
Velociraptor: A Compiler Toolkit for Array-Based
Languages Targeting CPUs and GPUs

Rahul Garg

McGill University, Canada

rahul.garg@mail.mcgill.ca

Sameer Jagdale

McGill University, Canada

sameer.jagdale@mail.mcgill.ca

Laurie Hendren

McGill University, Canada

hendren@cs.mcgill.ca

Abstract

We present a toolkit called Velociraptor that can be used by com-
piler writers to quickly build compilers and other tools for array-
based languages. Velociraptor operates on its own unique inter-
mediate representation (IR) designed to support a variety of array-
based languages. The toolkit also provides some novel analysis and
transformations such as region detection and specialization, as well
as a dynamic backend with CPU and GPU code generation. We
discuss the components of the toolkit and also present case-studies
illustrating the use of the toolkit.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers

General Terms Languages, Performance

Keywords Compiler framework for Array-Based Language, MAT-
LAB, Python

1. Introduction

Dynamic array-based languages have become extremely popular
for scientific computing. While these languages are very produc-
tive, many implementations of these languages don’t offer good
performance. There has been a lot of interest in building compiler
infrastructure for these languages.

In this paper, we describe a compiler toolkit called Velocirap-
tor that can be used by compiler writers to build compilers and
other tools for array-based languages. Velociraptor is an optimiz-
ing dynamic compilation framework that generates LLVM [10] for
CPUs and OpenCL for GPUs respectively. We have described Ve-
lociraptor in previous publications [7, 8]. In this paper, our goal
is to describe the software architecture and discuss how it may be
used by the compiler community to build compiler infrastructure
for array-based languages.

Velociraptor is not a standalone compiler. Instead it is a library
that is designed to be integrated or embedded into an existing
language implementation. We describe the system design of how
a compiler may integrate Velociraptor in Section 2. Velociraptor
takes as input it’s own IR called VRIR. This IR is described in
Section 3. Velociraptor is a modular framework and divided into

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ARRAY’15, June 13-14, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3584-3/15/06. . . $15.00.
http://dx.doi.org/10.1145/2774959.2774967

separate components. We describe these components in Section 4.
More details of how Velociraptor may be embedded into a compiler
are discussed in Section 5. We discuss some case-studies of using
the compiler toolkit for dynamic compilers for MATLAB [11] and
Python in Section 6. We discuss some alternate use-cases, including
a static backend for Velociraptor, and also offer some ideas of
how the toolkit may be used or extended by the community in
Section 7. We refer the reader to our webpage1 for instructions
on obtaining our toolkit, the case-studies, code samples and other
documentation.

2. Overall Design

Consider a typical just-in-time (JIT) compiler for a dynamic lan-
guage targeting CPUs shown in Figure 1. Such a compiler takes
program source code as input, converts into its intermediate rep-
resentation, does analysis (such as type inference), possibly does
code transformations and finally generates CPU code.

Source

Type Inference

Optimization and
CPU codegen

CPU code

Frontend

Language Runtime

Figure 1: Possible design of a conventional compiler targeting
CPUs.

Let us assume that the existing compiler is targeting serial CPU
execution, and may not implement many optimizations. Now con-
sider that a JIT compiler developer wants to extend this existing
compiler to introduce optimizations such as bounds-check elimi-
nation, introduce parallelization for multi-cores and also efficiently
target GPUs.

We have built the Velociraptor toolkit to simplify the building of
compilers that want to efficiently compile numerical computations
to CPUs and GPUs. The key idea is that Velociraptor is embedded
inside the original compiler and takes over the duties of generating
code for numerical sections of the program. Numerical sections of

1 http://www.sable.mcgill.ca/mclab/projects/velociraptor

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ARRAY’15, June 13, 2015, Portland, OR, USA
c© 2015 ACM. 978-1-4503-3584-3/15/06...$15.00

http://dx.doi.org/10.1145/2774959.2774967

19

Source + GPU
Annotations

Type Inference

Optimization and
CPU codegen

Non numeric
CPU code

Frontend

Language Runtime

Glue

New IR: VRIR

Velociraptor

Identify and outline
numerical sections

Non-numeric
sections

Containing Compiler

Provided Tool

Addition to Containing Compiler

Generated Code

Analysis and transformation Infrastructure

CPU + GPU Codegen

CPU (LLVM) Accelerator (OpenCL)

VRRuntime (GPU Runtime)

Figure 2: Extending the containing compiler through provided tools

the program may include numerical computations that execute on
the CPU, as well as numerical computations that are annotated to
be executed on GPUs.

We call the compiler that embeds our tools as the containing
compiler. Figure 2 demonstrates how our approach cleanly inte-
grates with a containing compiler. The figure shows the original
parts of the containing compiler in dark. The toolkit described in
this paper is shown in shaded box on the right. The components of
the toolkit are discussed in Section 4.

The compiler writer who is integrating our tools into the con-
taining compiler needs to add two new components to the con-
taining compiler, and these are shown in white boxes. These two
components can be understood in terms of our design goals.

The first design goal was to ensure that Velociraptor is not tied
to a single source language. To achieve this goal, we introduced
a new flexible IR called VRIR. Velociraptor takes VRIR as input
which ensures that it is not tied to a single source language. The
compiler writer integrating Velociraptor needs to add new passes
to the containing compiler to generate VRIR from the numerical
sections of the program.

Our second design goal was to think of Velociraptor as a com-
ponent used to extend or enhance a compiler toolchain and not on
rewriting from scratch or providing an alternate virtual machine en-
vironment. We wanted to ensure that the internal data structures of
the existing implementation typically exposed in the C/C++ API
are preserved as far as possible. For example, many libraries de-
pend upon CPython’s C API and therefore a dynamic compiler in-
tegrating with CPython should not require a change in the data-
structures exposed through this API. We have achieved this design
goal by introducing glue code which abstracts away the internals of
the language runtime from Velociraptor.

The components that need to be added to the containing com-
piler are described in more detail in Section 5. We illustrate how
to use Velociraptor by describing two-case studies (McVM [3] and
PyRaptor) about integrating Velociraptor into a containing com-
piler in Section 6.

3. VRIR

A key design decision in our approach is that the numeric com-
putations should be separated from the rest of the program, and
that our IR should concentrate on those numerical computations.
We have designed VRIR to meet these goals. VRIR is a high-level,
procedural, typed, abstract syntax tree (AST) based program repre-
sentation. The distinguishing feature of VRIR is that it contains a
rich array datatype that makes it easy to generate VRIR from array-
based languages. VRIR also has support for high-level parallel and
GPU programming constructs.

Structurally, each AST node in VRIR may have certain named
attributes and may have children. Named attributes are essentially
name/value pairs where the value can be one of four types: integers
(such as integer id of a symbol), boolean, floating point (such as
value of a floating-point constant occurring in the code) or a string
(such as a name). We have defined C++ classes corresponding to
each tree node type. We have also defined an S-expression based
textual representation of VRIR. Containing compilers can generate
the textual representation of VRIR and pass that to Velociraptor, or
alternatively can use the C++ API directly to build the VRIR trees.
The syntax for the textual representation for a VRIR node consists
of the node name, followed by attributes and then children which
are themselves VRIR nodes. An example is shown in Figure 4.

d ef myfunc (a : P yIn t32 , b : P y I n t 3 2) : P y I n t 3 2
c = a+b
re tu rn c

Figure 3: Example of a Python function with type declaration

(function "myfunc"
(fntype (int32vtype int32vtype) (int32vtype))
(symtable

(0 "a" int32vtype)
(1 "b" int32vtype)
(2 "c" int32vtype))

(args 0 1)
(body

(assignstmt
(lhs

(nameexpr 2 int32vtype))
(rhs

(plusexpr int32vtype
(nameexpr 0 int32vtype)
(nameexpr 1 int32vtype))))

(returnstmt
(exprs

(nameexpr 2 int32vtype)))))

Figure 4: VRIR generated from example Python code

In this paper, we focus on a high-level description due to space
constraints. A detailed grammar of textual representation of VRIR,
written using notation used by ANTLRv3 parser generator, is avail-
able on our website. More samples of VRIR generated by our tools
from some sample programs are also available. VRIR has also been
described in a previous publication [8].

3.1 Overview

VRIR is a procedural IR. The top-level component in VRIR is a
module, which consists of one or more functions. Similar to famil-
iar programming languages such as C or Python, functions contain
a sequence of statements. We support usual structured program-
ming constructs such as assignment statements, if/else condition-

20

als, while-loops, for-loops, break and continue statements and re-
turn statements. VRIR type system consists of scalar types such
as floating-point datatypes, array datatypes, function types and a
unit type similar to void type in C. Array datatypes consist of an
element-type, number of dimensions and the layout (row-major,
column-major or strided).

3.2 Array Operators

VRIR has a rich and flexible array datatype. The array data-type
supports multiple types of layouts (row-major, column-major and
strided). Array-based languages often have diverse array index-
ing and slicing schemes. Therefore, we support various indexing
and slicing modes such as zero and one-based indexing and also
whether or not to use negative indexing similar to Python’s neg-
ative indexing. Such properties are usually specified as node at-
tributes of suitable indexing nodes. In addition, we also allow spec-
ifying whether or not to enable bounds-checks on a particular array
subscript. This allows the containing compiler to convey any know-
ledge it may have about the array subscripts to Velociraptor. Finally,
we also support many array operators such as array addition and
matrix multiplication. Overall, the rich support of array constructs
in VRIR makes it easy to generate from array-based languages.

3.3 Parallelism for CPUs and GPUs

VRIR supports parallel-for loops, which are loops defined over a
multi-dimensional domain where each iteration can be executed in
parallel. In parallel-for loops, variables are classified into thread-
local variables and shared variables. Each iteration of the parallel-
for loop has a private copy of thread-local variables while shared
variables are shared across all the iterations. The list of shared
variables of a parallel-for loop needs to be explicitly provided by
the containing compiler.

Any statement list can be marked as an GPU section, and it is
a hint for Velociraptor that the code inside the section should be
executed on a GPU, if present. Velociraptor and its GPU runtime
(VRruntime) infer and manage all the required data transfers be-
tween the CPU and GPU automatically. At the end of the section,
the values of all the variables are synchronized back to the CPU,
though some optimizations are performed by Velociraptor and VR-
runtime to eliminate unneeded transfers.

4. Toolkit Components

Velociraptor consists of a code-generation component that takes
VRIR as input and generates CPU and GPU code. The code gen-
eration component is further sub-divided into two separate com-
ponents. The first component is a target-independent analysis and
transformation infrastructure called libVRIR described in Section
4.1. VRIR and analysis information generated from this component
is then fed into our dynamic backend VRdino described in Section
4.2 which does further optimization and code-generation. The code
generation component is complemented by a smart GPU runtime
called VRruntime and it is described in Section 4.3.

4.1 Target Independent Analysis and Optimizations:
libVRIR

The first compiler component is a library called libVRIR that in-
cludes several analysis and transformation passes. libVRIR is not
tied to any particular backend and can be used to build both static
and dynamic tools. libVRIR is written in C++ and it only depends
on ANTLRv3 C runtime. The minimal library dependence ensures
that libVRIR is very easy to build and is typically the first com-
ponent that a compiler writer integrating Velociraptor will interact
with or explore. We also provide a simple utility called vrirfront
built using libVRIR that takes as input VRIR textual representation

and attempts sanity checking such as parsing and simplification.
This tool can be used by compiler writers during development to
verify that the VRIR generated by their tools can pass basic testing.

Alias Analysis

Region Detection Analysis

Region Outlining

live variable analysis

Preliminary bounds-check
elimination

Inlining

VRIR Parsing

VRIR + Analysis Information

VRIR Textual Representation

Figure 5: libVRIR analysis and transformation library for VRIR

The passes included in libVRIR are shown in Figure 5. The first
phase is a parser for VRIR textual representation that generates
VRIR AST data-structure. This is followed by a simplification
pass that breaks down complex expressions such as complex array
expressions. One of the goals of the simplification pass is to ensure
that expressions that may allocate arrays, such as array addition,
are top-level expressions in statement and not sub-expressions.
This simplifies subsequent analysis phases. Simplification pass is
a mandatory pass and should be called by any tool using libVRIR.
Simplification is followed by several optional analysis passes such
as live variable analysis.

We also have a preliminary bounds-check elimination pass that
implements two approaches of eliminating bounds-checks. The
first approach is based on the observation that many loops often
have known integer constant (such as 0 or 1) as loop lower bound,
and the loop step is a positive known constant. Consider an array
reference A[i], where A is a one-dimensional array and i is the
loop index. In such cases, depending on the indexing scheme (0
or 1 based) and the values of the loop lower bound and loop step,
the lower bound check as well as the negative indexing check may
be eliminated. The second approach is based on elimination of
redundant checks.

libVRIR implements a region detection analysis, which we de-
scribed in a previous publication [7]. The idea is to identify regions
which the compiler may be able to optimize or specialize using in-
formation about values or shapes of certain variables at runtime.
However, given the cost of runtime specialization, such regions
should contain potentially expensive operations such as loops or ar-
ray library operations. Further, these regions should be analyzable
and self-contained. We call such regions as potentially interesting
regions (PIRs). libVRIR provides an optional pass to identify such
PIRs, and also another optional pass to outline these regions into
separate functions.

21

4.2 VRdino: Dynamic Backend

LLVM OpenCL

Immediate compilation of
original functions

Delayed JITcompilation for
Region Specialization

Region Shape InferenceCPU + GPU Optimization
and Codegen

Bounds- Check Elimination

LLVM OpenCL

CPU + GPU Optimization
and Codegen

Original functions Outlined Regions

Alias Analysis

VRIR + Analysis Information

Figure 6: VRdino dynamic backend for Velociraptor

The next component is a dynamic code generation backend
called VRdino that takes VRIR output from libVRIR and generates
LLVM and OpenCL for CPUs and GPUs respectively. VRdino per-
forms runtime specialization of regions identified using region de-
tection analysis in libVRIR. The original functions are immediately
compiled to LLVM and OpenCL. However, the identified regions
are not immediately compiled. Instead, they are replaced with stub
functions. When program execution reaches the stub function, the
stub function invokes VRdino. VRdino examines the actual value
of the function parameters and based on this information, performs
shape inference and alias analysis. VRdino then performs bounds-
check elimination based upon shape inference information. Finally,
these regions are compiled to CPU and GPU code. Thus, region
specialization allows VRdino to perform sophisticated optimiza-
tions at runtime.

VRdino depends upon libVRIR, LLVM, OpenCL driver, Open-
BLAS and RaijinCL. RaijinCL is a GPU matrix operations library
that we have described in a previous publication [6].

4.3 VRruntime: Dynamic Runtime for VRdino

VRruntime efficiently manages GPU memory, CPU-GPU synchro-
nization and task dispatch. VRruntime includes many optimiza-
tions such as avoiding redundant transfers, using all available GPU
execution queues and asynchronous dispatch of work to the GPU.
VRruntime is tightly integrated with VRdino and is built as part of
the build process of VRdino. VRruntime is completely transparent
to the containing compiler, and the containing compiler does not
need to do any work to use VRruntime.

5. Embedding Velociraptor

As we discussed previously, integration Velociraptor into a contain-
ing compiler requires integrating Velociraptor into the code gener-
ation infrastructure and the language runtime. These are described
in Section 5.1 and Section 5.2 respectively.

5.1 Integrating Velociraptor into Code Generation

Integrating Velociraptor into the code generation infrastructure re-
quires inserting new passes in the containing compiler. These new
passes determine the numerical sections in the program and com-
pile these to VRIR. VRIR is a typed IR and therefore these new
passes will be called after analysis such as type inference per-
formed by many JIT compilers for dynamic languages.

Velociraptor compiles VRIR to CPU and GPU code and returns
a function pointer corresponding to the compiled version of each
VRIR function. The containing compiler replaces calls to the out-
lined function in the original code with calls to the function pointer
returned by Velociraptor. Non-numerical parts of the program, such
as dealing with file IO, string operations and non-array data struc-
tures are handled by the containing compiler in its normal fashion.

5.2 Exposing Language Runtime to Velociraptor through
Glue Code

Apart from integrating Velociraptor into the containing compiler’s
code generation, the compiler writer integrating Velociraptor into
the containing compiler also needs to provide a small amount of
glue code to expose the language runtime to Velociraptor. Veloci-
raptor is not a virtual-machine by itself and instead integrates upon
the existing language runtime through the glue code. The glue code
has several components: exposing the array object representation
to Velociraptor, and exposing memory management constructs to
Velociraptor.

Array data-structures in languages such as MATLAB and in
Python/NumPy are more than just plain pointers to data. We will
refer to these array data-structures as array objects. In addition to
the pointer to the data, array objects might contain information such
as size (and potentially the layout) of the array as well as metadata
such as reference counts for memory management. Different lan-
guage runtimes will use different structures for representing array
objects. However, Velociraptor needs to know the structure of the
array objects in order to generate code as well as to implement the
standard library functions such as matrix multiply.

We take the following approach. Velociraptor source code de-
pends upon a header file vrbinding.hpp, but we do not supply
this header file. Instead, the header file is supplied by the compiler
writer integrating Velociraptor into the containing compiler. A tem-
plate of the required header file is provided by Velociraptor and
needs to be filled-in by the compiler writer. Through this header
file, the compiler writer provides typedefs from the language run-
time’s array objects to type-names used in Velociraptor. The com-
piler writer also provides the implementation of macros and func-
tions to access the fields of the array object structure. In Veloci-
raptor implementation, accessing the fields of array object is only
done via these macros and functions, whose names are provided
in the template. The body of any required functions can be sup-
plied in a separate source file. The compiler writer also provides
a representation of the array object structure in LLVM. A simple
way of generating the LLVM representation is to run the C or C++
API header files of the language runtime through the clang tool and
asking it to generate LLVM IR. The resulting LLVM IR file can
be examined and the relevant structure definitions in LLVM can be
extracted.

Finally, we discuss memory management. Different language
implementations may have different memory management schemes.
For example, some implementations may depend upon reference
counting while some others may depend upon conservative tech-
niques such as the Boehm GC. Typically, array object allocation
routines will require custom logic that depends upon the mem-
ory management scheme. Thus, Velociraptor does not provide
any object allocation routines by itself. Instead, we define abstract
APIs for object allocation and the language implementation needs
to supply the implementation. Similarly, for language runtimes
that use reference counting, we define abstract APIs for reference
count (ref-count) increment and ref-count decrement in Velocirap-
tor which then need to be implemented by the compiler writer who
is integrating Velociraptor.

22

6. Case-Studies of Using the Toolkit

To illustrate how to use Velociraptor, we provide two case studies:
(1) a prototype JIT compiler for Python, and (2) an extension of
McVM [3] for MATLAB. In both of these case-studies, we offer
support for targeting multi-core CPUs and GPUs through language
extensions exposed to the programmer. We provide parallel for-
loop constructs and also GPU sections whose semantics matches
that of VRIR discussed in Section 3. Both of these dynamic compil-
ers target multi-core CPUs and GPUs by integrating Velociraptor,
including libVRIR, VRdino and VRruntime.

However, these case-studies have many important differences
including the source language accepted, the way the numerical sec-
tions are identified, the places where Velociraptor is used and the
glue code. We discuss PyRaptor in Section 6.1 and McVM exten-
sion in Section 6.2 respectively and summarize performance and
development experience in Section 6.3 and Section 6.4 respectively.

6.1 Python Integration: PyRaptor

We have written a proof-of-concept compiler called PyRaptor for a
numeric subset of Python, including the NumPy library, that inte-
grates with CPython, the standard Python [12] interpreter. PyRap-
tor is implemented as an extension module for CPython version 3.2
and above, and does not require the user to modify the installed
CPython or NumPy. An extension module is a dynamically load-
able library (DLL), written in a language such as C/C++ using the
CPython C API such that CPython knows how to load and interact
with the library.

6.1.1 Identification of Numerical Sections and Code
Generation

The idea is that the programmer identifies potentially expensive nu-
meric computations, outlines them into functions and calls PyRap-
tor to compile these functions. Rest of the program is still inter-
preted by the CPython interpreter. Thus, in this prototype, we ask
the programmer to identify and outline numeric sections.

PyRaptor is a two-phase compiler. The first phase is type infer-
ence and second phase is code generation. We ask the programmer
to add type signatures to each function to be compiled. This sig-
nature is added using the function meta-data syntax introduced in
Python 3. In the type inference phase, PyRaptor first calls a Python
standard library module called ast which provides functionality to
construct an AST from Python source code. Using the type sig-
nature of the function, PyRaptor then infers the type of the local
variables by a simple forward analysis. We require that the type of
a variable not change within a function. PyRaptor can handle scalar
numerical datatypes, NumPy arrays and tuples.

In the second phase, PyRaptor compiles annotated functions to
VRIR and then calls Velociraptor to generate CPU and GPU code.
PyRaptor relies on Velociraptor for all code generation including
serial CPU code, parallel CPU code and GPU code.

6.1.2 Glue Code

Python’s NumPy library has a class called ndarray that represents
an n-dimensional array. This class is implemented as a C struct.
We provided implementations of Velociraptor’s abstract APIs for
accessing the fields of the NumPy ndarray objects. We also needed
to provide the LLVM implementation of the C structure so that
VRdino can understand and manipulate the structure. This was
done by running clang on the relevant NumPy C header file and
then copying the LLVM IR generated by Clang.

Next, we needed to tackle memory management. Velociraptor
declares but does not define the API functions required for alloca-
tion of array objects and we provided the implementation of these
functions for NumPy in the glue code. CPython uses reference-
counting for memory management and we provided glue code

to expose the reference counting mechanism of the interpreter to
VRdino.

Finally, we provided a dispatcher function which acts as a
bridge between the CPython interpreter and the functions compiled
by Velociraptor. Once a Python function is compiled, PyRaptor re-
places the original Python function with a dispatcher function. The
dispatcher takes as arguments the arguments of the Python function
it is replacing, as well as the function ID of the generated function.
The dispatcher unboxes the CPython objects received as arguments
of the function into their C counterparts and calls the compiled
function. Similarly, the dispatcher boxes the result of the function
call into the CPython objects and returns them to the interpreter.

6.2 Extending McVM: A Dynamic JIT Compiler for
MATLAB

McVM is a virtual machine for the MATLAB language. McVM
includes a type specializing just-in-time compiler and performs
some optimizations such as bounds-check elimination. Prior to this
work, McVM generated LLVM code for CPUs only.

6.2.1 Identifying Numerical Sections

Unlike PyRaptor, we do not need type declarations because McVM
automatically infers the type of the functions. Further, unlike
PyRaptor, the programmer does not need to identify numerical
sections. We have implemented a number of simple heuristics to
automatically identify sections of code to be compiled to VRIR
and handed over to Velociraptor. These heuristics are called after
McVM has finished type inference. The first heuristic is to identify
functions that can be completely converted to VRIR. If the body of
a function satisfies all the constraints given above, then the func-
tion is compiled to VRIR. If the first heuristic is not applicable to
a given function, then McVM looks for parfor-loops and GPU sec-
tions in the code. If the body of the parfor-loop or the GPU section
satisfies the constraints above, then these are outlined into a sep-
arate function and compiled to VRIR. Otherwise, we remove the
GPU annotations and also convert any parallel-loop to serial for-
loops in any code that cannot be compiled to VRIR. The final rule
is that if there is a loop that calls a function foo, and if foo will
be compiled VRIR, and if the body of the loop satisfies the typing
constraints above, then the loop is outlined and compiled to VRIR.
It is important to capture such loops and compile to VRIR, because
it allows us to communicate to Velociraptor and it’s specialization
infrastructure that the function foo may be called inside a loop.

6.2.2 Glue Code

McVM has a template class for representing arrays, and it defines a
number of concrete classes as template specializations for various
element datatypes. We exposed these classes to Velociraptor both
by providing macros for field access as well as providing a hand-
written LLVM representation of these array classes. For memory
management, McVM relies on Boehm GC for memory manage-
ment. We ensured that our implementation of Velociraptor’s array
allocation functions calls the required GC functions. No other work
was required to integrate with the Boehm GC.

6.3 Performance

Due to space constraints, we decided to focus more on the descrip-
tion of our tools and only give a high-level overview of perfor-
mance results. We have compared the performance of Velocirap-
tor generated code on a variety of MATLAB and Python bench-
marks against state-of-the-art compilers. For MATLAB, we com-
pared the performance against MathWorks MATLAB and McVM,
both of which are JIT compiled. For Python, we compared against
Cython [13] static compiler which generates C++ from an anno-
tated dialect of Python.

23

The benchmarks used in our study will be made available on
our website and contain a diverse set of benchmarks used by pre-
vious researchers as well as ports of some of the parallel comput-
ing dwarves [1] to Python. We found that the serial code generated
by Velociraptor either outperforms or is generally competitive with
these compilers. For example, on one machine we found that Ve-
lociraptor had a geometric mean speedup of 1.76 and 1.09 over
Cython and McVM respectively. Turning to parallelism, parallel
CPU code generated by Velociraptor was found to further improve
performance. We found a speedup of 3.5 and 2.13 over the serial
code generated by Velociraptor on two different machines with a
quad-core Intel and dual-module AMD machine respectively. Fi-
nally, we tested the GPU code generation on GPUs from two ven-
dors and found that in some problems the GPU code generated
by Velociraptor offered a speedup of upto 3 over the parallel CPU
code.

The key takeaway is that the user of our toolkit can build
compilers that have state-of-the-art performance for serial code and
provide further speedups by easily targeting multi-cores and GPUs.

6.4 Development Experience

Overall, we found that using Velociraptor enabled some saving in
the development time of both compilers. As an indirect estimate,
the number of lines of code in PyRaptor, and the number of lines
of code required to extend McVM, were both less than about 25%
of the number of lines in Velociraptor. This lends some credence
to the hypothesis that the effort of integrating Velociraptor is far
less than the amount of functionality and code implemented in our
tools.

7. Alternate Use-Cases

Due to the modular design of our toolkit, parts of the toolkit can
potentially be used in tools other than dynamic compilers. In par-
ticular, libVRIR can be reused in both static and dynamic tools. We
describe two such usages here.

7.1 VeloCty: A Static Backend for Velociraptor

Although Velociraptor was designed with JIT compilers in mind,
we also experimented with using it in the static compiler context.
VeloCty [9] is a static compiler toolkit, built using Velociraptor,
which generates C++ code from MATLAB or Python functions
which were annotated as important by the user.

VeloCty uses the VRIR from Velociraptor as a common IR from
which C++ code is generated. We generate VRIR for MATLAB us-
ing the McLAB [2, 4, 5] toolkit, which also provides static type
and shape inference.We reuse the type inference and VRIR gener-
ator from PyRaptor for Python.

Along with the generated code, a wrapper function is also gen-
erated, in the source language of MATLAB or Python, to interface
with the generated code. There are two optimizations that are per-
formed on the generated code. The first optimization is the elimi-
nation of array bounds checks that are performed inside loops. We
use the loop-info collector provided by Velociraptor to implement
this optimization. This optimization supplements the preliminary
bounds check optimization of Velociraptor. The second optimiza-
tion is the elimination of redundant memory allocations during ar-
ray operations. Additionally, we also support naive parallelism us-
ing OpenMP pragmas based on annotations for shared variables
provided by the user.

The VeloCty project shows that the VRIR and front-end support
of Velociraptor can be used in static compiler contexts.

7.2 Research Idea: Tooling Using Region Detection Analysis

Function inlining, region detection analysis and region outlining
available in libVRIR can do some interesting refactoring of the

code such that potentially heavy computations in the code are easy
to identify. While in Velociraptor, we use the refactoring to identify
functions which should be dynamically specialized, such automatic
refactorings may also be useful for static compilers, particularly for
profile-guided tools. For example, a profile guided tool may simply
instrument the source code so that only the shapes of critical shape
variables and value of critical value variables is recorded at the
entry point of the outlined function. This instrumentation can be
much lower overhead than profiling the shape at multiple points
inside the region body.

8. Conclusion

Velociraptor provides a collection of tools that may be utilized by
compiler writers to build compilers and other tools for array-based
languages. Velociraptor is modular and divided into libVRIR and
VRdino and associated VRruntime. libVRIR provides a reusable
analysis and transformation infrastructure that can be utilized by
both static and dynamic tools. VRdino provides a dynamic back-
end that can be used by compiler writers to build or extend dy-
namic backends for various array-based languages. In addition to
discussing the components, we also discussed several case studies
of using tools provided by Velociraptor. We hope that we have mo-
tivated you, the reader, to try out our tools in your projects.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The landscape of parallel computing research: A
view from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[2] A. Casey, J. Li, J. Doherty, M. Chevalier-Boisvert, T. Aslam,
A. Dubrau, N. Lameed, A. Aslam, R. Garg, S. Radpour, O. S. Be-
langer, L. J. Hendren, and C. Verbrugge. McLab: An extensible com-
piler toolkit for MATLAB and related languages. In C3S2E’10, pages
114–117, 2010.

[3] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge. Optimizing
MATLAB through just-in-time specialization. In CC 2010, pages 46–
65, 2010.

[4] J. Doherty and L. Hendren. McSAF: a static analysis framework for
MATLAB. In proceedings of ECOOP 2012, pages 132–155, 2012.

[5] A. Dubrau and L. Hendren. Taming MATLAB. In proceedings of

OOPSLA 2012, pages 503–522, 2012.

[6] R. Garg and L. Hendren. A portable and high-performance general
matrix-multiply (GEMM) library for GPUs and single-chip CPU/GPU
systems. In Proceedings of PDP 2014, pages 672–680, 2014.

[7] R. Garg and L. Hendren. Just-in-time shape inference for array-based
languages. In ARRAY’14, 2014.

[8] R. Garg and L. Hendren. Velociraptor: an embedded compiler toolkit
for numerical programs targeting CPUs and GPUs. In Proceedings

of the 23rd International Conference on Parallel Architectures and
Compilation Techniques, PACT ’14, 2014.

[9] S. Jagdale. Velocty : A static optimising compiler for MATLAB and
NumPy. Master’s thesis, McGill University, April 2015.

[10] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO 2004, pages
75–86, 2004.

[11] MathWorks. MATLAB: The Language of Technical Computing.
http://www.mathworks.com/products/matlab/.

[12] Python.org. Python Programming Language: Official Website.
http://python.org.

[13] D. S. Seljebotn. Fast numerical computations with Cython. In G. Varo-
quaux, S. van der Walt, and J. Millman, editors, Proceedings of the
8th Python in Science Conference, pages 15 – 22, Pasadena, CA USA,
2009.

24

