
Taming MATLAB

Anton Dubrau and Laurie Hendren

McGill University

anton.dubrau@mail.mcgill.ca, hendren@cs.mcgill.ca

Abstract
MATLAB is a dynamic scientific language used by scientists,
engineers and students worldwide. Although MATLAB is
very suitable for rapid prototyping and development, MAT-
LAB users often want to convert their final MATLAB pro-
grams to a static language such as FORTRAN. This paper
presents an extensible object-oriented toolkit for support-
ing the generation of static programs from dynamic MAT-
LAB programs. Our open source toolkit, called the MATLAB

Tamer, identifies a large tame subset of MATLAB , supports
the generation of a specialized Tame IR for that subset, pro-
vides a principled approach to handling the large number of
builtin MATLAB functions, and supports an extensible inter-
procedural value analysis for estimating MATLAB types and
call graphs.

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers

General Terms Experimentation, Languages

Keywords MATLAB, Static Compilation, Interprocedural
Value Analysis, Analysis Framework

1. Introduction
MATLAB is a popular numeric programming language, used
by millions of scientists, engineers as well as students world-
wide[?]. M ATLAB programmers appreciate the high-level
matrix operators, the fact that variables and types do not need
to be declared, the large number of library and builtin func-
tions available, and the interactive style of program devel-
opment available through the IDE and the interpreter-style
read-eval-print loop. However, even though MATLAB pro-
grammers appreciate all of the features that enable rapid pro-
totyping, they often have other ultimate goals. Frequently
they wish to convert their MATLAB code to a more static
language such as FORTRAN or C.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

There are several reasons why users would like to have
static code. First, users may want source code, which can be
compiled into a self-contained executable with standard and
freely available compilers. This allows them to easily dis-
tribute both the source and executable. Second, users may
want to generate code that can be integrated into existing
systems. As just one example, one of our users wanted to
generate FORTRAN code that can be plugged into a weather
simulation environment. Finally, users may wish to generate
code that can take advantage of high-performance optimiz-
ing or parallelizing compilers (such as FORTRAN), or novel
parallel systems (such as X10).1

This paper addresses the problem of how to provide the
bridge between the dynamic realities of MATLAB and the ul-
timate goal of wanting efficient and static programs. It is not
realistic to support all the MATLAB features, but our goal
is to define and provide support for a very large subset of
MATLAB , which includes dynamic typing, variable numbers
of input and output arguments, support for a variety of MAT-
LAB data types including arrays, cell arrays and structs, and
support for function handles and lambda expressions.

Providing this bridge presents two main challenges. The
first is that MATLAB is actually quite a complex language. It
evolved over many years and has non-standard type rules and
function lookup semantics. The second major challenge is
properly dealing with the large number of builtin and library
functions, which have also been developed over time and
which sometimes have unexpected or irregular behaviour.

Our solution is an open-source, extensible, objected-
oriented framework, implemented in Java, as presented in
Figure 1. The overall goal of the system is to take MATLAB

programs as input and produce output which is suitable for
static compilation, a process that we callTaming MATLAB .
Given a.m file as input, which is the entry point, the MAT-
LAB Tamer produces as output: (1) a Tame IR for all func-
tions (both user and library) which are reachable from the

1 We should note that another way to achieve performance is to use more
dynamic techniques with a virtual machine and an optimizing/parallelizing
JIT. For a dynamic language like MATLAB , this seems to be a good fit,
and in fact our research group is developing dynamic techniques with the
McVM project [3] in parallel with our work for static compilers. Somewhat
to our surprise there has been much more user interest in the static compi-
lation project, for the reasons we have given. Thus, we thinkthat pursuing
both the static and dynamic approaches are worthwhile.

Generator

McLAB Front−end

.m

McAST

Tame IR

TOO
WILD!!

Refactor

Initial Call Graph
Builder

(Section 5)

(Section 5)

Interprocedural
Value Analysis

Built−in
Framework

(Section 3)

(Section 2)

Tame IR + classes + types + call graph

McSAF

Function Lookup
Kind Analysis

Taming
Transformations

(Section 4)

FORTRAN X10
Generator

Your Favourite
Generator

Figure 1. Overview of our MATLAB Tamer. The shaded
boxes indicate the components presented in this paper. The
other solid border boxes correspond to existing McLAB

tools we use, and the dashed boxes boxes correspond to on-
going projects which are using the results of this paper.

entry point, (2) a complete call graph, and (3) an estimation
of classes/types for all variables.

There are some features in MATLAB that are simply too
wild to handle, and so our system will reject programs using
those features. The user will need to refactor their program
to eliminate the use of those wild features. Thus, another
important goal in our work is to define a subset of MATLAB

which is a large as possible and which can be tamed without
user intervention.

The main contributions of this paper are as follows.

• We present an overall design and implementation for
the MATLAB Tamer, an extensible object-oriented frame-
work which provides the bridge between the dynamic
MATLAB language and static back-end compilers.

• We describe the key features of MATLAB necessary for
compiler developers and for tool writers to understand
MATLAB and the analyses in this paper. We hope that
by carefully explaining these ideas, we can enable other
researchers to also work on static tools for MATLAB . Our
discussion of MATLAB features also motivates our choice
of the subset of MATLAB that we aim to tame.

• We provide a principled approach to understanding,
grouping, and analyzing the large number of MATLAB

builtin functions. This is a non-trivial effort that is really
needed in order to be able to properly analyze MAT-
LAB programs which typically make heavy use of library
functions.

• We provide extensions to the McSAF [? ?] framework
to support a lower-level and more specialized Tame IR,
suitable for back-end static code generation.

• We present an interprocedural flow analysis framework
that computes both abstract values and the complete call
graph. This flow analysis provides an object-oriented ap-
proach which allows for extension and refinement of the
abstract value representations.

The remainder of the paper is structured as follows. Sec. 2
introduces the key MATLAB features, Sec. 3 describes our
approach to MATLAB builtins, Sec. 4 describes the Tame
IR and transformations, Sec. 5 explains our extensible and
interprocedural value analysis and call graph construction,
Sec. 6 summarizes how our framework can be used, Sec. 7
provides an overview of related work and Sec. 8 concludes.

2. MATLAB - a dynamic language
In this section we describe key MATLAB semantics and fea-
tures to provide necessary background for compiler writ-
ers and tool developers to understand MATLAB and its
challenges, and to motivate our approach of constructing a
“tame” intermediate representation and MATLAB callgraph.
In each subsection we give a description followed by anno-
tated examples using the MATLAB read-eval-print loop. In
the examples, “>>” indicates a line of user input, and the
following line(s) give the printed output.

2.1 Basics

MATLAB was originally designed in the 1970s to give ac-
cess to features of FORTRAN (like L INPACK, EISPACK)
without having to learn FORTRAN[?]. As the name MAT-
LAB (MATrix LABoratory) suggests, MATLAB is centered
around numerical computation. Floating point matrices are
the core of the language. However, the language has evolved
beyond just simple matrices and now has a type system in-
cluding matrices of different types, compound types includ-
ing cell arrays and structs, as well as function references.

Given its origins, MATLAB is a language that is built
around matrices. Every value is aMatrix with some number
of dimensions, so every value has an associated array shape.
Even scalar values are1 × 1 matrices. Vectors are either
1 × n or n × 1 matrices and strings are just vectors of
characters. Most operations are defined for matrices, for
examplea * b specifies matrix multiplication if botha andb

are matrices. Operators are overloaded and sometimes refer
to scalar operations, for examplea * b specifies an element-
wise multiplication ifa is a matrix andb is a scalar.
>> size(3) % the scalar 3 is a 1x1 matrix

1 1
>> size([1 2 3]) % a 1x3 vector

1 3
>> size([5; 6; 7; 8; 9]) % a 5x1 vector

5 1
>> size('hello world') % a string, which is a 1x11 vector

1 11
>> ['a' 'b'; 'e' 'f'] % a 2−dimensional matrix of chars

ab
ef

2.2 MATLAB Type System

MATLAB is dynamically typed - variables need not be de-
clared, they will take on any value that is assigned to them.
Every MATLAB value has an associated MATLAB class
(henceforth we will use the namemclass when referring
to a MATLAB class, in order to avoid confusion with the
usual notion of a class). The mclass generally denotes the
type of the elements of a value. For example, the mclass of
an array of doubles isdouble . The default numeric mclass
is double . While MATLAB also includes integer types, all
numeric literals are doubles.
>> n = 1 % input literal and output look like an int

1
>> class(n) % however, mclass is really double, the default

double
>> class(1:100) % mclass of vector [1, 2, ..., 100] is double

double

MATLAB has a set of builtin mclasses, which can be
summarized as follows:

• double , single : floating point values

• uint8 , uint16 , uint32 , uint64 , int8 , int16 ,
in32 , int64 : integer values

• logical : boolean values

• char : character values (strings)

• cell : heterogeneous arrays

• struct : structures

• function handle : references to functions

Given that by default any numerical value in MATLAB

is a double , all values that are intended to be of a dif-
ferent numeric type have to be specifically converted. This
also means that when combining a value of some non-double
mclass with a value that is adouble , the result will be of
the non-double mclass. This leads to the surprising seman-
tics that adding aninteger and adouble results in an
integer , because that is the more specialized type.
>> x = 3; % x is implicitly a double
>> y = int8(5); % y is explictly an integer
>> class(x) % the class of x is double

double
>> class(y) % the class of y is int8

int8
>> class(x+y) % the result of x+y is int8 , not double

int8

2.3 MATLAB Functions and Specialization

A M ATLAB function is defined in a.m-file which has the
same name as the function.2 So, for example, a function
namedfoo would be defined in a file namedfoo.m , and
that file needs to be placed either in the current directory,
or in a directory on the MATLAB path. A .m-file can also
define subfunctions following the main (primary) function
definition in a file, but those subfunctions are only visible to
the functions within the file. Functions may also be defined
in a private/ directory, in which case they are visible
only to functions defined in the parent directory.

MATLAB allows overriding or specializing operations
and functions to operate on specific mclasses. This is accom-
plished by defining the function in a file inside a specially
named directory which starts with the character@followed
by the name of the mclass. For example, one could create
a specialized functionfirstWord defined for Strings, by
creating a file@char/firstWord.m somewhere on the
MATLAB path. Functions that are specialized in such a way
have precedence over non-specialized functions, but they do
not have precedence over inner functions, subfunctions (de-
fined in the same file) or private functions (defined in the
/private directory). So, in our example, if there existed
two definitions offirstWord.m , one general implemen-
tation somewhere on the MATLAB path, and one specialized
implementation in a directory@char on the MATLAB path,
then a call tofirstWord with achar argument will result
in a call to@char/firstWord.m , whereas a call with an
argument with any other mclass, will result in a call to the
generalfirstWord.m definition.

When calling a function that has mclass-specialized ver-
sions with multiple arguments of different mclasses, MAT-
LAB has to resolve which version of the function to call.
There doesn’t exist a standard inheritance relationship be-
tween the builtin mclasses. Rather, MATLAB has the notion
of a superior or inferior class. We were unable to find a
succinct summary of these relationships, so we generated
a MATLAB program which exercised all cases and which
produced a.dot file describing all relationships, with all
transitive relationships removed. Figure 2 shows the rela-
tionships between different builtin mclasses, showing supe-
rior classes above inferior classes. Note that some mclasses
have no defined relationship, for example, there are no de-
fined inferior/superior relationships between the different in-
teger mclasses. Further, note thatdouble , being the default
mclass, is inferior to integer mclasses. Also, the compound
mclasses (struct and cell), are superior to all matrix mclasses.

When resolving a call with multiple arguments, MATLAB

finds the most superior argument, and uses its mclass to re-
solve the call. If multiple arguments have no defined superi-
or/inferior relationships, MATLAB uses the leftmost superior
argument. For example, if a function is called with three ar-

2 In the case where the name of the file and the function do not match, the
name of the file takes precedence.

single

double char

logical

in t8 in t16 in t32 in t64 u in t8 u in t16u in t32 u in t64

funct ion_handle

s t ruc t cell

anObject

Figure 2. Superior/inferior class relationships for MATLAB

guments with the mclasses (double , int8 , uint32), in
that order, MATLAB attempts to find a specialized version for
mclassint8 . If none is found, MATLAB attempts to find a
non-specialized version.

The class specialization semantics for MATLAB means
that if one intends to build a complete callgraph, i.e. resolve
all possible call edges, one has to find all possible MAT-
LAB classes for all arguments, and one must safely approx-
imate the lookup semantics of functions, including the cor-
rect lookup of specialized functions using the mclass and the
superior/inferior mclass relationships from Figure 2.

2.4 MATLAB Classes

It is important to note that the mclass of a value does not
completely define its type. For example, numeric MATLAB

values may be real or complex, and matrices have an array
shape. Both of these properties are defined orthogonally to
the notion of its mclass. Although a computation can ask
whether a value is complex or real, and can ask for the
shape of an array, the lookup semantics solely depend on
the mclass, which is effectively just a name. Within the
MATLAB language, there is no dedicated class of values to
represent mclasses. Usually, strings (char vectors) are used
to denote mclasses. For example,ones(3,2,'single') , will
call the builtin function ’ones’ and create a3×2 array of unit
values of mclasssingle .

2.5 Function Handles

MATLAB values with mclassfunction handle store a
reference to a function. This allows passing functions as
arguments to other functions. Function handles can either be
created to refer to an existing function, or can be a lambda
expression. Lambda expressions may also encapsulate state
from the current workspace via free variables in the lambda
expression.
>> f = @sin % a function handle to a named function
f = @sin
>> g = @(x) exp(a * x) % a lambda with a free variable ”a”

g = @(x)exp(a * x)

Function handles, and especially lambdas, are useful in
numerical computing, for example when calling numerical
solvers, as illustrated below.
f = @(t,y) D * t + c; % set up derivative function
span = [0 1]; % set interval
y0 = [0:0.1:10]'; % set initial value
result = ode23s(f,span,y0);

% use matlab library function to solve

When building a callgraph of a program that includes
function handles, one needs to propagate function handles
through the program interprocedurally in order to find out
which variables may refer to function handles, and to find
associated call edges.

2.6 Function Parameters and Arguments

MATLAB uses call-by-value semantics, so that each parame-
ter denotes a fresh copy of a variable.3 This simplifies inter-
procedural analyses for static compilation as calling a func-
tion cannot directly modify local variables in the caller.

In MATLAB , function arguments are optional. That is,
when calling a function one may provide fewer arguments
than the function is declared with. However, MATLAB does
not have a declarative way of specifying default values, nor
does it automatically provide default values. That is, a pa-
rameter corresponding to an argument that was not provided
will simply be unassigned and a runtime error will be thrown
if an unassigned variable is read.

MATLAB does provide the functionnargin to query
how many arguments have been provided to the currently
executing function. This allows the programmer to use the
value of nargin to explicitly assign values to the missing
parameters, as illustrated below.
function [result1, result2] = myFunction(arg1,arg2)

if (nargin < 1)
arg1 = 0;

end
if (nargin < 2)

arg2 = 1;
end;
...

end

As shown above, MATLAB also supports assigning multi-
ple return variables. A function call may request any number
of return values simply by assigning the call into a vector of
lvalues. Just like the function arguments, the return values
don’t all need to be assigned, and a runtime error is thrown
if a requested return value is not assigned. MATLAB provides
thenargout function to query how many results need to be
returned.

Clearly a static compiler for MATLAB must deal with
optional arguments in a sound fashion.

3 Actual MATLAB implementations only make copies where actually nec-
essary, using either lazy copying when writing to an array with reference
count greater than 1, or by using static analyses to determinewhere to in-
sert copies[?].

2.7 Wild Dynamic Features

Whereas features like dynamic typing, function handles, and
variable numbers of input arguments are both widely used
and possible to tame, there are other truly wild dynamic fea-
tures in MATLAB that are not as heavily used, are sometimes
abused, and are not amenable for static compilation.

These features include the use of scripts (instead of func-
tions), arbitrary dynamic evaluation (eval), dynamic calls
to functions usingfeval , deletion of workspace variables
(clear), assigning variables at runtime in the caller scope
of a function (assignin), changing the function lookup di-
rectories during runtime (cd) and certain introspective fea-
tures. Some of these can destroy all available static informa-
tion, even information associated with other function scopes
than where these features occur.

Our approach to these features is to detect them and help-
ing programmers to remove them via refactorings. Some
refactorings can be automated. For example, McLAB al-
ready supports refactorings to convert scripts to functions
and some calls tofeval to direct function calls[?]. Other
refactorings may need to be done by the programmer. For ex-
ample, the programmer may usecd to change directory to
access some data file, not being aware that this also changes
the function lookup order. The solution in this case is to usea
path to access the data file, and not to perform a dynamic call
to cd . We have also observed many cases where dynamic
eval or feval calls are used because the programmer was
not aware of the correct direct syntax or programming fea-
ture to use.4 For example,feval is often used to evaluate
a function name passed as a String, where a more correct
programming idiom would be to use a function handle.

2.8 Illustrative Example

The example in Figure 3 exemplifies some of the ideas pre-
sented in the previous section. It is a complete, valid MAT-
LAB program, performing some numerical computation5,
using common features and functionality. It is a program
using multiple user-defined functions, as well as MATLAB

builtin functions, and one MATLAB library function (the call
to toeplitz in functionDxx).

Note the use ofsingle values. These single values are
created only in the first function (main). But they are supe-
rior todouble values used in the other functions, and all the
values in the actual computation are a result of operating on
the incomingsingle values, so the overall computation is
done usingsingle values. Essentially functions perform-
ing the actual computations are agnostic to the mclasses of

4 This is at least partly due to the fact that older versions of MATLAB did
not support all of the modern features.
5 While the presented example is a complete, valid MATLAB program, and
uses features and the kind of functions one would commonly see used in
MATLAB , it does not represent a meaningful way to solve the contained
numerical problem, because it is highly unstable. We created this example
for the purposes of illustrating different MATLAB language ides, and for
brevity.

function result = main(N)
% set up sytem conditions/variables
rod.L = single(10);
rod.Ta = single(3);
rod.Tb = single(4);
a = .2;
A = 0.05;
Tspan = [0 20];
% solve system
result = solveSystem(rod,a,A,N,Tspan);

end

% solves the heat equation for some rod of length rod.L,
% initially at temperature rod.Ta, rod.Tb, using N subdivisions.
% uses default values for Tspan, Tsteps if they are undefined
function out=solveSystem(rod,a,A,N,Tspan,Tsteps)
switch nargin
case 4
Tspan = [0, 10]; Tsteps = 100;
case 5
Tsteps = 100;

end
h = rod.L/(N+1); % step size in x
X = [h:h:rod.L-h].'; % create x axis with subidivisions
U0 = X; % allocate u0
mid = round(length(X)/2);
U0(1:mid) = rod.Ta; % set left to Ta
U0(mid: end) = rod.Tb; % set right to Tb
[D,c] = Dxx(N,rod.Ta,rod.Tb,h); % set up derivative matrix
f = @(t,u) a * (D * u + c) + A; % right hand side of ODE
[T,out] = RungeKutta2(f,Tspan,U0,Tsteps); % solve ODE

end

% creates a centered−in−space finite difference differentiation
% matrix for the second spatial derivative.
function [D,c]=Dxx(N,a,b,h)

D= toeplitz([-2;1;zeros(N-2,1)], ...
[-2,1,zeros(1,N-2)])./hˆ2;

c = [a/hˆ2; zeros(N-2,1); b/hˆ2];
end

% Runge−Kutta 2 implementation solving the system
% y'= f (t ,y), y(a)=y0
% over tspan=[a,b], using function f , and N integration steps
function [X,Y]=RungeKutta2(f,tspan,y0,N)

a=tspan(1); % initial time
b=tspan(2); % final time
h=(b-a)/N; % step size
Y = [y0 zeros(length(y0),N)]; % result matrix, with y0
X = (a:h:b)'; % set times
for j=1:N % integration steps

k1 = h * f(X(j), Y(:,j));
k2 = h * f(X(j)+ h, Y(:,j) + k1);
Y(:,j+1)=Y(:,j) + 1/2 * (k1 + k2);

end
end

Figure 3. MATLAB numerical example

the arguments (including the MATLAB functiontoeplitz
itself).

Note also the use of the following MATLAB features
presented in the previous discussion:

• use of a structure (inmain)

• use of a lambda expression encapsulating local variables
to construct a function reference (insolveSystem)

• use of optional input arguments (insolveSystem),
where optional parameters are assigned using a switch
statement onnargin .

• use of multiple return values (inDxx).

In the following sections we will illustrate the relevant
points using this example. The complete result of running
the Tamer on the example in Figure 3 is shown in Appendix
A.

2.9 Summary

In this section we have outlined key MATLAB features
and semantics, especially concentrating on the definition
of mclass and function lookup. Our approach is to tame as
much of MATLAB as possible, including support for func-
tion pointers and lambda definitions. Capturing as much as
possible of the evolved language is not just useful to allow
access to a wider set of MATLAB features for user code.
Also, a significant portion of MATLAB ’s extensive libraries
are written in MATLAB itself, and make extensive use of
some of the features discussed above. Since we implement
the MATLAB lookup semantics, and allow the inclusion of
the MATLAB path, our callgraph will automatically include
available MATLAB library functions. Thus, implementing
more features will also benefit users who do not make direct
use of advanced features.

3. Framework for Builtins
One of the strengths of MATLAB is in its large library, which
doesn’t only provide access to a large number of matrix com-
putation functions, but packages for other scientific fields.
Even relatively simple programs tend to use a fair number
of library functions. Many library functions are actually im-
plemented in MATLAB code. To provide their functionality,
the callgraph construction needs to include any MATLAB

function on the MATLAB path, if it is available. Thus we can
provide access to a large number of library functions as long
as we can support the language features they use. However,
hundreds of MATLAB functions are actually implemented
in native code. We call these functions builtins or builtin
functions. Every MATLAB operator (such as+, ∗) is actu-
ally a builtin function; the operations are merely syntactic
sugar for calling the functions that represent the operations
(like ’plus’, ’mtimes’). Thus, for an accurate static analysis
of MATLAB programs, one requires an accurate model of
the builtins, and a way to deal with them. Consider that the
example presented in Figure 3 at first sight only seems to
use some basic matrix arithmetic and some comparison op-
erators; however, the full program, including the embedded
MATLAB library function call, refers to a total of twenty-six

builtins.6 In this section we describe how we have modeled
the builtins and how we integrate the analysis into the static
interprocedural analysis framework.

3.1 Learning about Builtins

As a first step to build a framework of builtin functions, we
need to identify builtins, and need to find out about their
behaviour, especially with respect to mclasses.

3.1.1 Identifying Builtins:

To make the task of building a framework for builtins man-
ageable, we wanted to identify the most commonly used
builtin functions and organize those into a framework. Other
builtins can be added incrementally, but this initial set was
useful to find a good structure.

To identify commonly used builtins we used the McBENCH

framework[?] to find all references to functions that occur
in a large corpus of over 3000 MATLAB programs.7 We
recorded the frequency of use for every function and then
using the MATLAB functionexist , which returns whether
a name is a variable, user-defined function or builtin, we
identified which one of these functions is a builtin func-
tion. This provided us with a list of builtin functions used in
real MATLAB programs, with their associated frequency of
use. We selected approximately three hundred of the most
frequent functions, excluding very dynamic functions like
eval as our initial set of builtin functions.8

3.1.2 Finding Builtin Behaviours:

In order to build a call graph it is very important to be able to
approximate the behaviour of builtins. More precisely, given
the mclass of the input arguments, one needs to know a safe
approximation of the mclass of the output arguments. This
behaviour is actually quite complex, and since the imple-
mentation of MATLAB 7 is the defacto specification of the
behaviour we decided to take a programmatic approach to
exploring and determining the behaviours.9

We developed a set of scripts that generated random
MATLAB values of all combinations of builtin mclasses, and
called selected builtins using these arguments. If different
random values of the same mclass result in consistent result-
ing mclasses over many trials, the scripts record the associ-

6 mtimes, vertcat, single, transpose, conj, round,
colon, lt, isequal, mrdivide, length, horzcat,
mpower, end, plus, minus, nargin, class, ones,
message, uminus, zeros, ne, rdivide, ctranspose,
warning
7 This is the same set of projects that are used in [?]. The benchmarks come
from a wide variety of application areas including Computational Physics,
Statistics, Computational Biology, Geometry, Linear Algebra, Signal Pro-
cessing and Image Processing.
8 The complete list can be found atwww.sable.mcgill.ca/mclab/
tamer.html
9 We also used the MATLAB 7 documentation, which unfortunately includes
fairly little type information, and ad-hoc trials to determine the behaviour
of builtins.

ated mclass propagation for builtins in a table, and collect
functions with the same mclass propagation tables together.
Examples of three such tables are given in Figure 4.10

As compared with type rules in other languages, these
results may seem a bit strange. For example, the “-” entry
for plus(int16,int32) in Figure 4(a) shows that it is an
error to add an int16 to and int32. However adding an int64
to a double is allowed and it results in an int64. Also, note
that although the three tables in Figure 4 are similar, they
are not identical. For example, in Figure 4(a), multiplying
a logical with a logical results in a double, but using the
power operator with two logicals is an error. Finally, note
that the tables are not always symmetrical. In particular, the
f64 column and row in Figure 4(b) are not the same.

The reader may have noticed how the superior/inferior
mclass relationships as shown in figure Figure 2 seem to
resemble the implicit type conversion rules for MATLAB

builtin functions. For example, when adding an integer and a
double, the result will be double. However, it is not sufficient
to model the implicit MATLAB class conversion semantics
by just using class-specialized functions and their relation-
ships. Many MATLAB builtins perform explicit checks on
the actual runtime types and shapes of the arguments and
perform different computations or raise errors based on those
checks.

Through the collection of a large number of tables we
found that many builtins have similar high-level behaviour.
We found that some functions work on any matrix, some
work on numeric data, some only work on floats, and some
work on arbitrary builtin values, including cell arrays or
function handles.

3.2 Specifying Builtins

To capture the regularities in the builtin behaviour we ar-
ranged all of the builtins in a hierarchy - a part of the hi-
erarchy is given in Figure 5. Leaves of the hierarchy corre-
spond to actual builtins and upper levels correspond to ab-
stract groups which share some sort of similar behaviour.
The motivation is that some flow analyses need only spec-
ify the abstract behaviour of a group, and the flow analysis
framework will automatically apply the correct (most spe-
cialized) behaviour for a specific builtin.

To specify builtins and their relationships, we developed
a simple domain-specific language. One just needs to specify
the name of a builtin. If the builtin is abstract (i.e. it refers to
a group of builtins), the parent group has to be specified. If
no parent is specified, the specified name is an actual builtin,
belonging to the group of the most recently specified abstract
builtin. This leads to a very compact representation, allowing
builtins to be specified on one line each, as illustrated by the
following snippet of the builtin specification:

10To save space we have not included the whole table, we have left out the
columns and rows for unsigned integer mclasses and for handles. All re-
sult tables can be found atwww.sable.mcgill.ca/mclab/tamer.
html

floatFunction; matrixFunction
properFloatFunction; floatFunction
unaryFloatFunction; properFloatFunction
elementalUnaryFloatFunction; unaryFloatFunction
sqrt
realsqrt
erf
...
improperFloatFunction; floatFunction
...

The builtin framework takes a builtin specification and
generates a set of Java classes whose inheritance relationship
reflects the specified tree. It also generates a visitor class,
which allows annotating methods to Builtins using the visi-
tor pattern - a pattern that is already extensively used in the
McSAF framework[? ?] upon which the Tamer is built.

We categorize the MATLAB builtin functions according
to many properties, such as mclass, arity, shape, semantics.
This means that different analyses or attributes can be spec-
ify at exactly the required category. It also means that when
adding builtins that do fit in already existing categories, one
does not need to add all required attributes or flow equations.

3.3 Specifying Builtin attributes

It is not sufficient to just specify the existence of builtins;
their behaviour needs to be specified as well. In particular,
we need flow equations for the propagation of mclasses.
Thus the builtin specification language allows the additionof
properties. A property is just a name, with a set of arguments
that follow it. A specific property can be defined for any
builtin, and it will trigger the addition of more methods in the
generated Java code as well as the inclusion of interfaces. In
this way, any property defined for an abstract builtin group
is defined for any builtin inside that group as well, unless it
gets overridden.

3.3.1 The “Class” attribute

The first property we defined was the propertyClass .
When specified for a builtin, it forces the inclusion of the
Java interfaceClassPropagationDefined in the gen-
erated Java code, and will add a method that returns an
mclass flow equation. The mclass flow equation itself is
specified as an argument to theClass attribute using a
small domain specific language that allows matching ar-
gument mclasses, and returns result mclasses based on
matches. An example snippet is given below which shows
the specification of mclass flow equations for unary func-
tions taking numeric arguments. Functions in that group ac-
cept any numeric argument and return a result of the same
mclass (numeric->0), a char or logical argument will re-
sult in adouble .

unaryNumericFunction; properNumericFunction;
-Class(numeric->0, \

char|logical->double)

elementalUnaryNumericFunction; unaryNumericFunction;
-abstract

i8 i16 i32 i64 f32 f64 c b

i8 i8 - - - - i8 i8 -
i16 - i16 - - - i16 i16 -
i32 - - i32 - - i32 i32 -
i64 - - - i64 - i64 i64 -
f32 - - - - f32 f32 f32 f32
f64 i8 i16 i32 i64 f32 f64 f64 f64
c i8 i16 i32 i64 f32 f64 f64 f64
b - - - - f32 f64 f64 f64

(a)plus , minus , mtimes , times , kron

i8 i16 i32 i64 f32 f64 c b

i8 i8 - - - - - i8 -
i16 - i16 - - - - i16 -
i32 - - i32 - - - i32 -
i64 - - - i64 - - i64 -
f32 - - - - f32 - f32 f32
f64 i8 i16 i32 i64 f32 f64 f64 f64
c i8 i16 i32 i64 f32 f64 f64 f64
b - - - - f32 f64 f64 -

(b) mpower, power

i8 i16 i32 i64 f32 f64 c b

i8 i8 - - - - i8 i8 -
i16 - i16 - - - i16 i16 -
i32 - - i32 - - i32 i32 -
i64 - - - i64 - i64 i64 -
f32 - - - - f32 f32 f32 f32
f64 i8 i16 i32 i64 f32 f64 f64 f64
c i8 i16 i32 i64 f32 f64 f64 f64
b - - - - f32 f64 f64 -

(c) mldivide , mrdivide , ldivide , rdivide , mod, rem, mod

Figure 4. Example mclass results for groups of Built-in binary operators. Rows correspond to the mclass of the left operand,
columns correspond to the mclass of the right operand, and the table entries give the mclass of the result. The labels i8 toi64
represent the classes int8 through int64, f32 is single, f64is double, c is char, and b is logical. Entries of the form “-” indicate
that this combination is not allowed and will result in a runtime error.

real
imag
abs
conj;; MatlabClass(logical->error, natlab)
sign;; MatlabClass(logical->error, natlab)

We have noticed some irregularities in the pure MATLAB

semantics, and our specification sometimes removes those.
In order to keep a record of the differences we use the
MatlabClass specification which allows us to specify
the exact MATLAB semantics - and thus provides an exact
definition and documentation of MATLAB class semantics.
In the example above, we specify that the functionsconj
andsign have different MATLAB semantics: they disallow
logical arguments, which will result in an error.

3.3.2 Other Attributes

It is possible to add new kinds of attributes to the builtin
specification language. One merely has to add a function to
the builtin generator with a specific function interface and
the same name as the new attribute. This function has to
return Java code that will be inserted in the generated Builtin
class. The function may also force the generated Builtin
class to implement a certain interface (i.e. to signify that
certain methods were added to it). We will use this facility
to add more information about builtins or flow equations for
the operations they represent. It will conversely allow us to
quickly provide information about builtins that we add to the
framework.

3.4 Summary

We have performed an extensive analysis of the behaviour
of MATLAB builtin functions. Based on that we developed a
framework that allows to specify MATLAB builtin functions,
their relationships and properties such as flow equations
in a compact way. This framework is extensible both by
allowing the quick addition of more builtin functions; and
by allowing to specify information and behaviour for builtin
functions. This can be done either adding new properties to
the framework itself; or by implementing visitor classes.11

4. Tame IR
As indicated in Figure 1, we build upon the McSAF [?
?] framework by adding taming transformations and by
producing a more specialized Tame IR.

The McSAF framework provides both a high-level AST
and a lower-level AST called McLAST in which many sim-
plifications have been performed, including simplifying the
left-hand and right-hand sides of assignment statements,
transforming the implicit control-flow of short-circuit opera-
tors to explicit control flow, resolving the precise meaningof
the end operator, and simplifying theif and for control
constructs.

To produce an easily analyzable Tame IR we have made
three important additions: (1) generating more specialized
AST nodes, (2) translatingswitch statements to equiva-
lent conditional statements, and (3) transforming lambda ex-

11The complete specification of builtins, documentation of
the specification and diagrams of all builtins is available at
www.sable.mcgill.ca/mclab/tamer.html

FloatFn

ProperFloatFn

ImproperFloatFn

UnaryFloatFn

BinaryFloatFn

ElementalUnaryFloatFn

ArrayUnaryFloatFn

sqr t
realsqrt

erf
erf inv
erfc

erfcinv
g a m m a

g a m m a l n
e x p
log

log2
log10

ForwardTrigonometricFn

InverseTrigonmetricFn

RadianTrigonometricFn

DegreeTrigonometricFn

HyperbolicTrigonometricFn

sin
cos
tan
cot
sec
csc

sind
cosd
tand
cotd
secd
cscd

sinh
cosh
tanh
coth
sech
csch

RadianInverseTrigonmetricFn

DegreeInverseTrigonmetricFn

HyperbolicInverseTrigonmetricFn

asin
acos
a t a n
acot
asec
acsc

as ind
acosd
a tand
acotd
asecd
acscd

asinh
acosh
a tanh
acoth
asech
acsch

SquareArrayUnaryFloatFn

logm
sqr tm
e x p m

inv

ElementalBinaryFloatFn

ArrayBinaryFloatFn

a tan2

hypot

eps

DimensionSensit iveFloatFn

MatrixLibaryFn

FacotorizationFn

c u m s u m
cumprod

DimensionCollapsingFloatFn

m o d e
prod
s u m

m e a n
eig

n o r m
rank
cond
de t

rcond
linsolve

schur
ordschur

lu
chol
svd
qr

Figure 5. Subtree of builtin tree, showing all defined floating point builtins of MATLAB

pressions to analyzable equivalents. One might wonder why
these transformations are not already part of McSAF, the
framework upon which the Tamer is built. The important
point is that McSAF must handle all of MATLAB , whereas
for our Tame IR we can make restrictions that are reason-
able for the purposes of static compilation. This allows us to
make the Tame IR more specialized and enables more sim-
plifying transformations.

4.1 Specialized AST nodes

One goal for our Taming framework was to produce an IR
that is very simple to analyze, and has operations that are
low-level enough to map fairly naturally to static languages

like FORTRAN. As one example, in McSAF there is only
one kind of assignment statement, assigning from an ex-
pression to an lvalue expression. The Tame IR has many
more specialized cases as illustrated in Figure 6. We also
extended McSAF’s analysis framework to recognize these
new IR nodes, so flow equations can be specified for them.
Note how the Tame IR has a different statement for a func-
tion call or an array indexing operation. In MATLAB these
use the same syntax, a parameterized expression. We use the
kind analysis[?] to resolve names to being a function or vari-
able, but there are rare cases when this is not possible. Tame
MATLAB will reject these cases.

TIRAbs t rac tAss ignS tmt

Ass ignS tmt

T IRAbs t rac tAss ignFromVarS tmt

T IRAr raySe tS tm t T IRCe l lA r raySe tS tmt T IRDo tSe tS tmt

T IRAsb t rac tAss ignToL is tS tmt

T IRAr rayGe tS tmt T IRCe l lA r rayGetS tmt T IRDotGe tS tmt T IRCa l lS tmt

T IRAss ignL i te ra lS tmt

TIRAbst rac tAss ignToVarStmt

T IRCopyStmt T IRAbs t rac tCrea teFunc t ionHand leS tmt

TIRCreateFunc t ionReferenceStmt T IRCrea teLambdaStmt

Figure 6. Specializations of the assignment statement

4.2 Lambda Simplification

MATLAB supports lambda expressions. In order to be com-
patible with the Tame IR, their bodies need to be converted to
a three address form in some way. MATLAB lambda expres-
sions are just a single expression (rather than, say, statement
lists), so we extract the body of the lambda expression into
an external function. The lambda expression still remains,
but will encapsulate only a single call, all whose arguments
are variables. For example, the lambda simplification will
transform the expression in Figure 7(a) to the code in Fig-
ure 7(b).

function outer
...
f = @(t,y) D * t + c
...

end

function outer
...
f = @(t,y) lambda1(D,c,t,y)
...

end

function r = lambda1(D,c,t,y)
r = D * t + c

end

(a) lambda (b) transformed lambda

Figure 7. Transforminglambda expressions

The new lambda expression encapsulates a call to the new
function lambda1 . Note that the first two arguments are
variables from the workspace, the remaining ones are the pa-
rameters of the lambda expression. In the analyses, we can
thus model the lambda expression using partial evaluation of
the functionlambda1 . To make this transformation work,
the generated function must return exactly one value, and
thus Tame MATLAB makes the restriction that lambda ex-
pressions return a single value (of course that value may be
an array, struct or cell array).

4.3 Switch simplification

As illustrated in Figure 8(a), MATLAB has support for very
flexible switch statements. Unlike in other languages, all
case blocks have implicit breaks at the end. In order to spec-
ify multiple case comparisons for the same case block, MAT-

LAB allows using cell arrays of case expressions, for exam-
ple {2, 3 } in Figure 8(a). Indeed, MATLAB allows arbi-
trary case expressions, such asc in the example. Ifc refers
to a cell array, then the case will match if any element of the
cell array matches. Without knowing the static type and size
of the case expressions, a simplification transformation isnot
possible. Thus, to enable the static simplification shown in
Figure 8(b) we add the constraint for the Tame MATLAB that
case-expressions are only allowed to be syntactic cell arrays.

switch n
case 1

...
case {2, 3}

...
case c

...
otherwise

...
end

t = n
if (isequal(t,1))

...
elseif (isequal(t,2) ||

isequal(t,3))
...

elseif (isequal(t,c))
...

else
...

end

(a) switch (b) transformed switch

Figure 8. Transformingswitch statements

4.4 Example

The solveSystem function from the example in Fig-
ure 3 gets transformed into the code shown in Figure 9.
The code has been transformed into a three-address version,
with many temporaries, and all expressions have been turned
into calls to the equivalent builtin functions. Note in partic-
ular how the switch onnargin() gets transformed into
a series of if-statements (lines 5-20), and how the lambda
expression is turned into a function. The original lambda
expression is represented as a single call (on line 60) to
a newly introduced function (lines 65-73) that holds the
body of the lambda expression. Comments in the origi-
nal code are preserved in empty statements that hold the
comments (TIRCommentStmt). This means that no other
statement contains any comments, and every statement can

1 function [out] = solveSystem(rod,a,A,N,Tspan,Tsteps)
2 % solves the heat equation for some rod of length rod.L,
3 % initially at temperature rod.Ta, rod.Tb, using N subdivisions.
4 % uses default values for Tspan, Tsteps if they are undefined
5 [mc_t10] = nargin();
6 mc_t34 = 4;
7 [mc_t12] = isequal(mc_t10, mc_t34);
8 if mc_t12
9 mc_t36 = 0;

10 mc_t37 = 10;
11 [Tspan] = horzcat(mc_t36, mc_t37);
12 Tsteps = 100;
13 else
14 mc_t38 = 5;
15 [mc_t11] = isequal(mc_t10, mc_t38);
16 if mc_t11
17 Tsteps = 100;
18 else
19 end
20 end
21 [mc_t17] = rod.L;
22 mc_t39 = 1;
23 [mc_t18] = plus(N, mc_t39);
24 [h] = mrdivide(mc_t17, mc_t18);
25 % step size in x
26 mc_t21 = h;
27 mc_t22 = h;
28 [mc_t24] = rod.L;
29 mc_t25 = h;
30 [mc_t23] = minus(mc_t24, mc_t25);
31 [mc_t20] = colon(mc_t21, mc_t22, mc_t23);
32 [mc_t19] = vertcat(mc_t20);
33 [X] = ctranspose(mc_t19);
34 % create x axis with subidivisions
35 U0 = X;
36 % allocate u0
37 [mc_t27] = length(X);

38 mc_t40 = 2;
39 [mc_t26] = mrdivide(mc_t27, mc_t40);
40 [mid] = round(mc_t26);
41 [mc_t13] = rod.Ta;
42 mc_t41 = 1;
43 [mc_t15] = colon(mc_t41, mid);
44 U0(mc_t15) = mc_t13;
45 % set left to Ta
46 [mc_t14] = rod.Tb;
47 mc_t28 = mid;
48 mc_t42 = 1;
49 mc_t43 = 1;
50 [mc_t29] = end(U0, mc_t42, mc_t43);
51 [mc_t16] = colon(mc_t28, mc_t29);
52 U0(mc_t16) = mc_t14;
53 % set right to Tb
54 mc_t30 = N;
55 mc_t31 = rod.Ta;
56 mc_t32 = rod.Tb;
57 mc_t33 = h;
58 [D, c] = Dxx(mc_t30, mc_t31, mc_t32, mc_t33);
59 % set up derivative matrix
60 f = (@(t, u) lambda_1(a, D, c, A, t, u));
61 % right hand side of ODE
62 [T, out] = RungeKutta2(f, Tspan, U0, Tsteps);
63 end
64

65 function [mc_t0] = lambda_1(a, D, c, A, t, u)
66 mc_t148 = a;
67 [mc_t150] = mtimes(D, u);
68 mc_t151 = c;
69 [mc_t149] = plus(mc_t150, mc_t151);
70 [mc_t146] = mtimes(mc_t148, mc_t149);
71 mc_t147 = A;
72 [mc_t0] = plus(mc_t146, mc_t147);
73 end

Figure 9. Tame IR version of the functionsolveSystem from the example in Figure 3

get transformed without having to worry about preserving
comments.

5. Interprocedural Value Analysis and Call
Graph Construction

The core of the MATLAB Tamer is thevalue analysis. It’s
an extensible monolithic context-sensitive inter-procedural
forward propagation of abstract MATLAB values. For every
program point, it estimates what possible values every vari-
able can take on. Most notably it finds the possible set of
mclasses. It also propagates function handle values. This al-
lows resolution of all possible call edges, and the construc-
tion of a complete call graph of a tame MATLAB program.

The value analysis is part of an extensible interprocedural
analysis framework. It contains a set of modules, one build-
ing on top of the other. All of them can be used by users of
the framework to build analyses.

• The interprocedural analysis framework (section 5.1)
builds on top of the Tame IR and the McSAF intrapro-
cedural analysis framework. It allows the construction of

interprocedural analyses by extending an intraprocedural
analysis built using the McSAF framework. This frame-
work works together with a callgraph object implement-
ing the correct MATLAB look up semantics. An analy-
sis can be run on an existing callgraph object, or it can
be used to build new callgraph objects, discovering new
functions as the analysis runs.

• Theabstract value analysis(section 5.2), built using the
interprocedural analysis framework, is a generic analy-
sis of abstract MATLAB values. The implementation is
agnostic to the actual representation of abstract values,
but is aware of MATLAB mclasses. It can thus build a call
graph using the correct function lookup semantics includ-
ing function specialization.

• We provide an implementation ofcomposite valueslike
cell arrays, structures and function handles, which is
generic in the implementation of abstract matrix val-
ues (section 5.4). This makes composite values com-
pletely transparent, allowing users to implement very
fine-grained abstract value analyses by only providing

an abstraction for MATLAB values which are matrices,
thus simpflifying developing new analyses.

• Building on top of all the above modules and putting ev-
erything together, we provide an abstraction for all MAT-
LAB values, which we call simple values (section 5.5).
Since it includes the function handle abstractions, this
can be used by users to build a complete tame MATLAB

callgraph. This is theconcrete value analysis, whose re-
sults are presented in section 5.7.

5.1 The Interprocedural Analysis Framework

The interprocedural Analysis framework is an extension of
the intraprocedural flow analyses provided by the McSAF

framework. It is context-sensitive to aid code generation
targeting static languages like FORTRAN. FORTRAN’s poly-
morphism features are quite limited; every generated vari-
able needs to have one specific type. The backend may
thus require that every MATLAB variable has a specific
known mclass at every program point. Functions may need
to be specialized for different kinds of arguments, which a
context-sensitive analysis provides at the analysis level.

In the Tamer framework an interprocedural analysis is a
collection of interprocedural analysis nodes, which repre-
sent a specific intraprocedural analysis for some function
and some context. The context is usually a flow represen-
tation of the passed arguments. Every such interprocedural
analysis node produces a result set using the contained in-
traprocedural analysis.

Every interprocedural analysis has an associated call-
graph object, which may initially contain only one function
acting as the entry point for the program. The interprocedu-
ral analysis requires a context or argument set for the entry
point function.

The analysis starts by creating an interprocedural analysis
node for the entry point function and the associated context,
which triggers the associated intraprocedural flow analysis.
As the intraprocedural flow analysis encounters calls to other
functions, it has to create context objects for those calls,
and ask the interprocedural analysis to analyze the called
functions using the given context. The call also gets added
to the set of call edges associated with the interprocedural
analysis node.

As the interprocedural analysis has to analyze newly en-
countered calls, the associated functions are resolved, and
loaded into the callgraph if necessary. The result is a com-
plete callgraph, and an interprocedural analysis.

The interprocedural analysis framework supports simple
and mutual recursion by performing a fixed point iteration
within the first recursive interprocedural analysis node.

5.2 Introducing the Value Analysis

The abstract value analysis is a forward propagation of
generic abstract MATLAB values. The mclass of any abstract
value is always known.

A specific instance of a value analysis may use different
representations for values of different mclasses. For exam-
ple, function handle values may be represented in a different
way than numeric values. This in turn means that values of
different Matlab classes can not be merged (joined).

5.2.1 Mclasses, Values and Value Sets:

To define the value analysis independently of a specific rep-
resentation of values, We first define the set of all mclasses:

C = {double , single , logical , cell , . . .}

For each mclass, we need some lattice of values that repre-
sent estimations of MATLAB values of that class:

Vmclass ={v : v approximates a value with mclassmclass},

mclass ∈ C

We require that merge operations are defined, so

∀v1, v2 ∈ Vmclass, v1 ∧ v2 ∈ Vmclass.

We can not join values of different mclasses, because
their actual representation may be incompatible. SoVC is
not a lattice.

In order to allow union values for variables, i.e. to allow
variables to have more than one possible mclass, we estimate
the value of a MATLAB variable as a set of pairs of abstract
values and their mclasses, where the mclasses are disjoint.
We call this a value set. More formally, we define a value set
as:

V alueSet = {(mclass1, v1), . . . , (mclassn, vn) :

classi 6= classj , classi ∈ C, vi ∈ Vclassi}

Or the set of all possible value sets given a setV of lattices
for every mclass.

SV = {{(mclassk, vk) :

mclassi 6= mclassj , vi ∈ Vmclassi , k ∈ 0..n} :

0 ≤ n ≤ |C|}

This is a lattice, with the join operation which is the simple
set union of all the pairs, but for any two pairs with matching
mclasses, their values get joined, resulting in only one pair
in the result set.

While the notion of a value set allows the analysis to deal
with ambiguous variables, still building a complete callgraph
and giving a valid estimation of types, having ambiguous
variables is not conducive to code generation for a language
like FORTRAN. So
if (..)

t = 4;
else

t = 'hi';
end

results int having the abstract value

{(double , 4), (char , ’hi’)}.

This example is not tame MATLAB .

5.2.2 Flow Sets:

We define a flow set as a set of pairs of variables and value
sets, i.e.

flow = {(var1, s1), (var2, s2), ..., (varn, sn) :

si ∈ SV , vari 6= varj}

and we define an associated look-up operation

flow(var) = s if (var, s) ∈ flow

This is a lattice whose merge operation resembles that of the
value sets.

Flow sets may benonviable, representing non-reachable
code (for statements after errors, or non-viable branches).
Joining any non-bottom flow set with thenonviable set
results in the viable flow set. joiningbottom andnonviable
results innonviable.

5.2.3 Argument and Return sets:

The context or argument set for the interprocedural analysis
is a vector of values representing argument values. Argu-
ments are not value sets, but simple valuesv ∈ Vc with a
single known mclassc. When encountering a call, the anal-
ysis has to construct all combinations of possible argument
sets, construct a context from that and analyze the call for all
such contexts. For example, if we reach a call

r = foo(a,b)

with a flow set

{(a, {(double , v1), (char , v2)}), (b, {(logical , v3)})},

the value analysis constructs two contexts, from(v1, v3) and
(v2, v3), and analyzes functionfoo with each context. Note
how the dominant argument for the first context isdouble ,
whereas it ischar for the second. If there exist mclass
specialized versions forfoo , then this results in call edges
to, and analysis of, two different functions.

More formally, for a callfunc(a1, a2, · · · , an) at pro-
gram pointp, with the input flow setfp, we have the set of
all possible contexts

allargs =fp(a1)× fp(a2)× · · · × fp(an) =
∏

1≤i≤n

fp(ai).

The interprocedural analysis needs to analyzefunc with
all these contexts and merge the result,

R =
∧

arg∈allargs

analyze(func, arg).

To construct a context, the value analysis may simplify
(push up) values to a more general representation. For exam-
ple, if the value abstraction includes constants, the push up
operation may turn constants intotop. Otherwise, the num-
ber of contexts for any given function may grow unnecessar-
ily large.

The result of analyzing a function with an argument set
is a vector of value sets, where every component represents
a returned variable. They are joined by component-wise
joining of the value sets. In the value analysis we require
that for a particular call, the number of returned variablesis
the same for all possible contexts.

5.2.4 Builtin Propagators:

Every implementation of the value abstractions needs to
provide a builtin propagator, which provides flow equations
for builtins. If B is the set of all defined builtin functions
{plus ,minus , sin , . . .}, then the builtin propagatorPV

for some representation of valuesVC is a function mapping
a builtin and argument set to a result set.

PV : B ×
⋃

n∈N

(VC)
n →

⋃

n∈N

(SV)
n

The builtin framework provides tools to help implement
builtin propagators by providing builtin visitor classes.The
framework also provides attributes for builtin functions,for
example the class propagation information attributes.

5.3 Flow Equations

In the following subsection we will show a sample of flow
equations to illustrate the flow analysis. We assume a state-
ment to be at program pointp, with incoming flow setfp.
The flow equation for program pointp results in the new
flow setf ′

p

• vart = vars:

f ′
p = fp \ {(vart, fp(vart))} ∪ {(var, fp(vars))}

• var = l, wherel is a literal with mclasscl and value
representationvl:

f ′
p = fp \ {(var, fp(var))} ∪ {(var, {(cl, vl)})}

• [t1, t2, . . ., tm] = func(a1, a2, . . ., an) , a function
call to some functionfunc:
with

callfunc,arg =

PV (b, args)
- if func with args refers to a builtinb
analyze(f, args)
- if func(args) refers to a functionf

we set

R =
∧

args∈fp(a1)×fp(a2)×···×fp(an)

callfunc,args

then

f ′
p = fp \

m
⋃

i=1

{(ti, fp(ti))} ∪

m
⋃

i=1

{(ti, Ri)}

Note that when analyzing a call to a function in an m-file,
the argument values will be pushed up. For calls to builtins,
the actual argument values will be used, effectively in-lining
the behaviour of builtin functions.

5.4 Structures, Cell Arrays and Function Handles

We implemented a value abstraction for structs, cell arrays
and function handles (which we callAggrValue inter-
nally). This abstraction is again modular, this one with re-
spect to the representation of matrix values (i.e. values with
mclassdouble , single , char , logical or integer).
Structures, cell arrays and function handles act as contain-
ers for other values, making them effectively transparent.A
user may provide a fine-grained abstraction for just matrix
values and combine it with abstraction of composite values
to implement a concrete value analysis.

5.4.1 struct , cell :

For structures and cell arrays, there are two possible abstrac-
tions:

• tuple: The exact index set of thestruct /cell is known
and every indexing operation can be completely resolved
statically. Then the value is represented as a set of pairs
{(i1, s1), (i2, s2), .., (in, sn) : ik ∈ I, sn ∈ SV }, where
I is an index set - integer vectors for cell arrays, and
fieldnames for structs.

• collection: Not all indexing operations can be statically
resolved, or the set of indices is unknown. In this case,
all value sets contained in the struct or cell are merged
together, and the representation is a single value sets ∈
SV .

The usual representation for a structure is a tuple, because
usually all accesses (dot-expressions) are explicit in thecode
and known. Cell arrays are usually a collection, because the
index expressions are usually not constant. But cell arrays
tend to have homogeneous mclass values, so there is some
expectation that any access of astruct or cell results in
some unambiguous mclass and thus allows static compila-
tion.

5.4.2 function handle :

As explained in section 2.5, function handles can be created
either by referring to an existing function, or by using a
lambda expression to generate an anonymous function using
a lambda expression. The lambda simplification (presented
in section 4.2) reduces lambda expressions to single calls.

We model all function handles as sets of function han-
dle pairs. A function handle pair consists of a reference to a
function and a vector of partial argument value sets. A func-
tion handle value may thus refer to multiple possible func-
tion/partial argument pairs.

Given some flow setfp defined at the program pointp,
• g = @sin

results in

f
′

p =fp \ (g, fp(g))∪

{(g, {(function handle , {(sin , ())})})}

• g = @(t,y) lambda1(D,c,t,y)

results in

f
′

p =fp \ (g, fp(g))∪

{(g, {(function handle ,

{(lambda1 , (fp(D), fp(c)))})})}

Note that function handles get invoked at array get state-
ments, rather than calls. That is because the tame IR is con-
structed without mclass information, and will correctly in-
terpret a function handle as a variable. When the target of an
array get statement is a function handle, the analysis inserts
one or more call edges at that program point, referring to the
functions contained in the function handle.

5.5 The Simple Matrix Abstraction

Using the value abstraction for structures, cell arrays and
function, we implemented a concrete value abstraction by
adding an abstraction for matrix values, which we call sim-
ple matrix values. On top of the required mclass, this ab-
straction merely adds constant propagation for scalar dou-
bles, strings (char vectors), and scalar logicals.

This allows the analysis of MATLAB code utilizing op-
tional function arguments using the builtin functionnargin ,
and some limited dynamic features utilizing strings. For ex-
ample, a call likeones(n,m,’int8’) can be considered
tame.

This implementation represents the concrete value analy-
sis that is used to construct complete callgraphs.

5.6 Example

The concrete value analysis using simple matrix values is
able to build a complete callgraph for our example intro-
duced in Sec. 2.8, and find a unique mclass for every variable
at every program point. It includes and analyzes the MAT-
LAB library function toeplitz . This includes resolution
of structures as well as function handles created by a lambda
expression.

The analysis finds the following function calls, with their
associated arguments and return values:

main:
double -> single

solveSystem:
struct{Ta=single, Tb=single, L=single},
double, double, double, double -> single

Dxx:
double, single, single, single

-> single, single

toeplitz:
double, double -> double

RungeKutta2:
(handle, @lambda_1(double, single, single,

double,..),
double, single, double -> double, single

lambda_1:
double, single, single, double, double,
single -> single

Note the structure and the function handle, and the mix of
single anddouble values.

We have included the complete program, which is the
result of the tamer, in appendix A. It is shown in the Tame IR
form, with the result of the value analysis annotated to every
assignment statement.

The complete resolution of every value is only possible
because we include constant propagation. For example, it
allows the value analysis to know which case for the switch
statement insolveSystem is valid. Also, the included
functiontoeplitz includes the lines

[xclass] = class(x); % xclass=(char,double)
[mc_t90] = zeros(xclass); % mc t90=(double)

Without knowing that the variablexclass holds the string
“double”, the following call tozeros wouldn’t be known
to return adouble , and the value analysis would have to
assume the result could be any numerical value (double ,
single , or any integer).

5.7 Applying the Value Analysis

In order to exercise the framework, we applied it to the
set of benchmarks we have previously used for evaluating
McVM/McJIT[?], a dynamic system. The benchmarks and
results are given in Table 1. About half of the benchmarks
come from the FALCON project[?] and are purely array-
based computations. The other half of the benchmarks were
collected by the McLAB team and cover a broader set of ap-
plications and use more language features such as lambda
expressions, cell arrays and recursion. The columns labeled
#Fn correspond to the number of user functions, and the
column labeled #BFn corresponds to the number of builtin
functions used by the benchmark. Note the high number of
builtins. The column labeled “Wild” indicates if our sys-
tem rejected the program as too wild. Only the sdku bench-
mark was rejected because it used theload library func-
tion which loads arbitrary variables from a stored file. It is
likely that we should provide a tamer version of load. The
column labeled “Mclass” indicates “unique” if the interpro-
cedural value propagation found a unique mclass for every
variable in the program. Only three benchmarks had one or
more variables with multiple different mclasses. We verified
that it was really the case that a variable had two different
possible classes in those three cases.

Although the main point of this experiment was just to
exercise the framework, we were very encouraged by the
number of benchmarks that were not wild and the overall
accuracy of the basic interprocedural value analysis. We
expect many other analyses to be built using the framework,
with different abstractions. By implementing them all in
a common framework we will be be able to compare the
different approaches.

6. Building on the Tamer
The Tamer framework, as presented in this paper, is intended
both to support further analyses and to provide the building
blocks for a variety of back-ends.

6.1 Using the Tamer for further analyses

There are several ways in which the Tamer supports exten-
sions or further analyses.

6.1.1 Implementing new Value Abstractions

As discussed in Sec. 5.5, we have built a concrete value anal-
ysis that is used to build the callgraph, which is built on top
of the composite value abstraction for structures, cell arrays
and function handles. The most common case to extend the
value analysis is to provide a different implementation for
matrix values, while reusing the abstraction for the compos-
ite values.

Many flow analyses that attempt to estimate some aspect
of MATLAB values are only concerned with MATLAB values
that are matrices. They are basically independent of the be-
haviour of composite values, except that these may contain
matrices. This can be exactly addressed by providing a new
matrix abstraction: the user only has to provide the abstrac-
tion for matrix values, a factory class that can produce these
matrix values, and a class that defines the flow equations for
builtins for that matrix abstraction. The whole machinery of
the value analysis can be reused, as well as composite val-
ues - they simply contain whatever matrix value abstraction
is being used, as needed.

For example, an analysis writer may want to implement
an analysis that tracks whether matrices are sparse or not (i.e.
contain mostly zeros). Sparse matrices can be represented
with special data types that can leverage performance sparse-
ness. This property is only relevant to matrices, so the anal-
ysis can reuse the implemented composite values and only
provide an abstraction for matrices. The user can combine
their information about matrices with other components that
we have already implemented (like constants) to get a richer
or more detailed abstraction.

Users could also implement a complete new abstraction
for values, but still reuse the analysis itself.

6.1.2 Implementing other Interprocedural Analyses

The interprocedural analysis framework provides a conve-
nient framework for developing new flow analyses, forward
or backward, that must be interprocedural, which are not
necessarily based on flowing abstract representations of
MATLAB values forward. For example, a user may imple-
ment an interprocedural side-effect analysis, computed ona
callgraph that was produced by the value analysis.

All interprocedural analysis use McSAF-based intrapro-
cedural analysis operating on the Tamer IR.

Name Description Source #Fn #BFn Features Wild Mclass
adpt Adaptive quadrature Numerical Methods 1 17 no unique
beul Backward Eurler McLAB 11 30 lambda no unique
capr Capacitance Chalmers EEK 170 4 12 no unique
clos Transitive Closure Otter 1 10 no unique
crni Tridiagonal Solver Numerical Methods 2 14 no unique
dich Dirichlet Solver Numerical Methods 1 14 no unique
diff Light Diffraction Appelbaum (MUC) 1 13 no unique
edit Edit Distance Castro (MUC) 1 6 no unique
fdtd Finite Distance Time Domain Chalmers EEK 170 1 8 no unique
fft Fast Fourier Transform Numerical Recipes 1 13 no multi
fiff Finite Difference Numerical Methods 1 8 no unique
mbrt Mandelbrot Set McLAB 2 12 no unique
mils Mixed Integer Least Squares Chang and Zhou 6 35 no unique
nb1d 1-D Nbody Otter 2 9 no unique
nb3d 3-D Nbody Otter 2 12 no unique
nfrc Newton Fractal McLAB 4 16 no unique
nne Neural Net McLAB 3 16 cell no unique
play Minimax Search McLAB 5 26 recursive, cell no multi
rayt Raytracer Aalborg (Jensen) 2 28 no unique
sch2 Sparse Schroed. Eqn Solver McLAB 8 32 cell, lambda no unique
schr Schroedinger Eqn Solver McLAB 8 31 cell, lambda no unique
sdku Sodoku Puzzle Solver McLAB 8 load yes
sga Vectorized Genetic Algorithm Burjorjee 4 30 no multi
svd SVD Factorization McLAB 11 26 no unique

Table 1. Results of Running Value Analysis

6.2 Using the Tamer for back-ends

The tamer provides a convenient IR, a complete call graph,
and the mclass information for each variable. This providesa
good starting point for developing back-ends. In the McLAB

group we are developing two such back-ends, one for gener-
ating FORTRAN and another for generating X10 code. Other
research groups are also starting to use the Tamer frame-
work, including a project for a back-end for Modelica.

We would like to encourage other compiler writers in-
terested in MATLAB to consider using the Tamer, so that
they can focus on issues in their backend. For example, a re-
cent MATLAB compiler system called MEGHA (“MATLAB
Execution on GPU based Heterogeneous Architectures”)[?
] focuses on translating programs for parallel execution on
GPU and CPU. They use a relatively small subset of MAT-
LAB that does not even include user functions; the whole
program is assumed to be one script. Using the Tamer they
could support a wider set of features, even if the Tamer were
just used to pre-process programs into a single inlined func-
tion (which is one possible output).

7. Related Work
There are several categories of related work. First, we
have the immediate work upon which we are building.
The McLAB project already provided the front-end and the
McSAF [? ?] analysis framework, which provided an impor-
tant basis for the Tamer. We also learned a lot from McLAB ’s

previous McFOR project[5] which was a first prototype
MATLAB to FORTRAN95 compiler. McFOR supported a
smaller subset of the language, did not have a comprehen-
sive approach to the builtin functions, and had a much more
ad hoc approach to the analyses. However, it really showed
that conversion of MATLAB to FORTRAN95 was possible,
and that FORTRAN95 is an excellent target language. In this
paper we have gone back to the basics and defined a much
larger subset of MATLAB , taken a more structured and ex-
tensible approach to building a general toolkit, tackled the
problem of a principled approach to the builtins, and defined
the interprocedural analyses in a more rigorous and extensi-
ble fashion. The next generation of McFOR, as well as other
backends, can now be built upon these new foundations.

Although we were not able to find publicly available ver-
sions, there have been several excellent previous research
projects on static compilation of MATLAB which focused
particularly on the array-based subset of MATLAB and de-
veloped advanced static analyses for determining shapes and
sizes of arrays. For example, FALCON [?] is a MATLAB to
FORTRAN90 translator with sophisticated type inference al-
gorithms. Our Tamer is targeting a larger and more modern
set of MATLAB that includes other types of data structures
such as cell arrays and structs, function handles and lambda
expressions, and which obeys the modern semantics of MAT-
LAB 7. We should note that FALCON handled interprocedu-
ral issues by fully inlining all of the the code. MaJIC[?],
a MATLAB Just-In-Time compiler, is patterned after FAL-

CON. It uses similar type inference techniques to FALCON,
but they are simpler to fit the JIT context. MAGICA [? ?]
is a type inference engine developed by Joisha and Banerjee
of Northwestern University, which is written in Mathematica
and is designed as an add-on module used by MAT2C com-
piler [?]. We hope to learn from the advanced type infer-
ence approaches in these projects and to implement similar
approximations using our interprocedural value analysis.

The previously mentioned MEGHA project[?] provides
an interesting approach to map MATLAB array operations to
CPUs and GPUs, but only supports a very small subset of
MATLAB .

There are also commercial compilers, which are not pub-
licly available, and for which there are no research articles.
One such product is theMATLAB Coder recently released by
MathWorks[?]. This product produces C code for a subset
of MATLAB . According to our preliminary tests, this product
does not appear to support cell arrays except in very specific
circumstances, nor does it support a general form of lambda
expressions, and was therefore unable to handle quite a few
of our benchmarks. However, the key differences with our
work is that we are designing and providing an extensible
and open source toolkit for compiler and tool researchers.
This is clearly not the main goal of proprietary compilers.

There are other projects providing open source imple-
mentations of MATLAB -like languages, such as Octave[1]
and Scilab[?]. Although these add valuable contributions to
the open source community, their focus is on providing in-
terpreters and open library support and they have not tackled
the problems of static compilation. Thus, we believe that our
contributions are complementary.

Other dynamic languages have had very successful ef-
forts in defining compilable subsets and statically analyzing
whole programs. For example RPython[2] uses a similar ap-
proach to ours, defining a reduced set of python that can be
statically compiled, requiring that all variables have a unique
possible type, while providing an analysis and compiler to
compile that subset. RPython does not produce multiple ver-
sions of a function if it is called with different arguments;
so every function can only be used with one set of argument
types.

DiamondbackRuby (DRuby) is a static type inference
toolkit for Ruby [4], mostly with the goal to gain the ad-
vantage of static languages to report potential errors ahead
of time. Ruby, like MATLAB , is a dynamic, interpreted lan-
guage, with many library functions in native code - which
may also have different behaviours depending on the incom-
ing argument types. Thus DRuby has to provide type infor-
mation for builtin functions. In order to that, DRuby includes
a type annotation language, which can also be used to spec-
ify types for functions with difficult behaviour. DRuby con-
strains the set of supported language features to enable the
static analysis, but allows some of them by inserting runtime
checks to still be able to support them. These are included in

such a way as to help users identify where exactly the error
occurred.

8. Conclusions
This paper has introduced the MATLAB Tamer, an extensi-
ble object-oriented framework for supporting the translation
from dynamic MATLAB programs to a Tame IR, call graph
and class/type information suitable for generating static
code. We provided an introduction to the features of MAT-
LAB in a form that we believe helps expose the semantics of
mclasses and function lookup for compiler and tool writers.
We tackled the somewhat daunting problem of handling the
large number of builtin functions in MATLAB by defining an
extensible hierarchy of builtins and a small domain-specific
language to define their behaviour. We defined a Tame IR
and added functionality to McSAF to produce the IR and to
extend the analysis framework to handle the new IR nodes
introduced. Finally, we developed an extensible interpro-
cedural analysis framework and an extensible value analy-
sis that can be used to build a complete callgraph, which
estimates the mclass of every variable. We provide these
frameworks, for users to implement further interprocedural
analyses, or as an entry point for static MATLAB compilers.

Our initial experiments with the framework are very en-
couraging and we are now working on using the framework
to implement back-ends, and we hope that others will also
use the framework for a variety of static MATLAB tools.12

We also plan to continue developing the value analysis to add
richer abstractions for shape and other data structure proper-
ties. Finally, as a part of a larger project on benchmarking
MATLAB , we hope to expand our set of benchmarks and to
further examine which features might be tamed, and to ex-
tend our set of automated refactorings.

References
[1] GNU Octave. http://www.gnu.org/software/

octave/index.html .

[2] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. Rpython:
a step towards reconciling dynamically and statically typed oo
languages. InDLS ’07: Proceedings of the 2007 symposium on
Dynamic languages, pages 53–64, New York, NY, USA, 2007.
ACM.

[3] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge. Opti-
mizing MATLAB through Just-In-Time Specialization. InIn-
ternational Conference on Compiler Construction, pages 46–
65, March 2010.

[4] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Static type in-
ference for Ruby. InProceedings of the 2009 ACM symposium
on Applied Computing, SAC ’09, pages 1859–1866, New York,
NY, USA, 2009. ACM.

12The Tamer and McLAB release is available athttp://www.sable.
mcgill.ca/mclab/software/software_releases_mclab.
html.

[5] J. Li. McFor: A MATLAB to FORTRAN 95 Compiler. Mas-
ter’s thesis, McGill University, August 2009.

A. Example Result
The following code is what the Tamer produces for the
example introduced in section Sec. 2.8. Since MATLAB is a
proprietary system, we opted to omit the body of the library
function that was included in the callgraph.
% args: {N=(double)}
function [result] = main(N)

mc_t4 = 10; % mc t4=(double,10.0)
[mc_t1] = single(mc_t4); % mc t1=(single)
rod.L = mc_t1; % rod=struct{L=(single)}
mc_t5 = 3; % mc t5=(double,3.0)
[mc_t2] = single(mc_t5); % mc t2=(single)
rod.Ta = mc_t2; % rod=struct{Ta=(single), L=(single)}
mc_t6 = 4; % mc t6=(double,4.0)
[mc_t3] = single(mc_t6); % mc t3=(single)
rod.Tb = mc_t3; % rod=struct{Ta=(single), Tb=(single), L=(single)}
a = .2; % a=(double,0.2)
A = 0.05; % A=(double,0.05)
mc_t8 = 0; % mc t8=(double,0.0)
mc_t9 = 20; % mc t9=(double,20.0)
[Tspan] = horzcat(mc_t8, mc_t9); % Tspan=(double)
[result] = solveSystem(rod, a, A, N, Tspan);

% result=(single)
end
% results: [(single)]

% args: {rod=struct{Ta=(single), Tb=(single), L=(single)},
% a=(double), A=(double), N=(double), Tspan=(double)}
function [out]=solveSystem(rod,a,A,N,Tspan,Tsteps)

[mc_t10] = nargin(); % mc t10=(double,5.0)
mc_t34 = 4; % mc t34=(double,4.0)
[mc_t16] = isequal(mc_t10,mc_t34); % mc t16=(logical,false)
if mc_t16

mc_t36 = 0; % non−viable
mc_t37 = 10; % non−viable
[Tspan] = horzcat(mc_t36, mc_t37); % non−viable
Tsteps = 100; % non−viable

else
mc_t38 = 5; % mc t38=(double,5.0)
[mc_t15] = isequal(mc_t10,mc_t38); % mc t15=(logical,true)
if mc_t15

Tsteps = 100; % Tsteps=(double,100.0)
else
end

end
[mc_t17] = rod.L; % mc t17=(single)
mc_t39 = 1; % mc t39=(double,1.0)
[mc_t18] = plus(N, mc_t39); % mc t18=(double)
[h] = mrdivide(mc_t17, mc_t18); % h=(single)
mc_t21 = h; % mc t21=(single)
mc_t22 = h; % mc t22=(single)
[mc_t24] = rod.L; % mc t24=(single)
mc_t25 = h; % mc t25=(single)
[mc_t23] = minus(mc_t24, mc_t25); % mc t23=(single)
[mc_t20] = colon(mc_t21, mc_t22, mc_t23);

% mc t20=(single)
[mc_t19] = vertcat(mc_t20); % mc t19=(single)
[X] = ctranspose(mc_t19); % X=(single)
U0 = X; % U0=(single)
[mc_t27] = length(X); % mc t27=(double)
mc_t40 = 2; % mc t40=(double,2.0)
[mc_t26] = mrdivide(mc_t27, mc_t40); % mc t26=(double)
[mid] = round(mc_t26); % mid=(double)

[mc_t11] = rod.Ta; % mc t11=(single)
mc_t41 = 1; % mc t41=(double,1.0)
[mc_t13] = colon(mc_t41, mid); % mc t13=(double)
U0(mc_t13) = mc_t11; % U0=(single)
[mc_t12] = rod.Tb; % mc t12=(single)
mc_t28 = mid; % mc t28=(double)
mc_t42 = 1; % mc t42=(double,1.0)
mc_t43 = 1; % mc t43=(double,1.0)
[mc_t29] = end(U0, mc_t42, mc_t43); % mc t29=(double)
[mc_t14] = colon(mc_t28, mc_t29); % mc t14=(double)
U0(mc_t14) = mc_t12; % U0=(single)
mc_t30 = N; % mc t30=(double)
mc_t31 = rod.Ta; % mc t31=(single)
mc_t32 = rod.Tb; % mc t32=(single)
mc_t33 = h; % mc t33=(single)
[D, c] = Dxx(mc_t30, mc_t31, mc_t32, mc_t33);

% D=(single), c=(single)
f = (@(t, u) lambda_1(a, D, c, A, t, u));
% f=(handle,@lambda 1((double), (single), (single), (double), ..))
[T, out] = RungeKutta2(f, Tspan, U0, Tsteps);

% T=(double), out=(single)
end
% results: [(single)]

% args: {N=(double), a=(single), b=(single), h=(single)}
function [D, c] = Dxx(N, a, b, h)

mc_t62 = 2; % mc t62=(double,2.0)
[mc_t51] = uminus(mc_t62); % mc t51=(double)
mc_t63 = 2; % mc t63=(double,2.0)
[mc_t53] = minus(N, mc_t63); % mc t53=(double)
mc_t64 = 1; % mc t64=(double,1.0)
[mc_t52] = zeros(mc_t53, mc_t64); % mc t52=(double)
mc_t65 = 1; % mc t65=(double,1.0)
[mc_t46] = vertcat(mc_t51, mc_t65, mc_t52);

% mc t46=(double)
mc_t66 = 2; % mc t66=(double,2.0)
[mc_t48] = uminus(mc_t66); % mc t48=(double)
mc_t67 = 2; % mc t67=(double,2.0)
[mc_t50] = minus(N, mc_t67); % mc t50=(double)
mc_t68 = 1; % mc t68=(double,1.0)
[mc_t49] = zeros(mc_t68, mc_t50); % mc t49=(double)
mc_t70 = 1; % mc t70=(double,1.0)
[mc_t47] = horzcat(mc_t48, mc_t70, mc_t49);

% mc t47=(double)
[mc_t44] = toeplitz(mc_t46, mc_t47); % mc t44=(double)
mc_t71 = 2; % mc t71=(double,2.0)
[mc_t45] = mpower(h, mc_t71); % mc t45=(single)
[D] = rdivide(mc_t44, mc_t45); % D=(single)
mc_t60 = a; % mc t60=(single)
mc_t72 = 2; % mc t72=(double,2.0)
[mc_t61] = mpower(h, mc_t72); % mc t61=(single)
[mc_t54] = mrdivide(mc_t60, mc_t61); % mc t54=(single)
mc_t73 = 2; % mc t73=(double,2.0)
[mc_t59] = minus(N, mc_t73); % mc t59=(double)
mc_t74 = 1; % mc t74=(double,1.0)
[mc_t55] = zeros(mc_t59, mc_t74); % mc t55=(double)
mc_t57 = b; % mc t57=(single)
mc_t75 = 2; % mc t75=(double,2.0)
[mc_t58] = mpower(h, mc_t75); % mc t58=(single)
[mc_t56] = mrdivide(mc_t57, mc_t58); % mc t56=(single)
[c] = vertcat(mc_t54, mc_t55, mc_t56); % c=(single)

end
% results: [(single), (single)]

% args: {c=(double), r=(double)}
function [t] = toeplitz(c, r)

[mc_t80] = nargin(); % mc t80=(double,2.0)
... Code Omitted

t(:) = mc_t77; % t=(double)
end
% results: [(double)]

% args: {f=(handle,@lambda 1((double),(single),(single),(double), ..)),
% tspan=(double), y0=(single),
N=(double)}
function [X, Y] = RungeKutta2(f, tspan, y0, N)

mc_t139 = 1; % mc t139=(double,1.0)
[a] = tspan(mc_t139); % a=(double)
mc_t140 = 2; % mc t140=(double,2.0)
[b] = tspan(mc_t140); % b=(double)
[mc_t116] = minus(b, a); % mc t116=(double)
mc_t117 = N; % mc t117=(double)
[h] = mrdivide(mc_t116, mc_t117); % h=(double)
mc_t118 = y0; % mc t118=(single)
[mc_t120] = length(y0); % mc t120=(double)
mc_t121 = N; % mc t121=(double)
[mc_t119] = zeros(mc_t120, mc_t121); % mc t119=(double)
[Y] = horzcat(mc_t118, mc_t119); % Y=(single)
[mc_t122] = colon(a, h, b); % mc t122=(double)
[X] = transpose(mc_t122); % X=(double)
mc_t145 = 1; % mc t145=(double,1.0)
for j = (mc_t145 : N);

mc_t123 = h; % mc t123=(double)
[mc_t125] = X(j); % mc t125=(double)
[mc_t126] = Y(:, j); % mc t126=(single)
[mc_t124] = f(mc_t125, mc_t126); % mc t124=(single)
[k1] = mtimes(mc_t123, mc_t124); % k1=(single)
mc_t127 = h; % mc t127=(double)
[mc_t133] = X(j); % mc t133=(double)
mc_t134 = h; % mc t134=(double)
[mc_t129] = plus(mc_t133, mc_t134);

% mc t129=(double)
[mc_t131] = Y(:, j); % mc t131=(single)
mc_t132 = k1; % mc t132=(single)
[mc_t130] = plus(mc_t131, mc_t132); % mc t130=(single)
[mc_t128] = f(mc_t129, mc_t130); % mc t128=(single)
[k2] = mtimes(mc_t127, mc_t128); % k2=(single)
[mc_t135] = Y(:, j); % mc t135=(single)
mc_t142 = 1; % mc t142=(double,1.0)
mc_t143 = 2; % mc t143=(double,2.0)
[mc_t137] = mrdivide(mc_t142, mc_t143);

% mc t137=(double)
[mc_t138] = plus(k1, k2); % mc t138=(single)
[mc_t136] = mtimes(mc_t137, mc_t138);

% mc t136=(single)
[mc_t114] = plus(mc_t135, mc_t136); % mc t114=(single)
mc_t144 = 1; % mc t144=(double,1.0)
[mc_t115] = plus(j, mc_t144); % mc t115=(double)
Y(:, mc_t115) = mc_t114; % Y=(single)

end
end
% results: [(double), (single)]

% args: {a=(double), D=(single), c=(single), A=(double),
% t=(double), u=(single)}
function [mc_t0] = lambda_1(a, D, c, A, t, u)

mc_t148 = a; % mc t148=(double)
[mc_t150] = mtimes(D, u); % mc t150=(single)
mc_t151 = c; % mc t151=(single)
[mc_t149] = plus(mc_t150, mc_t151); % mc t149=(single)
[mc_t146] = mtimes(mc_t148, mc_t149); % mc t146=(single)
mc_t147 = A; % mc t147=(double)
[mc_t0] = plus(mc_t146, mc_t147); % mc t0=(single)

end
% results: [(single)]

B. TIR Grammar
In this appendix we present the abstract syntax tree structure
corresponding to the grammar for the tame IR.

We have listed all tame IR nodes, together with the par-
ent class and the nodes they contain. All tame IR nodes ei-
ther extend McSAF’s AST nodes, or other Tame IR Nodes.
This means that any Tame IR node is also a a valid McSAF

AST node. Tame IR nodes may contain other AST nodes,
because they are effectively little AST subtrees. Users
of the Tame IR should not modify IR Nodes, except the
TIRStatementList . They should also only use the ac-
cessor methods provided by the Tame IR interfaces. By fol-
lowing these conventions users will always create correct
Tame IR because the constructors of the Tame IR nodes en-
force the constraints of the Tame IR. Figure 10 shows all IR
statement nodes that are derived from assignments (Figure 6
in Sec. 4.1 shows their hierarchy as a tree), Figure 11 shows
all remaining statement nodes, Figure 12 shows all Tame
IR nodes that may contain statements, Figure 13 shows all
remaining tame IR nodes.

node extends contains

TIRReturnStmt ReturnStmt −
TIRBreakStmt BreakStmt −
TIRContinueStmt ContinueStmt −

TIRGlobalStmt GlobalStmt List<Name> names
TIRPersistentStmt PersistentStmt List<Name> names
TIRCommentStmt EmptyStmt −

Figure 11. Non-assignment statements

node extends contains

TIRFunction Function

List<Name> outputParams,
String name,
List<Name> inputParams,
List<HelpComment> helpComments,
TIRStmtList stmts,
List<TIRFunction> nestedFunctions

TIRStmtList List<Stmt> List<TIRStmt> statements

TIRIfStmt IfStmt
Name ConditionVar,
TIRStmtList IfStmts,
TIRStmtList ElseStmts

TIRWhileStmt WhileStmt Name condition, TIRStmtList body

TIRForStmt ForStmt
Name var, Name lower, (Name inc),
Name upper, TIRStmtList stmts

Figure 12. Compound Structures

node extends contains

TIRCommaSeparatedList List<Expr> List<Expr> elements

Figure 13. Other Tame IR Nodes

node extends contains

TIRAbstractAssignStmt AssignStmt −

TIRAbstractAssignFromVarStmt TIRAbstractAssignStmt Name rhs

TIRArraySetStmt TIRAbstractAssignFromVarStmt
Name arrayVar,
TIRCommaSeparatedList indices,
Name rhs

TIRCellArraySetStmt TIRAbstractAssignFromVarStmt
Name arrayVar,
TIRCommaSeparatedList indices,
Name rhs

TIRDotSetStmt TIRAbstractAssignFromVarStmt Name dotVar, Name field, Name rhs

TIRAbstractAssignToListStmt TIRAbstractAssignStmt IRCommaSeparatedList targets

TIRArrayGetStmt TIRAbstractAssignToListStmt
Name lhs, Name rhs,
TIRCommaSeparatedList indices

TIRCellArrayGetStmt TIRAbstractAssignToListStmt
Name cellVar,
TIRCommaSeparatedList targets,
TIRCommaSeparatedList indices

TIRDotGetStmt TIRAbstractAssignToListStmt
TIRCommaSeparatedList lhs,
Name dotVar, Name field

TIRCallStmt TIRAbstractAssignToListStmt
Name function,
TIRCommaSeparatedList targets,
TIRCommaSeparatedList args

TIRAbstractAssignToVarStmt TIRAbstractAssignStmt Name lhs
TIRAssignLiteralStmt TIRAbstractAssignToVarStmt Name lhs, LiteralExpr rhs
TIRCopyStmt TIRAbstractAssignToVarStmt Name lhs, Name rhs
TIRAbstractCreateFunctionHandleStmt TIRAbstractAssignToVarStmt Name lhs, Name function
TIRCreateFunctionReferenceStmt TIRAbstractCreateFunctionHandleStmt Name lhs, Name function

TIRCreateLambdaStmt TIRAbstractCreateFunctionHandleStmt
Name lhs, Name function
List<Name> lambdaParameters,
List<Name> enclosedVariables

Figure 10. Assignment Statments

