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Abstract—MATLAB is a dynamic numerical scripting language
widely used by scientists, engineers and students. WhileMAT-
LAB ’s high-level syntax and dynamic types make it ideal for
prototyping, programmers often prefer using high-performance
static languages such as FORTRAN for their final distributable
code. Rather than rewriting the code by hand, our solution
is to provide a tool that automatically translates the original
MATLAB program to an equivalent FORTRAN program. There
are several important challenges for automatically translating
MATLAB to FORTRAN , such as correctly estimating the static
type characteristics of all the variables in aMATLAB program,
mapping MATLAB built-in functions, and effectively mapping
MATLAB constructs to equivalent FORTRAN constructs.

In this paper, we introduce Mc2FOR, a tool which automat-
ically translates MATLAB to FORTRAN . This tool consists of
two major parts. The first part is an interprocedural analysi s
component to estimate the static type characteristics, such as
the shape of arrays and the range of scalars, which are used to
generate variable declarations and to remove unnecessary array
bounds checking in the translated FORTRAN program. The sec-
ond part is an extensible FORTRAN code generation framework
automatically transforming MATLAB constructs to FORTRAN .
This work has been implemented within the McLab framework,
and we demonstrate the performance of the translated FORTRAN
code on a collection ofMATLAB benchmarks.

I. I NTRODUCTION

MATLAB is a well established language commonly used
by engineers, scientists and students. This user community
finds MATLAB convenient for prototyping their applications
because of MATLAB ’s flexible syntax, the fact that no static
declarations are required, the availability of many high-level
array operators, and access to a rich set of built-in functions.
However, once the user has developed their prototype appli-
cation, he/she often wants to move to a more traditional high-
performance scientific language such as FORTRAN.

There are two compelling reasons to make such a transition
to FORTRAN. Firstly, the user may want high-performance
code, which can be freely distributed. If the application has
been translated to FORTRAN, then the user may compile the
code with any of the numerous high-performance optimizing
FORTRAN compilers, including open source compilers like
GFortran [1]. Secondly, the prototyped MATLAB code may
implement a function which needs to be integrated into an
existing system already implemented in FORTRAN. For ex-
ample, a weather forecasting system may use many different
models, and new models must be implemented in FORTRAN

for integration into the system.
Given that converting from MATLAB to FORTRAN is a

common problem, our goal is to make this easy for pro-

grammers by providing Mc2FOR, a tool that automatically
converts MATLAB programs to FORTRAN. This tool enables
MATLAB users to move their applications from MATLAB

to FORTRAN without the effort and knowledge required of
manually rewriting their code. To be generally useful our tool
needs to: (1) be easy to use, (2) produceefficientFORTRAN

code, and (3) producereadableFORTRAN code.

Although MATLAB ’s roots are as a simple scripting lan-
guage to interface with FORTRAN libraries,1 modern MATLAB

has evolved into quite a complex language, with syntax and se-
mantics that have grown somewhat organically. Thus, although
there is natural match between many array operations available
in MATLAB and FORTRAN, there is actually a large gap
between the dynamic nature of MATLAB and the statically-
compiled nature of FORTRAN. As one example, in MATLAB

there are are no variable declarations, and variables may hold
any type, and in fact may hold different types at different
program points. Whereas in FORTRAN all variables must be
statically declared and must have well-defined types. Thus,
to perform an automatic translation, our tool must implement
sophisticated static analyses, including a mechanism to analyze
the many built-in functions.

The main contributions of this paper are as follows:

Identified need/challenges:We have identified the need for
a tool to help programmers convert MATLAB to FORTRAN,
and we have identified the main challenges.

Shape Analysis: We have designed and implemented an in-
terprocedural shape analysis that estimates the number and
extent of array dimensions, including handling built-in func-
tions via a domain-specific language for expressing shape
rules.

Range Analysis: We have implemented a custom range anal-
ysis for MATLAB scalar variables that is used to minimize
the overhead of array bounds checking and array resizing
in the generated FORTRAN code.

Code Generation Strategies:We have designed and imple-
mented code generation strategies for both the simple
control constructs and for the more difficult aspects of
MATLAB .

Tool Implementation and Empirical Evaluation: We have
implemented the tool as an open source project (www.sable.
mcgill.ca/mclab/mc2for.html), and we have evaluated the

1See wwww.mathworks.com/company/newsletters/articles/the-origins-of-
matlab.html.



tool on a suite of benchmarks, showing that we can produce
efficient and compact code.
The paper is structured as follows. In Section II we give the

necessary background and the overall structure of our tool.In
Section III we provide a detailed explanation of our shape
analysis, including our approach for built-in functions. Sec-
tion IV describes our approach to range analysis, which is used
to minimize array bounds checks and array resizing checks.
Section VI provides our empirical study of using the tool on
a collection of MATLAB benchmarks, Section VII discusses
related work, and finally we conclude in Section VIII.

II. BACKGROUND AND OVERVIEW

MATLAB is widely used to prototype code for algorithms,
implement solutions to complicated mathematical problems
and even run simulations for systems. Based on its array and
dynamic language nature, MATLAB is especially suitable for
solving linear algebra problems. For example, Listing 1 shows
a MATLAB implementation of a well known linear algebra
algorithm, the Babai nearest plane algorithm. This algorithm
is an approximation to solve the closest vector problem and has
pervasive applications in the field of wireless communication.
Imagine that we want to transform this MATLAB implementa-
tion to FORTRAN- what potential problems we may encounter?

1 f unc t ion z ha t = baba i (R , y )
2 %%
3 % compute t h e Babai e s t i m a t i o n
4 % f i n d a sub−op t im a l s o l u t i o n f o r min z | |R∗z−y | | 2
5 % R − an upper t r i a n g u l a r r e a l m at r i x o f n−by−n
6 % y − a r e a l v e c t o r o f n−by−1
7 % z hat − r e s u l t i n g i n t e g e r v e c t o r
8 %%
9 n= l e n g t h ( y ) ;

10 z ha t = z e r o s ( n , 1 ) ;
11 z ha t ( n )= round ( y ( n ) . / R( n , n ) ) ;
12

13 f o r k=n−1:−1:1
14 par =R( k , k +1: n )∗ z ha t ( k +1: n ) ;
15 ck =( y ( k)−par ) . / R( k , k ) ;
16 z ha t ( k )= round ( ck ) ;
17 end
18 end

Listing 1. MATLAB implementation of Babai algorithm

First of all, how should we declare the MATLAB vari-
ables in the transformed FORTRAN program? MATLAB is
a dynamic scripting language which doesn’t need variable
declarations (although for readability MATLAB programmers
often put some informal type information as comments), while
in FORTRAN, to declare an array variable, we need to know at
least the type and the number of dimensions of the variable,
which means that in order to transform MATLAB to FORTRAN,
first we need to find some way to obtain the type and
shape information of all the variables in the given MATLAB

program. Secondly, assuming that we can correctly declare
all the variables, how should we map those built-in functions
in MATLAB to FORTRAN? For example, in Listing 1, how
should we map thelength function at line 9, thezeros
function at line 10 and theround function at lines 11 and
16. Thirdly, besides these two significant problems, we also

need to think about how to map MATLAB constructs to the
equivalent constructs in FORTRAN; how should we handle the
differences between MATLAB and FORTRAN. For example, in
MATLAB the programmer may leave out some of the trailing
indices in an array reference, and the missing dimensions will
be linearized, while in FORTRAN the number of the indices
must be the same as the number of dimensions of the accessed
array. Further, how should we map dynamic features such
as the MATLAB behaviour that automatically grows an array
when a write to that array is out of bounds?

In order to solve these problems, we designed and imple-
mented the Mc2FOR tool, as illustrated in Figure 1. First, let’s
focus on the input (top of figure) and output (bottom of figure)
of Mc2FOR. Note that the user provides the MATLAB file
which is the entry point of the user’s program, as well as any
other MATLAB files that may be used by the program. If the
entry point function has one or more input parameters, then
the user should also provide the type and shape information
for each of the parameter(s). The Mc2FOR tool then finds
all functions reachable directly or indirectly from the entry
point, loads the necessary files, and translates all the reachable
MATLAB functions to equivalent FORTRAN. The output of the
tool is a collection of FORTRAN files, which can be compiled
with any FORTRAN 95-compliant compiler. Thus, from the
user’s point of view, it is very simple to use Mc2FOR.
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Fig. 1. The Overview of Mc2FOR. We highlight the boxes which are the
contributions of this paper.

Now let us concentrate on the actual structural organization
of Mc2FOR. The central component driving the compilation
process is the Tamer module [2]. It starts with the entry point
function and iteratively discovers all the functions that are
directly and indirectly called. For each processed MATLAB

function file, the McLab Front End is used to scan and
parse the file, generating a high-level intermediate represen-
tation (IR), McAST. The analysis and transformation engine,
McSAF [3] is then used to transform to a lower-level AST;



and to perform initial analyses such askind analysis[4], which
determines which identifiers refer to arrays, and which refer
to functions.2 The Tamer then processes the IR into an even
lower-level TamerIR which is more suitable for interprocedural
static analysis.

For the purposes of the Mc2FOR project, our main new
analyses have been implemented in the Tamer’s framework.
The Tamer’s framework, besides providing a low-level IR
with well-defined semantic meanings, also provides an ex-
tensible interprocedural abstract value analysis framework. In
the framework, Tamer already provides some basic MATLAB

type characteristics analyses, like constant analysis andMAT-
LAB class (mclass) analysis. In order to generate FORTRAN,
Mc2FOR provides two more important analysis components
to the framework, which are theshape analysisand therange
value analysis. The shape analysis computes shape information
of all the variables for all program points in a given MATLAB

program. The range value analysis extends the basic constant
analysis and is used to estimate the range of a scalar variable
at each program point. The range value analysis can assist the
shape analysis in the case of static array bounds checking.

The TamerIR is in the form of three address code, which
is very suitable for static analysis but introduces a lot of
temporary variables making the code unreadable. In order to
generate readable FORTRAN and other target languages code,
there is a restructuring component, Tamer+, which aggregates
the low-level three address code of TamerIR back to the
high-level IR of McAST. The obtained type characteristics
and the new transformed McAST are then given as inputs
to the FORTRAN code generation back end. By traversing the
McAST, the back end generates an equivalent FORTRAN IR.
In this traversing process, Mc2FOR solves the problems of
mapping built-in functions in MATLAB to FORTRAN, trans-
forming difference between MATLAB and FORTRAN in array
indexing and so on. There is also a standalone FORTRAN

library, libmc2for, shipped together with Mc2FOR, which
is used to map those built-in functions which have no direct
FORTRAN equivalents. Finally, after building the FORTRAN

IR, Mc2FOR pretty prints the IR into files with corresponding
names. Each of them maps the entry point function file or the
user-defined function file(s). The resulting FORTRAN programs
should be easy to redistribute, since they can be compiled
with any FORTRAN 95-compliant compiler (including the open
source GFortran). Further, as we show in Section VI, the
resulting FORTRAN code is often significantly more efficient
than the original MATLAB code.

III. SHAPE ANALYSIS

We use the termshapeto refer to the number of dimensions
and the size of each dimension of a MATLAB variable. The
shape information of variables in a given MATLAB program
is essential for transforming MATLAB to FORTRAN. In order

2In MATLAB the syntactic constructa(i) can either be an array reference
or a function call. In fact, even the reference to the identifier i can either be
a reference to a variablei, or a call to the predefined functioni which gives
the complex valuei.

to propagate the shape information through an entire given
program, we have developed a shape analysis which is im-
plemented in the Tamer’s extensible interprocedural abstract
value analysis framework. The Tamer’s framework handles
propagating the abstract values and computing the fixed points.
We only need to provide the following: (1) an implementation
of the abstract representation of shapes, (2) a mechanism for
processing shapes for MATLAB built-in functions, and (3) a
merging operator that merges two abstract shapes.

We abstract shapes by lists of dimensions, where each
dimension is either an integer value, a symbolic value repre-
sented by a lowercase letter, or the special character? which
represents an unknown value. For example, ifarr is a 3-by-5
array, we would abstract its shape as[3,5]; the shape[2,?]
represents a two-dimensional array, where the first dimension
is 2, and the second dimension is unknown.

Recall the Babai algorithm implementation in Listing 1. At
line 9, if we know the shape ofy is 15-by-1, what is the shape
of variablen after evaluating this line, in other words, how
does the shape information propagate through the MATLAB

built-in function length? Similar problems occur again at
line 10 for the built-in functionzeros and at lines 11 and
16 for the built-in functionround.

Our solution to this built-in challenge was to design a
concise domain-specific language that is used to describe the
shape propagation behaviour of MATLAB built-ins. To design
a language covering all the typical behaviours, we studied
hundreds of built-ins and categorized them as follows:
Based on the shape of input argument(s):The most com-

mon behaviour is that the shape of the output argument(s)
only depends on the shape of the input argument(s). For ex-
ample, the return shape of some commonly-used arithmetic
built-ins, like +, -, .* and./, only depends on the shape
of the input arguments.3

Based on the numeric value of input argument(s):The
shape of the output argument(s) of some built-in functions
depends on the numeric value of the input argument(s). For
example, the return shape of the built-inzeros at line 10
in Listing 1 depends on the value of its input argument(s).
In this example, the shape ofz_hat after evaluating this
statement will be[n,1].

Based on optional numbers or strings:Some MATLAB

built-ins allow optional numbers or character strings to
control the shape of the output argument(s). For example,
the return shape of the built-in functionsvd, which is
used to compute singular value decomposition of a matrix,
depends on an optional input number argument,0, and
an optional input string argument,’econ’. In the case
of [U,S,V] = svd(X), assuming the shape ofX is
[3,2], the shape ofU, S andV will be [3,3], [3,2]
and[2,2], respectively; while, in the case of[U,S,V]
= svd(X,0) or [U,S,V] = svd(X,’econ’), the
shape ofU, S andV will be [3,2], [2,2] and[2,2],
respectively.

3.* is element-wise multiplication, and ./ is element-wise division



Other cases: The above three categories already cover most
behaviours. However, there are still a few special cases in
MATLAB . For example, the built-in functioncross, which
computes the cross product of two vectors or matrices.
Besides the requirement that both the inputs must have
the same shape, it also requires that the vectors must be
3-element vectors or the matrices must have at least one
dimension of size 3.
Based on these behaviours we defined theShape Prop-

agation Equation Language(SPEL), which can be used to
write a shape propagation equation(SPE) for each MATLAB

built-in. We have also designed and implemented theshape
matching algorithm. This algorithm takes as input: (1) the
abstract value information of the input arguments to the call
of the built-in, and (2) the SPE for the built-in; and produces,
as output, the shape information of the output argument(s) of
the built-in call. For example, for a built-in function calla
= ones(m,n), the shape matching algorithm would take as
input the abstract values ofm and n and the SPE rule for
ones, and would produce an estimate of the shape fora. For
this case, the algorithm will use the constant value information
in the abstract value information ofm andn to return the shape
of [m,n].

We now introduce the general structures and the semantics
of constructs in SPEL and at the same time we explain how
the shape matching algorithm infers the output shape, starting
with the top-level constructs of the SPEL.

a) CASELIST: Since almost all the MATLAB built-in
functions are overloaded and can take several combinations
of input arguments, a SPE of a built-in function is represented
as a caselist of at least one case, and the cases are separated
by OROR (||) symbols.

case1 || case2 || case3
The separated cases are evaluated from left to right by the
shape matching algorithm. If any of them are matched success-
fully with the shape of input argument(s), the matching process
will terminate and return the corresponding shape result.

b) CASE: Each case in the caselist can be divided into
two parts, a pattern list side and a shape output list side,
separated by an ARROW (->) symbol.

pattern_list_side -> shape_output_list_side
The pattern list side is evaluated prior to the shape output list
side by the shape matching algorithm.

c) PATTERN LIST SIDE:The pattern list side is com-
posed of a list of pattern expressions which are separated by
COMMA (,) symbols.
PExp_1, PExp_2, ...PExp_n -> shape_output_list_side

The pattern expressions are evaluated from left to right. Ifany
expression on the pattern list side fails in the matching process,
the matching process for the enclosing case will be terminated
and if there are still remaining case(s) in the caselist, the
matching process will start from that next case, repeating the
matching process again until one case is matched successfully
or there isn’t any case left in the caselist. If none of the cases
in the caselist matches the input argument(s) successfully, it
means that there must be some misuse of the built-in function
by the programmer. Mc2FOR will throw a warning to the user.

d) PATTERN EXPRESSION:Pattern expressions can be
either primitive pattern expressions or compound pattern ex-
pressions. Primitive pattern expressions can be categorized
into three different groups: shape matching expressions, helper
function calls, and assignment expressions. Among these, only
the shape matching expressions are used to match the shape
of the input argument(s) and if the matching is successful,
the current input argument is consumed, which means the
matching process will point to the next input argument if there
is any left, or go to the shape output list side. The other two,
helper function calls and assignment expressions, are used
for special checks and output preparation during the shape
propagation process.
Shape matching expression (SME) :There are four kinds:

• $ matches scalars (1-by-1 arrays);
• upper-case letters match matrices which are not scalars;
• dimension expressionsare defined as a list of lower-

case letters or numbers enclosed by a pair of square
brackets, like[1,k] or [m,2,n], and which impose
more restrictions on the number of dimensions or/and the
size of certain dimension;

• # is the wildcard symbol to match any shape.
Helper function: There are a set of pre-defined functions

which provide some extra computation to assist the shape
propagation process. For instance, the helper function
previousScalar retrieves the value of previous matched
scalar input argument. Some of the helper functions are also
used as assert expressions, which have the functionality to
control whether the matching process should continue on
based on certain conditions. For example, the assert expres-
sionatLeastOneDimEqls(arg) checks whether there
is at least one dimension’s size of matched matrix equals
arg, if not, the current matching process will terminate and
start over from next case again if there is any case left.

Assignment expression:lvalue = rvalue, where
lvalue can be lower-case letters, upper-case letters,
# symbol, and indexed upper-case letters. Thervalue
can be numbers, lower-case letters, other shape matching
expressions and helper functions. Assignment expressions
are used during the matching process to store extra needed
information to assist the shape analysis. The assignment
expressionn=previousScalar() will be explained in
a SPE for the built-in functionzeros after a few lines.

e) SHAPE OUTPUT LIST SIDE:The shape output list
side contains a list of only shape matching expressions,
specifying the shape information of the output.

pattern_list_side -> OExp_1, OExp_2, ... OExp_n

Note that the matching of the input arguments and binding
of values are done by the pattern list side, and the building
and returning of the the shape of the output is done by the
shape output list side.

f) OPERATOR: SPEL also supports several standard
notations, with their usual meanings. Compound pattern ex-
pressions are grouped together using(). The ?, *, and +
operators can be used after a SME or a compound pattern
expression, and have the usual regular expression meanings.



The | operator can be used to denote choice between two
possible shape matching expressions.

Now let’s consider some SPEs for the built-in functions for
our example Babai algorithm in Listing 1:length, zeros
andround. For length, it doesn’t care about the shape of
the input argument, no matter whether the input is a scalar
($) or a matrix (M), length will always return a scalar as a
result, which means that the return shape is$.

$|M -> $
For the built-inzeros, if the input argument list is empty

([ ]), the built-in zeros will return a scalar0 ($); if not,
each element in the list represents the size of corresponding
dimension of the returned shape.

[ ] -> $ ||
($,n=previousScalar(),add(n))+ -> M

The second line of this equation is interpreted as: repeat
matching process with the pattern expressions in the paren-
theses before+ until there is no input argument to match.
The expression inside the parentheses specifies that using
$ to match an input scalar argument, consume this input
and associate the value of this scalar with$, the expression
n=previousScalar() will try to fetch the value of previ-
ous matched scalar and store the value inton, the expression
add(n) will add the value ofn into a default vector preparing
for final result emission, when there is no input arguments to
match, go to the shape output list side. On the output side,M
is used to represent the default vector if it’s not used in pattern
list side, the values in the default vector will be the returned
shape information.

The round function returns the same shape as the shape
of its input, so the SPE forround is:

$ -> $ || M -> M
Recall that the Tamer’s framework takes care of propagating

the abstract values, applying the rules for the built-ins, and
propagating values through assignment statements. It also
handles the control flow for conditional constructs such as
if-else and loop constructs such asfor and while.
For these control constructs, we need to provide a merging
operator, which defines how to merge abstract shapes coming
from two different control flow paths.

The high-level merging strategy for shapes is given in
Table I. There are three different abstract shapes. The
ordinary shape is the shape with a dimension list where
some dimensions in the list may be unknown, but at least the
number of dimensions is known. The strategy for merging two
ordinary shapes is: if the length of the dimension lists of two
shapes are not equal, add 1(s) to the end of the shorter one to
make them have the same length. Now, given two dimension
lists of the same length, for each dimension: (1) if the values
are equal, keep it as the value for the corresponding dimension
in the merged shape; or (2) if the values are not equal, mark
the value of that dimension as unknown.

The not_matched shape arises when the shape prop-
agation through built-ins fails, which corresponds to cases
where programmers misuse a built-in function. Merging
not_matched with any shape producesnot_matched.
The unmergeable shape arises from our treatment of the

fixed-point forfor andwhile statements. If the shapes from
different iterations do not reach a fixed-point after 5 iterations,4

we push the shape tounmergeable. To generate FORTRAN

code, at least the number of dimensions of each variable must
be known, thus our compiler cannot generate code for the
input programs in which the variables havenot_matched
or unmergeable shapes.

TABLE I
SHAPE MERGING RELATION TABLE

⊲⊳ not_matched unmergeable ordinary

not_matched not_matched not_matched not_matched
unmergeable not_matched unmergeable unmergeable
ordinary not_matched unmergeable ordinary

IV. RANGE VALUE ANALYSIS

In translating to FORTRAN, we must ensure that we retain
MATLAB ’s semantics for reading and writing elements of an
array. For reading from an array (i.e. an expression of the
form lhs = a(i)), we must ensure thati is within the
array bounds, and raise an exception otherwise. For writingto
an array (i.e. an expression of the forma(i) = rhs), the
MATLAB semantics are somewhat unusual. In this case, ifi is
not in bounds, the array should be automatically enlarged so
thati is in bounds, and the extra added columns/rows should
be initialized to 0.

In both the read and write case we need to estimate the
value of the index valuei using range analysis, so as to
avoid generating unnecessary dynamic array bounds checking
in the generated FORTRAN. In the write case, we also need
the range information to eliminate unnecessary checks and
reallocation statements, for the case when an array could grow.
Furthermore, the range analysis is also needed to perform more
precise shape analysis, since writing to the array could change
its shape.

In order to get a better static array bounds checking, we
extended Tamer’s constant value analysis to arange value
analysis, which statically estimates the minimum and maxi-
mum values each scalar variable5 could take at each program
point. Similar to the shape analysis, the range value analysis
was also implemented in the Tamer’s interprocedural value
analysis framework. The range value of a variable is a pair of
values in thedomain of the range values: the first element
represents the minimum possible value, which we call the
lower bound; and the second represents the maximum possible
value, which we call the upper bound. The domain of the range
values is a closed numeric value interval, ordered by including
a smallest element,-inf, the range value decreasing to the
negative infinity; all the real number elements; and a largest
element,+inf, the range value increasing to the positive
infinity. Moreover, to support range value analysis through
MATLAB if-else constructs, we add two special superscript

4Other iteration numbers will also work with our approach, empirically we
found 5 to be a good setting.

5We also support range values for some vector variables, which mostly
come from the range expressions in for loops or the array constructions by
using colon built-in function.



symbols,+ and-, for instance,5+ and5−. You can interpret
these two superscripted real numbers as 5+ǫ and 5-ǫ, whereǫ
is positive and close to 0. For example,< 10,+inf> means
that variable can be any value greater than or equal to10 to
+inf, and<10+,+inf> means that the variable can be any
value greater than but not equal to10 to +inf. Moreover,
the lower bound in a range value can only be one of-inf,
a real number, or a real number with+; and the upper bound
in a range value can only be one of+inf, a real number, or
a real number with-.

Some most commonly-used MATLAB built-in scalar opera-
tors supported by our range value analysis is listed in TableII.

TABLE II
RANGE VALUE ANALYSIS SUPPORTEDOPERATORS

unary plus (+) binary plus (+)
unary minus (-) binary minus (-)
element-wise multiplication (.*) matrix multiplication (*)
element-wise rdivision (./) matrix rdivision (/)
natural logarithm (log(x)) exponential (exp(x))
absolute value (abs(x)) colon (:)

Since the domain of range values involves both symbolic
and real number values, the challenge here is how to infer
the range value result from computing the symbolics and real
numbers together. In this paper, we propose therange value
propagation functions, which can infer the range value result
for the above built-ins based on the range values of their input
arguments. To support the range value propagation functions,
we have defined a set of arithmetic operators that operate on
range values including:min, max, ==, unary +, unary -,
binary +, binary -, ×,÷, log andexp. As an example,
consider thebinary + operation on the values in the domain
and the range value propagation function for the MATLAB

built-in binary plus.
binary +: if any operand is-inf (+inf), the result will

be -inf (+inf); if neither of the operands is-inf nor
+inf, the + operator follows the rule as:6

x
− + y

−, x− + y or x + y
− ⇒ (x+ y)−;

x+ + y+, x+ + y or x + y+ ⇒ (x + y)+;
x + y ⇒ (x+ y);
when + applies on real numbers, the result will be the same
as in the algebra.

f unc t ion r a n g e v a l u e b i n a r y p l u s ( op a , op b )
i f both op a and op b have known range v a l u e s
<a , b> = ge t r ange va lue p a i r from opa
<c , d> = ge t r ange va lue p a i r from opb
re tu rn <a+c , b+d>

e l s e
retu rn unknown

end i f
end func t ion

Listing 2. Range value propagation function for the binary plus operator (+)

The merging result of two range values<a,b> and
<c,d> is then the range which covers them both:
<min(a,c),max(b,d)>, where themin and max are
defined operations on the values in the range value domain.
Similar to the shape analysis, if the range values from different

6Assuming all the followingx andy are real numbers.

iterations of loop statements cannot be merged to a fixed point
after 5 iterations, the range values of the bounds will be pushed
to -inf or +inf respectively.

V. TRANSFORMATION FROMMATLAB TO FORTRAN

After obtaining the shape and range information from ana-
lyzing the input MATLAB program, we finally get to the exten-
sible FORTRAN code generation framework of our Mc2FOR.
The framework consists of two components: the FORTRAN IR
generator and the IR pretty printer. By traversing the inputIR
of McAST, the framework transforms the MATLAB constructs
to the equivalent FORTRAN. During the transformation, the
framework builds up the IR of the generated FORTRAN

program. Finally, the IR pretty printer will print out the IR
of FORTRAN into corresponding FORTRAN files.

First, let’s examine the generated code for our example
Babai algorithm, given in Listing 3 (automatically produced
by Mc2FOR from the MATLAB code given in Listing 1). Note
that for this example we use the thenocheckmode of Mc2FOR,
which tells the tool not to inline any run-time array bounds
checking code. This mode is useful when the user has verified
(by hand or using some checking aspects) that there are no
out-of-bounds problems.

1 MODULE mod babai
2 CONTAINS
3 SUBROUTINE baba i (R , y , z ha t )
4 USE mod zeros
5 IMPLICIT NONE
6 DOUBLE PRECISION , DIMENSION ( : , : ) , ALLOCATABLE
7 : : z hat , R , y
8 DOUBLE PRECISION : : par , n , ck
9 INTEGER (KIND =4) : : k

10 ! compute t h e Babai e s t i m a t i o n
11 ! f i n d a sub−op t ima l s o l u t i o n f o r min z | | R∗z−y | | 2
12 ! R − an upper t r i a n g u l a r r e a l ma t r i x o f n−by−n
13 ! y − a r e a l v e c t o r o f n−by−1
14 ! z ha t − r e s u l t i n g i n t e g e r v e c t o r
15 n = SIZE ( y ) ;
16 z ha t = z e r o s ( n , 1 ) ;
17 z ha t ( INT ( n ) , 1) = NINT ( ( y ( INT ( n ) , 1)
18 / R( INT ( n ) , INT ( n ) ) ) ) ;
19 DO k = INT ( ( n − 1 ) ) , 1 , −1
20 par = DOTPRODUCT(R( k , INT ( ( k + 1 ) ) : INT ( n ) ) ,
21 z ha t ( INT ( ( k + 1 ) ) : INT ( n ) , 1 ) ) ;
22 ck = ( ( y ( k , 1) − par ) / R( k , k ) ) ;
23 z ha t ( k , 1) = NINT ( ck ) ;
24 ENDDO
25 END SUBROUTINE
26 END MODULE

Listing 3. Generated FORTRAN for the Babai example withnocheckmode

Overall, we believe that the generated code is quite readable,
and it works for input arrays of any size. Note we retain the
original comments from the MATLAB program, as well as
introducing new comments to explain some of the generated
code. All variables have been given types according to MAT-
LAB semantics, so some of the types may look surprising. For
example, the type ofz_hat is aDOUBLE array, even though
the original MATLAB comments said it was an integer vector.
The generated code is correct, because the MATLAB round
function does indeed return type double in MATLAB .

If we run Mc2FOR on this example without thenocheck
flag, then the generated code will include dynamic checks for



the array reads and writes in the body of the for loop. For
example, the following lines would be inserted at the beginning
of the for loop body for the statement at line 20.

1 ! i n l i n e run t ime ABC and e r r o r hand le
2 IF ( k < 1 .OR. k > SIZE (R , 1) .OR.
3 ( k + 1) < 1 .OR. INT ( n ) > SIZE (R , 2 ) ) THEN
4 STOP ”INDEX OUT OF BOUND” ;
5 END IF
6 IF ( ( k + 1) < 1 .OR. INT ( n ) > SIZE ( z hat , 1 ) ) THEN
7 STOP ”INDEX OUT OF BOUND” ;
8 END IF

Note that it is difficult to remove these array bounds
checking without more powerful range analyses, and some
further information from the user about the symbolic sizes of
the input parameters.

However, even tighter code can be generated if the Mc2FOR

user is willing to specialize the generated code to specific sized
input parameters. For example, if the user was using Babai
algorithm to solve a problem in wireless communications,
the shape ofR and y is double the number of antennas in
a multiple-input and multiple-output system. Thus, the user
may wish to generate code for a specific sized problem, and
then run the algorithm with different values for that size. If we
specify thatR is a 10-by-10 array andy is a 10-by-1 vector,
then Mc2FOR generates the code found in Listing 4. Note that
in this case the range analysis can precisely estimate all array
indices and thus can safely eliminate all dynamic checks from
the generated code. Furthermore, the generated FORTRAN can
include more specific type declarations, which includes the
sizes of the dimensions.

1 MODULE mod babai
2 CONTAINS
3 SUBROUTINE baba i (R , y , z ha t )
4 USE mod zeros
5 IMPLICIT NONE
6 DOUBLE PRECISION , DIMENSION ( 1 0 , 1 ) : : z hat , y
7 DOUBLE PRECISION : : par , n , ck
8 DOUBLE PRECISION , DIMENSION ( 10 , 10 ) : : R
9 INTEGER (KIND =4) : : k

10 ! . . . t h e comment i s t h e same as p r e v i o u s example
11 n = SIZE ( y ) ;
12 z ha t = z e r o s ( n , 1 ) ;
13 z ha t ( INT ( n ) , 1) = NINT ( ( y ( INT ( n ) , 1)
14 / R( INT ( n ) , INT ( n ) ) ) ) ;
15 DO k = INT ( ( n − 1 ) ) , 1 , −1
16 par = DOTPRODUCT(R( k , INT ( ( k + 1 ) ) : INT ( n ) ) ,
17 z ha t ( INT ( ( k + 1 ) ) : INT ( n ) , 1 ) ) ;
18 ck = ( ( y ( k , 1) − par ) / R( k , k ) ) ;
19 z ha t ( k , 1) = NINT ( ck ) ;
20 ENDDO
21 END SUBROUTINE
22 END MODULE

Listing 4. Generated FORTRAN for the Babai example with specific dimen-
sions given for input parameters

As we have seen by the generated code examples, the
translations for program constructs like for loops are quite
standard, so in the remainder of this section we concentrate
on discussing the most interesting and challenging issues for
mapping MATLAB to FORTRAN.

A. Mapping Types

In general, the mappings of types from MATLAB to FOR-
TRAN is listed in Table III. Besides these primitive data types,

Mc2FOR also supportscell arraysin MATLAB . We usederived
data types7 in FORTRAN to map MATLAB cell arrays.

TABLE III
MAPPINGMATLAB TYPES TO FORTRAN

Primitive Data Types in MATLAB Types in FORTRAN

double DOUBLE PRECISION
single REAL
int8 INTEGER(KIND=1)
int16 INTEGER(KIND=2)
int32 INTEGER(KIND=4)
int64 INTEGER(KIND=8)
char CHARACTER

logical LOGICAL
complex COMPLEX

1) Variables with more than one dynamic type:Due to its
dynamic nature, a variable in MATLAB may hold different
types at different program points, or sometimes after merging
the data flow from different branches, a variable may also
hold different types at the same program point. Whereas
in static languages, like FORTRAN, a variable must contain
only the declared type. In Mc2FOR, we have a two-phase
strategy to solve this problem. The first phase is the variable
renaming phase achieved by analyzing the webs of definitions
and uses of a variable, which is provided by the restructuring
component Tamer+. If different webs for the same variable
hold different types, then Mc2FOR creates renamed copies of
the variable, one copy for each different type. The second
phase is for the situation where a variable still may hold
different types in the same web of definitions and uses. In
this case, Mc2FOR transforms this variable to a derived data
type variable in FORTRAN. In the transformed derived data
type, each field represents a different type of this variablein
the original MATLAB program.

2) Implicit type conversion inMATLAB : Due to its weakly-
typed language nature, the type of a variable can be implic-
itly converted in MATLAB . For example, although MATLAB

requires that subscript indices must either be real positive
integers or logicals, programmers are allowed to use indices in
the type of double. While in FORTRAN, which is a strongly-
typed language, the type of a variable cannot be automatically
converted. To map this difference, Mc2FOR uses some FOR-
TRAN intrinsic functions to force the type conversion, likeINT
andDBLE, for the situation where the type of the variable may
be implicitly converted in MATLAB . For example, Mc2FOR

will add INT around the variables used as matrix indices and
variables or values used as start, end or increment in a range
expression of afor loop statement.

B. Built-in Mapping Framework

To map MATLAB built-in functions to FORTRAN, we imple-
mented a built-in mapping framework. In the framework, built-
ins in MATLAB are mapped to FORTRAN in three different
ways.

1) Directly-mapped: There are some MATLAB built-ins
which can be mapped directly to equivalent intrinsic functions
in FORTRAN, or we can also say, replaced directly by the

7Also unknown as union types and similar to the structs in C/C++.



equivalent intrinsic functions or operators. The completelists
of these built-ins is given on the Mc2FOR web page.

2) Transform-then-inlined:For some built-ins, although
they cannot be directly replaced with certain FORTRAN in-
trinsic functions, they can be transformed easily and inlined
in the generated code, i.e., thecolon andmean functions.

3) Not-directly-mapped:For most MATLAB built-ins, they
cannot be directly mapped or easily transformed to equiva-
lent intrinsic functions in FORTRAN. In order not to update
Mc2FOR every time when there is a new MATLAB built-
in introduced, we decided to use the following strategy to
handle this mapping problem. The strategy is that we keep the
function signature8 in the generated FORTRAN code the same
as in the original MATLAB program, then write an equivalent-
functionality user-defined function in FORTRAN and add it into
the standalonelibmc2for library. 9 In other words, Mc2FOR

leaves a “hole” for that not-directly-mapped MATLAB built-
in inside the generated FORTRAN program and requires that
there is a corresponding FORTRAN function in libmc2for
to fill up the “hole” during compilation.

Almost all the MATLAB built-in functions are overloaded. In
FORTRAN, intrinsic functions are also overloaded. Recall that
the built-in mapping framework leaves the “hole” for those
built-ins without directly-mappings in the transformed pro-
gram and requires that there are FORTRAN functions with the
same function signatures inlibmc2for to fill up the “hole”,
so besides providing those FORTRAN functions, we should
also make sure those functions are overloaded. Fortunately,
we can overload user-defined functions with an interface since
FORTRAN 90. Recall the built-in functionzeros at line 10
in Listing 1. This function is always overloaded in MATLAB

program as a storage preallocation for variables. A code
snippet of the equivalent FORTRAN function in libmc2for
for zeros is given in Listing 5. With this interface, the
MATLAB built-in zeros can not only be supported, but
also be supported with overloading features in the generated
FORTRAN program.

1 MODULE mod zeros
2 INTERFACE z e r o s
3 MODULE PROCEDURE zeros1 , ze ros 2 ! may be more
4 END INTERFACE z e r o s
5 CONTAINS
6 FUNCTION zeros 1 ( x )
7 IMPLICIT NONE
8 DOUBLE PRECISION , INTENT ( IN ) : : x
9 DOUBLE PRECISION , DIMENSION ( INT ( x ) , INT ( x ) ) : : ze ros 1

10 ! d e f a u l t i s 0 , no need ass ignmen t .
11 END FUNCTION zeros 1
12 FUNCTION zeros 2 ( x , y )
13 IMPLICIT NONE
14 DOUBLE PRECISION , INTENT ( IN ) : : x , y
15 DOUBLE PRECISION , DIMENSION ( INT ( x ) , INT ( y ) ) : : ze ros 2
16 ! d e f a u l t i s 0 , no need ass ignmen t .
17 END FUNCTION zeros 2
18 END MODULE mod zeros

Listing 5. User-defined function inlibmc2for to map MATLAB zeros

8The function name and the names of the input arguments.
9In the library shipped with Mc2FOR, we have already implemented some

user-defined functions in FORTRAN to map some commonly-used but not-
directly-mapped MATLAB built-ins, like ones andzeros.

C. Linear Indexing Transformation

In MATLAB , the programmer may leave out some of the
trailing indices when accessing an element of a matrix. In
this case, the missing dimensions will be linearized, whilein
FORTRAN, the number of the indices must be the same as the
number of dimensions of the accessed array, which we call
rigorous array indexing. Mc2FOR has a built-in component
to transform linear indexing in MATLAB to rigorous array
indexing in FORTRAN. For example, assuming thatarr is
a 3-by-3 matrix in MATLAB , matrix indexing in MATLAB

arr(5) will be transformed toarr(2,2) in the generated
FORTRAN program. Note that the prerequisite of this direct
transformation is that both the indices and the shape of the
accessed matrix are constants, if this prerequisite cannotbe
satisfied, Mc2FOR will call certain functions inlibmc2for
to transform the indexing.10

VI. EXPERIMENTS AND RESULT ANALYSIS

At last, we demonstrate some experiments to evaluate both
the correctness and performance of Mc2FOR. The set of the
benchmarks for the experiments was acquired from a variety
of sources, most of them come from related projects, like
FALCON [5] and OTTER projects [6], Chalmers University of
Technology11 and “The MathWorks’ Central File Exchange”12.
In general, the subset of MATLAB features supported by
Mc2FOR includes commonly used numericial computations;
standard constructs such asif-else, for loop andwhile
loop statements; run-time array bounds checking; run-time
array growth by out-of-bound array indexing; variable re-
definition with different type values; and built-in function
overloading. All the features in the benchmarks are covered
by this subset. A brief description of the benchmarks is given
here.
• adpt finds the adaptive quadrature using Simpson’s rule.

This benchmark features an array whose size cannot be
predicted before compilation.

• bbai uses Babai algorithm to compute on fixed-sized arrays.
• bubl is the standard bubble sort algorithm. This benchmark

contains nested loops and consists of many array read and
write operations.

• capr computes the capacitance of a transmission line using
finite difference and Gauss-Seidel method. It’s loop-based
and involves scalar operations on two small-sized arrays.

• clos calculates the transitive closure of a directed graph. It
contains matrix multiplication operations between two 450-
by-450 arrays.

• crni computes the Crank-Nicholson solution to the heat
equation. This benchmark involves some elementary scalar
operations on a 2300-by-2300 array.

• dich computes the Dirichlet solution to Laplace’s Equation.
It’s also a loop-based program which involves basic scalar
operation on a small-sized array.

10The naming convention of these functions and some function examples
are given on Mc2FOR web page.

11http://www.elmagn.chalmers.se/courses/CEM/
12http://www.mathworks.com/matlabcentral/fileexchange



• diff calculates the diffraction pattern of monochromatic light
through a transmission grating for two slits. This benchmark
also features an array whose size is increased dynamically
like the benchmarkadpt.

• fiff computes the finite-difference solution to the wave
equation. It’s a loop-based program which involves basic
scalar operation on a 2-dimensional array.

• mbrt computes a mandelbrot set with specified number
elements and number of iterations. This benchmark contains
elementary scalar operations on complex type data.

• nb1d simulates the gravitational movement of a set of
objects. It computes on vectors inside nested loops.
All the programs were executed on a machine with Intel(R)

Core(TM) i7-3930k CPU @ 3.20GHz x 12 processor and
16 GB memory running GNU/Linux(3.2.0-26-generic #41-
Ubuntu). The MATLAB version is R2013a and the generated
FORTRAN code is compiled with the GFortran compiler of
GCC version 4.6.3 using optimization level -O3.

Before comparing the performance of the benchmarks and
the generated FORTRAN, we first make sure that the generated
FORTRAN programs have the same functionality and produce
the same result as its input benchmark. Then, in order to
get a measurable execution time, we used a scale number13

for each benchmark to adjust the problem size, including
the number of iterations and the size of arrays, to make the
program to run approximately 20 seconds under MATLAB .
We use the same scale numbers for the generated FORTRAN

programs to ensure they run on the same problem size as the
MATLAB benchmarks. In Table IV, we list the execution time
of different benchmarks under MATLAB and FORTRAN.

The speedup of FORTRAN over MATLAB ranges from 3
to 34 times, except for the benchmarkclos. The generated
FORTRAN code forclos ran about 24 timesslower than the
clos benchmark running in MATLAB . After performing more
experiments, we discovered that the GFortran intrinsic function
for matrix multiplication, MATMUL, is not very efficient. In
order to validate that this was the problem, we replaced the call
to MATMUL with a call to the DGEMM from the FORTRAN

BLAS (Basic Linear Algebra Subprograms) library to make
a new benchmark namedclos2. The compiled program runs
about 3.5 timesslower than theclos benchmark running in
MATLAB . A reasonable explanation is that according to one
document on the website of Intel14, at least since MATLAB

R2010a, MATLAB uses the Intel MKL BLAS by default, while
the BLAS library we use in the experiments is the default
BLAS for Ubuntu, and Intel MKL BLAS may have a better
implementation than the one default for Ubuntu.

In Table V, we list the physical lines15 of code (LOC) of
both MATLAB benchmarks and the generated FORTRAN code
with nochecks from Mc2FOR. At the fourth column in the
table, which is named “F / M”, we also list the ratio of the LOC
of FORTRAN to MATLAB . The ratio ranges from 1.2 to 2.6,

13The scale number for each benchmark is listed on Mc2FOR web page.
14http://software.intel.com/en-us/articles/using-intel-mkl-with-matlab
15Including whitespace and comment lines.

which seems quite reasonable since the generated FORTRAN

code requires lines for the variable declarations and run-time
array reallocation. Very short benchmarks likebubl have a
larger ratio because the number of lines of declarations is large
as compared to the small number of statements.

TABLE IV
PERFORMANCECOMPARISON

Benchmarks MATLAB (s) FORTRAN (s) Speedup
adpt 20.08 3.4 5.9
bbai 20.58 0.6 34.3
bubl 20.48 1.3 15.7
capr 20.20 1.7 12.1
clos 20.62 490.5 0.04
clos2 20.62 68.7 0.3
crni 20.56 2.0 10.2
dich 20.10 6.8 2.9
diff 20.61 4.7 4.3
fiff 20.76 1.1 18.8

mbrt 20.85 3.3 6.3
nb1d 20.60 0.8 25.7

TABLE V
LOC COMPARISON

Benchmarks MATLAB FORTRAN F / M
adpt 169 301 1.7
bbai 26 59 2.3
bubl 23 60 2.6
capr 206 342 1.7
clos 78 157 2.0
crni 192 234 1.2
dich 131 156 1.2
diff 115 148 1.3
fiff 104 135 1.3

mbrt 43 97 2.3
nb1d 167 261 1.6

In summary, the overall performance of the generated
FORTRAN by Mc2FOR is better than the performance of the
input benchmarks running in MATLAB , and according to the
comparison of the LOCs, the size of the generated FORTRAN

code is in an acceptable range.

VII. R ELATED WORK

Before MathWorks put a just-in-time (JIT) accelerator under
the hood of MATLAB , its inefficient performance had already
drawn some attention from researchers and engineers. FAL-
CON [5] is a MATLAB to FORTRAN 90 translator with a so-
phisticated type inference mechanism. Although the FALCON
project provided us with a lot of interesting ideas about howto
proceed, Mc2FOR has quite a few important differences. For
example, the inference mechanism in FALCON is based on
a forward/backward propagation strategy, while our analysis
only involves a forward propagation. FALCON distinguishes
scalar, vector and matrix, while we treat all the variables as
a matrix. Scalar is a 1-by-1 matrix and vector is a 1-by-n or
n-by-1 matrix. FALCON uses static single assignment (SSA)
form to make sure all the variables have only one definition,
this may simplify the code generation, but may also introduce
some extra overhead to the transformed program. Instead, we
only split the variables with different types in different webs
of definitions and uses. The two projects also have totally



different approaches to shape analyses for MATLAB built-
in functions: FALCON implements a table for each built-in
function to tell how the shape of output depends on the shape
of inputs, but this strategy cannot support the case where the
shape of output depends on the value of inputs. Further, the
type system of MATLAB had been extended since FALCON,
and our approach thus handles more MATLAB types. Our
system is also available for other researchers.

There are many existing range analyses for different pur-
pose. The one implemented in Mc2FOR is specific to address
MATLAB and closest to a generalized constant propagation in
C [7] which proposed a similar analysis to estimate the range
of a variable may reach at each program point. The range
value analysis through MATLAB built-in functions also has its
roots in the interval arithmetic.

Mc2FOR builds upon previous work in the McLab group. In
early work, Jun Li developed a prototype which demonstrated
the feasibility of translating MATLAB to FORTRAN 95 [8].
This early prototype focused on a limited subset of MAT-
LAB and made simplifying assumptions. To provide a more
solid analysis basis, the McSAF analysis framework [3], [9]
and Tamer’s extensible interprocedural abstract value anal-
ysis framework [2] were developed. These two frameworks
working together form the major transformation and analysis
engine in the McLAB toolkit. Concurrent to our development
of Mc2FOR, our lab is also working on another project to
statically compile MATLAB to X10 [10], which also uses the
shape analysis in Mc2FOR.

MATLAB CoderTM [11] is a commercial translator to gen-
erate standalone C and C++ code from MATLAB . MATLAB

Coder supports a subset of core MATLAB language features
and is a closed source system, with no research papers on its
design. Part of the objective of our work is to provide an open
source framework, which other researchers can easily use. For
example, the McLab toolkit, plus the shape and range analysis
presented in this paper would be a suitable starting point for
developing a C/C++ back end.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we have presented a tool which can automati-
cally transform MATLAB programs to equivalent FORTRAN

programs. Since MATLAB is a dynamic and weakly-typed
language, while FORTRAN is a static and strongly-typed
language, there are quite a number of challenges.

In our Mc2FOR, we introduced a shape analysis, which
is used to estimate the number and extent of dimensions of
all the variables in a given MATLAB program. In the shape
analysis, we also proposed a domain-specific language, the
shape propagation equation language, to write equations used
for propagating shape information through MATLAB built-
in functions. In order to remove unnecessary run-time array
bounds checking code in the transformed FORTRAN program,
we implemented a range value analysis specific for MATLAB ,
which is an extension of constant analysis in our framework,
to estimate the possible range of value a scalar variable may
reach at each program point. Both the shape and range value

analysis are implemented in the Tamer’s framework. In the
code generation of Mc2FOR, we started with our approach to
assigning declared types and introducing explicit type conver-
sions, then we introduced the built-in mapping framework used
to map numerous MATLAB built-in functions to FORTRAN,
and we also presented the linear indexing transformation from
MATLAB to FORTRAN.

Finally, in Section VI, we evaluated our Mc2FOR on a col-
lection of MATLAB benchmarks, examining both the speedup
and physical lines of code of the transformed code. From the
results, we show that the code generated by Mc2FOR is usually
more efficient than the original MATLAB code and the code
size is quite acceptable.

In order to improve the performance of Mc2FOR, we plan
to make the range value analysis support symbolic values.
In this way, we may remove more run-time array bounds
checking code in the transformed program. Moreover, adding
a MATLAB storage analysis, which can determine when the
default double type can be safely stored in integers, may
further improve the code readability and save quite a lot
storage. In the future, we may also want to translate MATLAB

code into parallel FORTRAN code, in order to achieve this, we
need a valid dependency analysis to determine which MATLAB

code block is free from dependency and safe to be transformed
to parallel code. We also hope that others will build upon our
tool, which has been implemented in an extensible manner,
and is freely available at www.sable.mcgill.ca/mc2for.html.
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