
sign a1× 1 array of logical to variable “b”.

Within thenumerictypes, there are two groupsreal andcomplex.
Note that these types do not imply floating point numbers, butserve
to distinguish values that are representing real numbers (one part)
versus values representing imaginary numbers (two parts, the real
and imaginary parts). Thus, it is perfectly possible to create a com-
plex number in which the two parts are represented as unsigned
64-bit integers. For example, the statement (“c = complex(
uint64(3), uint64(4))” creates a1 × 1 array with type

2See http://www.mathworks.com/company/
newsletters/news_notes/clevescorner/dec04.
html.
3This ordering was created by examining user-level MATLAB doc-
umentation, in particular the set of pre-defined functions for testing
types such as “isinteger”.

uint64:complex.4 A real number can be represented either as anint
or float, whereint can be eithersignedor unsigned, andfloat can
be eithersingleor doubleprecision.

2.2 Structs and Cell Arrays
Structs and cell arrays are heterogeneous and provide a way of

aggregating data. Structs do not have explicit types but arecon-
structed using calls like “a=struct(’x’,exp1,’y’,exp2)”,
which would create a structure with two fields, “x” initialized to the
value denoted by “exp1” and “y” initialized to the value denoted
by “exp2”. Each field can contain any type (array, handle, struct
or cell array). Cell arrays have the same rectangular structure as ar-
rays, but their elements are cells instead of numeric values, where
each cell can contain any type. Thus cell arrays allow one to create
heterogeneous and nested arrays. Cell arrays are accessed using
“a(...)” which denotes the cells or “a{...}” which denotes
the contents of the cells.

2.3 Function Handles
A function handle refers to a closure, where the closure con-

sists of a reference to the function and a reference to a workspace
that maps free variables to values. A function handle is created by
either taking the handle of a named function (for example, “h =
@sin;”) or by creating a handle to an anonymous function (for
example, “h = @(x)(x+1);”).

2.4 Implicit types in MATLAB functions
Although some MATLAB functions can operate on values of any

type (for example, the built-in function “size”), most functions
actually have some implicit requirements about the types oftheir
input and output parameters. If the function is provided with the
“wrong” input types, it may produce undesired results or mayfail
in a completely non-obvious way.

Consider the function “Ex1” given in Listing 1. This function
has one input parameter, “n”, and one output parameter “r”. The
comments describe the purpose of the function and from thesecom-
ments one could deduce that “n” should be some sort of scalar num-
ber, and that the output will be a vector.

1 function [r] = Ex1(n)
2 % Ex1(n) creates a vector of n values containing
3 % the values [sin (1), sin (2), ..., sin (n)]
4 for i=1:n
5 r (i) = sin(i);
6 end
7 end

Listing 1: Example MATLAB function

Figure 3 shows an interactive MATLAB session, testing the be-
haviour of various input types for “n”. The lines starting with “»”
are user input. The lines starting with “ans = ” are the results
from evaluating the input expression.

Note that the first two examples in Figure 3 demonstrate the ex-
pected input and behaviour. Remember that values are by default
double in MATLAB . The next five examples show the behaviour
when other input types are used (int32, char, fnhandle, complex
and logical). These all result in either a warning or an eventual run-
time error. Not all of the error messages are simple to interpret, for
example, the error message“??? Undefined function or method
‘_colonobj’ for input arguments of type ‘function_handle"is not
easy to interpret. The last example shows how MATLAB often uses
only part of an input. In this case the programmer has provided an

4This type is represented in MATLAB as class=double,
attribute=complex.

*

numeric

complex

float:complex
double:complex
single:complex

int:complex

unsigned:complex

uint64:complex
uint32:complex
uint16:complex
uint8:complex

signed:complex

int64:complex
int32:complex
int16:complex
int8:complex

real

float
double
single

int

unsigned

uint64
uint32
uint16
uint8

signed

int64
int32
int16
int8

logical
char

Figure 2: Ordering of base-types

>> Ex1(3)
ans = 0.8415 0.9093 0.1411

>> Ex1(2.3)
ans = 0.8415 0.9093

>> Ex1(int32(3))
??? Undefined function or method ’sin’ for input

arguments of type ’int32’.
Error in ==> Ex1 at 6

b(i) = sin(i);

>> Ex1(’c’)
??? For colon operator with char operands, first

and last operands must be char.
Error in ==> Ex1 at 2

for i=1:n

>> Ex1(@sin)
??? Undefined function or method ’_colonobj’ for

input arguments of type ’function_handle’.
Error in ==> Ex1 at 2

for i=1:n

>> Ex1(complex(1,2))
Warning: Colon operands must be real scalars.
> In Ex1 at 2
ans = 0.8415

>> Ex1(true)
Warning: Colon operands should not be logical.
> In Ex1 at 2
ans = 0.8415

>> Ex1([3,4,5])
ans = 0.8415 0.9093 0.1411

Figure 3: Interactive session testing inputs to “Ex1”

array, “[3,4,5]” instead of the expected scalar. When this value
is used by the colon operator, it uses only the first element ofthe
array ignores the other values.

1 function y = sturm(X,BC,F,G,R)
2 % STURM Solve the Sturm−Liouville equation:
3 % d(F∗dY/dX)/dX− G∗Y = R using linear finite elements .
4 % INPUT:
5 % X − a one−dimensional grid−point array of length N.
6 % BC− is a 2 by 3 matrix [A1, B1, C1 ; An, Bn, Cn]
7 ...
8 % Alex Pletzer : pletzer@pppl .gov (Aug. 97/ July 99).
9 ...

Listing 2: Example of types in comments

The “Ex1” example demonstrates that even though there may be
a very simple type specification intended by the programmer,there
is no simple way for the programmer to specify and check those
types. Furthermore, the errors and warnings raised at runtime may
not be simple to understand and may appear at a different program
point than expected.

MATLAB programmers often provide comments which indicate
the expected type of the input and output parameters. For exam-
ple, consider the “sturm” function taken from a set of publicly-
available applications, as shown in Listing 2.5 Clearly the program-
mer has quite precise specifications for each input parameter, but
has no formal way of specifying these requirements.

3. TYPING ASPECTS
Typing aspects are our solution to specifying and capturingrel-

evant typing information in MATLAB programs. The key to our
approach is theatype statement which is used both to capture the
runtime types of variables, as well as perform a type check against
a type specification. Eachatypestatement is composed of the name
(or pattern) of a variable, and a type specification for that variable.
The expected type can be very generic, or more specific, following
the structure of MATLAB types as specified in the previous section.
5Source fromwww.mathtools.net/sturm.m.

Let us start with an example, adding typing information to the
small example from Listing 1. Listing 3 gives a modified program,
with theatypestatements added.6

1 function [r] = Ex1(n)
2 % Ex1(n) creates a vector of n values containing
3 % the values [sin (1), sin (2), ..., sin (n)]
4 atype(‘n ’,‘ scalar of float ’);
5 for i=1:n
6 r (i) = sin(i);
7 end
8 atype(‘ r ’,‘ array [n.value] of n.basetype’);
9 end

Listing 3: Example MATLAB function with atype statements

In general, we suggest oneatype statement for each input and
return parameter. Theatypestatements for input parameters should
be inserted at the earliest point at which the parameter is definitely
defined (in the case of an optional parameter, this may not be at the
top of the function), and theatypestatements for return parameters
should be inserted at the last point before control returns from the
function.

In Listing 3 the atype statement on line 4 specifies that “n”
should be a scalar (syntactic sugar forarray [1,1] of float) and
that it should have a base typefloat. One could also use the more
restrictive base type ofdouble, but in fact the function is well-
defined for bothdoubleandsingle. Note that as well as specifying
the runtime type check, theatype statement also captures relevant
context information about the value and types of the variable. In
this example, we use the captured information “n.basetype”
and “n.value” on line 8. Specifically, theatype statement on
line 8 specifies the type of the return parameter, “r”. This type
specification says that “r” is a vector with size “n.value” and
with base type equal to the runtime base type of the input parameter
“n”. Thus, a call of the form “Ex1(2.0)” will return a1×2 array
of doublevalues, and a call of the form “Ex1(single(2.0))”
will return a1× 2 array ofsinglevalues.7

3.1 Syntax of atype statements
Figure 4 gives the syntax rules for theatype statement. At the

top-level an atype statement specifies a〈varname〉 and a type spec-
ification,〈type-spec〉. A 〈varname〉 can be an identifier, or a pattern
denoting a set of identifiers. The pattern can be the wildcard“*”,
or a string starting or ending with “*”. This allows one to match on
all variables, or all variables with specific prefixes or suffixes. The
〈type-spec〉 can be “any”, which indicates any type, or〈type-spec〉
can be something more specific. If the parameter should corre-
spond to a function handle, then “fnhandle” should be used. To
specify any kind of data (i.e. not a function handle), “data” can
be used.

Quite often the programmer will want to specify the data type
with more refinement than just “data”. An 〈array-type〉 specifica-
tion is either a “scalar” or “array”, and an optional〈base-type〉.
The specifications for〈base-type〉 follow the natural grouping of
MATLAB types as specified earlier in Figure 2. Note that the pro-
grammer can choose the appropriate level of refinement. A base

6Note that we have required that each argument is given as a string
as indicated by the quote marks. We have done this so that the
atypestatement can be implemented either through a weaver, such
as the one in AspectMatlab [4], or can be implemented as a stand-
alone library.
7In MATLAB the default type of literals isdouble and vectors are
represented by1× n arrays.

〈atype-stmt〉 ::= atype ‘(’ ‘ ’’ 〈varname〉 ‘’’ ‘ ,’ ‘ ’’ 〈type-spec〉
‘’’ ‘)’

〈varname〉 :== 〈identifier〉
| 〈identifier-pattern〉

〈identifier-pattern〉 :== ‘*’
| ‘*’ ‘ [a-zA-Z0-9]+’
| ‘[a-zA-Z][a-zA-Z0-9]*’ ‘ *’

〈type-spec〉 ::= any
| 〈data〉
| fnhandle
| 〈identifier〉 . type

〈data〉 ::= data
| 〈array-type〉
| 〈cellarray-type〉
| 〈struct-type〉

〈array-type〉 ::= scalar [of〈base-type〉]
| array [〈dims〉] [of 〈base-type〉]

〈base-type〉 ::= ‘*’
| char
| logical
| 〈numeric〉
| 〈identifier〉 ‘.’ basetype

〈dims〉 ::= ‘[’ 〈dim-list〉 ‘]’
| ‘[’ ‘ ...’ ‘]’
| ‘[’ ‘ ...’ ‘ ,’ 〈dim-list〉 ‘]’
| ‘[’ 〈dim-list〉 ‘,’ ‘ ...’ ‘]’
| ‘[’ 〈dim-list〉 ‘,’ ‘ ...’ ‘ ,’ 〈dim-list〉 ‘]’
| ‘[’ 〈identifier〉 ‘.’ dims ‘]’

〈dim-list〉 ::= 〈dim〉
| 〈dim〉 ‘,’ 〈dim-list〉

〈dim〉 ::= ‘*’
| 〈integer-literal〉
| ‘<’ 〈identifier〉 ‘>’
| 〈identifier〉 ‘.’ value
| 〈identifier〉 ‘.’ 〈identifier〉

〈cellarray-type〉 ::= cellarray [〈dims〉] [of 〈type-spec〉]

〈struct-type〉 ::= struct [with ‘{’ 〈struct-field-list〉 ‘}’]

〈struct-field-list〉 ::= 〈struct-field-type〉
| 〈struct-field-type〉 ‘,’ 〈struct-field-list〉

〈struct-field-type〉 ::= 〈identifier〉 ‘:’ 〈type-spec〉

Figure 4: atype syntax rules

type of “*” is most general representing any base type, whereas
“uint32” is a completely refined type representing unsigned 32-
bit integers. Programmers may also want an intermediate refine-
ment, for example “numeric” specifies any real or complex type,
and “int” represents any integer type.

A “scalar” has implicit dimensions of1 × 1, whereas an ar-
ray may specify the dimensions. A dimension specification may be
very refined, for example “[10, 20]” specifies a10 × 20 array;
or very general, for example “[...]” specifies any number of
dimensions with any size.8 One may also want intermediate refine-
ment, for example “[*,*]” specifies a 2-dimensional array of any

8This is equivalent to giving no dimension specification.

size; “[10,*]” specifies a 2-dimensional array with exactly 10
rows and any number of columns; and “[10,20,...]” specifies
an array with at least 3 dimensions, where the first two dimensions
are “10” and “20”. In addition, dimensions can use the notation
“<n>” to capture the value of a dimension. Those values can then
be used in subsequentatypestatements. For example, consider the
the specification in Listing 4 that expects ann×m input array “a”,
anm× p input array “b” and returns ann× p output array “r”.

1 function [r] = foo(a, b)
2 atype(‘a ’,‘ array [<n>,<m>] of real ’);
3 atype(‘b ’,‘ array [a.m,<p>]of a.basetype’);
4 % ...
5 % body of foo
6 % ...
7 atype(‘ r ’,‘ array [a.m,b.p] of a.basetype’);
8 end

Listing 4: Capturing dimension values <n>, <m> and <p>

For each variable “x” matching anatype statement, the values
“x.type” and “x.value” are captured, representing the runtime
type and value of “x”, as observed at the point of theatype state-
ment. These values can be used in subsequentatype statements.
For example, if one wanted to ensure that return parameter “r” had
the same type as input parameter “a” in function “foo”, one could
use the specification in Listing 5.

1 function [r] = foo(a)
2 atype(‘a ’,‘ any’);
3 % ...
4 % body of foo
5 % ...
6 atype(‘ r ’,‘ a . type ’);
7 end

Listing 5: Using the captured type, a.type

In addition, for eachatype statement matching array types, the
dimensions and base type are captured. These can be used in many
ways, for example to specify that the input parameter is an array
of any integer type and the the output array is an array of the same
dimensions one could use the specification in Listing 6.

1 function [r] = foo(a)
2 atype(‘a ’, ‘ array [...] of int ’);
3 % ...
4 % body of foo
5 % ...
6 atype(‘ r ’,‘ array [a.dims] of int ’);
7 end

Listing 6: Using the captured dimensions, a.dims

Returning to the example in Listing 4 we can see a use of the
captured base type of “a”. The base type of “a” is defined asreal,
which means that runtime base type can be any type belowreal in
the ordering in Figure 2, for exampleint32 or double. Theatype
statements for “b” and “r” specify the base types in terms of the
runtime base type of “a”. Thus, if “a” has runtime base typeint32,
then “b” and “r” should also have runtime base typeint32.

Although most parameters in MATLAB programs are either ar-
rays or function handles, some parameters are cell arrays orstructs.
In the case of cell arrays, the〈base-type〉 part of the specification
applies to all elements of the cell array. Since a cell array can be

heterogeneous, the runtime check to verify these types can be ex-
pensive, and so should be used sparingly.

Listing 7 gives an example with two input parameters and one
return parameter. The first input parameter, “ca”, is ann×m cell
array where each cell contains a struct with twodoublefields, “x”
and “y”. The second input parameter, “f”, is a function handle.
The return parameter, “r”, is am×n cell array with the same base
type as “ca”.

1 function [r] = foo(ca , f)
2 atype(‘ca ’, ‘ cellarray [<n>,<m>] of
3 struct with { x: double, y: double }’);
4 atype(’ f ’ , fnhandle);
5 % ...
6 % body of foo
7 % ...
8 atype(‘ r ’,‘ cellarray [ca.m,ca.n]of ca.basetype’);
9 end

Listing 7: Function handle and cell array example

3.2 Semantics of atype statements
We have defined three levels of semantics for theatype state-

ments. The least rigorous is to use them for documentation pur-
poses. They provide a concise notation for documenting the in-
tended types of parameters. However, our real intended purpose is
to use them to capture runtime types and to check the type against
the specification. The two more rigorous semantics require the
three steps as described below.

Capture runtime type: If no variable matches〈varname〉, then
an unmatched variable error is raised. Otherwise, the run-
time typev.typeand valuev.valueof each variablev match-
ing 〈varname〉 is stored in a type workspace, and subsequent
atype statements can refer to these values. Furthermore,
based on the stored type, subsequentatype statements can
also query the dimensions and base type usingv.dimsand
v.basetype.

Check against static specification:If the first step succeeded, then
the runtime typer is checked against the static specification
given in 〈type-spec〉. If the runtime type is not consistent
with the specification, then a runtime type error is raised.

Bind free variables: If the runtime type is consistent, then any
free type variables in the dimensions specification are bound
to the actual values in the runtime type. These type variables
exist in a namespace distinct from the ordinary program vari-
ables and may only be accessed in otheratypespecifications.
Repeated free variables must have the same runtime values,
so a specification of the form: “atype(’a’,’array[<n>,
<n>] of numeric’” defines a square matrix.

The difference between the two checking semantics is how errors
are handled. In the less rigorous approach the errors are logged, but
execution continues normally. This is useful if you merely want to
observe potential type problems, but not change the functioning
of the program. For the most rigorous approach the runtime type
errors raise real runtime exceptions that will cause the program to
terminate unless they are explicitly caught and handled.

3.3 Implementation strategies
There are two main implementation strategies. The one we favour

is weaving via the AspectMatlab compiler. With this strategy, each

atypestatement is first checked for syntactic and semantic validity.
The syntax is as given in Figure 4. The semantic checks ensure
that there is at least one matching variable for eachatypestatement
and that any use of a type variable is defined along all paths tothe
use. The compiler then replaces theatype statement with inlined
pure MATLAB code for each matching variable. For each variable
v, the compiler captures the valuev.valueand runtime typev.type
and performs the dynamic type check. If the type check succeeds,
then it creates bindings for any free type variables. This inserted
code is quite straight-forward and can use many MATLAB built-in
primitives. The advantages of this approach include: (1) the fact
that the final code is pure MATLAB , which can be run and shipped
without any additional libraries, and it should have minimal impact
on the JIT compiler; and (2) the specifications can be syntactically
and semantically checked by the compiler.

The second approach is to implementatypeas a MATLAB func-
tion. This is quite possible to do as MATLAB supports some rather
invasive functions such aseval, evalin andassignin, which
allow one to execute arbitrary MATLAB code and to modify the
workspace of the calling function. The advantage of this approach
is that a separate compiler, including the matcher and weaver, is
not needed. The disadvantages are: (1) the overheads involved in
extra function calls and the negative impact on the JIT due tous-
ing evalin andassignin; and (2) there are no syntactic and
semantic checks performed by the compiler, checks must be done
at runtime.

4. RELATED WORK
There are three main bodies of work related to this approach.

This first is work done on static type and shape analyses for MAT-
LAB such as the approaches used in McVM[5], MaJIC[3] and FAL-
CON [10]. It is our hope that theatype statements could be used
to both simplify and improve those static approaches. For example,
by addingatypestatements to key library routines, the type estima-
tion for user programs using those libraries can be improved.

The second main body of work is type inference for other dy-
namic languages, which is often combined with some annotation
framework to aid in the inference. Two excellent examples ofthis
approach are the work by Furr et al. on static type inference for
Ruby[8] and the work by Papi et al. on pluggable types for Java[9].
The key novelty of our approach is thatatypestatements have been
designed to solve the kinds of array-based type problems that are
specific to MATLAB and are implemented using a weaving-based
approach.

The third body of work is work related to aspects. One might
wonder ifatype statements are truly aspects since theatype state-
ments are explicitly inserted into the base program code andnot de-
fined separately as with traditional aspect declarations.9 However,
using the notion of aspects supporting quantification, as defined by
Filman and Friedman [7], we can say thatatype statements allow
quantification over variables in a function. Another aspect-like ap-
proach used for supporting a pluggable type system was the use
of sub-method reflection to implement a pluggable type system for
Squeak[6].

5. CONCLUSIONS AND FUTURE WORK
9Note that there is no technical reason why theatypespecifications
couldn’t be given separately and woven “after the first definition of
a specified variable" or “before returning from a specified func-
tion". However, we believe that putting theatype statement inline
is the best form of documentation and is very natural for MATLAB
programmers.

This paper has proposed typing aspects which provide a mecha-
nism for specifying, capturing and checking the dynamic types in
MATLAB . The approach has been specifically tailored to the types
and typical uses of MATLAB programs. The core of the technique
is theatypestatement which can be used to capture and check types
at runtime. We have defined the syntax and semantics of theatype
statement and presented two alternative approaches for theimple-
mentation. The implementation we favour is based on the Aspect-
Matlab compiler, and we are currently working on the weaving-
based approach using this implementation.

Our future work will focus on designing the minimal optimized
instrumentation needed by the weaver. For example, only theval-
ues and types needed by subsequentatype statements need to be
stored. We also hope to eliminate some dynamic checks based on
static type analyses. Finally, we intend to useatype statements to
aid in the documentation of standard MATLAB libraries, which will
in turn help in type analysis of MATLAB programs as required by
JIT compilers such as McVM and static MATLAB -to-Fortran com-
pilers such as McFOR[1].

6. REFERENCES
[1] McLab: An Extensible Compiler Framework for MATLAB.

Home page
http://www.sable.mcgill.ca/mclab/.

[2] Accelerating MATLAB, 2002.http:
//www.mathworks.com/company/newsletters/
digest/sept02/accel_matlab.pdf.

[3] G. Almasi and D. A. Padua. MaJIC: A MATLAB
Just-In-Time Compiler. InLanguages and Compilers for
Parallel Computing. Springer Berlin / Heidelberg, 2001.

[4] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren.
AspectMatlab: An Aspect-Oriented Scientific Programming
Language. InProceedings of 9th International Conference
on Aspect-Oriented Software Development, pages 181–192,
March 2010.

[5] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge.
Optimizing MATLAB through Just-In-Time Specialization.
In International Conference on Compiler Construction,
pages 46–65, March 2010.

[6] M. Denker, S. Ducasse, A. Lienhard, and P. Marschall.
Sub-method reflection.Journal of Object Technology,
6(9):275–295, 2007.

[7] R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness. Technical
Report Technical Report 01.12, RICAS, 2001. Presented at
the Workshop on Advanced Separation of Concerns,
OOPSLA 2000.

[8] M. Furr, J. hoon (David) An, J. S. Foster, and M. Hicks.
Static type inference for Ruby. InProceedings of the 2009
ACM symposium on Applied Computing, SAC ’09, pages
1859–1866, New York, NY, USA, 2009. ACM.

[9] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D.
Ernst. Practical pluggable types for Java. InISSTA 2008,
Proceedings of the 2008 International Symposium on
Software Testing and Analysis, pages 201–212, Seattle, WA,
USA, July 22–24, 2008.

[10] L. D. Rose, K. Gallivan, E. Gallopoulos, B. A. Marsolf, and
D. A. Padua. FALCON: A MATLAB Interactive
Restructuring Compiler. InLCPC ’95: Proceedings of the
8th International Workshop on Languages and Compilers for
Parallel Computing, pages 269–288, London, UK, 1996.
Springer-Verlag.

