
Velociraptor: An Embedded Compiler Toolkit for Numerical
Programs Targeting CPUs and GPUs

Rahul Garg
School of Computer Science

McGill University
Montreal, Canada

rahul.garg@mail.mcgill.ca

Laurie Hendren
School of Computer Science

McGill University
Montreal, Canada

hendren@cs.mcgill.ca

ABSTRACT

Developing just-in-time (JIT) compilers that that allow sci-
entific programmers to efficiently target both CPUs and
GPUs is of increasing interest. However building such com-
pilers requires considerable effort. We present a reusable and
embeddable compiler toolkit called Velociraptor that can be
used to easily build compilers for numerical programs tar-
geting multicores and GPUs.

Velociraptor provides a new high-level IR called VRIR
which has been specifically designed for numeric computa-
tions, with rich support for arrays, plus support for high-
level parallel and GPU constructs. A compiler developer
uses Velociraptor by generating VRIR for key parts of an
input program. Velociraptor provides an optimizing com-
piler toolkit for generating CPU and GPU code and also
provides a smart runtime system to manage the GPU.

To demonstrate Velociraptor in action, we present two
proof-of-concept case studies: a GPU extension for a JIT
implementation of MATLAB language, and a JIT compiler
for Python targeting CPUs and GPUs.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Compilers

Keywords

GPU hybrid systems; Compiler framework for Array-Based
Language; MATLAB; Python

1. INTRODUCTION
Array-based languages such as MATLAB [13], Python

(particularly NumPy [22]) and R [19] have become extremely
popular for scientific and technical computing. However,
many implementations of such languages were not designed
for performance.

Better performance can be achieved in two ways. First,
some implementations such as CPython are not even JIT-
compiled. In this case, a JIT compiler targeting serial CPU

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PACT’14, August 24–27, 2014, Edmonton, AB, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2809-8/14/08 ...$15.00.

http://dx.doi.org/10.1145/2628071.2628097.

execution needs to be retrofitted to the language implemen-
tation. If there is an existing JIT compiler, further perfor-
mance enhancement will require a good analysis and trans-
formation infrastructure. Second, languages and compilers
can be evolved to target modern hardware such as multi-
core CPUs and highly parallel co-processors such as GPUs
and Xeon Phi. In this case, new compilation infrastructures
targeting multi-core CPUs and GPUs need to be written. A
GPU runtime will also be required to manage GPU task dis-
patch, as well as GPU memory and data transfers between
CPU and GPU.

Building JIT compilers for numerical programs targeting
CPUs and GPUs can require substantial effort. Our goal in
this work is to simplify the work of building dynamic com-
pilers for numerical programs targeting CPUs and GPUs.
Our suggested solution to simplify the problem of building
such compilers is to provide an embeddable, reusable com-
piler toolkit specialized for compiling numerical array-based
programs to CPUs and GPUs. Once the toolkit is built, it
can be reused in multiple projects.

We have designed and implemented such a toolkit called
Velociraptor that demonstrates the feasibility of this ap-
proach. Velociraptor consists of two pieces. The first piece
is an optimizing dynamic compiler infrastructure that gener-
ates LLVM and OpenCL for CPUs and GPUs respectively.
The second piece is a smart and portable GPU runtime,
VRRuntime, built on top of OpenCL. Velociraptor is de-
signed to be embedded into a larger compiler, which we call
the containing compiler. We also provide two case studies
of integrating Velociraptor to demonstrate the utility of the
approach.

We first examine some criteria that led to our design and
then conclude this section with our contributions.

1.1 Design goals

Focus on numerical programs and arrays

We focus on numerical parts of the program. Numerical
computations, particularly those utilizing arrays, are the
performance critical part of many scientific programs. Nu-
merical computations are also the most likely candidates to
benefit from GPUs which are an important motivation be-
hind this work. Array-based languages such as MATLAB
and Python expose versatile array datatypes with high-level
array and matrix arithmetic operators and flexible indexing
schemes. Any proposed infrastructure or solution needs to
have an intermediate representation (IR) with a rich array
datatype.

317

IR support for parallelism and GPUs

We are focusing on languages such as MATLAB and Python,
which are popular because they are productive. A typical
user of such languages will usually prefer high-level solutions
to targeting modern hybrid (CPU/GPU) hardware One ex-
ample is that a programmer, or an automated tool, might
simply specify that a particular computation or loop should
be executed in parallel or that a section of code should
be executed on the GPU. Such high-level constructs need
to be represented in the intermediate representation (IR)
of any proposed infrastructure. Compiling these high-level
constructs to either parallel CPU code or to GPU kernels,
as required by the construct, should be the responsibility of
the proposed solution. In addition to code generation, any
proposed solution will also need to automatically insert re-
quired runtime calls to data transfers, GPU task dispatch
and synchronization.

Reusability across languages

Currently, every just-in-time (JIT) compiler project target-
ing hybrid systems is forced to write their infrastructure
from scratch. For example, MATLAB compiler researchers
don’t benefit from the code written for Python compilers.
However, the types of compiler and runtime facilities re-
quired for efficient implementation of numerical computa-
tions in various array-based languages is qualitatively very
similar. Ideally, the same compiler codebase can be reused
across multiple language implementations. A shared and
reusable infrastructure that is not tied to a single program-
ming language, and that everyone can contribute to, will
simplify the work of compiler writers and also encourage
sharing of code and algorithms in the community.

Integration with existing language runtimes

Existing implementations face the challenge of maintaining
compatibility with existing libraries. For example, many
Python libraries have some parts written in C/C++ and
depend on the CPython’s C/C++ extension API. In such
cases, a gradual evolution may be more pragmatic than a
complete rewrite of the language implementation. For ex-
ample, a compiler for numerical subset of Python can be
written as an add-on module to the Python interpreter in-
stead of writing a brand-new Python implementation. Tools
such as Numba [15] and Cython [23], which have become
popular in the Python community, illustrate this approach.

Thus, our design criterion is that our solution needs to
integrate with existing internal data structures of each lan-
guage runtime, particularly the data structure representing
arrays in the language. This design criterion immediately
rules out certain designs. For example, one may consider
implementing a standalone virtual-machine that exposes a
bytecode specialized for numerical computations and then
simply compile each language to this VM. However, a stan-
dalone VM will have its own internal data-structures that
will be difficult to interface with existing language runtimes
especially if reusability across multiple language implemen-
tations is desired. We have chosen an embeddable design
with well-defined integration points so that our compiler
framework can be easily integrated into existing toolchains
while maintaining compatibility.

1.2 Contributions

System design

The first contribution was to define the overall system de-
sign. We proposed the design criteria of our work in Sec-
tion 1.1. The details of our proposed system design are
given in Section 2. The system design involved defining the
distribution of work and interfacing between Velociraptor
and the compiler into which Velociraptor is being embedded
such that the compiler writer integrating Velociraptor into
a containing compiler needs to do minimal work.

Domain-specific and flexible IR design

The second contribution was defining a domain-specific IR
for Velociraptor specialized for numeric computing. As dis-
cussed in the design challenges, this IR needs to be flex-
ible enough to model the semantics of multiple numerical
programming languages. In particular, the array datatype
provided in the IR needs to be rich enough to model various
indexing schemes and array operators found in multiple pro-
gramming languages such as MATLAB and Python/NumPy.
Further, this IR needs to be simple to generate from a con-
taining compiler to facilitate easy integration of Velocirap-
tor. Finally, in addition to serial constructs, the IR needs
high-level constructs to be able to express parallelism as
well as expressing the parts of the program to be offloaded
to a GPU. We address these challenges by defining a novel
domain-specific IR called VRIR which is discussed in Sec-
tion 3.

Compiler and runtime contributions

We have implemented an optimizing, multi-pass compiler
toolchain that performs many analysis and transformations
and produces LLVM for CPUs and OpenCL for GPUs. Our
compiler infrastructure is described in Section 4. We also
describe a novel memory reuse optimization for library func-
tions such as array addition.

The compiler toolchain needs to be complemented by a
GPU runtime. We have built VRRuntime, a GPU run-
time that provides a high-level task-graph based API to
the code generator. The runtime automatically handles all
data transfers and task dispatch to the GPU. VRRuntime
is implemented on top of OpenCL and is described in Sec-
tion 5. VRRuntime provides asynchronous dispatch, auto-
matic CPU-GPU data transfer management and GPU mem-
ory management. While similar techniques have been imple-
mented in other runtimes, the implementation in the context
of array-based programming languages required solving sev-
eral subtle issues and is a new contribution.

Demonstrating the utility of Velociraptor

To demonstrate the reusability of Velociraptor, we have used
it in two projects described in Section 6. The first case study
is an extension of McVM [6], a just-in-time compiler and
interpreter for MATLAB language. In this project, we em-
bedded Velociraptor in McVM to enable support for GPUs,
while CPU code generation is done by McVM. The sec-
ond project is a JIT compiler designed as an add-on to the
CPython interpreter. It takes as input annotated Python
code and generates CPU and GPU Python code using Ve-
lociraptor. This demonstrates how a compiler could leverage
Velociraptor to do both the CPU and GPU code generation.

318

We briefly describe our experience in integrating Velocirap-
tor into these two toolchains and then report benchmark
results from both these case studies.

2. SYSTEM DESIGN
The first challenge was to specify the services that should

be provided by an embedded toolkit and how it would inte-
grate into an existing compilation infrastructure.

Consider a typical just-in-time (JIT) compiler for a dy-
namic language targeting CPUs shown in Figure 1. Such a
compiler takes program source code as input, converts into
its intermediate representation, does analysis (such as type
inference), possibly does code transformations and finally
generates CPU code. Now consider that a JIT compiler de-
veloper wants to extend his/her compiler to target hybrid
systems by embedding Velociraptor into the compiler. We
call the resulting extended compiler as a containing compiler
while Velociraptor is called the embedded compiler.

Figure 1: Possible design of a conventional compiler

targeting CPUs. You want to extend this compiler

to support multicores and GPUs

�������	�
���
����������

��������������

�����������������
�����������

������������
��������

��������

 ��������!������

��������	��
	�������������	�������������

���	�	���	��
����

����" #$% ���&�������"����� %

���	�������

&��

��'��!(�#!�!
#�&���������

�����������������&�
��������

�����������	
��������

Figure 2: Containing compiler embedding Veloci-

raptor, and showing the parts provided by Veloci-

raptor

We have built the Velociraptor toolkit to simplify the
building of containing compilers that want to compile nu-
merical computations to CPUs and GPUs. The key idea is
that Velociraptor is embedded inside the containing compiler
and it takes over the duties of generating code for numerical
sections of the program. Numerical sections of the program
may include numerical computations that execute on the
CPU, as well as numerical computations that are annotated
to be executed on GPUs. Our design goal was to ensure that

the containing compiler requires minimal work to integrate
Velociraptor.

Figure 2 demonstrates how our approach cleanly inte-
grates with a containing compiler and provides a detailed
overview of the entire toolchain including the services pro-
vided by Velociraptor. The conventional passes are shown
in the dark shaded boxes, while our toolkit, Velociraptor,
is shown in the overlay box on the right. The compiler de-
veloper who wants to integrate Velociraptor into an existing
JIT compiler only needs to add two new components.

First, the compiler developer introduces a new pass in
the containing compiler. This new pass identifies numerical
parts of the program, such as floating-point computations
using arrays including parallel-loops and potential GPU sec-
tions, that it wants to handover to Velociraptor. This new
pass will be performed after conventional frontend passes
and analysis such as type inference performed by many JIT
compilers for dynamic languages. The identified numeric
sections are outlined into functions and the containing com-
piler compiles the outlined functions to VRIR functions.

The second addition to be done by the compiler writer is to
provide a small amount of glue code to expose the language
runtime to Velociraptor. The glue code has several compo-
nents. Velociraptor needs to know about the representation
of array objects in the runtime. The compiler writer pro-
vides several typedefs from the existing implementation’s
array object structure to some typenames Velociraptor im-
plementation uses, and also provides the implementation of
macros and functions to access the fields of the array object
structure. In addition, the compiler writer provides a rep-
resentation of the array object structure in LLVM. Finally,
Velociraptor defines an abstract API for memory manage-
ment, such as array object allocations and managing ref-
erence counts (if applicable) and the compiler writer pro-
vides the implementation of the API. Thus, Velociraptor
integrates cleanly into the existing data-structures and does
not require invasive changes that might break compatibility
with external libraries.

Velociraptor takes over the major responsibility of com-
piling VRIR to CPU and GPU code and returns a function
pointer corresponding to the compiled version of each VRIR
function. The containing compiler replaces calls to the out-
lined function in the original code with calls to the function
pointer returned by Velociraptor. Non-numerical parts of
the program, such as dealing with file IO, string operations
and non-array data structures are handled by the containing
compiler in its normal fashion.

Velociraptor provides analysis and transformation infras-
tructure for VRIR as well as code generation backends for
CPUs and GPUs. Portability is a key concern for us and we
chose to build our CPU and GPU backends upon portable
technologies, LLVM for CPUs, and OpenCL for GPUs. Be-
hind the scenes, Velociraptor also provides a smart run-
time system VRRuntime to efficiently manage GPU mem-
ory, CPU-GPU synchronization and task dispatch. How-
ever, VRRuntime is completely transparent to the contain-
ing compiler, and the containing compiler does not need to
do any work to use VRRuntime.

3. DESIGN OF VRIR
A key design decision in our approach is that the numeric

computations should be separated from from the rest of the
program, and that our IR should concentrate on those nu-

319

merical computations. This decision was motivated by an
internal study of thousands of MATLAB programs using an
in-house static analysis tool. We have found that typically
the core numeric computations in a program use a proce-
dural style and mostly use scalar and array datatypes. We
have based the design of VRIR on this study and on our
own experiences in dealing with scientific programmers.

VRIR is a high-level, procedural, typed, abstract syntax
tree (AST) based program representation. With VRIR, our
objective is to cover the common cases of numeric compu-
tations. VRIR is designed to be easy to generate from lan-
guages like MATLAB or Python and the constructs sup-
ported will be familiar to any MATLAB or Python/NumPy
programmer. We have defined C++ classes corresponding
to each tree node type. We have also defined an XML-based
representation of VRIR. Containing compilers can build the
XML representation of VRIR and pass that to Velociraptor,
or alternatively can use the C++ API directly to build the
VRIR trees. Note that VRIR is not meant for represent-
ing all parts of the program, such as functions dealing with
complex data structures or various I/O devices. The parts
of the program that cannot be compiled to VRIR are com-
piled by the containing compiler in the usual fashion, using
the containing compiler’s CPU-based code generator, and
do not go through Velociraptor.

In the remainder of this section we present the impor-
tant details of VRIR. A detailed specification and examples
are available on our website.1 The basic structure and con-
structs of VRIR are introduced in Section 3.1 and supported
datatypes are introduced in Section 3.2. VRIR supports a
rich array datatype which is flexible enough to model most
common uses of arrays in multiple languages such as MAT-
LAB or Python. Array indexing and operators are intro-
duced in Section 3.3. In addition to serial constructs, VRIR
supports parallel and GPU constructs in the same IR and
these are discussed in Section 3.4. Finally, error handling
and memory management are discussed in Section 3.5 and
in Section 3.6 respectively.

3.1 Structure of VRIR programs and basic
constructs in VRIR

Modules

The top-level construct in VRIR is a module and each mod-
ule consists of one or more functions. Functions in a module
can call either the standard library functions provided in
VRIR or other functions in the same module, but cannot
call functions in other modules.

Modules are self-contained compilation units. This design
choice was made because we are targeting OpenCL 1.1, and
OpenCL 1.1 requires that the generated OpenCL program
should be self-contained. We will be able to remove this
restriction once we start targeting OpenCL 1.2, which sep-
arates compilation of OpenCL kernels from linking. How-
ever, important vendors such as Nvidia currently only pro-
vide OpenCL 1.1 implementations.

Functions

Functions have a name, type signature, a list of arguments,
a symbol table and a function body. The function body is a
statement list.

1http://www.sable.mcgill.ca/mclab/gpu

Statements

VRIR supports common statements such as assignments,
for-loops, while-loops, conditionals, break and continue state-
ments, return statements, expression statements and state-
ment lists. One of the main goals of VRIR is to provide
constructs for parallel and GPU computing through high-
level constructs and we describe the supported constructs in
Section 3.4.

Expressions

Expression constructs provided include constants, name ex-
pressions, scalar and array arithmetic operators, compari-
son and logical operators, function calls (including standard
math library calls), and array indexing operators. All ex-
pressions are typed. We have been especially careful in the
design of VRIR for arrays and array indexing, in order to en-
sure that VRIR can faithfully represent arrays from a wide
variety of source languages.

3.2 Supported datatypes
Knowing the type of variables and expressions is impor-

tant for efficient code-generation, particularly for GPUs.
Thus, we have made the design decision that all variables
and expressions in VRIR are typed. It is the job of the con-
taining compiler to generate the VRIR, and the appropriate
types. Velociraptor is aimed at providing code generation
and backend optimizations, and is typically called after a
type checking or inference pass has already occurred. We
have carefully chosen the datatypes in VRIR to be able to
represent useful and interesting numerical computations.

Scalar types

VRIR has real and complex datatypes. Basic types include
integer (32-bit and 64-bit), floating-point (32-bit and 64-bit)
and boolean. For every basic scalar type, we also provide a
corresponding complex scalar type. While most languages
only provide floating-point complex variables, MATLAB has
the concept of integer complex variables as well, and thus we
provided complex types for each corresponding basic scalar
type.

Array types

Array types consist of three parts: the scalar element-type,
the number of dimensions and a layout. The layout must
be one of the following three: row-major, column-major or
strided-view. For arrays of row- or column-major layouts,
indices are converted into addresses using the regular rules
for such layouts. The strided-view layout is inspired from
the ndarray datatype in Python’s NumPy library.

We have made a design decision that the value of array
sizes and strides are not part of the type system. Thus, while
the number of dimensions and element type of a variable
are fixed throughout the lifetime of the variable, it may be
assigned to arrays of different sizes and shapes at different
points in the program. This allows cases such as assigning
a variable to an array of different size in different iterations
of a loop, such as in some successive reduction algorithms.
Further, requiring fixed constant or symbolic array sizes in
the type system can also generate complexity. For example,
determining the type of operations such as array slicing or
array allocation, where the value of the operands determines
the size of the resulting array, would be difficult if the array
sizes are included in the type system. Thus, we chose to

320

not include array sizes and strides in the type system for
flexibility and simplicity.

The number of dimensions of an array variable is fixed in
the type system because it allows efficient code-generation
and optimizations and only sacrifices small amount of flexi-
bility for most practical cases.

Domain types

Domain types represent multidimensional strided rectangu-
lar domains respectively. An n-dimensional domain contains
n integer triplets specifying the start, stop and stride in each
dimension. This is primarily useful for specifying iteration
domains. A one-dimensional specialization of domains is
called a range type, and is provided for convenience.

Tuple type

The tuple type is inspired from Python’s tuple type and can
also be used for one-dimensional cell arrays in MATLAB
with some restrictions. A tuple is a composite type, with a
fixed number of components of known types. The compo-
nents can be obtained using constant integer indexes into a
tuple.

Void type

The Void type is similar to void type in C. Functions that
do not return a value have the void type as return type.

Function types

Function types specify the type signature of a function. VRIR
functions have a fixed number of arguments and outputs.
The input arguments can be any type (except void). The
return type can either be void, or one or more values each
of any type excluding void.

3.2.1 Dynamically-typed languages and VRIR

Languages such as MATLAB and Python/NumPy are dy-
namically typed while we require that the types of all vari-
ables be known in VRIR. A good JIT compiler, such as
McVM [6], will often perform type inference before code
generation. If a compiler is unable to infer types, users are
often willing to add a few type hints for performance critical
functions to their program such as in the Julia [4] language
or the widely used Python compilation tool Cython [23]. Fi-
nally, if the containing compiler is unable to infer the types
of variables, it can use its regular code generation backend
for CPUs as a fallback, instead of using Velociraptor.

3.3 Array indexing and operators

3.3.1 Array indexing

Array indexing semantics vary amongst different program-
ming languages, thus VRIR provides a rich set of array in-
dexing modes to support these various semantics. The in-
dexing behavior depends upon the number and type of index
parameters, as well as several optional attributes defined for
the array indexing nodes. Consider a n-dimensional array
A indexed using d indices. VRIR has the following indexing
modes:

Integer indices

If n integer indices are specified, then the address selected is
calculated using rules of the layout of the array (row-major,
column-major or stride-based). If d < n, and all indices are

integers, then different languages have different rules and
therefore we have provided an attribute called flattened in-
dexing. When flattened indexing is true, the behavior is
similar to MATLAB where the last n − d + 1 dimensions
are treated as a single flattened dimension of size

∏
d

k=m
uk

where uk is the size of the array in the k-th dimension. When
flattened indexing is false, the behavior is similar to NumPy
and the remaining d − m indices are implicitly filled-in as
ranges spanning the size of the corresponding dimension.

Negative indexing

This attribute is inspired from Python’s negative indexing
and affects both of the above cases. In languages like Java,
if the size of the k-th dimension of the array is uk, then
the index in the dimension must be in the set [0, uk − 1].
However, in NumPy, if an index ik is less than zero, then
the index is converted into the actual index uk + ik. For
example, let the index ik be equal to −1. Then, the index
is converted to uk + ik, or uk − 1, which is the last element
in the dimension. We have a boolean attribute in the array
index node to distinguish between these two cases.

Enabling/disabling index bounds checks

Array bounds-checks can be enabled/disabled for each indi-
vidual indexing operation. This allows the containing com-
piler to pass information about array bounds-checks, ob-
tained through compiler analysis, language semantics or pro-
grammer annotations, to Velociraptor.

Row-major, column-major and strided arrays

The layout of the array being indexed determines the arith-
metic used for converting the indices to addresses.

Zero or one-based indexing

A global variable, set by the containing compiler, controls
whether one-based or zero-based indexing is used for the
language.

Slicing arrays - Data sharing or copying

An array can be sliced by supplying a range instead of an
integer as an index. Consider an array slicing operation
such as A[m : n]. Array slicing operations return an array.
Some languages like Python have array slicing operators that
return a new view over the same data while other languages
like MATLAB return a copy of the data. We support both
possibilities in VRIR through a boolean attribute of array
index nodes.

Using arrays as indices

Arrays can also be indexed using a single integer array (let
it be named B) as index. B is interpreted as a set of indices
into A corresponding to the integer values contained in B

and the operator returns a new array with indexed elements
copied into the new array.

3.3.2 Array operators

Array-based languages often support high-level operators
that work on entire matrices. Thus, VRIR provides built-in
element-wise operation on arrays (such as addition, multi-
plication, subtraction and division), matrix multiplication
and matrix-vector multiplication operators. Unary func-
tions provided include operators for sum and product reduc-

321

tion as well as transcendental and trigonometric functions
operating element-wise on arrays.

3.4 Support for parallel and GPU program-
ming

Programmers using languages such as MATLAB and Python
are usually domain experts rather than experts in mod-
ern hardware architectures and would prefer high-level con-
structs to expose the hardware. VRIR is meant to be close
to the source language. Therefore, we have focused on sup-
porting high-level constructs to take advantage of parallel
and hybrid hardware systems. Low-level, machine-specific
details such as the number of CPU cores or the GPU mem-
ory hierarchy are not exposed in VRIR. The task of mapping
VRIR to machine specific hardware is done by Velociraptor.
The constructs are as follows:

Parallel-for loops and atomics

Parallel-loops are loops defined over a multi-dimensional do-
main where each iteration can be executed in parallel. We
also support some atomic constructs, such as compare and
swap, inside a parallel-for loop.

Implicitly parallel operators

VRIR has a number of implicitly parallel built-in operators
such as matrix addition and matrix multiply. Velocirap-
tor takes advantage of parallel libraries for these operators
where possible.

Parallel map

Parallel map takes as input a function f and n arrays or
scalars as inputs. The function f must be a scalar function
that takes n scalars as inputs and returns a scalar. At least
one of the arguments to map should be an array, and all
the input arrays should have the same size and shape. The
operator applies the function f element-wise to each element
in the input arrays in parallel, and produces an output array
of the same shape.

Reduction sum and product

We support two reduce operators: sum and product of an
array either along a given axis or for all elements of the
array.

Accelerated sections

Any statement list can be marked as an accelerated section,
and it is a hint for Velociraptor that the code inside the sec-
tion should be executed on a GPU, if present. Velociraptor
and its GPU runtime (VRRuntime) infer and manage all
the required data transfers between the CPU and GPU au-
tomatically. At the end of the section, the values of all the
variables are synchronized back to the CPU, though some
optimizations are performed by Velociraptor and VRRun-
time to eliminate unneeded transfers.

In VRIR, accelerated sections can contain multiple state-
ments. Thus, multiple loop-nests or array operators can be
inside a single accelerated section. We made this decision
because a larger accelerated section can enable the compiler
or runtime to perform more optimizations compared to ac-
celerated sections with a single loop-nest.

3.5 Error reporting
We support array out-of-bounds errors in serial CPU code,

parallel CPU loops and also in GPU kernels. Previous com-
pilers have only usually supported out-of-bounds errors on
CPUs and thus error handling is a distinguishing feature of
our system.

In serial CPU code, errors act similar to exceptions and
unwind the call stack. However, there is no ability to catch
or handle such errors within VRIR code, and all exception
handling (if any) must happen outside of VRIR code. In
parallel loops or in GPU sections, multiple errors may be
thrown in parallel. Further, GPU computation APIs such as
OpenCL have very limited support for exception handling,
thus the design of VRIR had to find some way of handling
errors in a reasonable fashion.

We provide the guarantee that if there is are array out-of-
bounds errors in a parallel loop or GPU section, then one of
the errors will be reported but we do not specify which one.
Further, if one iteration of a parallel-loop, or one statement
in a GPU section raises an error, then it may prevent the
execution of other iterations of the parallel-for loop or other
statements in the GPU section. These guarantees are not as
strong as in the serial case, but these still help the program-
mer in debugging while lowering the execution overhead and
simplifying the compiler.

3.6 Memory management
Different containing compiler implementations have differ-

ent memory management schemes. VRIR and Velociraptor
provide automatic cleanup of scalar variables, but for array
variables we allow the containing compiler to use the appro-
priate memory management scheme. Containing compilers
can insert explicit instructions in VRIR for array allocation,
array deallocation as well as reference counting, as required.
Thus we support three models: manual memory manage-
ment, reference counting, as well as conservative GCs such
as Boehm GC. It is up to the containing compiler to select
the memory management model.

4. COMPILATION ENGINE
A compiler developer using Velociraptor only needs to

concentrate on generating the high-level VRIR, and then
Velociraptor provides an optimizing compilation engine that
compiles VRIR to LLVM code for CPUs and OpenCL for
GPUs. Velociraptor is a multipass compiler with many anal-
ysis and optimization phases. The key compilation phases
are shown in Velociraptor are shown in Figure 3.

The high-level nature of VRIR was necessary for imple-
menting many of these optimizations. We have implemented
some optimizations specific to array-based languages, such
as bounds-check elimination and memory reuse optimiza-
tions for array operators. These optimizations cannot be
implemented in lower-level IRs like LLVM which have no
concept of higher-level array constructs that we include in
VRIR.Many of the optimizations are common to both CPUs
and GPUs and our design decision to have both CPU and
GPU sections in the same unified IR (VRIR) makes im-
plementing such optimizations simpler. Finally, VRIR also
allows passing some bounds-check information from the host
compiler. VRIR allows enabling/disabling bounds-checks on
each array subscript separately. Thus, if the host compiler
knows that some array references do not need to be bounds-

322

��������	
���

�
	�	����	�����

����������	���

���������	���

���������

�������������
��
�������������
��
����	
���

��	����
����	
���

����������

��� !�����

���������	
���������	��	
�������	���
�����

������	
���������	��	�������	
���
�����	���	�����	���
���������

��	���"�#������

����	�	�����	�����������

�������������
��
�������������
��
����	
���

��	����
����	
���

����������

��� !�����

$����%�����&�'�����	
���

$����%�����&�'�����	
���

Figure 3: Compiler analysis, transformation and code generation infrastructure provided by Velociraptor

checked, then the host can simply encode this information
in the VRIR given to Velociraptor.

Simplification and standard analysis

Velociraptor operates in multiple passes and the overall pic-
ture is shown in Figure 3. First, we simplify VRIR into a
form similar to three address code. The simplification breaks
down complex expressions involving array arithmetic, array
indexing and function calls. Expressions which may perform
implicit array allocation, such as matrix addition operators
which return a new array as the result, are explicitly marked
as allocating expressions. The simplifications enable simpler
implementation of some flow analysis. Next, we perform
some standard analysis such as live variables and reaching
definitions analysis.

Alias analysis

We then perform alias analysis. Alias analysis is particularly
important for languages like Python, where NumPy arrays
may be aliased and having good aliasing information can en-
able the compiler to do better optimizations. We have imple-
mented a fast, flow-insensitive, context-insensitive algorithm
which proceeds in two phases. The algorithm operates upon
an undirected graph with array variables and allocation sites
as nodes and initially contains no edges. The first phase
traverses statements inside the function and inserts edges
as follows. We insert an edge between two variables when
we encounter a reference array assignment of a variable to
another variable. We insert an edge between a variable and
an allocation site if the allocation is assigned to the vari-
able. In the second phase, we find connected components
in the graph which is a linear time operation in number of

nodes and edges. Any two variables in the same connected
component may be aliased.

Shape specialization

Many important optimizations depend upon accurate in-
formation about shapes in the program, such as sizes and
strides of arrays as well as information about loop-bounds.
We have implemented a just-in-time shape specialization in
Velociraptor where the code is specialized based on shape in-
formation gathered at runtime. The analysis first performs
Region Analysis that finds regions of code that may benefit
from shape specialization. The identified regions are out-
lined into separate functions, and the compilation of these
outlined functions is delayed until they are called. When the
outlined functions are called, a shape inference pass deter-
mines the shape information and is used for code generation.
Details of our JIT specialization system can be found else-
where [9].

Array bounds-check elimination

Many array languages have array bounds-checks which can
be a significant overhead, particularly on GPUs. There are
many approaches of performing bounds-check elimination.
However, Velociraptor is a JIT compiler and thus compi-
lation time is an issue, thus we have chosen to implement
two fast, but effective, intra-procedural techniques that are
similar to previous work [14].

The first approach is based on elimination of redundant
checks. Consider an array A and consider two references
A[expr0, expr1] andA[expr0, expr2] which occur in the stated
order inside the loop where expr0, expr1 and expr2 are scalar
expressions. If the value of expr0 is the same in both array

323

references, then the bounds-check on the second instance of
expr0 can be eliminated.

The second approach is based upon moving some checks
outside the loop. Consider a nested loop L. The compiler
identifies a set S of array index expressions where each sub-
script is an affine function of loop variables. For each sub-
script in S, we generate a corresponding test outside the
loop. We generate a new version L′ of the loop where the
bounds-check for subscripts in S are disabled. If the gen-
erated tests pass at runtime, then L′ is executed otherwise
the original loop L is executed.

Load vectorization

Next, for GPU sections, we perform load vectorization, an
optimization where we attempt to merge loads into a single
packed load. On some GPUs, effective memory read band-
width for 128-bit loads is better than 64-bit or 32-bit loads.
Load vectorization attempts to identify the scalar 32-bit or
64-bit loads that can be combined into wider loads. We per-
form load vectorization for two array load operations that
have a distance of one (i.e. are contiguous), are known to be
within bounds and and proven to not have any read-write
dependencies in the loop.

CPU Code generation

The compiler compiles CPU code to LLVM. Considerable
work was required to generate code for various constructs in
VRIR. Some of the constructs that proved particularly chal-
lenging include parallel loops, the various flexible indexing
schemes in VRIR, handling multiple return values, handling
errors such as array out-of-bounds and finally handling li-
brary functions. VRIR has many library functions operating
on arrays, such as array addition and we provide implemen-
tations of these library functions. Our implementation calls
the BLAS where possible.

Memory reuse optimization for library functions

We have implemented a new optimization for CPU library
functions. Consider the statement: C = A + B where A,
B and C are arrays. Language semantics of most array
languages are that the expression A+B will allocate a new
array. A simple library function implementation will take
A and B as inputs, allocate a new array of the right size,
perform the computation and return the new array.

However, in some cases, the result array C may have a
previous definition and may already be of the required size.
In this case, we may be be able to avoid reallocating C.
Thus, we have implemented a modified library function that
takes C as input in addition to A and B, and checks if C is of
the right size. The compiler only calls this optimized library
function if C has a previous definition and if the array C

is not aliased with other arrays. Overall, this optimization
saves unnecessary memory allocations and reduces pressure
on the memory allocator and garbage collector.

GPU code generation

Inside GPU sections, library functions as well as parallel
loops are offloaded to the GPU. The GPU implementation
of library functions is provided by RaijinCL [10] while par-
allel loops are compiled to OpenCL kernels. Velociraptor
generates a task for VRRuntime for each computation to be
offloaded to the GPU. Each VRRuntime task requires the
specification of data dependences and Velociraptor gener-

ates this information. Control flow dependences, such as an
if-conditional choosing between two parallel loops, usually
need to be evaluated on the CPU. Velociraptor generates
explicit synchronization calls to VRRuntime if required by
control flow. Inside GPU sections, array allocations and
operations such as array slicing are also handled by VR-
Runtime. Thus, our compiler framework is responsible for
generation of correct code while our runtime manages the
actual execution of the GPU kernels and management of
GPU resources.

5. HIGH-PERFORMANCE RUNTIME
VRRuntime provides a simple GPU runtime API and takes

over the responsibility of data transfers and task dispatch
to the GPU, greatly simplifying the design of our compiler.
VRRuntime provides a task queue to Velociraptor’s com-
piler. Tasks encapsulate an operation such as a call to
an OpenCL kernel generated by Velociraptor from a user-
defined loop, a call to a library function such as matrix-
multiply, or some other operation such as array assignment
or slicing. Each task specifies the variables potentially read
and written by the task. Based upon the data dependence
information specified in the task, as well as actual aliasing
information obtained at runtime, VRRuntime automatically
determines the data transfers required between the CPU and
GPU for completion of the tasks.

In contrast to previous GPU runtime research such as
StarPU [2], our system is a higher level solution that is aware
of high-level VRIR array operators. Providing the high-level
API while providing optimizations such as asynchronous dis-
patch required solution of issues such as updating shape and
alias information and these solutions are discussed in Sec-
tion 5.2.

5.1 VRRuntime optimizations
VRRuntime has several important optimizations that al-

low for good performance:

Asynchronous dispatch

Enqueuing a task in VRRuntime is a non-blocking opera-
tion. The CPU thread that enqueued the operation can
then continue to do other useful work until the result of the
enqueued task is required on the CPU. At that point, the en-
queuing thread can request the runtime to return a pointer
to the required variable and VRRuntime will finish all nec-
essary pending tasks and return the variable. Asynchronous
dispatch allows the CPU to enqueue a large number of tasks
to the OpenCL GPU queue without waiting for the first
GPU task to finish. Inserting multiple kernels in the GPU’s
hardware job queue can keep it continuously busy, and lower
the overheads associated with task dispatch.

Copy-on-write optimizations

Consider the case where variable A is explicitly cloned and
assigned to variable B. VRRuntime does not perform the
cloning operation until required. For each computation sub-
mitted to VRRuntime after the copy, VRRuntime examines
the operands read and potentially written in the task us-
ing meta-information submitted to VRRuntime by the com-
piler. If VRRuntime does not encounter any computation
that may potentially write A or B after the deep copy, then
the deep copy operation is not performed. This is a varia-
tion of copy-on-write technique, where we can characterize

324

our technique as copy-on-potential-write. Copy-on-write has
been implemented for CPU arrays in systems such as MAT-
LAB [24], and for various CPU data-structures in libraries
such as Qt, but we implement it for GPU arrays.

Data transfers in parallel with GPU computation

Consider when two tasks are enqueued to VRRuntime. After
the first task is enqueued, instead of waiting for the first task
to finish, VRRuntime initiates the data transfer required for
the second task, if possible. Thus, the data transfer over-
heads can be somewhat mitigated by overlapping them with
computation. Under the hood VRRuntime maintains two
OpenCL queues because some OpenCL implementations re-
quire that data transfers be placed in a different OpenCL
queue if they are to be performed in parallel with computa-
tions.

5.2 Maintaining shape and alias information

Shape information

Our runtime offers a higher level API that is aware of vari-
ous array and matrix operators such as matrix multiplication
and array slicing in VRIR. Thus, in contrast to APIs such
as StarPU [2], our API allows the compiler to enqueue oper-
ators such as matrix multiplication without specifying any
additional details such as the size of the operands.

However, the kernels are dispatched to the OpenCL queue,
and OpenCL requires that the user of the API should spec-
ify the size of the execution domain of a kernel at the time
of enqueuing the kernel. Thus, VRRuntime needs to au-
tomatically find out the shape of arrays involved in these
higher-level operators at the time of enqueuing the kernel.
In a simple CPU library call, the parameters such as array
sizes are looked up at runtime from the array data-structure.
In our case, due to asynchronous dispatch, the operands of a
library call being enqueued may be the result of a previous
task that has not yet completed and thus may not have been
allocated yet. Further, the operands may never get allocated
on the CPU if they are not utilized on the CPU. Thus, we
cannot simply query CPU-side array data-structures to dis-
patch library calls on the GPU.

We solve the issue of shape information by maintaining
the information about shapes of array variables in a sepa-
rate table. The shape information maintained by VRRun-
time is the information about shape of the array that would
result if all the tasks that have been enqueued are completed.
Whenever a task is enqueued, this shape information table
is updated. For example, if a matrix multiplication call is
enqueued, we update the shape information of the result
array based upon shapes of the operands.

Alias and CPU-GPU synchronization information

Aliasing information is required to make correct decisions
about mapping of variables to GPU buffers. Consider two
arrays A and B. Some tasks may read/write A while some
other tasks read/write B. Each array has an address range
that it points to. Our strategy is that we want to allocate
a unique GPU buffer for each CPU address range poten-
tially accessed inside a kernel. Having a unique GPU copy
of each address range ensures correctness when there is a
data dependence within or across different kernels. If the
arrays are not aliased, then we can simply allocate one GPU
buffer corresponding to A, and a separate GPU buffer for B.

However, if the arrays are indeed aliased, then we allocate
a single GPU buffer that corresponds to the CPU address
range encompassing both A and B.

We have chosen a compiler-assisted solution to the prob-
lem. Velociraptor analyzes the GPU section and finds all
the arrays that may potentially occur inside the region and
specifies this list to VRRuntime at the beginning of a GPU
section. VRRuntime then constructs and maintains two ta-
bles of information. The first table contains information
about array variables including the address range of the ar-
ray, the GPU buffer corresponding to the array, the last
task dispatched that might potentially write to the array,
whether the CPU and GPU copy are synchronized and if
not then whether the CPU or the GPU copy contains the
freshest data. The second table has information about GPU
buffers such as the CPU address range it corresponds to and
the variables pointing to the GPU buffer. These tables are
updated whenever a task is enqueued or a synchronization
point is reached.

6. TWO CASE-STUDIES

6.1 McVM integration
McVM is a virtual machine for the MATLAB language.

McVM is part of the McLAB project, which is a modular
toolkit for analysis and transformation of MATLAB and ex-
tensions. McVM includes a type specializing just-in-time
compiler and performs many analysis such as live variable
analysis, reaching definitions analysis and type inference.
Prior to this work, McVM generated LLVM code for CPUs
only, and did not have any support for parallel loops or GPU
computations. We added two language constructs to McVM.
First, we added a parallel-for (parfor) loop. We have also
provided gpu begin() and gpu end() section markers that
indicate to the compiler that the section should be offloaded
to the GPU, if possible.

In Section 2, we describe that a compiler writer must pro-
vide a pass to identify which sections to compile using Ve-
lociraptor, and also needs to provide glue code. We provide
both of these pieces for McVM.

In this implementation, the method of choosing suitable
numerical sections is to only invoke Velociraptor to com-
pile parallel-for loops and GPU sections. We use McVM’s
existing code generation facilities for the rest of the pro-
gram because McVM’s LLVM based CPU code generator
already implements some optimizations. We made the fol-
lowing modifications to McVM in order to support parfor
loops and GPU sections. After McVM has finished type in-
ference, McVM looks for parfor loops and GPU sections and
first verifies that the code can be compiled to VRIR. For ex-
ample, if some of the types were unknown, then they cannot
be compiled to VRIR. If the code cannot be compiled to
VRIR, then code is converted to serial CPU code and han-
dled by McVM’s usual code generator. If the code passes
verification, then McVM outlines these new constructs into
special functions, compiles them into XML representation
of VRIR, then asks Velociraptor to compile and return the
function pointers to the outlined code. The original code is
then replaced by a call to the outlined function. In MAT-
LAB, arguments are passed into functions by value. How-
ever, we have implemented calls to outlined functions as
call-by-reference because the side effects in the outlined code

325

need to propagate back to the original function for correct-
ness.

We have also provided glue code for exposing McVM’s in-
ternal data-structures to Velociraptor. This required provid-
ing a McVM-specific implementation of Velociraptor’s ab-
stract memory allocation APIs, telling Velociraptor about
MATLAB language semantics (such as using one-based in-
dexing), exposing LLVM representation of various array classes
and providing macros and functions for field access of array
class members.

6.2 Python integration
We have written a proof-of-concept compiler for a numeric

subset of Python, including the NumPy library, that inte-
grates with the standard Python [18] interpreter.

As described in Section 2, any implementation needs to
identify and outline numerical sections and needs to provide
glue code. In our prototype, we require that the program-
mers outline suitable numerical sections manually. The idea
is that only a few numerical functions in a Python program
are compiled, while the rest of the program is interpreted by
the Python interpreter. As for glue code, we have provided
all the glue code necessary to interface Velociraptor with
the necessary data structures in CPython and the NumPy
library. We have provided glue code in C++ using the
Python/C API for exposing NumPy arrays to Velociraptor,
for exposing reference counting mechanism of Python inter-
preter to Velociraptor, and for reporting the out-of-bounds
exceptions generated in code compiled by Velociraptor back
to the user. We wrote a little glue code in C++ to wrap
the function pointers returned by Velociraptor into Python
functions.

Now we briefly describe the language constructs handled
and extensions provided by our Python compiler. Our com-
piler can handle scalar numerical datatypes, NumPy arrays
and tuples. Many of the commonly used constructs are
handled including for-loops, while-loops, conditionals, var-
ious array indexing and slicing operators as well as many
math library functions for arrays. We currently require that
the programmer provides the type signature of the function
through a decorator we have defined, and then our compiler
infers the type of the local variables. We require that the
type of a variable not change within a function. Some of
these limitations can be removed if a just-in-time type spe-
cializing compiler is implemented. However, this is out of
scope of this paper.

We have provided several extensions to the Python lan-
guage to enable use of multi-cores and GPUs. First, we
have defined a parallel-for loop by defining a special func-
tion prange, and have defined that any for-loop that iterates
over a prange will run in parallel. Second, we have defined
prange to return a multi-dimensional domain object rather
than a single-dimensional range. Finally, we also provide
constructs (gpu begin() and gpu end()) that act as markers
to annotate blocks of code to be executed on the GPU.

In this compiler, all the code generation is handled by
Velociraptor. The frontend of the compiler is written in
Python itself. Python has a standard library module called
ast which provides functionality to construct an AST from
Python source code. Our frontend uses this module to con-
struct untyped ASTs. Then our Python compiler performs
type inference on this AST by propagating the types of the
function parameters provided by the user into the body of

the function. The function is then compiled by our Python
compiler to VRIR in a separate pass.

6.3 Development Experience
For Python, where we required the programmer to manu-

ally separate the numerical sections, the development expe-
rience was very straightforward. For McVM, we found that
building the outlining infrastructure was the most challeng-
ing aspect of the project. McVM maintains various internal
data-structures holding information from various analyses
such as live variable analysis. After outlining, all such anal-
ysis data-structures need to be updated and doing this cor-
rectly required some effort. However, once outlining was
done, generating VRIR was straightforward.

Overall, we found that using Velociraptor enabled some
saving in the development time of both compilers. As an
indirect estimate, we can look at the number of lines of code
(LoC) required. For McVM, the integration required about
5000 lines of code and we think that there is further possi-
bility of reduction in LoC through better refactoring. Our
Python compiler required only about 4000 lines of C++ and
300 lines of Python which is substantially smaller than Ve-
lociraptor. Velociraptor itself is about 11000 lines of code.
Further, some of the implementation details of Velociraptor
are quite subtle, such as asynchronous dispatch and require
effort much beyond what the LoC metric suggests. Code
reuse across different compilers really improved the devel-
opment experience. For example, if a McVM test case failed
and was found to be a Velociraptor bug, then fixing the bug
often also benefited our Python compiler.

A secondary benefit of our design is that the technique
of upfront identification and separation of well-behaved nu-
merical sections from other parts of the program turned out
to be very useful. Analysis and optimizations operating on
VRIR can be more aggressive in their assumptions and can
be simpler and faster to implement compared to an IR de-
signed for representing the entire program. We have been
able to very quickly prototype ideas about optimizations in
Velociraptor without worrying about the full, and poten-
tially very complicated, semantics of languages like MAT-
LAB.

7. CASE STUDIES: EXPERIMENTAL

RESULTS
Although the focus of this paper is the semantics of VRIR

and design of the toolkit, we also wanted to see what the po-
tential performance benefits could be. To get a first idea of
the performance possibilities, we evaluated the performance
of code generated by Velociraptor for both CPUs and GPUs
on a variety of Python and McVM benchmarks.

7.1 Machine information
Our experiments were performed on two different ma-

chines containing GPUs from two different families. De-
scriptions of the machines are as follows:

1. Machine M1: Core i7 3820, 2x Radeon 7970, 8GB
DDR3, Ubuntu 12.04, Catalyst 13.4

2. Machine M2: Core i7 920, Tesla C2050, GTX 480, 6GB
DDR3, Ubuntu 12.04, Nvidia driver version 280.13.

Machine M1 and M2 contain two GPUs each. We used one
Radeon 7970 and Tesla C2050 respectively for computation,

326

and reserve the other GPU in each machine for handling
display duties. We used CPython v3.2, PyPy 2.1 and MAT-
LAB R2013a 64-bit in tests. Each test was performed ten
times and we report the mean.

7.2 McVM performance
For McVM, we looked at benchmarks used by previous

projects such as McVM and MEGHA [16] and chose four
parallelizable benchmarks and added GPU annotations. The
benchmarks in this section make heavy use of implicitly par-
allel vectorized operators such as vector arithmetic opera-
tors. We distinguish three cases here: McVM performance
without Velociraptor, multi-core performance with Veloci-
raptor and GPU-accelerated performance with Velociraptor.
We used MATLAB as the baseline and report performance
in Table 1 as speedups over MATLAB.

All the benchmarks contained GPU sections. For the
Velociraptor generated GPU version, we tested under four
settings: Velociraptor compiler and runtime optimizations
enabled, compiler optimizations disabled but runtime opti-
mizations enabled, compiler optimizations disabled but run-
time optimizations disabled and finally both compiler and
runtime optimizations disabled.

However, in order to compare McVM and Velociraptor
generated CPU code, we also ran the tests where we forced
Velociraptor to only generate CPU code. We found that the
CPU code generated by Velociraptor was never slower than
the code generated by McVM’s LLVM-based backend and
thus there is no disadvantage in using Velociraptor even for
CPU code.

For the GPU version, Velociraptor runtime optimizations
provide up to 15% increase in performance. This is primar-
ily due to asynchronous dispatch implemented in the run-
time. Asynchronous dispatch allows the CPU to enqueue a
large number of tasks without waiting for the GPU to finish.
Synchronous dispatch adds overhead for waiting upon com-
pletion of kernel calls and this overhead can be significant
for small kernels such as vector addition.

7.3 Python performance
We evaluated Python performance on four Python bench-

marks. These benchmarks come from a set of Python bench-
marks proposed by members of NumPy community. We
added type, parallelization and GPU section annotations in
these benchmarks.

We tested our compiler on three different versions of each
benchmark: a serial CPU version, a parallel CPU version
and a GPU version. For the CPU versions, we we tested the
code generation in two cases: with Velociraptor optimiza-
tions enabled and disabled. For the GPU version, we tested
under four settings similar to the ones discussed in previous
section. Finally, we measured the the performance of the
PyPy 2.1 implementation of Python. PyPy has its own JIT
compiler and we found that PyPy was significantly faster
than CPython on these benchmarks and thus we use PyPy
as a realistic baseline. The results are presented in Table 2
as speedups over PyPy.

We observed that serial unoptimized CPU code generated
by Velociraptor is between 3 to 37 times faster than PyPy
depending upon the benchmark. Parallel CPU code gener-
ated by Velociraptor was generally two to six times faster
than serial CPU code generated by Velociraptor. We used
quad-core processors and more than four times speedup can

be explained by the fact the CPUs are hyper-threaded and
run eight threads. Optimized GPU code generated by Ve-
lociraptor can be up to seven times faster than generated
optimized parallel CPU code provided that the data trans-
fer overhead is not substantial.

Compiler optimizations provided between 1% to 35% per-
formance improvement on CPUs and between 1% and 52%
performance improvement on GPUs depending upon the
benchmark. We observed that the compiler eliminated be-
tween 50 and 100 percent of array bounds-checks in the in-
nermost loop in these benchmarks.

8. RELATED WORK
There has been considerable interest in using GPUs from

dynamic array-based languages. The earliest attempts have
been to create wrappers around CUDA and OpenCL API
that still require the programmer to write the kernel code
by hand and exposing a few vendor specific libraries. Such
attempts include PyCUDA [11] and PyOpenCL [12]. The
current version of MATLAB’s proprietary parallel comput-
ing toolbox also falls in this category at the time of writing.
Our approach does not require writing any GPU code by
hand.

There has also been interest in compiling array-based lan-
guages to GPUs. Copperhead [5] is a compiler that generates
CUDA from annotated Python code. Copperhead does not
handle loops, but instead focuses on higher-order functions
like map. jit4GPU [8] was a dynamic compiler that com-
piled annotated Python loops to AMD’s deprecated CAL
API. Theano [3] is a Python library that compiles expres-
sion trees to CUDA. In addition to GPU code generation,
it also includes features like symbolic differentiation. Para-
keet [21] is a compiler that takes as input annotated Python
code and generates CUDA for GPUs and LLVM for CPUs.
MEGHA[16] is a static compiler for compiling MATLAB to
mixed CPU/GPU system. Their system required no annota-
tions, and discovered sections of code suitable for execution
on GPUs through profile-directed feedback. Jacket [17] is a
proprietary add-on for MATLAB that exposes a large library
of GPU functions, and also has a compiler for generating
GPU code for limited cases. Numba [15] is a NumPy-aware
JIT compiler for compiling Python to LLVM. The work has
some similarities to our work on the CPU side, including
support for various array layouts, but it is tied to Python
and therefore does not support the indexing schemes not
supported by Python. Numba also provides an initial pro-
totype of generating CUDA kernels, given the body of the
kernel (equivalent to the body of a parallel loop) in Python.
However, it assumes the programmer has some knowledge of
CUDA, and exposes some CUDA specific variables (such as
thread-block index) to the programmer. Furthermore, un-
like our work, it is not a general facility for annotating entire
regions of code as GPU-executable and will mostly be useful
for converting individual loop-nests to CUDA.

One possible approach to building a multi-language com-
piler for GPUs is to compile bytecode of high-level VMs to
GPUs. This is complementary to our approach and there are
two recent examples of this approach. AMD’s Aparapi [1]
provides a compiler that compiles Java bytecode of a method
to an OpenCL kernel body, and the generated kernel can
then be applied over a domain. Unlike VRIR, which con-
tains multi-dimensional arrays and high-level array opera-
tors, Aparapi is a low-level model where only one-dimensional

327

Benchmark Machine McVM Velociraptor CPU GPU accelerated
Compiler opts N/A No Yes No Yes No Yes
Runtime opts N/A N/A N/A No No Yes Yes

clos
M1 0.99 0.99 0.98 3.18 3.22 3.20 3.25
M2 1.0 0.99 0.99 2.24 2.18 2.24 2.28

nb1d
M1 1.58 1.50 1.61 2.92 2.88 3.04 3.04
M2 1.30 1.34 1.45 3.40 3.37 3.62 3.61

nb3d
M1 0.2 0.51 0.54 1.64 1.67 1.72 1.72
M2 0.22 0.72 0.72 2.43 2.40 2.63 2.63

fdtd
M1 0.15 0.47 0.47 1.92 1.90 1.97 1.97
M2 0.13 0.54 0.53 2.04 2.04 2.12 2.08

Table 1: Speedup of McVM + Velociraptor generated code over MATLAB JIT

Benchmark Machine CPU Serial CPU Parallel GPU accelerated
Compiler opts No Yes No Yes No Yes No Yes
Runtime opts N/A N/A N/A N/A No No Yes Yes

arc-distance
M1 3.36 4.15 9.84 11.64 8.19 9.3 8.33 9.63
M2 3.12 3.55 10.9 11.91 8.84 9.75 8.59 9.72

julia
M1 34.8 37.0 213.4 214.8 1517 1502 1525 1511.8
M2 37.0 37.5 170.2 172.2 729.3 775.8 744 756

growcut
M1 13.3 18.5 42.8 60.1 118.1 168.4 116.6 173.4
M2 11.5 15.4 37.9 49.7 90.3 137.9 93.2 137.7

rosen-der
M1 15.5 18.7 31.1 40.0 32.6 33.8 32.9 34.1
M2 12.9 15.7 25.0 29.4 25.6 28.0 25.6 28.4

Table 2: Speedup of CPython + Velociraptor generated code over PyPy JIT

arrays are allowed with Java’s simple indexing operators.
Dandelion [20] is a LINQ style extension to .net that cross-
compiles .net bytecode to CUDA. The programming style
for LINQ is quite different from the loop and array-operator
based approach in our work.

To our knowledge, there has not been prior work on em-
beddable or reusable compilers for GPUs. The only work
in this area that we are aware of is NOVA [7]. NOVA is a
static compiler for a domain-specific compiler for a new func-
tional language and it generates CUDA code. Velociraptor
and NOVA provide different programming styles (impera-
tive loop and array-based vs functional respectively) and dif-
ferent compilation models (dynamic vs static respectively).
Collins et al. claim that NOVA can be used as an embedded
domain-specific language but did not show any such embed-
ded uses whereas we integrated our toolkit in two compilers.

To summarize, in contrast to previous research, our toolkit
is an embeddable and reusable compiler targeting both CPUs
and GPUs and is not limited to one programming language.
We have carefully considered the variations of array index-
ing schemes, array layout semantics and array operators of
the programming languages and offer a complete solution
for popular scientific computing languages.

However, while we described the differences from previous
research, our toolkit is meant to complement and enable, not
compete, with other compiler researchers. Had our tools
existed earlier, most of the previously mentioned systems
could have used it while focusing their time elsewhere. For
example, MEGHA’s automatic identification of GPU sec-
tions, the type inference work of Parakeet or Theano’s work
on symbolic facilities are all complementary to our work.
We believe toolkits such as Velociraptor will free other re-
searchers to work on various open problems in programming

language design and implementation rather than spend the
time writing backends or design GPU runtimes.

9. CONCLUSIONS AND FUTURE WORK
The development of JIT compilers for array-based lan-

guages to produce efficient CPU and GPU code is an im-
portant problem. In some cases, compiler writers may be
writing entirely new language runtimes. In other cases, lan-
guage implementors are more interested in evolving current
language runtimes for the sake of compatibility and devel-
opment time.

We first discussed some design goals of our project and
how certain designs are ruled out because of constraints such
as handling existing language runtimes. Based on our design
goals, we proposed a toolkit-based approach to simplify the
building of JIT compilers for array-based languages. We
have presented an embedded toolkit that can be used by
compiler writers inside their own compiler to compile nu-
merical array-based code to both CPU as well as GPU code.
The toolkit is reusable across two languages. We discussed
a new high-level IR called VRIR to achieve this language
portability. VRIR can be used to express a wide variety
of core array-based computations and can contain code sec-
tions for both CPUs and GPUs. The toolkit is designed
to be embedded inside existing language implementations.
In order to simplify the evolution of existing codebases, our
toolkit does not require rewriting of data-structures such as
array representations inside the language runtime.

The toolkit provides optimization and code generation fa-
cilities as well as a GPU runtime. Compiler writers can sim-
ply generate VRIR for key parts of their input programs, and
then use Velociraptor to automatically generate CPU/GPU
code for their target architecture. Our compilation engine

328

and runtime library takes care of many issues, including the
communication between the CPU and GPU as well as cap-
turing errors. We have implemented many standard analysis
and optimizations. While some general optimization tech-
niques are well-known, we faced some challenges in adapting
them to our framework. We discuss our solutions to prob-
lems such as as asynchronous dispatch of GPU kernels and
reusing memory allocations in CPU library functions to our
system.

To demonstrate the toolkit, we used it in two very different
projects. The first project was using the toolkit to extend
a MATLAB JIT, from McVM, to handle GPU computa-
tions. The second is a proof-of-concept compiler for Python,
which was written as an add-on to the existing CPython im-
plementation, where we used both the CPU and GPU code
generation capabilities of Velociraptor.Thus, we showed that
Velociraptor can handle the language semantics of two dif-
ferent languages, and that our APIs and implementation are
generic enough to be interfaced with two different existing
language runtimes.

For our framework, now that the toolkit is established
and we have two prototype applications of the toolkit, we
are working on refining those prototypes and adding further
optimizations and transformations to the generated code as
well as adding more backends such as a static CPU backend.
We are also working on performance studies with a broad
range of CPU-GPU hybrid systems and on a much larger
benchmark set.

To summarize, we demonstrated that a toolkit based ap-
proach can work for building compilers for array-based lan-
guages. A shared, reusable toolkit can be very useful for the
community and our presented compiler toolkit is the first
such framework. We hope that other researchers will use
our toolkit for their own compilers. Most importantly, we
view our toolkit as a starting point and we hope that our
work will spark the discussion in the community about the
need and potential designs of such toolkits.

10. REFERENCES

[1] Advanced Micro Devices Inc. Aparapi.
http://code.google.com/p/aparapi/.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A.
Wacrenier. StarPU: A Unified Platform for Task
Scheduling on Heterogeneous Multicore Architectures.
Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, 23:187–198,
Feb. 2011.

[3] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,
R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio. Theano: a CPU and
GPU math expression compiler. In SciPy 2010, June
2010.

[4] J. Bezanson, S. Karpinski, V. B. Shah, and
A. Edelman. Julia: A fast dynamic language for
technical computing. CoRR, abs/1209.5145, 2012.

[5] B. Catanzaro, M. Garland, and K. Keutzer.
Copperhead: compiling an embedded data parallel
language. In PPOPP 2011, pages 47–56, 2011.

[6] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge.
Optimizing MATLAB through just-in-time
specialization. In CC 2010, pages 46–65, 2010.

[7] A. Collins, D. Grewe, V. Grover, S. Lee, and
A. Susnea. NOVA : A functional language for data
parallelism. Technical report, Nvidia Research, 2013.

[8] R. Garg and J. N. Amaral. Compiling Python to a
hybrid execution environment. In GPGPU 2010, pages
19–30, 2010.

[9] R. Garg and L. Hendren. Just-in-time shape inference
for array-based languages. In ARRAY’14 workshop at
PLDI 2014, 2014.

[10] R. Garg and L. Hendren. A portable and
high-performance general matrix-multiply (GEMM)
library for GPUs and single-chip CPU/GPU systems.
In Proceedings of 22nd Euromicro International
Conference on Parallel, Distributed and network-based
Processing, Special session on GPU computing, 2014.

[11] A. Klöckner. PyCUDA.
http://mathema.tician.de/software/pycuda.

[12] A. Klöckner. PyOpenCL web page.
http://mathema.tician.de/software/pyopencl.

[13] MathWorks. MATLAB: The Language of Technical
Computing.

[14] N. T. V. Nguyen, F. Irigoin, C. Ancourt, and
R. Keryell. Efficient intraprocedural array bound
checking. Technical report, Ecole des Mines de Paris,
2000.

[15] T. Oliphant. Numba Python bytecode to LLVM
translator. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June 2012. Oral
Presentation.

[16] A. Prasad, J. Anantpur, and R. Govindarajan.
Automatic compilation of MATLAB programs for
synergistic execution on heterogeneous processors. In
PLDI 2011, pages 152–163, 2011.

[17] G. Pryor, B. Lucey, S. Maddipatla, C. McClanahan,
J. Melonakos, V. Venugopalakrishnan, K. Patel,
P. Yalamanchili, and J. Malcolm. High-level GPU
computing with Jacket for MATLAB and C/C++.
Proceedings of SPIE (online), 8060(806005), 2011.

[18] Python.org. Python Programming Language: Official
Website.

[19] R-project.org. The R Project for Statistical
Computing.

[20] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and
D. Fetterly. Dandelion: a compiler and runtime for
heterogeneous systems. In SOSP’13: The 24th ACM
Symposium on Operating Systems Principles, 2013.

[21] A. Rubinsteyn, E. Hielscher, N. Weinman, and
D. Shasha. Parakeet: A just-in-time parallel
accelerator for Python. In HotPar 12, 2012.

[22] SciPy.org. NumPy: Scientific Computing Tools for
Python.

[23] D. S. Seljebotn. Fast numerical computations with
Cython. In G. Varoquaux, S. van der Walt, and
J. Millman, editors, Proceedings of the 8th Python in
Science Conference, pages 15 – 22, Pasadena, CA
USA, 2009.

[24] L. Shure. Memory management for functions and
variables.
http://blogs.mathworks.com/loren/2006/05/10/

memory-management-for-functions-and-variables/.

329

