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Abstract—MATLAB is a dynamic numerical scripting language grammers by providing M@&OR, a tool that automatically
widely used by scientists, engineers and students. Whil®IAT-  converts MaTLAB programs to BRTRAN. This tool enables
LAB’s high-level syntax and dynamic types make it ideal for MATLAB users to move their applications from AVLAB

prototyping, programmers often prefer using high-performance . .
static languages such as GRTRAN for their final distributable to FORTRAN without the effort and knowledge required of

code. Rather than rewriting the code by hand, our solution Manually rewriting their code. To be generally useful owlto
is to provide a tool that automatically translates the orignal needs to: (1) be easy to use, (2) prodeficient FORTRAN

MATLAB program to an equivalent FORTRAN program. There code, and (3) prOdUCKEadab'eFORTRAN code.

are several important challenges for automatically transating , . o

MATLAB to FORTRAN, such as correctly estimating the static ~ ~lthough MATLAB’s roots are as a simple scripting lan-

type characteristics of all the variables in aMATLAB program, ~guage to interface with ®RTRAN libraries! modern MATLAB

mapping MATLAB built-in functions, and effectively mapping has evolved into quite a complex language, with syntax and se

MATLAB constructs to equivalent FORTRAN constructs. mantics that have grown somewhat organically. Thus, atthou
In this paper, we introduce Mc2rFOR, a tool which automat- a6 js natural match between many array operations laila

ically translates MATLAB to FORTRAN. This tool consists of . M d B th . tuall |
two major parts. The first part is an interprocedural analysis 'M MATLAB an RTRAN, there Is actually a large gap

component to estimate the static type characteristics, sacas between the dynamic nature of AViLAB and the statically-
the shape of arrays and the range of scalars, which are used to compiled nature of BRTRAN. As one example, in MTLAB

generate variable declarations and to remove unnecessaryray  there are are no variable declarations, and variables miay ho
bounds checking in the translated FORTRAN program. The sec- any type, and in fact may hold different types at different

ond part is an extensible FORTRAN code generation framework ints. Wh O I bl tb
automatically transforming MATLAB constructs to FORTRAN. program points. ereas INORTRAN all vaniables must be

This work has been implemented within the McLab framework, ~Statically declared and must have well-defined types. Thus,
and we demonstrate the performance of the translated BRTRAN  to perform an automatic translation, our tool must impletmen

code on a collection ofMATLAB benchmarks. sophisticated static analyses, including a mechanismatyzm
the many built-in functions.

: . The main contributions of this paper are as follows:
MATLAB is a well established language commonly used tified d/chall We h identified th df
by engineers, scientists and students. This user commuﬂﬂ?nt' Ieltnﬁel challenges:.vve have identi Iet Fe need tor
finds MATLAB convenient for prototyping their applications a tool to help programmers convert4vLAB to FORTRAN,

because of MTLAB's flexible syntax, the fact that no staticShand v'\&e hlavg .it\j/\?nt::ied tze r_naindchage_ngels. ted .
declarations are required, the availability of many highel ape Analysis. VVe have designed and implemented an in-

array operators, and access to a rich set of built-in funstio terprocedural shape analysis that estimates the number and

However, once the user has developed their prototype appli-te.Xtent (.)f arrgy d|men5|or!]§, |r|1clud|ng h?ndlmg bunt.-mm[uh
cation, he/she often wants to move to a more traditional-high lons via a domain-specific language for expressing shape

performance scientific language such asRFRAN. R ruIes.A vsis: We h impl ted ¢ |
There are two compelling reasons to make such a transitiofl | 9¢ ANnalysis. We haveé implemented a custom range anai-
ysis for MATLAB scalar variables that is used to minimize

to FORTRAN. Firstly, the user may want high-performance th head of bounds checki q o
code, which can be freely distributed. If the applicatiors ha . € overnead ol array bouncds checking and array resizing
in the generated ®RTRAN code.

been translated todRTRAN, then the user may compile the de G tion Strategies:We h desianed and imol
code with any of the numerous high-performance optimizin pde feneration Stralegies:VWe have designed and imple-
mented code generation strategies for both the simple

FORTRAN compilers, including open source compilers like ol Ut d for th difficult s of
GFortran [1]. Secondly, the prototypedAviLAB code may K;):T[()ABCO”S Fucts and for the more ditficult aspects o

implement a function which needs to be integrated into alnool Implementation and Empirical Evaluation: We have

existing system already implemented i®TRAN. For ex- ol ted the tool act bl
ample, a weather forecasting system may use many differenfP'éMented the tool as an open source projec (www.sable.
mcgill.ca/mclab/mc2for.html), and we have evaluated the

models, and new models must be implemented @RFRAN
for integration into the system.

Given that converting from MTLAB to FQRTRAN Is a 1see wwww.mathworks.com/company/newsletters/artitlesprigins-of-
common problem, our goal is to make this easy for pronatlab.html.

I. INTRODUCTION
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tool on a suite of benchmarks, showing that we can produceed to think about how to map AMMLAB constructs to the

efficient and compact code. equivalent constructs indRTRAN; how should we handle the

The paper is structured as follows. In Section Il we give thdifferences between MLAB and FORTRAN. For example, in
necessary background and the overall structure of our leol. MATLAB the programmer may leave out some of the trailing
Section Il we provide a detailed explanation of our shagedices in an array reference, and the missing dimensiols wi
analysis, including our approach for built-in functionecS be linearized, while in BRTRAN the number of the indices
tion IV describes our approach to range analysis, whichéslusmust be the same as the number of dimensions of the accessed
to minimize array bounds checks and array resizing checlsray. Further, how should we map dynamic features such
Section VI provides our empirical study of using the tool oas the MaTLAB behaviour that automatically grows an array
a collection of MATLAB benchmarks, Section VII discussesvhen a write to that array is out of bounds?

related work, and finally we conclude in Section VIII. In order to solve these problems, we designed and imple-
mented the McBoRtool, as illustrated in Figure 1. First, let’s
[I. BACKGROUND AND OVERVIEW focus on the input (top of figure) and output (bottom of figure)

MATLAB is widely used to prototype code for algorithms®f MCc2FOR. Note that the user pr’ovides theAvLAB file
implement solutions to complicated mathematical problenfdich is the entry point of the user's program, as well as any
and even run simulations for systems. Based on its array €7 MATLAB files that may be used by the program. If the
dynamic language nature, AMLAB is especially suitable for €Nfry point function has one or more input parameters, then
solving linear algebra problems. For example, Listing lveho the user should also provide the type and shape mfc_)rmatlon
a MATLAB implementation of a well known linear algebrafOr €ach of the parameter(s). The Mt tool then finds
algorithm, the Babai nearest plane algorithm. This alganit aII_functlons reachable d|r¢ctly or indirectly from the nt
is an approximation to solve the closest vector problem asd HPOINt, loads the necessary files, and translates all théaeée
pervasive applications in the field of wireless communarati MATLAB functions to equivalent 8RTRAN. The output of the
Imagine that we want to transform thisAVILAB implementa- tool is a collection of BRTRAN files, which can be compiled
tion to FORTRAN- what potential problems we may encounter®ith any FORTRAN 95-compliant compiler. Thus, from the

function z_hat = babai(R.y) user’s point of view, it is very simple to use Me@r.
itr}:gﬁta; Srasllr}'laeptgr?g) user-defined functions
— T
N2 [\
| McLab Front End
n=length (y);
z_hat=zeros(n,1); Shape Analysis (section 3)
z_hat(n)=round(y(n)./R(n,n)); - :
Range Value Analysis | (section 4)
for k=n—-1:-1:1
par=R(k,k+1:n¥z_hat(k+1:n);
ck=(y(k)—par)./R(k,k);
z_hat(k)=round (ck); Nz (section 5)
end Fortran IR Generator
end

:
Listing 1. MATLAB implementation of Babai algorithm | Pretty Printer |

First of all, how should we declare the AViLAB vari-
ables in the transformed dRTRAN program? MTLAB is
a dynamic scripting language which doesn’t need variable +|
declarations (although for readability AiLAB programmers
often put some informal type information as comments), hil
in FORTRAN, to declare an array variable, we need to know &t{9: 1. The Overview of Mcgor We highlight the boxes which are the

] ] ; ntributions of this paper.
least the type and the number of dimensions of the variabf&,
which means that in order to transformavL AB to FORTRAN, Now let us concentrate on the actual structural organizatio
first we need to find some way to obtain the type anaf Mc2rFoR The central component driving the compilation
shape information of all the variables in the giveraMlAB  process is the Tamer module [2]. It starts with the entry poin
program. Secondly, assuming that we can correctly decldumction and iteratively discovers all the functions thaé a
all the variables, how should we map those built-in fundiordirectly and indirectly called. For each processedmviaB
in MATLAB to FORTRAN? For example, in Listing 1, how function file, the McLab Front Endis used to scan and
should we map thé engt h function at line 9, thezer os parse the file, generating a high-level intermediate repres
function at line 10 and the ound function at lines 11 and tation (IR), McAST. The analysis and transformation engine
16. Thirdly, besides these two significant problems, we al8dcSAF [3] is then used to transform to a lower-level AST;

user-defined functions



and to perform initial analyses suchldad analysid4], which to propagate the shape information through an entire given

determines which identifiers refer to arrays, and whichrreferogram, we have developed a shape analysis which is im-

to functions? The Tamer then processes the IR into an evgrlemented in the Tamer’s extensible interprocedural abstr

lower-level TamerIR which is more suitable for interprogeal  value analysis framework. The Tamer's framework handles

static analysis. propagating the abstract values and computing the fixedsoin
For the purposes of the MeE®R project, our main new We only need to provide the following: (1) an implementation

analyses have been implemented in the Tamer’s framewook.the abstract representation of shapes, (2) a mechanism fo

The Tamer’'s framework, besides providing a low-level IRrocessing shapes for AdLAB built-in functions, and (3) a

with well-defined semantic meanings, also provides an emierging operator that merges two abstract shapes.

tensible interprocedural abstract value analysis franewa We abstract shapes by lists of dimensions, where each

the framework, Tamer already provides some baskrdAB  dimension is either an integer value, a symbolic value repre

type characteristics analyses, like constant analysisMwt  sented by a lowercase letter, or the special char&ctehich

LAB class (mclass) analysis. In order to generabRFRAN, represents an unknown value. For examplerif is a 3-by-5

Mc2FOR provides two more important analysis componentgray, we would abstract its shapg & 5] ; the shap¢ 2, ?]

to the framework, which are th&hape analysignd therange represents a two-dimensional array, where the first dimensi

value analysisThe shape analysis computes shape informati@2, and the second dimension is unknown.

of all the variables for all program points in a givenalLAB Recall the Babai algorithm implementation in Listing 1. At

program. The range value analysis extends the basic canstime 9, if we know the shape of is 15-by-1, what is the shape

analysis and is used to estimate the range of a scalar \ariadfl variablen after evaluating this line, in other words, how

at each program point. The range value analysis can assistdbes the shape information propagate through theriMB

shape analysis in the case of static array bounds checkingbuilt-in function | engt h? Similar problems occur again at
The TamerIR is in the form of three address code, whidime 10 for the built-in functionzer os and at lines 11 and

is very suitable for static analysis but introduces a lot df6 for the built-in functionr ound.

temporary variables making the code unreadable. In order tcOur solution to this built-in challenge was to design a

generate readabledRTRAN and other target languages codegoncise domain-specific language that is used to descrée th

there is a restructuring component, Tamer+, which aggesgathape propagation behaviour ofAVLAB built-ins. To design

the low-level three address code of TamerIR back to tkelanguage covering all the typical behaviours, we studied

high-level IR of MCcAST. The obtained type characteristichundreds of built-ins and categorized them as follows:

and the new transformed McAST are then given as inpusaised on the shape of input argument(s)The most com-

to the FORTRAN code generation back end. By traversing the mon behaviour is that the shape of the output argument(s)

MCcAST, the back end generates an equivaledaRFRAN IR.
In this traversing process, ME®R solves the problems of
mapping built-in functions in MTLAB to FORTRAN, trans-
forming difference between MLAB and FORTRAN in array
indexing and so on. There is also a standalomRTRAN
library, | i bne2f or, shipped together with Me&®R, which

only depends on the shape of the input argument(s). For ex-
ample, the return shape of some commonly-used arithmetic
built-ins, like +, -, . * and. /, only depends on the shape
of the input arguments.

Based on the numeric value of input argument(s):The

shape of the output argument(s) of some built-in functions

is used to map those built-in functions which have no direct depends on the numeric value of the input argument(s). For

FORTRAN equivalents. Finally, after building thedRTRAN
IR, Mc2FOR pretty prints the IR into files with corresponding

example, the return shape of the builtzer os at line 10
in Listing 1 depends on the value of its input argument(s).

names. Each of them maps the entry point function file or the|n this example, the shape af hat after evaluating this

user-defined function file(s). The resulting RTRAN programs

should be easy to redistribute, since they can be compilgdsed on optional numbers or strings: Some

with any FORTRAN 95-compliant compiler (including the open

statement will bg n, 1] .
MATLAB
built-ins allow optional numbers or character strings to

source GFortran). Further, as we show in Section VI, thecontrol the shape of the output argument(s). For example,

resulting FORTRAN code is often significantly more efficient
than the original MTLAB code.

IIl. SHAPE ANALYSIS

We use the ternshapeto refer to the number of dimensions
and the size of each dimension of aaAM.AB variable. The
shape information of variables in a givenAvLAB program
is essential for transforming M LAB to FORTRAN. In order

2In MATLAB the syntactic construt(i ) can either be an array reference
or a function call. In fact, even the reference to the idesttifi can either be
a reference to a variable, or a call to the predefined functianwhich gives
the complex value.

the return shape of the built-in functiosvd, which is
used to compute singular value decomposition of a matrix,
depends on an optional input number arguméntand

an optional input string argumentecon’ . In the case

of [U 'S, V] = svd(X), assuming the shape of is

[ 3, 2], the shape ofJ, SandV will be [ 3, 3], [ 3, 2]
and[ 2, 2], respectively; while, in the case §lU, S, V]

= svd(X,0) or [U S V] = svd(X econ ), the
shape ofU, SandV will be [ 3, 2] ,[ 2, 2] and] 2, 2],
respectively.

3.* is element-wise multiplication, and ./ is element-wisgision



Other cases: The above three categories already cover most d) PATTERN EXPRESSIONPattern expressions can be
behaviours. However, there are still a few special casesaither primitive pattern expressions or compound pattern e
MATLAB . For example, the built-in functioor oss, which  pressions. Primitive pattern expressions can be categbriz
computes the cross product of two vectors or matricasto three different groups: shape matching expressicripeh
Besides the requirement that both the inputs must hafeenction calls, and assignment expressions. Among thedg, o
the same shape, it also requires that the vectors musttbe shape matching expressions are used to match the shape
3-element vectors or the matrices must have at least asfethe input argument(s) and if the matching is successful,
dimension of size 3. the current input argument is consumed, which means the
Based on these behaviours we defined 8tepe Prop- matching process will point to the next input argument ifréhe

agation Equation LanguagéSPEL), which can be used tois any left, or go to the shape output list side. The other two,

write a shape propagation equatiofSPE) for each MTLAB  helper function calls and assignment expressions, are used
built-in. We have also designed and implemented gshape for special checks and output preparation during the shape
matching algorithm This algorithm takes as input: (1) thepropagation process.

abstract value information of the input arguments to thé cahape matching expression (SME) There are four kinds:

of the built-in, and (2) the SPE for the built-in; and prodsice « $ matches scalars (1-by-1 arrays);

as output, the shape information of the output argumenf(s) o« upper-case letters match matrices which are not scalars;

the built-in call. For example, for a built-in function cadl « dimension expressionare defined as a list of lower-

= ones(m n), the shape matching algorithm would take as case letters or numbers enclosed by a pair of square
input the abstract values ah andn and the SPE rule for brackets, like[ 1, k] or [ m 2, n], and which impose
ones, and would produce an estimate of the shapeafdfor more restrictions on the number of dimensions or/and the
this case, the algorithm will use the constant value infdioma size of certain dimension;

in the abstract value information ofandn to return the shape « # is the wildcard symbol to match any shape.

of[mn]. Helper function: There are a set of pre-defined functions

We now introduce the general structures and the semanticsvhich provide some extra computation to assist the shape
of constructs in SPEL and at the same time we explain howpropagation process. For instance, the helper function
the shape matching algorithm infers the output shapejragart previ ousScal ar retrieves the value of previous matched
with the top-level constructs of the SPEL. scalar input argument. Some of the helper functions are also

a) CASELIST: Since almost all the MTLAB built-in used as assert expressions, which have the functionality to
functions are overloaded and can take several combinationgontrol whether the matching process should continue on
of input arguments, a SPE of a built-in function is represént based on certain conditions. For example, the assert expres
as a caselist of at least one case, and the cases are separatsdn at Least OneDi nEql s(ar g) checks whether there
by OROR (| ) symbols. is at least one dimension’s size of matched matrix equals

casel || case2 || case3 i ar g, if not, the current matching process will terminate and
The separated cases are evaluated from left to right by theg i oyer from next case again if there is any case left.
shape matching algorithm. If any of them are matched Succe/ﬁ%signment expression:l val ue =

. . . = rval ue, where
fully with the shape of input argument(s), the matching PSX | 5| ye can be lower-case letters, upper-case letters,
will terminate and return the corresponding shape result.

b) CASE: h i th i be divided i # symbol, and indexed upper-case letters. Theal ue
) CASE: Each case in the caselist can be divided into "y \ymbers, lower-case letters, other shape matching
two parts, a pattern list side and a shape output list side

4b bol 'expressions and helper functions. Assignment expressions
separpe;ttet or r?’ ﬁnsfsﬁj?zwf?s:ggg :ui put Iist_side are used during the matching process to store extra needed
The pattern list side is evaluated prior to the shape output | information to assist the shape analysis. The assignment
side by the shape matching algorithm. expressiom=pr evi ousScal ar () will be explained in

c) PATTERN LIST SIDEThe pattern list side is com- 2 SPE for the built-in functiozer os after a few lines.
posed of a list of pattern expressions which are separated by €) SHAPE OUTPUT LIST SIDEThe shape output list

COMMA (,) symbols. side contains a list of only shape matching expressions,
PExp_1, PExp_2, ...PExp_n -> shape_output_list_side specifying the shape information of the output.
The pattern expressions are evaluated from left to rigtenif pattern_list_side -> OExp_1, OExp_2, ... OExp_n

expression on the pattern list side fails in the matchinggss, =~ Note that the matching of the input arguments and binding
the matching process for the enclosing case will be termihatof values are done by the pattern list side, and the building
and if there are still remaining case(s) in the caselist, tlead returning of the the shape of the output is done by the
matching process will start from that next case, repeatieg tshape output list side.

matching process again until one case is matched sucdgssful f) OPERATOR: SPEL also supports several standard
or there isn’t any case left in the caselist. If none of theesasnotations, with their usual meanings. Compound pattern ex-
in the caselist matches the input argument(s) successfullypressions are grouped together using. The ?, =, and +
means that there must be some misuse of the built-in functioperators can be used after a SME or a compound pattern
by the programmer. MaR will throw a warning to the user. expression, and have the usual regular expression meanings



The | operator can be used to denote choice between tfied-point forf or andwhi | e statements. If the shapes from
possible shape matching expressions. different iterations do not reach a fixed-point after 5 itienas *

Now let’s consider some SPEs for the built-in functions fowe push the shape tonner geabl e. To generate BRTRAN
our example Babai algorithm in Listing 1:.engt h, zer os code, at least the number of dimensions of each variable must
andr ound. Forl engt h, it doesn’t care about the shape obe known, thus our compiler cannot generate code for the
the input argument, no matter whether the input is a scalaput programs in which the variables hamet _mat ched
(%) or a matrix (M, | engt h will always return a scalar as aor unmer geabl e shapes.

result, which means that the return shapé&.is TABLE |
$| M->% SHAPE MERGING RELATION TABLE
For the built-inzer os, if the input argument list is empty
([ ] ), the built-inzer os will return a scalar0 ($), if nOt, > || not _mat ched | unner geabl e | ordi nary |
each element in the list represents the size of correspgndithot_nat ched || not _nat ched | not_matched | not_mat ched
dimension of the returned shape_ unmer geabl e || not _mat ched | unmer geabl e | unner geabl e
[1 ->%1]| ordi nary not _mat ched | unner geabl e ordi nary
($, n=previousScal ar (), add(n))+ -> M
The second line of this equation is interpreted as: repeat IV. RANGE VALUE ANALYSIS

matching process with the pattern expressions in the parentn translating to BRTRAN, we must ensure that we retain
theses beforet until there is no input argument to matchaparLAB’s semantics for reading and writing elements of an
The expression inside the parentheses specifies that usigy. For reading from an array (i.e. an expression of the
$ to match an input scalar argument, consume this inpgrm | hs = a(i)), we must ensure that is within the

and associate the value of this scalar withthe expression array bounds, and raise an exception otherwise. For writing
n=pr evi ousScal ar () will try to fetch the value of previ- an array (|e an expression of the fOH(II ) =r hs), the

ous matched scalar and store the value mt¢he expression MaTLAB semantics are somewhat unusual. In this casejsf
add(n) will add the value of into a default vector preparing not in bounds, the array should be automatically enlarged so
for final result emission, when there is no input arguments {Rati is in bounds, and the extra added columns/rows should
match, go to the shape output list side. On the output $itle pe initialized to O.

is used to represent the default vector if it's not used itgpat  |n both the read and write case we need to estimate the
list side, the values in the default vector will be the redn yalue of the index valué using range analysis, so as to

shape information. avoid generating unnecessary dynamic array bounds chgeckin
The round function returns the same shape as the shapethe generated &RTRAN. In the write case, we also need

of its input, so the SPE foround is: the range information to eliminate unnecessary checks and
$->8(] M->M _reallocation statements, for the case when an array coaid gr

Recall that the Tamer’s framework takes care of propagatigg) it ermore, the range analysis is also needed to perfora mo

the abstr_act values, applying the. rules for the built-ims] aprecise shape analysis, since writing to the array couldgha
propagating values through assignment statements. It ail%oshape

handles the control flow for conditional constructs such aS|n order to get a better static array bounds checking, we

i f-el se and loop constructs such dsor an(_j whi | e. extended Tamer’s constant value analysis toaage value
For these cqntrol c_onstructs, we need to provide a merg'QHalySis which statically estimates the minimum and maxi-
operator, which defines how to merge abstract shapes comigg, yajues each scalar variablould take at each program
from two different control flow paths. ~ point. Similar to the shape analysis, the range value aisalys
The high-level merging strategy for shapes is given ,q 4150 implemented in the Tamer's interprocedural value
Table |. There are three different abstract shapes. Thgqysis framework. The range value of a variable is a pair of
ordinary shape is the shape with a dimension list wherg, e in thedomain of the range valueshe first element
some dimensions in the list may be unknown, but at least g, resents the minimum possible value, which we call the
number of dimensions is known. The strategy for merging Wg,yer hound: and the second represents the maximum possible
ordinary shapes is: if the length of the dimension lists af thaIue, which we call the upper bound. The domain of the range
shapes are not equal, add 1(s) to the end of the shorter ongdp,es is a closed numeric value interval, ordered by irintyd
make them have the same length. Now, given two dimensignymaiest element,i nf, the range value decreasing to the
lists of the same length, for each dimension: (1) if the valugegative infinity; all the real number elements; and a larges

are equal, keep it as the value for the corresponding dimB”Sblement,H nf, the range value increasing to the positive

in the merged shape; or (2) if the values are not equal, Malinity Moreover, to support range value analysis through
the value of that dimension as unknown.

) MATLAB i f - el se constructs, we add two special superscript
The not _nmat ched shape arises when the shape prop-

agation through built-ins fails, which corresponds to sase “Other iteration numbers will also work with our approach,péinally we

where programmers misuse a built-in function. Mergin@‘;“d 5 to be a good setting. , _
We also support range values for some vector variables, hwmostly

not _mat ched with any shape prOduce'SOt _mat ched. come from the range expressions in for loops or the arrayteari®ns by
The unner geabl e shape arises from our treatment of thasing colon built-in function.



symbols,+ and-, for instance5* and5~. You can interpret iterations of loop statements cannot be merged to a fixed poin
these two superscripted real numbers as &id 5¢, wheree after 5 iterations, the range values of the bounds will bénpds

is positive and close to 0. For exampte,10, +i nf > means to -i nf or +i nf respectively.

that variable can b_e any value greater than_or equalotdo V. TRANSFORMATION FROMMATLAB TO FORTRAN
+i nf, and<10%, +i nf > means that the variable can be any o ] )

value greater than but not equal 1® to +i nf . Moreover After obtaining the shape and range information from ana-
the lower bound in a range value can only be one ohf , lyzing the input MATLAB program, we finally get to the exten-

a real number, or a real number with and the upper bound sible FORTRAN code_generatlon framework of our Me@r.
in a range value can only be one i nf , a real number, or The framework consists of two components: tt@RFRAN IR

a real number with . generator and the IR pretty printer. By traversing the irput
Some most commonly-usedAMILAB built-in scalar opera- of McAST, the framework transforms the MLAB constructs

tors supported by our range value analysis is listed in Table to the equivalt_ent BRTRAN. During the transformation, the
TABLE Il framework builds up the IR of the generatedHATRAN

RANGE VALUE ANALYSIS SUPPORTEDOPERATORS program. Finally, the IR pretty printer will print out the IR
of FORTRAN into corresponding BRTRAN files.

unary plus (’)0 E?”ary plus f’){) First, let's examine the generated code for our example
unary minus Inary minus . . . . P .

element-wise multiplication. ) | matrix multiplication ¢) Babai algorithm, given in Listing 3 _(aUtO_maF'Cfa”y proddce
element-wise rdivision. () matrix rdvision () by Mc2roRr from the MATLAB code given in Listing 1). Note
natural logarithm I(og(x) ) exponential éxp(x) ) that for this example we use the thecheckmode of MCZOR,
absolute valueabs(x) ) colon ¢ ) which tells the tool not to inline any run-time array bounds

Since the domain of range values involves both symbolitiecking code. This mode is useful when the user has verified
and real number values, the challenge here is how to inf@ay hand or using some checking aspects) that there are no
the range value result from computing the symbolics and rezt-of-bounds problems.
numbers together. In this paper, we proposertrge valueiMODUE mod_babai

i i i i ONTAINS

propagation func;uqn,swhmh can infer the range value r_e;?l UBROUTINE babai (R.y, zhat)
for the above built-ins based on the range values of theitigRyse mod_zeros
arguments. To support the range value propagation furgti@MMPLICIT NONE
we have defined a set of arithmetic operators that operateRyBLE PRECISION , DIMENSION (-, :) ALLOCATABLE.

A n . 7 . 3 ,
range values .|nclud|ngn n, max,==,unary +,unary -, ,/pouBlE PRECISION :: par, n, ck - Y
binary +,binary -,x,~+,| ogandexp.As anexamples| INTEGER (KIND =4) :: k _ _
consider théi nary + operation on the values in the doméjf compute the Babai estimation

. . 1| ! find a sub-optimal solution for minz Rxz—y || _2
and the range value propagation function for the&™lB ,,| 1 R — an upper triangular real matrix oilﬂby_nl‘

built-in bi nary pl us. w|! y — a real vector of mby-1
bi nary +: if any operandis i nf (+i nf), the result will* r'] :Zélhzaé(—).resu'“”g Integer vector
be -i nf (+i nf); if neither of the operands isi nf nor,g| ; nat = Zyer’os(n’ 1);
+i nf , the + operator follows the rule &s: 17| z_hat (INT(n), 1) = NINT((y(INT(n), 1)
- - - - —. 18 / R(INT(n), INT(n))));
x+ +y+,a?+ +y0|’a:+y+ = (x+y)+: DO K = INT((n - 1)), 1. -1
Tyt et +yorr +yt = (v 4+y)T x|  par = DOTPRODUCT(R(k, INT((k + 1)):INT(n)),
z+y=(r+y), 21 z_hat(INT((k + 1)):INT(n), 1));

when + applies on real numbers, the result will be the sgme ck = ((y(k, 1) — par) / R(k, k));

. z_hat(k, 1) = NINT(ck);
as in the algebra. 23| ENDDO ( ) el

function range_ value_binary_plus(opa, opb) s| END SUBROUTINE
if both opa and opb have known range values 6| END MODULE
<a,b> = get range value pair from opa . - -
<c,d> = get range value pair from o Listing 3. Generated GRTRAN for the Babai example wittnocheckmode
el;’;“”‘ <atc,b+d Overall, we believe that the generated code is quite readabl
return unknown and it works for input arrays of any size. Note we retain the
end if original comments from the MrLAB program, as well as
end function introducing new comments to explain some of the generated

Listing 2. Range value propagation function for the binalyspperator (+) code. All variables have been given types according terM

The merging result of two range valuesa, b> and LAB semantics, so some of the types may look surprising. For
<c,d> is then the range which covers them botrexa@mple, the type af_hat is a DOUBLE array, even though
<nin(a, c), max(b, d) >, where theni n and max are the original MaTLAB comments said it was an integer vector.
defined operations on the values in the range value domaiit® generated code is correct, because thgMs round

Similar to the shape analysis, if the range values fromgifie function does indeed return type double irnMAB.
If we run Mc2rFoR on this example without thaocheck

6Assuming all the followingz andy are real numbers. flag, then the generated code will include dynamic checks for
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the array reads and writes in the body of the for loop. Fdic2roRalso supportsell arraysin MATLAB . We usederived
example, the following lines would be inserted at the beigign data type$ in FORTRAN to map MATLAB cell arrays
of thef or loop body for the statement at line 20. TABLE Il

! inline runtime ABC and error handle MAPPINGMATLAB TYPES TO FORTRAN
IF (k < %k -9R1-) k<>1SIZoF??(RiN'I]:)(n.)O>R.SIZE(R 2)) THEN [ Primitive Data Types in MATLAB | Types in FORTRAN _ |
STOP "INDEX OUT OF BOUND'; ds?#gf DOUB'—EE ARLEC'S'ON
END IF ;
IF S((g + 1) < 10.0% |gg(n) > SIZE(z_hat, 1)) THEN i'n“tt186 :mgggsgﬁmg;g
END ITFP INDEX OUT OF BOUND" int32 INTEGER(KIND=4)
int64 INTEGER(KIND=8)
Note that it is difficult to remove these array bounds char CHARACTER
. . logical LOGICAL
checking without more powerful range analyses, and some complex COMPLEX

further information from the user about the symbolic sizés o

the input parameters, 1) Variables with more than one dynamic typBue to its

dynamic nature, a variable in MLAB may hold different

However, even tighter code can be generated if the &2 . ) . .
R . o types at different program points, or sometimes after nnergi
user is willing to specialize the generated code to specdifeds g :
the data flow from different branches, a variable may also

input parameters. For example, if the user was using Ba?]%'ld different types at the same program point. Whereas

algorithm to solve a problem in wireless communications : . X )
. .10 static languages, like 3RTRAN, a variable must contain
the shape oR andy is double the number of antennas in
N . only the declared type. In M&®R, we have a two-phase
a multiple-input and multiple-output system. Thus, theruse ; ! . .
. e Strategy to solve this problem. The first phase is the variabl

may wish to generate code for a specific sized problem, and

then run the algorithm with different values for that siZewvé renaming phase achieved by analyzing the webs of definitions

, : o . . and uses of a variable, which is provided by the restruogurin
specify thatR is a 10-by-10 array angl is a 10-by-1 vector, ctomponent Tamer+. If different webs for the same variable

_then_McZORgenerates the cc_)de found n L|st|ng_4. Note th&hold different types, then MeDR creates renamed copies of
in this case the range analysis can precisely estimateray ar

indices and thus can safely eliminate all dynamic CheC|<I$lfI’Othe variable, one copy for each different type. The second

the generated code. Furthermore, the generater RAN can phase Is for th.e situation where a var_|aft?le still may hold
. " ; o different types in the same web of definitions and uses. In
include more specific type declarations, which includes the. : ) )
. . . this case, McBoR transforms this variable to a derived data
sizes of the dimensions.

. type variable in BRTRAN. In the transformed derived data
MODULE mod_babai

CONTAINS type, each field represents a different type of this variable
SUBROUTINE babai (R,y, zhat) the original MATLAB program.

}J,\ASF')ELI“C“FTd—,\IZg,\:ES 2) Implicit type conversion iMATLAB: Due to its weakly-
DOUBLE PRECISION , DIMENSION (10,1) :: z hat, y typed language nature, the type of a variable can be implic-
DOUBLE PRECISION :: par, n, ck ity converted in MATLAB. For example, although MLAB
DOUBLE PRECISION , DIMENSION (10,10) :: R requires that subscript indices must either be real pesitiv

INTEGER (KIND =4) :: k i loaical llowed isdli
| .. the comment is the same as previous example iNt€gers orlogicals, programmers are allowed to use isdice

n = SIZE(y); the type of double. While in 8RTRAN, which is a strongly-
;-EZ{ (TNTZ(enr;JS (1”)' =1?\I;INT((y(INT(n) 1) typed language, the type of a variable cannot be automigtical
- ’ 7 RONT(n), INT(n)))): converted. To map this difference, Me2R uses some &R-
DO k = INT((n — 1)), 1, -1 TRAN intrinsic functions to force the type conversion, likKET
par = DOT—PRODUCT(R(;(' ”I\‘,\ITT((kk* 11))3.";‘I\ITT(”)) * 1)y, | andDBLE, for the situation where the type of the variable may
ck = ((y(k, 1) — pg;)a}(R(k(,(k;); DANTI). D)5 pe implicitly converted in MTLAB. For example, Mc2OR
z_hat(k, 1) = NINT(ck); will add | NT around the variables used as matrix indices and
ENBD(S)UBROUTINE variables or values used as start, end or increment in a range
END MODULE expression of & or loop statement.

Listing 4. Generated GRTRAN for the Babai example with specific dimen-g . Byilt-in Mapping Framework
sions given for input parameters

As we have seen by the generated code examples, thdo map MATLAB built-in functions to FORTRAN, we imple-
translations for program constructs like for loops are euimented a built-in mapping framework. In the framework, Buil
standard, so in the remainder of this section we concentréie in MATLAB are mapped to &RTRAN in three different
on discussing the most interesting and challenging issoies Ways.
mapping MATLAB to FORTRAN. 1) Directly-mapped: There are some MrLAB built-ins
which can be mapped directly to equivalent intrinsic fuoics

A. Mapping Types in FORTRAN, or we can also say, replaced directly by the

In general, the mappings of types fromaWLAB to FOR-
TRAN is listed in Table Ill. Besides these primitive data types, “Also unknown as union types and similar to the structs in G/C+
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equivalent intrinsic functions or operators. The complats C. Linear Indexing Transformation

of these built-ins is given on the MeBr web page. In MATLAB, the programmer may leave out some of the
2) Transform-then-inlined:For some built-ins, although y4jjing indices when accessing an element of a matrix. In
they cannot be directly replaced with certail#¥RAN in-  this case, the missing dimensions will be linearized, while
trinsic functions, they can be transformed easily and &din porrrAN, the number of the indices must be the same as the
in the generated code, i.e., thel on andmean functions.  ,ymper of dimensions of the accessed array, which we call
3) Not-directly-mappedfor most MATLAB built-ins, they rjgorous array indexing Mc2FoR has a built-in component
cannot be directly mapped or easily transformed to equiVgy' transform linear indexing in MrLAB to rigorous array
lent intrinsic functions in BRTRAN. In order not to update indexing in FORTRAN. For example, assuming thar r is
Mc2FOR every time when there is a new AILAB built- 5 3.1y 3 matrix in MiTLAB, matrix indexing in MATLAB
in mtrodu_ced, we decided to use the follqwmg strategy to, r(5) will be transformed taar r (2, 2) in the generated
handle this mapping problem. The strategy is that we keep {8§rrran program. Note that the prerequisite of this direct
function signaturgin the generated GRTRAN code the same yansformation is that both the indices and the shape of the

as in the original MTLAB program, then write an equivalent-,ccessed matrix are constants, if this prerequisite cabeot
functionality user-defined function indRTRAN and add it into satisfied, Mc2oRr will call certain functions inl i bne2f or

the standalonki brc 2f or library.® In other words, McRoR to transform the indexind®
leaves a “hole” for that not-directly-mappedAviLAB built-

in inside the generateddRTRAN program and requires that VI. EXPERIMENTS AND RESULT ANALYSIS
there is a correspondingdRTRAN function inl i bnt2f or At last, we demonstrate some experiments to evaluate both
to fill up the “hole” during compilation. the correctness and performance of MoR. The set of the

Almost all the MaTLAB built-in functions are overloaded. In benchmarks for the experiments was acquired from a variety
FORTRAN, intrinsic functions are also overloaded. Recall thasf sources, most of them come from related projects, like
the built-in mapping framework leaves the “hole” for thos@&ALCON [5] and OTTER projects [6], Chalmers University of
built-ins without directly-mappings in the transformedopr Technology*and “The MathWorks’ Central File Exchandgé”
gram and requires that there are#TRAN functions with the In general, the subset of MLAB features supported by
same function signatures In bnc2f or to fill up the “hole”, Mc2roR includes commonly used numericial computations;
so besides providing thoseoRTRAN functions, we should standard constructs such iak- el se, f or loop andwhi | e
also make sure those functions are overloaded. Fortunat@dyp statements; run-time array bounds checking; run-time
we can overload user-defined functions with an interfaceesinarray growth by out-of-bound array indexing; variable re-
FORTRAN 90. Recall the built-in functiorzer os at line 10 definition with different type values; and built-in funatio
in Listing 1. This function is always overloaded inAVLAB  overloading. All the features in the benchmarks are covered
program as a storage preallocation for variables. A codg this subset. A brief description of the benchmarks is give
snippet of the equivalentdRTRAN function inl i bnt2f or  here.
for zeros is given in Listing 5. With this interface, the. adpt finds the adaptive quadrature using Simpson’s rule.
MATLAB built-in zer os can not only be supported, but This benchmark features an array whose size cannot be
also be supported with overloading features in the gengrate predicted before compilation.

FORTRAN program. « bbaiuses Babai algorithm to compute on fixed-sized arrays.
MODULE mod_zeros « bublis the standard bubble sort algorithm. This benchmark
INTERFACE zeros ; ;

contains nested loops and consists of many array read and
MODULE PROCEDURE zerosl, zeros?2 ! may be more . . P y y
END INTERFACE zeros write operations. _ S .
CONTAINS « capr computes the capacitance of a transmission line using
fﬁsﬁgﬂNNéﬁéos—l(x) finite difference and Gauss-Seidel method. It's loop-based
DOUBLE PRECISION , INTENT (IN) :: x and involves scalar operations on two small-sized arrays.
DOUBLE PRECISION , DIMENSION (INT(x),INT(x)) :: zeros 1| e closcalculates the transitive closure of a directed graph. It
! default is 0, no need assignment. contains matrix multiplication operations between two 450
END FUNCTION zeros 1 b
FUNCTION zeros 2 (x,y) y-450 arrays. _ _
IMPLICIT NONE « crni computes the Crank-Nicholson solution to the heat
DOUBLE PRECISION, INTENT (IN) :: x, y equation. This benchmark involves some elementary scalar
DOUBLE PRECISION, DIMENSION (INT(x),INT(y)) :: zeros 2 quation. y
I default is 0, no need assignment. operatlons ona 23OQTbY'2300 array. _
END FUNCTION zeros 2 « dich computes the Dirichlet solution to Laplace’s Equation.
END MODUE mod_zeros It's also a loop-based program which involves basic scalar
Listing 5. User-defined function ihi bnc2f or to map MATLAB zer os operation on a small-sized array.

8The function name and the names of the input arguments. 10The naming convention of these functions and some functiameles

9N the library shipped with Mc20R, we have already implemented somedre given on McBoR web page.
user-defined functions in GRTRAN to map some commonly-used but not- *http:/Avww.elmagn.chalmers.se/courses/CEM/
directly-mapped MTLAB built-ins, like ones andzer os. L2http://www.mathworks.com/matlabcentral/fileexchange



« diff calculates the diffraction pattern of monochromatic lighvhich seems quite reasonable since the generated RAN
through a transmission grating for two slits. This benchmacode requires lines for the variable declarations and impe-t
also features an array whose size is increased dynamicaltyay reallocation. Very short benchmarks likebl have a
like the benchmarladpt larger ratio because the number of lines of declaratiorerigl

« fiff computes the finite-difference solution to the wavas compared to the small number of statements.
equation. It's a loop-based program which involves basic TABLE IV
scalar operation on a 2-dimensional array. PERFORMANCECOMPARISON

« mbrt computes a mandelbrot set with specified number [Benchmarks | MATLAE (s) | FORTRAN (s) | Speedup ]

elements and number of iterations. This benchmark contains adpt 20.08 3.4 5.9
elementary scalar operations on complex type data. bbai 20.58 0.6 34.3
« nNbld simulates the gravitational movement of a set of E:S'r 58:;’8 13 igz
objects. It computes on vectors inside nested loops. clos 50.62 2905 0.04
All the programs were executed on a machine with Intel(R) clos2 20.62 68.7 03
Core(TM) i7-3930k CPU @ 3.20GHz x 12 processor and el 20.56 2.0 10.2
X ) . dich 20.10 6.8 2.9
16 GB memory running GNU/Linux(3.2.0-26-generic #41- aiff 5061 27 23
Ubuntu). The MATLAB version is R2013a and the generated fiff 20.76 11 18.8
FORTRAN code is compiled with the GFortran compiler of mbrt 20.85 3.3 6.3
GCC version 4.6.3 using optimization level -O3. nbid 20.60 0.8 257
Before comparing the performance of the benchmarks and TABLE V
the generated ®RTRAN, we first make sure that the generated LOC COoMPARISON
FORTRAN programs h_ave_ the same functionality and produce [Benchmarks || MATLAB | FORTRAN [ F7TM |
the same result as its input benchmark. Then, in order to adpt 169 301 7
get a measurable execution time, we used a scale ndfnber bbai 26 59 2.3
for each benchmark to adjust the problem size, including bubl 23 60 2.6
the number of iterations and the size of arrays, to make the canr 27086 fg% %g
program to run approximately 20 seconds undesTMAB. o 192 >3 15
We use the same scale numbers for the generated RAN dich 131 156 12
programs to ensure they run on the same problem size as the diff 115 148 13
MATLAB benchmarks. In Table IV, we list the execution time nf:gn 14034 19375 %g
of different benchmarks under MLAB and FORTRAN. nbid 167 261 16

The §peedup of BRTRAN over MATLAB ranges from 3 |, summary, the overall performance of the generated
to 34 times, except for the benchmatlos The generated porpan by Mc2roR is better than the performance of the
FORTRAN code forclos ran about 24 timeslower than the jon .t henchmarks running in MLAB, and according to the
clos benchmark running in MTLAB. After performing more comnarison of the LOCs, the size of the generato@FRAN
experlm_ents,vv_e (_1|sc_overed that the_GFortran |ntr|r_1$_|clﬂon code is in an acceptable range.
for matrix multiplication, MATMUL, is not very efficient. In
order to validate that this was the problem, we replaceddlie c VIl. RELATED WORK
to MATMUL with a call to the DGEMM from the BRTRAN
BLAS (Basic Linear Algebra Subprograms) library to make Before MathWorks put a just-in-time (JIT) accelerator unde
a new benchmark nametos2 The compiled program runsthe hood of MaTLAB, its inefficient performance had already
about 3.5 timesslower than theclos benchmark running in drawn some attention from researchers and engineers. FAL-
MATLAB. A reasonable explanation is that according to orfeON [5] is @ MATLAB to FORTRAN 90 translator with a so-
document on the website of Inté| at least since MrLAB Phisticated type inference mechanism. Although the FALCON
R2010a, MATLAB uses the Intel MKL BLAS by default, while Project provided us with a lot of interesting ideas about how
the BLAS library we use in the experiments is the defauRfoceed, MCBOR has quite a few important differences. For
BLAS for Ubuntu, and Intel MKL BLAS may have a bettereXxample, the inference mechanism in FALCON is based on
implementation than the one default for Ubuntu. a forward/backward propagation strategy, while our anslys

In Table V, we list the physical lin&% of code (LOC) of only involves a forward_propggatmn. FALCON dlstln_gwshes
both MATLAB benchmarks and the generatedRFRAN code scalar, vector and matrix, while we treat all the variables a
with nochecks from McBor. At the fourth column in the & matrix. Scalar is a 1-by-1 matrix and vector is a 1-by-n or
table, which is named “F / M”, we also list the ratio of the LOC-PY-1 matrix. FALCON uses static single assignment (SSA)

of FORTRAN to MATLAB. The ratio ranges from 1.2 to 2'6’f0rm to make sure all the variables have only one definition,
this may simplify the code generation, but may also intreduc

13The scale number for each benchmark is listed on Me2web page. some e)_(tra Overhead to t_he tr.anSformed prpgra_lm. Instead, we
Lnttp://software.intel.com/en-us/articles/using-intel-with-matlab only SPI'_t_the variables with different t){pes in differenets
Sincluding whitespace and comment lines. of definitions and uses. The two projects also have totally



different approaches to shape analyses fosTMAB built- analysis are implemented in the Tamer’s framework. In the
in functions: FALCON implements a table for each built-ircode generation of MeOR, we started with our approach to
function to tell how the shape of output depends on the shag&signing declared types and introducing explicit typeveon
of inputs, but this strategy cannot support the case where ions, then we introduced the built-in mapping frameword.s
shape of output depends on the value of inputs. Further, tilemap numerous MrLAB built-in functions to FORTRAN,
type system of MTLAB had been extended since FALCONand we also presented the linear indexing transformatimm fr
and our approach thus handles morextVaB types. Our MATLAB to FORTRAN.
system is also available for other researchers. Finally, in Section VI, we evaluated our MERR On a col-
There are many existing range analyses for different puection of MATLAB benchmarks, examining both the speedup
pose. The one implemented in Ma2r is specific to address and physical lines of code of the transformed code. From the
MATLAB and closest to a generalized constant propagationrgsults, we show that the code generated by ia2is usually
C [7] which proposed a similar analysis to estimate the rangeore efficient than the original M'LAB code and the code
of a variable may reach at each program point. The rangee is quite acceptable.
value analysis through KMrLAB built-in functions also has its  In order to improve the performance of Me2@r, we plan
roots in the interval arithmetic. to make the range value analysis support symbolic values.
Mc2rFoR builds upon previous work in the McLab group. Inin this way, we may remove more run-time array bounds
early work, Jun Li developed a prototype which demonstratetiecking code in the transformed program. Moreover, adding
the feasibility of translating MTLAB to FORTRAN 95 [8]. a MATLAB storage analysis, which can determine when the
This early prototype focused on a limited subset o™ default double type can be safely stored in integers, may
LAB and made simplifying assumptions. To provide a moff@rther improve the code readability and save quite a lot
solid analysis basis, the Ma8 analysis framework [3], [9] storage. In the future, we may also want to translater MB
and Tamer's extensible interprocedural abstract valud- aneode into parallel BRTRAN code, in order to achieve this, we
ysis framework [2] were developed. These two frameworkeed a valid dependency analysis to determine whielmiMB
working together form the major transformation and analystode block is free from dependency and safe to be transformed
engine in the MclaB toolkit. Concurrent to our developmentto parallel code. We also hope that others will build upon our
of Mc2FoR, our lab is also working on another project tdool, which has been implemented in an extensible manner,
statically compile MATLAB to X10 [10], which also uses the and is freely available at www.sable.mcgill.ca/mc2fanht
shape analysis in MEDR.
MATLAB Coder™ [11] is a commercial translator to gen-
erate standalone C and C++ code fronnMAB. MATLAB
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