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Abstract

Software-based, automatic parallelization through Thread-Level
Speculation (TLS) has significant practical potential, but also high
overhead costs. Traditional “lazy” buffering mechanisms enable
strong isolation of speculative threads, but imply large memory
overheads, while more recent “eager” mechanisms improve scala-
bility, but are more sensitive to data dependencies and have higher
rollback costs. We here describe an integrated system that incor-
porates the best of both designs, automatically selecting the best
buffering mechanism. Our approach builds on well-optimized de-
signs for both techniques, and we describe specific optimizations
that improve both lazy and eager buffer management as well. We
implement our design within MUTLS, a software-TLS system
based on the LLVM compiler framework. Results show that we can
get 75% geometric mean performance of OpenMP versions on 9
memory intensive benchmarks. Application of these optimizations
is thus a useful part of the optimization stack needed for effective
and practical software TLS.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming–Parallel programming; D.3.4
[Programming Languages]: Processors–Run-time environments

Keywords Software thread-level speculation, automatic paral-
lelization, memory buffering, optimization

1. Introduction

Traditionally a hardware-oriented technique, thread-level specula-
tion (TLS) has received extensive research attention [4, 6, 16, 20].
However, hardware TLS tends to be constrained to small granu-
larity parallelism due to limited hardware buffering resources. A
tight analysis on the SPEC CPU2006 benchmarks showed that the
speedup potential uniquely achievable by TLS at the innermost
loop level is the order of 1% [8], suggesting TLS needs be applied
at a larger granularity to be more effective [5].

Software approaches to TLS have been explored as well, pri-
marily for their huge advantage in applying to existing, commod-
ity hardware [12, 15, 23]. Software TLS also has the advantage
of much greater and more flexible resource limits, especially in
terms of memory. This potentially allows for larger granularity in

the parallelism. The actual use of such resources, however, has been
blamed for limiting scalability [13]. The large buffering costs inher-
ent in the design of software isolation and validation mechanisms
result in significant memory traffic, impacting cache performance
and resulting in long validation/commit (V/C) times.

Two approaches to software TLS buffering have been proposed:
lazy version management and eager version management (in-place
update) [13, 23]. Most software TLS systems, such as SableSpMT
[15], SpLSC [12], Lector [23] and MUTLS [3], adopt the lazy
version management approach, which buffers data accessed by
speculative threads and employs a serial commit phase to vali-
date/commit the speculative buffer to main memory. If there are
a significant number of threads running, the serial commit phase
may become a scalability bottleneck for memory intensive appli-
cations due to it delaying the critical path. Recent software TLS
systems such as SpLIP [13] and MiniTLS [23] apply eager version
management to address the problem, allowing speculative threads
to directly access main memory and thereby eliminating the se-
rial commit phase. In this approach, history versions of accessed
data are maintained in shadow buffers and are used to recover the
main memory state when rolling back offending threads. However,
despite the advantage of higher scalability, eager version manage-
ment has the disadvantage of causing rollbacks for all RAW, WAR
and WAW dependencies, as well as incurring expensive rollback
overhead if dependency occurs.

Since lazy and eager version management have complementary
weaknesses and strengths, it would be more effective to integrate
them into one system to get the strengths of both [13]. Our paper
proposes the first such software TLS buffering solution which can
automatically determine which version of management buffering
to apply to which variables. This approach is integrated with and
complemented by a number of other optimizations that reduce
buffer size and improve buffer management. More specifically, we
have the following contributions.

To improve lazy version management, we propose a per-thread
page-table memory buffering scheme that enables direct paral-
lelization of the V/C operations themselves. Our parallelized V/C
takes advantage of extra processors still available once scalability
has been saturated in order to reduce the overhead of one of the
more important overhead concerns in lazy buffering schemes. We
also use vector processing to accelerate both address-space check-
ing and memory-buffering V/C through common SIMD instruc-
tions, demonstrating application of both coarse and fine-grain par-
allelism as a means of helping the TLS system itself, and indicate
an interesting optimization point exists in balancing the parallel re-
sources applied to the base program with the resources used to im-
plement that parallelism.

For eager version management, we describe a design for shared
address-owner memory buffering where the space overhead is
bounded by a constant factor of the program data size. The size
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of shadow buffers is a significant concern in eager approaches, and
can limit the ability to exploit parallelism at larger granularity. Our
design allows buffers to be allocated sufficiently large to enable
speculation of any granularity without causing buffering overflow.

Significant reductions to data management costs are also pos-
sible if we know data is not changed at runtime, and so does not
require temporary buffer space or need to participate in validation.
Pure readonly data is uncommon and difficult to find in programs,
but in a TLS context opportunities are improved by the fact that we
only require variables be readonly during actual periods of overlap-
ping speculative executions, and this has been the basis of previous
approaches that accurately find readonly variables with the help
of profiler support [5] or through manual programmer specifica-
tions [12]. We describe a design that automates the process, using
page markers to identify and optimize readonly and independent
memory pages on-the-fly, giving us a less precise but low overhead
and fully dynamic means of finding readonly data.

Finally, we propose a buffering integration mechanism that can
automatically select the appropriate buffering technique for each
variable. It can quickly identify variables as independent (without
RAW, WAR, WAW dependencies, i.e. readonly or access disjoint
memory) or not, and apply the optimized address-owner buffering
for independent variables and the page-table buffering for depen-
dent ones. In this way, we can benefit from the higher scalability
of eager version management for independent variables, while still
enabling TLS in the presence of dependent ones in a speculative re-
gion. This design includes adaptive buffering selection heuristics to
dynamically choose the appropriate buffering based on the program
execution characteristics, as well as a thread stopping optimization
to improve thread coverage.

We implement and evaluate our techniques within MUTLS,
a full-featured, LLVM-based software TLS system [1, 3]. With
only fork point annotation of the MUTLS system, we observe
these optimizations result in significantly higher speedups, achiev-
ing 75% geometric mean performance of the OpenMP version on
9 memory-intensive benchmarks.

2. Related Work

Memory buffering has been the concern of many researches on
software-TLS and other speculative parallelization approaches.

Oancea et al. [13] proposed SpLIP, a lightweight, in-place
update (eager version management) software-TLS approach to
achieve higher scalability. We make use of this general technique
as well, exploring it in conjunction with an optimized lazy version
management scheme that also improves scalability, rather than as a
direct replacement.

Rundberg and Stenstrom [19] put forward a software-TLS sys-
tem that detected dependency and forwarded data on-the-fly dur-
ing speculative loads/stores, enabling parallel commit after specu-
lative execution. The parallel commit design explores parallelism at
a coarser granularity than parallelized V/C, but the approach may
have impractically large memory space overhead in the presence
of aliasing [13]. Yiapanis et al. [23] presented a compact version
management data structure and applied it to propose an eager and
a lazy version management software-TLS systems, MiniTLS and
Lector, achieving average speedups of 7x and 8.2x respectively on
a 32-core machine. The rollback procedure of MiniTLS was paral-
lelized, while the serial commit procedure of Lector was not.

Several speculative parallelization systems proposed efficient
memory buffering load/store implementations. BOP [5] uses pro-
cesses instead of threads for data protection. It enables strong iso-
lation where memory overhead is proportional to the data size ac-
cessed instead of the number of data accesses, which benefits ap-
plications with high temporal locality. Tian et al. [21] proposed
the Copy-or-Discard (CorD) speculative execution model that finds

multi-versioned variables using a mapping table, and optimized
it for dynamic pointer-intensive data structures [22]. LSA-STM
[18] improves lazy version management for object-based software
transactional memory (STM) with eager ideas, which uses validity
ranges to avoid revalidating previously read objects for each new
read.

Parallelism of the runtime system has also been explored by
STM approaches. STMlite [11] removes lock overhead of transac-
tional execution by centralizing transaction bookkeeping in a single
core so that it runs in parallel with work threads. Raman et al. [17]
proposed a Software Multi-threaded Transaction (SMTX) system
that exposes data parallelism by dividing loop iterations to different
pipeline stages while still committing them together. SMTX uses a
separate centralized commit process to reduce inter-core communi-
cation latency on the critical path.

BOP [5] and SpLSC [12] proposed optimizations for readonly
shared variables, but required profiling tools support or program-
mer specification to find likely-readonly variables. We propose
the readonly-page optimization to automatically find and optimize
readonly variables on-the-fly during speculative execution. Oancea
et al. [13] point out that integrating different memory buffering
approaches should be more beneficial than single buffering im-
plementations. We provide the first buffering integration solution,
which seamlessly integrates different buffering or pseudo-buffering
implementations into one buffering framework and automatically
utilizes the most appropriate one for each variable.

DynTM [9] and SEL-TM [24] are hardware transactional mem-
ory (HTM) systems with hybrid conflict management policies that
permit eager and lazy version management to cooperate during
transactional execution. ASTM [10] and adaptSTM [14] use heuris-
tics to select eager or lazy version management for software trans-
action memory (STM) threads. We propose the first software-TLS
solutions to allow each speculative thread to utilize both eager and
lazy buffering.

Garzaran et al. [7] analyzed complexity-benefit tradeoffs of
different hardware-TLS memory buffering approaches. They dis-
cussed strengths and weaknesses as well as the required hardware
support for each approach, and compared the mechanisms using
7 benchmarks with different memory access patterns. Our work
improves software-TLS buffering approaches and integrates them
into a unified framework with the aim to maximize their combined
strengths.

3. Background

Thread-level speculation (TLS) is an optimistic approach to auto-
matic parallelization, allowing the compiler to exploit parallelism
from programs without the need to prove absence of actual, or even
potential dependencies. A speculative thread is launched at a fork
point, executing from a join point well ahead in terms of sequential
execution. Memory reads and writes of the speculative thread are
buffered to maintain correctness. When the non-speculative thread
(representing sequentially earliest execution) reaches the join point,
the speculative thread validates its read buffer; if no dependency
occurred, it commits its write buffer to memory and merges its ex-
ecution state to the non-speculative thread; otherwise, it is rolled
back and re-executed by the non-speculative thread.

There are different approaches to TLS memory buffering.
Garzaran et al. [7] proposed a 2-dimensional taxonomy of hardware-
TLS buffering approaches. One dimension is separation of specula-
tive task state within a CPU and the other is merging of speculative
task state to the main memory. The former deals with the issue of
reducing CPU idle time to improve speculative work time coverage,
which is beyond the scope of the paper. The latter has three cate-
gories: Eager AMM (Architectural Main Memory), Lazy AMM
and FMM (Future Main Memory). AMM buffers speculative state
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in the CPU and commits it to the main memory after a speculative
thread completes execution, while FMM directly accesses memory
and buffers the memory data, which is used to restore the main
memory state if the speculative thread rolls back. Eager AMM
commits all buffered data at commit time while Lazy AMM only
commits a cache line when another speculative thread uses it again.
Lazy and eager version management software-TLS buffering im-
plements Eager AMM and FMM, respectively, while Lazy AMM
has not been implemented by software-TLS.

Two mechanisms to implement software-TLS lazy buffering
have been proposed, based on there being a non-speculative thread
[3, 15] or only speculative ones [12, 19, 23]. Both have their own
advantages: the former does not buffer the non-speculative thread
and thus can guarantee worst-case run time excluding threading
overhead, while the latter buffers memory accesses of all threads
which enables better optimizations for the speculative threads. In
our work we use lazy version management with the non-speculative
thread, the architecture of which is illustrated in Figure 1.
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Figure 1. Lazy Version Management Buffering

Existing software-TLS eager buffering mechanisms such as
SpLIP [13] and MiniTLS [23] maintain a shadow buffer for each
speculative thread, and add a new version to the buffer each time a
variable is written, as per an FMM implementation. The architec-
ture is shown in Figure 2.
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Figure 2. Existing Eager Version Management Buffering

3.1 MUTLS

MUTLS (Mixed-model Universal software-TLS) [3] is a language
and architecture independent software-TLS system based on the
well-defined LLVM intermediate representation (IR). LLVM is a
popular compiler infrastructure with many powerful analysis and
transformation passes for program optimization. Since the MUTLS
transformation pass is a purely LLVM-IR based pass (from well-
formed LLVM IR to well-formed LLVM IR), it is fully integrated
into the LLVM compiler framework, which can take advantage of
full optimizations as well as all source languages and target archi-
tectures enabled by the LLVM framework. With a mixed forking
model, MUTLS is able to exploit more parallelism from tree-form
recursion applications.

MUTLS has two types of threads: a non-speculative thread and
speculative threads. The non-speculative thread represents logically
earliest execution that never rolls back and is not buffered. Memory
accesses of speculative threads are buffered and causes the offend-
ing threads to rollback if validation detects RAW dependencies at

thread join time. Since speculative threads are usually slower than
the non-speculative thread due to buffering cost, checkpoints are
inserted in loops and before nested function calls so that a specula-
tive thread can be joined whenever needed, which guarantees that
the software-TLS system is efficient even for memory-intensive ap-
plications. This feature also leads MUTLS to be an arbitrary-point
speculation system [3, 5, 16] that has more parallelism potential
than loop-level speculation and method-level speculation.

MUTLS is comprised of a front-end, an LLVM transformation
pass and a TLS runtime library. The front-end annotates fork/join/-
barrier points with LLVM built-in functions to specify where to
fork/join/barrier speculative threads, as specified manually by pro-
grammers, or automatically by the compiler, profilers, or other
tools. A speculative thread is created at a fork point, starts exe-
cution from the corresponding join point, is joined (merged) when
the non-speculative thread reaches the join point, and barriered at
a corresponding barrier point if the speculative thread reaches it.
The runtime library defines API calls for certain behaviours such
as forking/joining threads and buffering loads/stores. The trans-
formation pass transforms the incoming IR based on the anno-
tated fork/join/barrier points and delegates specific speculation be-
haviours to the TLS runtime library.

4. Memory Buffering

In this section, we describe our optimized designs for lazy and ea-
ger buffering approaches and their adaptive integration. First, we
present the page-table memory buffering for lazy buffering, which
allows us to exploit both coarse and fine grain parallelism in the val-
idation/commit phase. Next, we describe the shared address-owner
buffering that enables higher scalability and reduced buffer over-
flow in an eager design. Readonly data detection, adaptive buffer-
ing and thread stopping optimization are related in their integration,
and so are described together at the end of this section.

Note that we adopt page-based designs to both the buffering
integration mechanism and the page-table thread memory buffer-
ing implementation. These pages, however, are independent of each
other and have different characteristics: the former need only im-
prove performance in the most common cases and thus is not re-
quired to be accurate, while the latter is expected to support a wide
range of applications as long as they do not exhibit true RAW de-
pendencies, and hence accurate, one-to-one mapping of each byte
from the main memory to the buffering is important. The two page-
based designs also serve different purposes. The former is to reduce
the TLS system overhead by maintaining optimization meta-data at
a coarser granularity with page-based data structures. The latter ex-
poses coarse and fine grain parallelism to reduce validation/commit
time for the thread memory buffering.

4.1 Lazy Per-Thread Page-Table Buffering

The basic MUTLS buffering approach does not buffer the non-
speculative thread, following a lazy version management approach
discussed in section 3. Page-table thread memory buffering imple-
ments this same behaviour, but organizing data to facilitate paral-
lelization in the final V/C stage of each speculative thread. Note
that these page-table buffers are thread-specific, and thus synchro-
nization between speculative threads is not needed.

The page-table thread memory buffering maintains a page table,
a read-set and a write-set. A memory store directly inserts the
address-value pair to the write-set, while a memory load returns the
buffered data from its write-set or read-set if found, and otherwise
inserts the address and the read data to the read-set and returns
the data. During validation, if the buffered data in the read-set is
not equal to the main memory version, then RAW dependencies
are detected and the thread is rolled back; otherwise, validation
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22  size_t find_page(size_t addr){ 

23     size_t n = PAGE_NUM / K; 

24     size_t index = (addr / PAGE) % n; 

25     for(; index < PAGE_NUM; index += n){ 

26        if(table[index] == addr) return index; 

27        if(table[index] == NULL){ 

28           table[index] = addr; 

29           pages.push_back(index); 

30           return index; 

31        } 

32     } 

33     rollback(OVERFLOW, rank); 

34  } 

42  template<typename T> 

43  T load(T* addr){ 

45     size_t p = find_page((size_t)addr); 

46     size_t ofs = (p * PAGE) + (addr % PAGE); 

47     if(*(T*)(markW + ofs) == (T)all_one) 

48        return *(T*)(bufW + ofs); 

49     if(*(T*)(markW + ofs) != 0) 

50        rollback(PART_ACCESS, rank); 

51     if(*(T*)(markR + ofs) == (T)all_one) 

52        return *(T*)(bufR + ofs); 

53     if(*(T*)(markR + ofs) != 0) 

54        rollback(PART_ACCESS, rank); 

55     *(T*)(markR + ofs) = (T)all_one; 

56     *(T*)(bufR + ofs) = *addr; 

57     return *addr; 

58  } 
35  template<typename T> 

36  void store(T* addr, T data){ 

37     size_t p = find_page((size_t)addr); 

38     size_t ofs = (p * PAGE) + (addr % PAGE); 

39     *(T*)(markW + ofs) = (T)all_one; 

40     *(T*)(bufW + ofs) = data; 

41  } 

1   class ThreadBuffer{ 

2      int rank; 

3      char* table[PAGE_NUM]; 

4      array<size_t, PAGE_NUM> pages; 

5      char markR[SIZE], bufR[SIZE]; 

6      char markW[SIZE], bufW[SIZE]; 

7   public: 

8      T load(T* addr); 

9      void store(T* addr, T data); 

10     void commit(){ 

11        for(each p in pages) 

12           commit_page(p); 

13     } 

14     bool validation(){ 

15        for(each p in pages){ 

16           if(!validate_page(p)) 

17               return false; 

18        } 

19        return true; 

20     } 

21  }; 

rank: the rank of the thread (1 to N_THREAD-1) 

K: associativity of the hash mapping (4) 

SIZE: the size of the thread buffer (512MB) 

PAGE: the size of each page (4KB) 

PAGE_NUM = SIZE / PAGE 

 

Figure 3. Lazy Per-Thread Page-Table Memory Buffering

succeeds and the thread commits all buffered data in the write-set
to main memory.

The page-table thread memory buffering implementation is de-
tailed in Figure 3. The buffering maintains a page table (table,
pages), a read-set (markR, bufR) and a write-set (markW, bufW). The
thread memory buffering is organized as pages of PAGE bytes. The
offset ofs of each byte of the read-set and write-set can be calcu-
lated as ofs = i ∗ PAGE + o given page index i and the offset
o within the page. To support the case that multiple addresses are
hashed to the same page, a K-way associative hash mapping is im-
plemented, which considers the buffer to comprise K consecutive
blocks and each address can be hashed to any of the K blocks. Each
read-/write-set page is comprised of a data page to buffer memory
data and a mark page to indicate which bytes of each data page are
accessed. The load method first finds the page index and then com-
putes the buffer offset of the address. If the address is fully buffered
in the write-set or read-set, the data is returned. If part is buffered, it
means the program uses aliasing of different data types, which we
consider rare and in which case we simply rollback the thread. If
the data is not buffered, it is inserted into the read-set and returned.

The point of this design is that validation/commit within a
page can be vectorized and on different pages can be parallelized,
which helps to achieve scalable speedups for memory intensive
applications. To enable SIMD acceleration and/or parallelized V/C,
it should be guaranteed that validation/commit within and/or across
pages are independent and not subject to sequential ordering, which
is the case for the page-table memory buffering. Other software-
TLS approaches such as SpLSC [12] and Lector [23] do not enable
these optimizations since in their designs multiple writes to the
same address by a speculative thread are all stored in the write-
set, and therefore must be committed serially to guarantee the last
write is the last to commit. Also, the addresses in the write-set are
not necessarily adjacent.

In addition to exposing different granularities of parallelism,
the page-table memory buffering has other advantages over pre-
vious software TLS buffering implementations. First, the mem-
ory buffer can accurately track dependencies with mixed load/store
data types. Different threads accessing adjacent memory locations
will not cause thread rollbacks, even for those accessing different
integers or characters within the same 8-byte boundary on a 64-bit
machine. Second, the K-way associative hash mapping can effec-
tively reduce rollbacks caused by hashing conflicts for programs
with many variables such as memory allocation/deallocation in-

tensive applications. However, we also note that these advantages
come at costs. To support accurate dependency tracking, the av-
erage buffering space overhead for each word is 2 + ǫ words for
read-only or write-only variables and 4+ǫ for read-write variables,
where ǫ is the paging overhead, compared to 2 (a buffered word
and an address) for SpLSC and Lector. The K-way hash mapping
also incurs performance overhead. Nevertheless, we find the bene-
fits outweigh the overhead, as the page-table buffering is utilized in
the fallback path expected to support general cases.

4.2 Eager Shared Address-Owner Buffering

The address-owner buffering is an eager version management
memory buffering illustrated in Figure 4(a). Notably, our design
uses a single shadow buffer that is shared by all threads, and at most
one buffering copy is maintained for each main memory address.
Therefore given the amount of accessed data (D) and the number
of memory stores (W ) of the original sequential program, the space
complexity of the shared address-owner buffering is O(D), as op-
posed to O(D + W ) for typical eager buffering designs shown
in Figure 2. This ensures that the space overhead of the buffering
is bounded by a constant factor of the amount of program data,
and further enables optimizations that can generally assume the
buffering is sufficiently large that it has a one-to-one mapping of
the main memory for any parallelism granularity, since allocating
more memory by a constant factor is usually not a severe problem.
As a result, K-way hash mapping, and thus the page table, is not
needed. However, we need to include the non-speculative thread
(Thread 1, with “Speculative” italicized) in the buffering design, in
order to be able to detect interference between speculative threads
and the non-speculative thread.

The granularity of the buffering is WORD; different threads
accessing the same WORD with at least one writing are considered
to have dependencies. WORD can be set as the native word of
the machine, or smaller to achieve higher precision of dependency
tracking. By our design, using smaller WORD such as 8, 16 or 32
bit is still as efficient as using larger WORD such as 64 bit for 64-
bit memory accesses, though smaller WORD overflows earlier as
more threads are speculated and thus requires more frequent buffer
flushes. However, for relatively large WORD such as 32-bit, this
rarely occurs. For each WORD, the buffering maintains an owner
for dependency tracking and a shadow memory copy for rolling
back the WORD if dependency occurs. The encoding of the owner
WORD is illustrated in Figure 4(b): the last bit of the owner WORD
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1   class AddressOwnerBuffer{ 

2      char owners[SIZE], buf[SIZE]; 

3      WORD thread_owners[N_THREAD], counter; 

4   public: 

5      bool register_load(WORD* addr, int rank); 

6      bool register_store(WORD* addr, int rank); 

7      void register_start_thread(int rank){ 

8         counter += 2; thread_owners[rank] = counter; 

9      } 

10     void register_join_thread(int rank){ 

11        thread_owners[0] = thread_owners[rank]; 

12     } 

13     void rollback_page(WORD* addr, size_t size){ 

14        WORD* p = (WORD*)(owners + (addr & SIZE)), 

15        *q = (WORD*)(buf + (addr & SIZE)); 

16        for(size_t i = 0; i < size / sizeof(WORD); i++){ 

17           if(p[i] > thread_owners[0] && (p[i] & 1) == 1) 

18              addr[i] = q[i]; 

19           p[i] = 0; 

20        } 

21     } 

22  }; 

23  bool register_load(WORD* addr, int rank){ 

24     WORD* p = (WORD*)(owners + (addr & SIZE)), owner = *p, t = thread_owners[rank]; 

25     const intptr_t SHARED = ~1LL; 

26     if(owner == SHARED || (owner & SHARED) == t) return true; 

27     if((owner & 1) == 0 || owner < thread_owners[0]){ 

28        T new_owner = (owner < thread_owners[0] ? t : SHARED); 

29        T o = __sync_val_compare_and_swap(p, owner, new_owner); 

30        if(o == owner) return true; 

31        if((o & 1) == 0 && (__sync_val_compare_and_swap(p, o, SHARED) & 1) == 0) return true; 

32     } 

33     return false; 

34  } 

35  bool register_store(WORD* addr, int rank){ 

36     WORD* p = (WORD*)(owners + (addr & SIZE)), owner = *p, t = thread_owners[rank]; 

37     if(owner == (t | 1)) return true; 

38     if((owner < thread_owners[0] || owner == t) && 

39           __sync_bool_compare_and_swap(p, owner, t | 1)){ 

40        *(WORD*)(buf + ofs) = *addr; return true; 

41     } 

42     return false; 

43  } 

SIZE: the size of the shared address owner buffer (4GB) 
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Figure 4. Eager Shared Address-Owner Memory Buffering

is 1 if the buffering WORD has been written by a thread and thus
is exclusively owned by the thread and 0 otherwise. Higher bits
denote the thread accessing the WORD (the owner thread number
of the WORD), or an all-one value if it is read by more than one
thread (shared), in which case the last bit is 0. The non-speculative
thread has the lowest thread owner number t0. If the owner number
t of the WORD is smaller than t0, the WORD is not owned by
any actively running thread (accessed by committed threads or not
accessed by any thread); if t is the owner number of a running
thread, the WORD is owned by the thread; if t is ∼0, the WORD is
shared (can be read by all running threads).

To identify owner threads for buffering WORDs, globally
unique thread owner numbers are needed. Since MUTLS is an
arbitrary point TLS system, in which fork/join points can be in-
serted anywhere in a function, it is not possible to use loop it-
eration numbers to identify threads. The non-speculative thread
also joins the speculative threads [3], and thus needs to update
its thread owner number to be able to access the WORDs owned
by committed threads. To resolve these issues, we maintain an
owner number for each thread through a global counter: each time
a thread is speculated, we increment the counter and assign it as
the owner number of the speculative thread. We use the in-order
forking model of the MUTLS system (only the most speculative
thread can fork a new thread) and thus the non-speculative thread
has the lowest owner number of the actively running threads. A run-
ning instance is demonstrated in Figure 4(c). The non-speculative
thread T1 runs on CPU 0. The speculative threads T2, T3 and T4
are in-order speculated running on CPU 1, 2 and 1, respectively.
The non-speculative thread T1 then joins the threads in the same
order. It can be noted that the thread on CPU0 always has the lowest

owner number among the running threads (horizontally) anywhere
in the (vertical) time-line.

The first time an address is written, the memory data is copied
to the shadow buffer, and is restored to the main memory if the
thread rolls back. It should also be guaranteed that the data only
be copied the first time it is accessed, since we only maintain one
version of each buffering WORD and should ensure the buffered
data be the original memory version not written by any speculative
thread. This enables the shared address owner buffering to use a
single global shadow buffer with larger hash space, as opposed to
the multiple buffer architecture shown in Figure 2.

The shared address-owner memory buffering implementation
is presented in Figure 4(d). Thread owner numbers of spec-
ulative threads are assigned by register new thread and the
non-speculative thread owner number thread owners[0] is up-
dated by register join thread. The owner and shadow mem-
ory copy WORDs are stored in owners and buf, respectively. The
register load method returns true to indicate the load is valid
if the buffering WORD of the address addr is shared or is al-
ready owned by the thread (Line 26). Otherwise it registers the
owner if the buffering WORD is not exclusively owned by another
thread (Line 27–30); if it fails, then another thread is simultane-
ously registering the owner, in which case it tries to register the
owner as shared if the buffering WORD is not registered as ex-
clusively owned by another thread (Line 31). If it cannot register
a valid owner, false is returned (Line 33) and rollback is initiated.
The register store method returns true if the buffering WORD
is already exclusively owned by the thread (Line 37). Otherwise,
it tries to register its owner (Line 38–39) and copy the memory
value to the shadow buffer (Line 40). No other threads can register
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ownership of the buffering WORD again after the thread registers
itself as an exclusive owner, thus guaranteeing the copy-only-once
requirement of the buffering.

If a thread detects dependencies in the shared buffering, all spec-
ulative threads are rolled back, and then buffering data is restored
to the main memory, as illustrated by the rollback page method.
If a speculative thread is not rolled back due to the shared buffer-
ing dependency, e.g. attempting to call I/O functions, other spec-
ulative threads are not required to rollback since they cannot ac-
cess variables written by the rolling back thread, though speculative
threads representing sequentially later execution may need cascade
rollback. When such a speculative thread is rolling back, it instead
calls the rollback page sp method, whose implementation is sim-
ilar, except that it checks if the WORD owner number is equal to
the speculative thread owner number instead.

4.3 Readonly-Page Optimization & Buffering Integration

Speculative regions often contain readonly variables, and this can
include larger data structures such as matrices, trees, and graphs
that consume significant buffer space and thus validation time. Ag-
gressively pruning out readonly data is thus worthwhile, and can
be efficiently done at the page level. Our readonly-page optimiza-
tion maps the address of each read to its address and optimizes the
read by not buffering it if the page address is marked readonly. If
a thread then attempts to write an address whose page is marked
readonly, all speculative threads are rolled back.

In order for the optimization to not cause many rollbacks, if one
page address of a variable is written by a thread, we mark all pages
of the written variable as not-readonly, which can usually find all
readonly and not-readonly pages within short amount of time after
entering a loop speculative region. One issue to be considered is
pointer-based heap data structures such as trees and graphs. If we
consider different nodes to be different variables, the optimization
would be ineffective: if a tree is not readonly, writing a node could
only mark the single node not-readonly and thus each node may
cause one rollback. We solve this problem by treating each heap
allocation call program instruction as a single heap variable since
the nodes of a data structure are usually allocated by the same
instruction.

Our readonly-page optimization actually builds on a more gen-
eral buffering mechanism that identifies pages as either readonly
(2), independent (1), or dependent (0), using this distinction to help
drive the choice of eager or lazy buffering. Before entering a spec-
ulative region, all pages are optimistically set to the default type
(2, or readonly). If an address causes rollback and its page type is
not at 0 (dependent), all pages of the variable that contains the ad-
dress are reduced to a lower type. Figure 5 includes an example:
the variable A spans two pages 101 and 102, which are initialized
to 2 before entering the speculative region. After entering the spec-
ulative region, 3 speculative threads T1, T2 and T3 read A, and as
long as none write A the TLS runtime system assumes the variable
is readonly and does not buffer it. If A is written the threads are
rolled back and restarted with A set to be independent and buffered
using eager version management buffering. This continues as long
as T1, T2 and T3 only read each given word or read/write differ-
ent words of A. When different threads write the same word of A,
threads again rollback and restart with A set as dependent using the
lazy version management buffering.

To prevent the eager buffering from slowing down the non-
speculative thread during non-parallelizable region, we use the se-
quential region optimization that the non-speculative thread checks
at each memory access if it is in a speculative region, and if not
then skips the buffering integration mechanism and directly ac-
cesses main memory.

The memory buffering integration mechanism, which is also
the top-level implementation of the memory buffering, is present

in Figure 5(b). To efficiently find the variable of an address and
all pages of a variable/memory allocation instruction, we maintain
the address and size of each variable and the allocated variables of
each memory allocation instruction. For each page, we also register
all variables accessing the page. We register variable pages in the
buffering (Line 14–20) and reset the all pages before entering spec-
ulative regions (Line 22). When a speculative thread accessing an
address of a non-0 type page causes rollback, it sets the rbk addr to
the address and the rbk page type to the appropriate lower type and
then rolls back itself (Line 38). When the non-speculative thread
accesses an invalid page, it aborts all speculative threads, rolls back
the eager version management address-owner buffering and resets
the page types of the variable that contains the address (Line 41–
46). The non-speculative thread also frequently calls check valid

and initiates thread rollbacks if it finds that a speculative thread has
accessed invalid pages (Line 32–34).

One may argue that the readonly-page optimization is not a
significant contribution since accelerating readonly variables dy-
namically was proposed in [12] and applied in [13]. However, we
note that their approach has several drawbacks. First, each mem-
ory load/store must be explicitly annotated with specific memory
ranges, which is tedious when done manually for large programs
and is difficult automatically without ahead-of-time profiling, while
the readonly-page optimization identifies readonly variables on-
the-fly automatically. Second, since memory accesses must be as-
sociated with memory ranges, their approach is generally ineffec-
tive for pointer-based data structures. Third, the annotated memory
ranges must be disjoint during whole program execution, while the
readonly-page optimization can adapt to different readonly vari-
ables each time a speculative region is entered.

4.3.1 Adaptive Buffering Selection Heuristics

Since eager version management buffering has higher scalability,
the buffering integration mechanism defaults to selecting the eager
shared address-owner buffering whenever possible. However, when
there are few processor cores, or the validation/commit time is
small, the way eager buffering delays the non-speculative thread
becomes the dominant overhead, and it can be more efficient to use
the lazy page-table buffering. We thus propose adaptive buffering
selection heuristics to address this problem.

The adaptive buffering selection heuristics is similar to adap-
tive fork heuristics [2] in that it dynamically profiles the parallel
program execution and adapts to the appropriate buffering on-the-
fly. At the beginning of program execution, the lazy page-table
buffering is the default selection since it does not cause unneces-
sarily rollbacks. The runtime system records the number of mem-
ory accesses m, work time Twork (the time from being specu-
lated to the start of validation/commit), and validation/commit time
Tvc of each speculative thread. When a speculative thread com-
mits, the expected runtime of lazy and eager buffering are esti-
mated as follows. Assume each speculative memory access has
overhead C cycles and the eager buffering delays each thread by
a constant factor of K: if there are N − 1 speculative threads,
the work time speedup of the N threads for the lazy buffering is
S = 1 + (N − 1) ∗ (Twork − C ∗ m)/Twork. For an assumed
workload of L loop iterations, the estimated runtime of the lazy
and eager buffering is then tlazy = L ∗ Twork/S + L ∗ Tvc

and teager = L ∗ Twork ∗ K/N , respectively. If tlazy/teager =
N/K ∗ (1/S + Tvc/Twork) > 1, then the eager buffering is con-
sidered more efficient and should be enabled. In our experiments,
we use parameters C = 20 and K = 8.

4.3.2 Thread Stopping Optimization

In the original MUTLS threading design as was summarized in sec-
tion 3.1, each thread is bound to a virtual CPU that always corre-
sponds to an operating system (OS) thread. The number of virtual
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1   class MemoyBuffering{ 

2      int page_types[PAGE_NUM], rbk_page_type; 

3      char* page_addresses[PAGE_NUM], *rbk_addr; 

4      array<size_t, PAGE_NUM> pages; 

5      ThreadBuffer threads_buffer[N_THREAD]; 

6      AddressOwnerBuffer owner_buffer; 

7      size_t get_page(char* addr){ return (addr & SIZE) / PAGE; } 

8      int get_page_type(char* addr){ 

9         size_t p = get_page(addr), paddr = addr & ~(PAGE � 1); 

10        return (page_addresses[p] == paddr) ? page_types[p] : 0; 

11     } 

12  public: 

13     void register_variable_node(char* addr, size_t size){ 

14        size_t p = get_page(addr); pe = get_page(addr + size) 

15        for(; p <= pe; p++, addr += PAGE){ 

16           if(page_addresses[p] == NULL){ 

17              page_addresses[p] = addr & ~(PAGE � 1); 

18              pages.push_back(p); 

19           } 

20        } 

21     } 

22     void reset(){ for(each p in pages) page_types[p] = 2; } 

23     T load(T* addr, int rank); 

24     void store(T* addr, T data, int rank); 

25     void register_start_thread(int rank){ 

26        owner_buffer.register_start_thread(rank); 

27     } 

28     void register_join_thread(int rank){ 

29        owner_buffer.register_join_thread(rank); 

30     } 

31     void check_valid(){ 

32        if(rbk_addr == NULL) return; 

33        rollback_self_nonsp(addr, rbk_page_type); 

34        rbk_addr = NULL; 

35     } 

36  }; 

37  void rollback_self_sp(char* addr, int type, int rank){ 

38     rbk_addr = addr; rbk_page_type = type; rollback(INVALID_PAGE, rank); 

39  } 

40  void rollback_self_nonsp(char* addr, int type){ 

41     rollback_all_speculative_threads(); 

42     var = find_variable(addr); 

43     for(each p in var.get_pages()){ 

44        page_types[p] = type; 

45        owner_buffer.rollback_page(page_addresses[p], PAGE); 

46     } 

47  } 

48  template<bool sp, typename T> 

49  T load(T* addr, int rank){ 

50     if(is_self_stack_address(addr, rank)) return *addr; 

51     int t = get_page_type(addr); 

52     if(t == 2) return *addr; 

53     if(t == 1){ 

54        if(owner_buffer.register_load(addr, rank)) return *addr; 

55        else sp ? rollback_self_sp(addr, 0, rank) : rollback_self_nonsp(addr, 0); 

56     } 

57     return sp ? threads_buffer[rank].load(addr) : *addr; 

58  } 

59  template<bool sp, typename T> 

60  void store(T* addr, T data, int rank){ 

61     if(is_self_stack_address(addr, rank)){ *addr = data; return; } 

62     size_t t = get_page_type(addr); 

63     if(t == 2) sp ? rollback_self_sp(addr, 1, rank) : rollback_self_nonsp(addr, 1); 

64     else if(t == 1){ 

65        if(owner_buffer.register_store(addr, rank)) *addr = data; 

66        else sp ? rollback_self_sp(addr, 0, rank) : rollback_self_nonsp(addr, 0); 

67     } 

68     else if(sp) threads_buffer[rank].store(addr, data); else *addr = data; 

69  } 

SIZE: the size of the shared address owner buffer (4GB) 

PAGE: the size of each page (4KB) 

PAGE_NUM = SIZE / PAGE 
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(a) Buffering example. Threads T1, T2 and T3 read/write variable A, which has pages 101 and 102. 

(b) Implementation 

Figure 5. Buffering example. Threads T1, T2 and T3 read/write variable A, which has pages 101 and 102.

CPUs is usually set to be no more than the number of physical
CPUs of the running machine to avoid performance degradation
caused by threads representing sequentially later execution com-
peting with the CPU time of sequential earlier threads. This de-
sign however, may unnecessarily limit thread work coverage of the
software-TLS system, as demonstrated by the example in Figure 6.
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thread (T0) 

Loop iterations 

Speculative threads 

(T1-T3) 
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Figure 6. Thread Coverage Problem of MUTLS Threading De-
sign. After T1 commits, only 3 threads are running.

A loop with N iterations is speculatively parallelized with P
virtual CPUs (N > P ). In the figure, P is 4 and the non-speculative
thread T0 in-order speculated threads T1, T2 and T3. When T0
completes its iteration, it joins T1 and T1 commits, after which
there are only 3 threads running. As the speculative threads need
buffering and thus are slower than the non-speculative thread, more
time is required before T3 reaches the end of the iteration to spec-
ulate a new thread, resulting in less than optimal thread coverage.

We propose the thread task optimization to solve the problem.
Instead of binding each thread to a virtual CPU, the optimization
associates each thread with a thread task, which can be in either
running or pending state. A running task has a corresponding vir-
tual CPU (OS thread) while a pending task does not. Therefore,
though running tasks should generally be no more than physical
CPUs, the total number of running and pending tasks can be larger
than the number of physical CPUs. After a running task exits (its
speculative thread commits or rolls back), if there is a pending task,
the pending task is assigned its OS thread and becomes a running
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task, otherwise its OS thread is returned to the underlying threading
implementation. Though the number of tasks N is larger than the
number of virtual CPUs P , we note that N is a bounded value with
respect to P , in particular, N < 2P . This is because each specu-
lative thread needs to create at most one pending task. Moreover,
if using an in-order forking model, then only the most-speculative
thread needs to create a pending task, and thus N = P + 1.
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Figure 7. Thread Task Optimization - Normal Execution
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Figure 8. Thread Task Optimization - Thread Joining

The thread task optimization for the example of Figure 6 is
demonstrated in Figures 7 and 8. After threads T1, T2 and T3 are
in-order speculated, there are no available OS threads, and therefore
T3 speculates a pending thread task T4. After T1 commits, T4 is
assigned the OS thread of T1 and scheduled to run on a physical
CPU. T4 then reaches a fork point and speculates a new pending
thread task T5. In implementation, T5 and T1 can share the same
rank and thread status and task data.

To rollback and restart the speculative threads for the readonly-
page optimization and the buffering integration mechanism, such as
the example shown in Figure 5, we have different design choices.
One is to rollback all speculative threads/tasks. When the non-
speculative thread reaches a fork point again, a child thread is
then forked to continue speculative parallel execution. An exam-
ple of this design is illustrated in Figure 9. The non-speculative
thread T0 in-order speculates threads T1, T2, T3 and the pending
task T4. Then a thread writes a readonly page and initiates spec-
ulative threads/tasks rollback/restart, which causes all speculative
threads/tasks to rollback. This design has the drawback of reduced
parallel thread work coverage: after the speculative thread tasks are
rolled back, the non-speculative thread has to complete the rest of
its iteration before speculating a child thread again, resulting in un-
necessarily longer program execution time.
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Figure 9. Speculative Threads/Tasks Rollback/Restart without
Thread Stopping Optimization

We propose the thread stopping optimization to resolve this
issue. When the speculative threads need to be restarted, the non-
speculative thread initiates speculative threads/tasks stop/rollback/-
restart, which stops its direct children, and then indirect children are
cascadingly rolled back. Then after rolling back the eager buffering
and resetting the variable page types, the non-speculative thread
restarts the stopped child thread tasks.
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Figure 10. Speculative Threads/Tasks Stop/Rollback/Restart with
Thread Stopping Optimization

The example of Figure 9 with the thread stopping optimization
is demonstrated in Figure 10. When the speculative threads/tasks
T1 to T4 need to restart, the speculative thread T1 is stopped,
which in turn cascadingly rolls back T2, T3 and T4. Then as there
are no speculative threads running, the non-speculative thread T0
can maintain the buffering metadata and global main memory.
Afterwards, it restarts the stopped speculative thread task T1, which
in turn re-speculates child threads/tasks T2, T3 and T4.
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Figure 11. State Transition of Thread Stopping Optimization

The state transition of the MUTLS framework design with the
thread stopping optimization is illustrated in Figure 11. When a
speculative thread has an invalid buffering memory access such as
writing a readonly page or reading/writing an independent WORD
and needs to restart, it waits for its state to be STOPPING. When
the non-speculative thread has an invalid buffering memory access
or finds one of a speculative thread in the check valid call as
was discussed for Figure 5, it sets the states of the speculative
threads/tasks to STOPPING. If a speculative thread finds its state is
STOPPING during thread joining with the non-speculative thread
or during waiting after an invalid buffering memory access, there
are two cases, depending on whether the speculative thread is a
direct child of the non-speculative thread: if it is, it sets its state to
STOPPED and exits; otherwise, it transits to STOP ROLLBACK
and calls the rollback self sp method of Figure 5 to rollback
itself. The reason that indirect child threads do not transit to the
ROLLBACK state is that, instead of calling rollback self sp of
Figure 5, a thread normally rolling back from the ROLLBACK state
calls the rollback page sp method for all its accessed pages, as
was discussed for Figure 4. After the non-speculative thread rolls
back the eager buffering and resets the buffering metadata, it resets
the states of the stopped direct child threads to RUNNING and
restarts the threads.
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Benchmark Description Problem Size Language Source

lavaMD 3D hierarchical particle simulation 10 boxes in each dimension C Rodinia
streamcluster online stream data clustering 65536 points, 1000 clusters C++ Rodinia

kmeans k-means clustering 494020 points C Rodinia
srad speckle reducing anisotropic diffusion imaging 609×590 image C Rodinia
cfd 3D fluid computational dynamics 97046 elements C++ Rodinia

sparsematmul sparse matrix times vector 2M×2M matrix, 100M non-zeros C SciMark
smallpt path tracing global illumination rendering 800×600 image, 4 ray samples C++ smallpt
bwaves blast waves simulation train run Fortran SPEC CPU2006

fft recursive Fast Fourier Transform 220 doubles C MUTLS

Table 1. Benchmarks

5. Experiments

The MUTLS system is implemented in llvm-3.5. Performance is
evaluated on a 4x16-core AMD Opteron 6274 machine with 64GB
memory. We use SSE4 instructions for SIMD acceleration. The
benchmarks are listed in Table 1, and were selected because they
are memory intensive workload applied in a variety of areas and ex-
pose significant opportunities for parallelism. They have no mem-
ory dependencies. We use train run for bwaves because it takes a
long time to run all versions for the ref run data set. As more par-
allel thread work generally requires more validation/commit (V/C)
time, we use more cores for parallelized V/C as more cores are used
for speculative parallelization. For the experiment, we use 0, 0, 1,
2, 3, 5, 7, 7 and 7 dedicated parallelized V/C cores when there are
1, 2, 4, 8, 16, 32, 48, 56 and 64 available CPU cores, respectively.

We first experiment with the lazy buffering. The speedups to
the original (non-MUTLS) sequential program are shown in Figure
12. The mutls version is the MUTLS buffering [3]. The simd, pvc
and ro mean the SIMD acceleration, parallelized V/C and readonly-
page optimizations, respectively.

It can be seen that the readonly-page optimization is highly ef-
fective and efficient, and significantly improves the performance of
all benchmarks except fft, which has no large readonly variables.
The SIMD acceleration optimization improves performance con-
siderably for srad, bwaves and fft, and moderately for others. The
parallelized V/C optimization significantly benefits more V/C in-
tensive benchmarks such as streamcluster, srad and cfd, sparsemat-
mul, bwaves and fft, as a result of reduced critical path delay, while
degrading the speedups of data-reuse-intensive benchmarks such as
lavaMD and smallpt, which demonstrates the trade-off between the
speculative execution time and the validation/commit time. We can
see that generally few or no dedicated parallelized V/C cores are
needed on machines with no more than 8 cores.

We then experiment with the eager buffering and present the
speedups in Figure 13. The eager-nolazy version uses the eager
buffering and rolls back threads with RAW, WAR and WAW de-
pendencies. The simd-eager tries to use the eager buffering for in-
dependent global variables and falls back to the simd lazy buffering
for dependent ones, and simd-eager-ro also enables the readonly-
page optimization. We also show the speedups of the simd-pvc-ro
version for comparison with the optimized lazy buffering.

We can see that the readonly-page optimization also signifi-
cantly benefits the eager buffering, demonstrating its low overhead.
The eager versions generally have higher speedups with more cores
than the lazy versions as a result of the higher scalability of the
eager buffering, yet lower with few cores due to the eager buffer-
ing slowing down the non-speculative thread. The plunge of the
streamcluster eager-nolazy version at 48 and 56 cores is because
the benchmark uses a boolean array while we track dependency
of the eager buffering using 32-bit WORD, as was discussed in
section 4.2, and thus causes rollbacks due to false dependencies.
On the other hand, this benchmark demonstrates the advantage of
accurate dependency tracking of the lazy page-table buffering dis-
cussed in section 4.1. For the bwaves benchmark, the eager buffer-

ing causes rollback due to memory access to the stack variables
of the non-speculative thread. We cannot apply the eager buffer-
ing to the non-speculative stack, since speculative threads may ac-
cess spilled register variables and/or stack pointers, and thus mis-
speculation may corrupt the non-speculative stack. Since the eager
buffering requires the use of in-order forking model, the lazy ver-
sions achieve much higher speedups than the eager versions for fft,
resulting from the mixed forking model exploiting more parallelism
from the tree-form recursion benchmark [3].

The performance results of the adaptive buffering selection
heuristics and thread stopping optimization are presented in Fig-
ure 14. We scale the speedups to the simd-eager-ro version, and
thus these versions have higher/lower speedups than simd-eager-
ro if the speedup ratios are larger/less than 1, and higher/lower
scalability if the curves go upward/downward with the number of
cores. The heuristics version enables adaptive buffering selection
heuristics for the simd-eager-ro version. We also show the lazy-ro
results to compare the heuristics version with the corresponding
lazy buffering version. The nostopping version disables the thread
stopping optimization for the simd-eager-ro version.

We can observe that the adaptive buffering selection heuristics
help to select the appropriate buffering. For srad and cfd, the heuris-
tics select the lazy buffering from 1 to 16 and 1 to 4 cores, respec-
tively, for its lower overhead on the non-speculative thread, and the
eager buffering for more cores to benefit from its higher scalabil-
ity, resulting in optimal solutions for different environments. The
heuristics version also shows good overall improvement. It is faster
than the simd-eager-ro version for streamcluster, srad, cfd and
bwaves, and faster than the simd-pvc-ro version for most bench-
marks with more than 8 cores. However, for some benchmarks such
as lavaMD, kmeans and smallpt, if eager buffering is selected, the
heuristics may degrade the speedups due to extra rollbacks. We also
see that there are scenarios where the buffering integration over-
head could not be reduced by the heuristics, due to factors such as
i-cache miss, branch prediction and more control flow/data access
disabling compiler optimization. For example, while the heuristics
select the lazy buffering for streamcluster and sparsematmul, the
performance is still similar to that of the simd-eager-ro version.

The thread stopping optimization is effective for benchmarks
with shared and independent variables in loop speculative regions.
With more than two cores, the optimization significantly improves
the speedups of lavaMD, srad, cfd, sparsematmul and bwaves, as
a result of more parallel thread work coverage. On the other hand,
using two cores the speedups of the srad and cfd benchmarks are
significantly higher without the thread stopping optimization; this
is because of the sequential region optimization of section 4.3,
for which the non-speculative thread directly accesses the main
memory without the eager buffering.

Although other software-TLS systems use different hardware
and benchmarks, and are non-trivial to port, a rough comparison
can be made to see how our results compare with the performance
of other, pure eager designs. The speedup ratios of the simd-eager-
ro version to the OpenMP manual parallel version are presented
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Figure 12. Speedup versus number of cores; higher is better.
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Figure 13. Speedup versus number of cores; higher is better.
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Figure 14. Speedup ratio versus number of cores, scaled to the simd-eager-ro version; higher is better.
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Figure 15. Speedup ratio versus number of cores, scaled to the
OpenMP version; higher is better.

in Figure 15, which also shows the relative memory buffering over-
head since OpenMP has no buffering. On an 8-core machine SpLIP
achieves 98.5% and 71.7% of the performance of manually paral-
lelized versions of sparse matrix multiplication and barnes hut (re-
lated to sparsematmul and lavaMD) [13], whereas our simd-eager-
ro version reaches 110.8% and 76.9% of the OpenMP version, al-
though requiring 32 cores to converge. We do better with respect
to MiniTLS, which achieves speedups of 3.7 and 4.8 respectively
on the same benchmarks using 32 cores [23], while simd-eager-ro
has 4.5 and 19.7 speedup on 32 cores, and can utilize 64 cores to
achieve speedup of 3.9 and 34.4. Adaptive MUTLS of course also
handles benchmarks such as bwaves that respond better to lazy ap-
proaches, and has the additional benefit of being language and ar-
chitecture neutral, while SpLIP and MiniTLS only support a spe-
cific language/runtime environment (C++ and Java, respectively).

6. Conclusions and Future Work

Efficient memory management is critical to the design of effective
software approaches to thread-level speculation, with the compet-
ing buffering strategies used to either enforce isolation or to pre-
serve undo information having different costs and potential ben-
efits. We initially approached the problem as one of establishing
which technique is better, developing highly optimized, but sepa-
rate implementations of the buffering approaches. Both techniques
improve performance, and both benefit from further optimizations
to identify readonly data and so reduce buffering costs, but it de-
pends very much on the benchmark and resource limits. By com-
bining the techniques and performing an adaptive, runtime selec-
tion of the buffering mechanism we are thus able to demonstrate
a design that gains the benefits of both, with a more general ap-
plication that accommodates different benchmarks and numbers of
available cores.

Future work involves further tuning the buffering integration
mechanism—our adaptive heuristics are effective, but could per-
haps be improved by maintaining different buffering integration
data for different fork points, which should reduce the rollback time
ratio for programs with iterations containing different speculative
regions such as bwaves. More precise, and ideally ahead-of-time
identification of independent or readonly variables may also be pos-
sible through static analysis, profilers, and/or feedback logs. We are
also interested in exploiting common hardware accelerators such
as GPU and hardware transactional memory (HTM), as a means of
further alleviating overhead without sacrificing the advantages of
software TLS in applying to existing, commodity hardware.
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