

Reducing Memory Buffering Overhead
in

Software Thread-Level Speculation

Zhen Cao Clark Verbrugge

Compiler Construction 2016

zhen.cao@mcgill.ca clump@cs.mcgill.ca

Thread Level Speculation (TLS)

● Basis for automatic parallelization
– Start from sequential program

– Optimistically parallelize future execution
● Safety guaranteed

● Traditionally a hardware technique
● Software implementation

– Large parallel granularity, no special hardware

– Overhead concerns

Thread Level Speculation (TLS)

● Speculative threads execute in the future

T
im

e Current execution

Speculative execution

Fork

Join

Thread Level Speculation (TLS)

● Past should affect the future

a = ..
x = ..

.. = x

T
im

e Current execution

Speculative execution

Thread Level Speculation (TLS)

● Future should not affect the past

a = ..
x = ..
.. = y
w = ..
.. = w

.. = x
y = ..
.. = z
w = ..

T
im

e Current execution

Speculative execution

Thread Level Speculation (TLS)

● Future should not affect the past

a = ..
x = ..
.. = y
w = ..
.. = w

.. = x
y = ..
.. = z
w = ..

T
im

e Current execution

Speculative execution

Contents

● Version management
– Lazy Buffering

● Optimized design

– Eager Buffering
● Optimized design

● Integrating lazy & eager
● (Thread coverage)
● Experiments

Version Management

● Key property for safety
– Need to avoid RAW, WAR, WAW errors

– Isolate and/or restore

● Two main flavours: Lazy & Eager

Lazy Buffering

● Lazy version management
– Non-speculative thread accesses memory

– Speculative threads buffered
● Reads for validation
● Writes for isolation

Lazy Buffering

Non-speculative

Speculative 1

Speculative 2

Memory

R-Buffer

W-Buffer

R-Buffer

W-Buffer

Lazy Buffering

Non-speculative

Speculative 1

Speculative 2

Memory

R-Buffer

W-Buffer

R-Buffer

W-Buffer

Read x
x written?

validate

save x
read x

commit

Lazy Improvements

● Problem: idleness, due to validation/commit
– Bigger granularity = large buffers

● Parallelize V/C?
– Processors idle anyway...

● Coarse and fine-grain parallelization
– But need to structure buffers to help

Per-Thread Page Tables

&x

X?
Table Read Buffer Write Buffer

11 ... 11 00 ... 110x42 0x40

Per-Thread Page Tables

● Different pages committed in parallel
– Partitioned (pages), guaranteed separate

● V/C can be vectorized on a page
– SIMD acceleration

● Supports mixed data types

● Extra cost
– More space, hashing

Contents

● Version management
– Lazy Buffering

● Optimized design

– Eager Buffering
● Optimized design

● Integrating lazy & eager
● (Thread coverage)
● Experiments

Eager Buffering

● Used in SpLIB, MiniTLS, ...
● All speculative, access main memory directly

– Keep shadow buffer for rollback

– Track versions for proper restore

Eager Scheme

Speculative 1

Speculative 2

MemoryBuffer

Buffer

Load/Store
Vector

Speculative 0
Buffer

Eager Scheme

Speculative 1

Speculative 2

MemoryBuffer

Buffer

Load/Store
Vector

Speculative 0
BufferR/W x

Check x
x written by another?
x read/written

(read) x

(store) x

Eager Scheme

Speculative 1

Speculative 2

MemoryBuffer

Buffer

Load/Store
Vector

Speculative 0
BufferR/W x

Check x
x written by another?

(restore)

Rollback thread

Eager Scheme

Speculative 1

Speculative 2

MemoryBuffer

Buffer

Load/Store
Vector

Speculative 0
BufferR/W x

Check x
x written by another?

(restore)

Rollback thread

● Faster (no) commit, but slower rollback
● WAR and WAW dependencies require rollback

Eager Improvements

● Problem: multiple buffers, lots of versions

● Only keep one version?
– Need to consider thread order

Shared Address-Owner Buffering

● Single shadow buffer for all threads
– At most one buffered copy of each variable

● Improved space
– O(D) vs O(D+W)

● D data accesses, W number of writes

● Finer or coarser granularity
– Treat vars as WORD bytes

Shared Address-Owner Buffering

Speculative 1

Speculative 2

Memory
Owner
Vector

Non-speculative

Buffer

Shared Address-Owner Buffering

● Each WORD has
– Owner for dependency tracking

● One bit for whether written or not

– Shadow copy for rollback

● Owners ordered
– In-order forking

● Global counter ok

– NS lowest

t < t
0 ?

t
0
≤ t ≤ t

max 0

t
0
≤ t ≤ t

max 1

111 ... 111 0

not owned

only read by t

written by t

shared

Contents

● Version management
– Lazy Buffering

● Optimized design

– Eager Buffering
● Optimized design

● Integrating lazy & eager
● (Thread coverage)
● Experiments

Buffering Integration

● Builds on a readonly optimization

● Lots of speculative regions have readonly vars
– Fills up buffer space

● Static is rare; dynamic is not easy to identify
– Most approaches manual, profile-based

● Just need transitively readonly
– Within a speculative region

Readonly

● Page based; work with larger chunks of mem
– Heap alloc sites as single vars

● Degrees of readonly-ness
– Readonly (default on entry)

– Independent (threads R/W different parts)

– Dependent (conflicting)

● Rollback reduces degrees

Readonly

ARO RO

T1 T2 T3

Readonly pages – no buffering required

Readonly

AI I

T1 T2 T3

Independent pages – use Eager Buffering

Readonly

AD D

T1 T2 T3

Dependent pages – use Lazy Buffering

Contents

● Version management
– Lazy Buffering

● Optimized design

– Eager Buffering
● Optimized design

● Integrating lazy & eager
● (Thread coverage)
● Experiments

Experiments

lavaMD C Rodinia

streamcluster C++ Rodinia

kmeans C Rodinia

srad C Rodinia

cfd C++ Rodinia

sparsematmul C SciMark

smallpt C++ smallpt

bwaves Fortran SPEC CPU2006

fft C MUTLS

AMD Opteron 6274 (4x16 cores, 64GB memory)

Parallel V/C cores: 0-7

Experiments

mutls Plain lazy

simd Lazy with SIMD V/C

simd-pvc Add parallel V/C

simd-ro Lazy with SIMD and Readonly

simd-pvc-ro Add parallel V/C

Experiments

eager-nolazy Eager only

simd-eager Eager, fallback to lazy SIMD V/C for dependent

simd-eager-ro Readonly as well

simd-pvc-ro As previous slide

Experiments
Nb: Scaled to OpenMP (manual)

Conclusions & Future Work

● Software TLS
– Feasible, but a significant engineering effort

● Different benchmarks need different optimizations

● Adaptivity
– Effective, better tuning would help

● Hardware (transactional) help?
– Small buffers!

– Hard to enforce sequential commit

Thank You

Questions
?

Zhen Cao
zhen.cao@mail.mcgill.ca
http://www.sable.mcgill.ca/~zcao7/mutls/

Clark Verbrugge
clump@cs.mcgill.ca

Extra Slides

Adaptive Selection

● Buffering integration defaults to eager
● But costly to non-speculative thread

– Small V/C, lazy is faster

● Adaptive heuristics, based on profiling
– Start with lazy (more robust to rollback)

Adaptive Selection

● Compute at commit:
– m: # memory accesses

– TW: work time

– TV: validation/commit time

– C: overhead on var access by speculative thread (20)

– K: delay on thread for eager case (8)

● Estimate (future) lazy:eager time over L iters:
– Lazy speedup S = 1+(n-1)*(TW-C*m)/TW

– Lazy = L*TW/S+L*TV

– Eager = L*TW*K/n

Contents

● Version management
– Lazy Buffering

● Optimized design

– Eager Buffering
● Optimized design

● Integrating lazy & eager
● Thread coverage
● Experiments

Thread Coverage

● Usually #threads ≤ #CPUs
● Speculative threads are slower

– Waiting to join wastes resources

● Generate more speculative tasks than CPUs
– For in-order forking, just 1 is sufficient

– (Generally at most one pending task per thread)

Thread Coverage

T0 T1 T2 T3
(NS)

CPU0 CPU1 CPU2 CPU3

idle

Thread Coverage

T0 T1 T2 T3
(NS)

CPU0 CPU1 CPU2 CPU3 CPU0
T4

Thread Stopping

● Rollback in integration can reduce coverage
– Rollback all speculative threads

– Speculation continued when next fork point reached
● No speculation until then

● Stop direct child(ren)
– Rollback indirect children

● Reset buffering
– Restart stopped child(ren)

Thread Stopping

T0 T1 T2 T3
(NS)

CPU0 CPU1 CPU2 CPU3

Rollback

Next fork pt

Thread Stopping

T0 T1 T2 T3
(NS)

CPU0 CPU1 CPU2 CPU3

Rollback

stop
restart

Experiments

heuristics Adaptive buffering heuristics (on simd-eager-ro)

lazy-ro Compare heuristics to lazy version

nostopping Disable nostopping (on simd-eager-ro)

Nb: Scaled to simd-eager-ro

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

