
Exhaustive Analysis of Thread-Level Speculation

Clark Verbrugge
Christopher J.F. Pickett

Alexander Krolik
McGill University, Canada

clump@cs.mcgill.ca cpicke@cs.mcgill.ca
alexander.krolik@mail.mcgill.ca

Allan Kielstra
IBM Toronto Lab, Canada

kielstra@ca.ibm.com

Abstract
Thread-level Speculation (TLS) is a technique for automatic
parallelization. The complexity of even prototype implemen-
tations, however, limits the ability to explore and compare
the wide variety of possible design choices, and also makes
understanding performance characteristics difficult. In this
work we build a general analytical model of the method-
level variant of TLS which we can use for determining pro-
gram speedup under a wide range of TLS designs. Our ap-
proach is exhaustive, and using either simple brute force or
more efficient dynamic programming implementations we
are able to show how performance is strongly limited by pro-
gram structure, as well as core choices in speculation design,
irrespective of and complementary to the impact of data-
dependencies. These results provide new, high-level insight
into where and how thread-level speculation can and should
be applied in order to produce practical speedup.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel Programming; D.4.8 [Performance]:
Modeling and prediction

Keywords Parallelism, Thread Level Speculation, Perfor-
mance

1. Introduction
Thread-level speculation (TLS) describes a range of ap-
proaches to automatic parallelization that attempt to take
advantage of otherwise idle processors. It has been the sub-
ject of a large number of systems proposals and experimental
studies based on novel hardware [13, 26], and more recently
on pure software implementations [4, 17, 18, 21, 24].

Best performance in TLS systems depends on identify-
ing code that can be profitably parallelized. Most designs fo-
cus on avoiding (or repairing) data-dependencies, which can
cause misspeculation, and so reduce effective parallelism.
Thread speculation, however, is resource constrained, and
irrespective of succesfully avoiding data-dependencies, de-
cisions to parallelize in one area affect the ability to paral-
lelize later. The actual or potential speedup of a given piece
of code under TLS is thus difficult to predict, often known
only after the fact.

In this work we develop an abstract, flexible analytical
model of TLS behaviour, based on the method-level (MLS)
variation of TLS. Our approach is to perform a limit study,
initially determining maximum possible performance irre-
spective of and orthogonal to the potential for misspecula-
tion. Input timing traces (or estimates) of sequential execu-
tion can be fed into our model, and using an exhaustive anal-
ysis we can determine the best possible performance under
different TLS design assumptions, including potential mis-
speculation. By separating concerns of how TLS responds
to input program structure from how it responds to data-
dependencies we are able to make progress in understanding
the feedback complexity of TLS, providing further insight
into why TLS does or does not perform well for a given
program. Examination of the results of our analysis shows
that strong dependencies exist between TLS design and pro-
gram structure, that some TLS designs are better than others
for certain coding practices, and reveals potential for future
work that can exploit these differences.

Specific contributions of our work include:
• We define a general and expressive algorithmic abstraction

of thread-based, method-level speculation. Our design al-
lows for exhaustive, analytical exploration of behaviour,
and includes a dynamic programming design for scalabil-
ity well beyond trivial cases.
• We extend our base model with incremental complexity,

representing three core forms of TLS: in-order, out-of-
order, and mixed threading models. We show how to rep-
resent different parent/child signaling disciplines, and can

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

SEPS’16, November 1, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4641-2/16/11...

http://dx.doi.org/10.1145/3002125.3002127

25

incorporate the representation of unsafe instructions, mul-
tiple forms of overhead, and the effect of misspeculation.
• We apply our formalism to several basic coding patterns

(idioms), experimentally examining the interplay between
overall TLS design, fork heuristics, code structure, and
misspeculation. We show that even simple programming
design differences can result in significantly different per-
formance, independent of and with a comparable or larger
impact than data-dependency considerations.

2. TLS Background
TLS achieves speedup by launching threads that operate
on future program execution. At a fork-point a speculative
thread is launched to begin executing at a future join-point
in parallel with the initial, non-speculative thread. When the
parent execution reaches the join-point it signals the spec-
ulative child thread to stop, validates it for correctness, and
either commits, with execution continuing from wherever the
child thread reached, or discards and rolls back the child
with execution continuing from the join-point. The latter is
called misspeculation. TLS variants exist that focus exclu-
sively on loops, forking threads at the start of an iteration to
execute the subsequent iteration [9], or methods as method-
level speculation (MLS), forking at a call-site to execute the
method continuation in parallel with the invocation [6]. Arbi-
trary speculation is also possible, forking speculative threads
to execute any given future code sequence [3]. The latter is
not necessarily more general, as all these forms of specula-
tion can subsume each other with appropriate code transfor-
mations.

There are of course a number of safety and efficiency con-
cerns in any TLS model. In traditional, lazy TLS designs,
safety is provided through a combination of speculative iso-
lation and validation. Isolation is provided by buffering spec-
ulative writes to ensure they do not conflict with parent reads
or writes prior to join time. Parent writes may also affect
child execution. Validation requires recording speculative
reads, which can then be used at join time to verify that val-
ues read by a child match the state of memory reached by the
parent at join time, and thus child execution correctly rep-
resents the behaviour that its parent would have followed at
the join point. Other, recent designs have also explored eager
speculation models, which allow all threads to directly read
and write from main memory. Safety is then ensured by each
thread maintaining a shadow buffer that records undo infor-
mation, and a versioning table to record and identify correct
read/write ordering. Eager designs eliminate the validation
step, but have increased sensitivity to data dependencies and
slower rollback. In this work we assume a lazy model, leav-
ing the eager model for future work.

TLS implies a number of sources of overhead that can re-
duce performance. In an overall and approximate sense these
costs can be aggregated into fork and join overhead, with

the former including thread initialization, code-preparation
and in the case of MLS return-value prediction [15], and the
latter including signaling/termination, validation, and merge
costs. Beyond basic overhead costs, the main limiting factor
on potential speedup is imposed by the actual choice of fork
points. To reduce misspeculation, these points must result
in few data-dependency conflicts between parent and child
threads. They should also include an appropriate balance of
work within the method and its continuation, large enough
that parallelization benefits exceed overhead concerns, but
small enough that the probability of misspeculation does not
grow too large [11]. Importantly, there are strong feedback
concerns in forking heuristics—available cores are finite,
and forking a thread at one point may preclude forking at a
point in the near future, making the entire process extremely
sensitive to the exact fork heuristic and program structure. It
is the latter property that we focus on in this work.

3. Modeling TLS through MLS
Our model of TLS is based on the method-level (MLS) vari-
ation, which has the advantage of easily and syntactically
identified fork and join-points. We assume a simple, stack-
oriented program execution model consisting of sequential
code interleaved with nested method calls. In order to model
the control flow of MLS applied to such an execution we
need to only identify calls, return points (continuations), and
the base, sequential work performed. Note that we do not
represent or track actual data-dependencies in this model:
our primary goal is to examine the patterns of execution and
parallelism generated within the combinations of program
structure and MLS control flow, and in this sense misspecu-
lation due to data-dependencies is primarily a source of ad-
ditional overhead, reducing actual parallelism and system ef-
ficiency. We discuss misspeculation itself in section 3.3, and
experimentally examine the impact in section 4.2.

3.1 Base Model
Our model builds on a sequential trace of actions, consisting
of either method calls or basic work. Incorporating MLS
involves adding in speculative thread forks (and joins), based
on call-continuation pairings. This gives us a straightforward
input representation we refer to as the MLS constraint graph,
illustrated in figure 1 below.

The MLS constraint graph works in conjunction with a
model of MLS execution. If we allow just one speculative
thread, and assume joins are performed only upon termina-
tion, the potential behaviour is relatively easy to determine.
Given the sequential execution trace described in figure 1,
for example, the MLS system may choose to insert a single
fork point before any call as the non-speculative thread exe-
cutes. All possible resulting execution sequences are shown
in figure 2.

Note that we can already observe in this simple execution
context that the parallelism generated strongly depends on

26

a) A() { B() { C() {
work1 work3 work5
B() C() }
work2 work4

} }

b) A → w1 → B → w3 → C → w5 → w4 → w2 → •

c)

Figure 1. a) Code, b) an execution sequence due to executing
“A();” and terminating at •, and c) the corresponding MLS con-
straint graph; dashed edges are continuation edges.

(1) ; (A→w1→B→w3→C→w5→w4→w2) | (•)
(2) A→w1 ; (B→w3→C→w5→w4) | (w2→ •)
(3) A→w1→B→w3 ; (C→w5) | (w4→w2→ •)
(4) A→w1→B→w3→C→w5→w4→w2→ •

Figure 2. Possible MLS execution sequences for the code in
figure 1. The fork point is shown by a ‘;’ and is followed by a
parallel computation separated by a ‘|’.

the specific forking choices made. Sequence (1) achieves no
parallelism but does have speculative overhead. Sequences
(2) and (3) have some parallel execution, but have different
degrees of balance between threads. Sequence (4) follows if
no fork point is selected, and is just sequential execution.

In this design, each potential MLS execution consists of
three main sections. An execution consists of a sequential
preamble terminating in a fork and method-call (or program
end in the trivial case). A fork point divides subsequent ex-
ecution into 2 pieces: a (non-speculative) parent thread that
executes until just before the continuation point, and a (spec-
ulative) child-thread that executes all code from the continu-
ation onward. That is, our original sequential execution can
be “parsed” into an MLS execution:

preamble(S) ; non-spec(A) | speculative(B)

The process for discovering all MLS executions is then
straightforward. We incrementally grow the preamble S. If
we encounter a potential fork point we consider 2 options,
one where we launch a speculative thread and split the ex-
ecution into A and B, and one where we do not and just
continue growing the preamble.

Calculating parallel speedup in this model is analytically
trivial. Given a base sequential sequence t1, . . . , tn the time
taken can be calculated (simply) by summing the weight (ω)
of each individual operation. Time taken by a sequence con-
taining a fork is calculated (in general) recursively, consid-
ering the overlap of parent and child executions, as well as a
fork cost (F) and a join cost (J). This gives us the following
definitions for a time calculation function τ which we apply
to both sequential and forked code.

τ(t1, . . . , tn) =

n∑
i=1

ω(ti)

τ(S;A|B) = τ(S) + F +max(τ(A), τ(B)) + J

3.2 Multiple speculative threads
Most speculative systems allow multiple speculative threads,
taking advantage of as many of the available CPUs as pos-
sible to improve parallelism. Three main ways exist to ex-
tend a basic 2-thread MLS system, out-of-order, in-order,
and mixed nesting.

In the out-of-order model a non-speculative parent thread
may create multiple children as it descends down a call
chain. Thus a single non-speculative thread can have many
speculative children, although speculative threads do not
have further speculative children. An example is shown in
figure 3; here out-of-order parallelism helps significantly in
improving parallelism.

a) A() { B() { C() {
B() C() work3
work1 work2 }

} }

b) A → B → C → w3 → w2 → w1 → •

c) ; (A → ; (B → ; (C → w3) | w2) | w1) | •

Figure 3. a) Code, b) sequential execution sequence due to exe-
cuting “A();”, and c) an out-of-order MLS execution assuming an
arbitrary number of threads (CPUs) available.

An alternative design is to allow speculative children to
themselves launch speculative children. This is known as in-
order nesting, wherein each thread, speculative or not, may
have at most one speculative child. Conceptually, in-order
speculation tends to perform well in situations where out-
of-order nesting does not, and vice versa. An example of
in-order nesting is shown in figure 4. Note that out-of-order
nesting would result in less possible parallelism here, since
the lack of nested calls in any preamble means that at best a
single speculative thread could be forked.

a) A() { B() { C() {
work1 work2 work3

} } }

b) A → w1 → B → w2 → C → w3 → •

c) ; (A → w1) | (; (B → w2) | (; (C → w3) | •))

Figure 4. a) Code, b) sequential execution sequence due to exe-
cuting “A();B();C()”, and c) an in-order MLS execution assum-
ing an arbitrary number of threads (CPUs) available.

Finally, one may of course combine out-of-order and in-
order techniques, allowing each thread to have any number
of speculative children, whether the parent thread is specu-
lative or not. This is mixed nesting. An example is shown in
figure 5.

Although it is more difficult to see, mixed nesting results
in an maximal parallelism, parallelizing both calls to B()
and to C() in our example. This can be contrasted with out-
of-order and in-order designs, which parallelize along only
one major branch of the computation in each case.

27

a) A() { B() { C() {
B1() C1() workC
B2() C2() }
workA workB

} }

b) A → B1 → C1,1 → wC1 → C1,2 → wC2 → wB1 →
B2 → C2,1 → wC3 → C2,2 → wC4 → wB2 →
wA → •

c) A → ; (B1 → ; (C1,1 → wC1) |
(; (C1,2 → wC2) | wB1)) |

(; (B2 → ; (C2,1 → wC3) |
(; (C2,2 → wC4) | wB2)) |

(wA → •))

Figure 5. a) Code, b) sequential execution sequence due to exe-
cuting “A();”, and c) a mixed nesting MLS execution.

3.3 Signaling, Joining, Stopping, and Misspeculation
To complete our model we now incorporate the idea of lim-
ited thread resources, redeploying a CPU once a speculative
execution has been joined or otherwise terminated. To ac-
commodate this kind of behaviour we need to explicitly rec-
ognize the point at which threads are signaled to stop ex-
ecution and prepare for joining. Two main approaches to
thread joining are possible and can be represented in our
system, which we denote forward-signaling and backward-
signaling. We address both below, as well as two factors that
reduce speculative performance: unsafe instructions, (which
prevent speculation from proceeding further), and misspec-
ulation (which rolls back speculative execution).
In forward-signaling, once a parent thread reaches the ex-
ecution point at which its child began execution it signals
the child to stop, joins it, and then proceeds having recov-
ered the speculative thread resource. This enables reuse of
the child resource (CPU) for further speculation in subse-
quent execution, although only within whatever remains of
the continuation that was executed by the child.

Forward-signaling applies most naturally to out-of-order
execution, but unfortunately is not as effective for in-order
execution. With in-order nesting, a long but potentially par-
allelizable parent execution will not be exploited since the
parent thread must complete all of its work before it reaches
the join point and is able to recover the speculative child-
thread. In-order models benefit instead from backward-
signaling, wherein signaling roles are reversed to allow the
parent thread to receive “advance notice” of terminated spec-
ulative child-threads.
Backward-signaling is performed when a speculative child
which has terminated signals its parent. The parent thread
can then store the child state for later joining, and reuse
the speculative thread resource to launch another speculative
child prior to joining. As with forward-signaling, backward-
signaling enables more speculation with fewer CPUs, differ-
ing in that parent threads may not launch more children until
a child has terminated.

Backward-signaling has the disadvantage that terminated
speculative thread states need to be retained until parent ex-

ecution reaches the corresponding continuations. This re-
quires the addition of non-trivial memory management for
storage and retrieval of isolating buffers and speculative
stack frames, and so is less common, particularly in hard-
ware models where thread buffering is done through ded-
icated cache partitioning. In extending our model we thus
focus mainly on forward-signaling.

We incorporate a forward-signaling joining procedure by
extending our MLS representation. Instead of just S;A|B,
we allow the execution of B to be truncated, splitting B into
two pieces, the code executed prior to the signal, and the
code executed after the parent joins with its child. The latter
code is then evaluated recursively adding back in the recov-
ered speculative thread resource. As a general template then,
we model MLS execution of a sequence as a recursive de-
composition of a sequential sequence into S;A|B+C. S is
the sequential preamble ending in a method call, A is the
method body, B is the continuation up to the point at which
the speculative thread is joined, and C is the remaining ex-
ecution, giving us the following overview equation. Assume
T = SABC, then:

MLS(T) = S ; MLS(A) |MLS(B) + MLS(C)
Unsafe instructions are instructions which may not be ex-
ecuted safely in a speculative context. These typically in-
clude I/O, synchronization, and any other instructions that
may have a global effect not completely captured and made
reversible by buffering basic reads and writes. An unsafe in-
struction is easily modeled within the same abstraction; if
a speculative thread encounters an unsafe instruction execu-
tion is stopped, and the speculative thread waits to be joined
there.
Misspeculation. The existence of data-dependencies is of
course a major concern for actual speculative performance.
A read by a speculative thread of data later written by a par-
ent thread that is logically earlier in execution can result
in misspeculation—the speculative execution fails to vali-
date, and is aborted instead of joined. This behaviour has
two main impacts. Most simply, misspeculation implies ad-
ditional overhead in the system: thread creation and joining
of a misspeculating thread is wasted effort, since the mis-
speculating execution must be discarded and the code re-
executed. A further, more subtle impact is due to the re-
duction in thread resources and potential parallelism. A mis-
speculating thread is still a dedicated resource, and thus is
not available for other speculative purposes for the duration
of its failed execution.

3.4 Exhaustive Algorithm
Figure 6 formalizes and summarizes the notions discussed
in this section. Given a sequential execution, it expresses all
possible in-order, out-of-order, or mixed MLS executions,
accommodating forward-signaling, non-speculative instruc-
tions, misspeculation, and limited thread resources.

28

Let T = t1, t2, . . . , tn be a sequential trace of actions.
MLS(T ,σ,time) =

for all S = preamble(T, σ) s.t. τ(S) ≤ time
let (t|S|+1,tb) be a continuation edge
TA = t|S|+1, . . . , tb−1
for all σ1, σ2 = σ-1,0 // for out-of-order

0,σ-1 // for in-order
split(σ-1) // for mixed

for all A = MLS(TA,σ1,time-τ(S)-F)
TB = tb, . . . , tn
for all B = MLS(TB ,σ2,τ(A))
tf = misspec(B) ? tb : t|S|+|A|+|B|+1

TC = tf , . . . , tn
τ(S;A|B) = τ(S) + F +max(τ(A), τ(B)) + J
for all C = MLS(TC ,σ,time-τ(S;A|B))
τ(S;A|B + C) = τ(S;A|B) + τ(C)
return S ; A | B + C

Figure 6. Algorithm for enumerating in-order, out-of-order, or
mixed MLS executions, with forward-signaling and a bounded
number of threads. T is the input trace of actions, σ the num-
ber of speculative threads that are available for allocation, and
time is the maximum time before a parent signal will occur. The
preamble(T ,σ) function returns T and if σ > 0 then all pre-
fixes of T that end before a method call (fork point) as well. The
split(σ− 1) function returns all non-negative pairs σ1, σ2 such that
σ1 + σ2 = σ − 1. The τ() function returns the time used by the
given sequence.

The process begins by providing an input consisting of
the sequential sequence to decompose (T), a number of
available speculative threads (σ), and a timeout for when
the execution will be joined—for initial (top-level) input
the timeout is infinite, as the non-speculative thread is not
joined. The MLS function then returns all possible MLS ex-
ecutions of that sequence. The function initially and opti-
mistically tries to decompose T into S;A|B, splitting off C
and creating S;A|B + C instead only if necessary.

Within the function, all possible preambles (up to the
timeout limit) are considered, each of which is assumed to
terminate in a method call (if not then the result is just a sin-
gle, sequential execution of T). The method call defines the
split between the preamble S, the method body A, and its
continuation B. Once that split point is established, a specu-
lative thread will be in use to execute B, and the remaining
threads are allocated to the recursive decompositions of A
and B. In the case of out-of-order all threads go to A, for
in-order threads go to B, and for mixed all possible splits of
the thread resources must be considered.

Recursive decompositions of A are then computed given
the input timeout, subtracting the time consumed by the
preamble and the forking itself. Since B can only execute
until joined, its timeout is given by the duration of the re-
cursive execution of (a given) A. Joining prior to the com-
pletion of all B (with a slight abuse of notation) splits B

Figure 7. Dynamic programming model for finding optimal fork-
points.

into BC, with C being the remaining execution. Normally,
in the absence of misspeculation (the misspec function re-
turns false), the starting point of C is the code after A and
B join. If misspeculation of B occurs (misspec returns true)
the execution of B is discarded, and the starting point of
C is moved back to include all of B in its execution. The
overhead of creating and joining the misspeculating thread
is thus incorporated, as well as the impact on A of having
reduced thread resource due to their use within the misspec-
ulating execution. In either case, since C executes after the
join it has available the full thread resources, and whatever
time remains after S;A|B (any code of C still remaining
after timeout is left unexecuted, and becomes the C part of
the parent, recursive execution). For assessing speedup, the
total time taken is calculated and associated with the input
sequence.

Note that we can extend this model to accommodate other
variations on TLS as well. Backward-signaling, for instance,
can be incorporated by inverting the order in which we
determine the available timeouts. That is, we simply need
to reverse the dependency between A and B, evaluating B
first and passing the elapsed time as a minimum timeout
before a thread could be launched to the recursive evaluation
of A. A bi-directional signaling model is also possible, but
would require an additional, non-trivial recursion to balance
the time consumed by A given the resources passed back
from B, the amount of which recursively depends on the
time consumed by A.

3.5 Dynamic Programming Model
Our exhaustive algorithm involves multiple, nested recursion
to generate all possible executions. If we are mainly inter-
ested in finding a single optimal execution, a dynamic pro-
gramming approach can be used to cache the many recursive
invocations used in the algorithm. Figure 7 shows the result-
ing abstract space. We fill the discrete cells of this cube layer
by layer, growing the size of execution trace fragments we
consider until we cover the entire execution. Each layer de-
termines optimal execution time for a fixed length of trace
fragments starting at all possible offsets, given all possible
thread resource assumptions. The result of recursive calls in
the algorithm of figure 6 are thus already available in lower

29

Name Description
iter A sequence of 10 calls to the same work func-

tion.
head Head-recursion, 10 levels deep, each call exe-

cuting a work function upon return.
tail Tail-recursion, 10 levels deep, each call execut-

ing a work function before the recursive call.
tree A recursive, post-order computation within a bi-

nary tree down to 3 levels (7 units of work total).

Table 1. Synthetic benchmark suite. Note that these repre-
sent control-flow abstractions only, and do not include data-
dependencies.

layers, and while it still involves non-trivial computation at
each point analysis time is improved by orders of magnitude.

4. Experimental Analysis
An experimental investigation is performed by applying the
algorithm of figure 6 to different program fragments and
evaluating speedup, parametrization impact, and the relative
cost of misspeculation. As a benchmark suite we have ini-
tially concentrated on small program traces based on highly
general, ubiquitous coding idioms, as summarized in fig-
ure 1. These code fragments have been chosen as representa-
tive forms of commonly used, repetitive control-flow of the
form typically targetted (at a high level) in TLS optimiza-
tion. We focus on these idioms rather than actual traces of
program fragments in order to let us verify the behaviour
through inspection, and as they are already sufficient to
demonstrate a variety of interesting behaviours under MLS.

We also assume a very simple model of execution and
overhead costs: method-calls take 5 units, forks 5 units, joins
take 20 work units each, and actual work execution takes
1000 units. The cost of calling and the thread fork/join oper-
ations are chosen to roughly match the assumed cycle-cost of
similar operations in typical TLS hardware simulations [22],
and the work-weight is chosen to be much larger in propor-
tion. Our experiments show minor, proportional differences
from different overhead parametrizations, but the character
of results is quite insensitive to these choices.

4.1 Speedup
Different choices of how and when threads are forked are ex-
pected to impact the final performance. We thus analyze the
three basic MLS models (in-order, out-of-order, and mixed)
under a range of thread resources (from 1 to 9 speculative
threads available), and measure the maximal speedup pos-
sible under any forking strategy, the speedup obtained by a
“greedy” forking heuristic (choosing to fork at a method call
if a CPU is idle), and an “average” speedup over all pos-
sibilities. Maximal speedup provides a theoretical optimum
that limits any fork heuristic, averaging is meant to pro-
vide a baseline showing behaviour when no effort is made
to develop an effective fork heuristic, while greedy repre-

sents a straightforward, but still reasonable fork heuristic.
Results for the greedy option under mixed show the maxi-
mum speedup possible for any possible thread division.

Also note that in our model, units of execution (trace
symbols) are either executed or not—even with signaling
we do not split work units when a signal occurs, and as-
sume that a signal occurring within a work-unit is not acted
upon until the work is completed by the speculative thread.
Although this limits how work can be partitioned, it also
more accurately models the common practice of using in-
frequent polling (eg on method entries, exits, and backward
loop branches) instead of true asynchronous signaling for
inter-thread communication.

Results are shown in figure 8. In terms of maximal possi-
ble performance, striking differences are evident in how the
thread models respond to each of the different benchmark
structures. An in-order approach is generally more effective
than out-of-order, and this can be understood from how the
strategies interact with the benchmark structure. In the case
of iteration and tail recursion, in-order performs better than
out-of-order since subsequent iterations (or recursive calls)
are essentially always contained in the continuation of the
current iteration (call). Head recursion allows both strategies
to be effective since out-of-order can launch threads as the
recursion descends, while in-order can be effectively applied
once the recursion bottoms out. The mixed model, unsurpris-
ingly, is able to combine and sometimes exceed the benefit of
either in-order or out-of-order alone. This is most apparent
in tree, where the pure strategies are limited to exploiting
one branch down the tree while a mixed approach lets the
best strategy be selected at each branch in the descent.

Average performance is mainly interesting in providing
evidence of the extent of bias toward suboptimal perfor-
mance. The low average behaviour suggests the bulk of fork
strategies do not provide much speedup, and good perfor-
mance is only found by applying some effort to identify the
few, best forking choices.

In many cases, however, greedy behaviour turns out to
be effective at finding these better fork points, although this
too depends on the MLS design. In the case of iter, greedi-
ness is optimal irrespective of the MLS model. In head, tail,
and tree greedy works well for out-of-order and of course
mixed, but quite poorly for in-order. For in-order, a simple
greedy approach tends to fail due to the fact that there is a
single method call entry point to all these tests—launching
threads for the continuation has little to no impact on the
bulk of the work. Backward or bidirectional-signaling would
improve this, repurposing speculative threads after comple-
tion but before joining, but it also illustrates the importance
of matching speculative design to the code structure.

4.2 Misspeculation
The presence of data-dependency induced misspeculation
is of importance to TLS [6], and has inspired a wealth of
designs to mitigate the cost, both deterministic [2, 25], and

30

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 3 4 5 6 7 8 9

S
p

e
e

d
u

p
 R

a
ti
o

Number of Speculative Threads

Speedup of iter

Best In-order
In-order Greedy

Avg In-order
Best Out-of-order

Out-of-order Greedy
Avg Out-of-order

Best Mixed
Best Mixed Greedy

Avg Mixed

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 3 4 5 6 7 8 9

S
p

e
e

d
u

p
 R

a
ti
o

Number of Speculative Threads

Speedup of head

Best In-order
In-order Greedy

Avg In-order
Best Out-of-order

Out-of-order Greedy
Avg Out-of-order

Best Mixed
Best Mixed Greedy

Avg Mixed

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 3 4 5 6 7 8 9

S
p

e
e

d
u

p
 R

a
ti
o

Number of Speculative Threads

Speedup of tail

Best In-order
In-order Greedy

Avg In-order
Best Out-of-order

Out-of-order Greedy
Avg Out-of-order

Best Mixed
Best Mixed Greedy

Avg Mixed

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6 7 8 9

S
p

e
e

d
u

p
 R

a
ti
o

Number of Speculative Threads

Speedup of tree

Best In-order
In-order Greedy

Avg In-order
Best Out-of-order

Out-of-order Greedy
Avg Out-of-order

Best Mixed
Best Mixed Greedy

Avg Mixed

Figure 8. Speedup for benchmarks given different maximal thread resources, thread models, and fork heuristics. A bar is shown for each
number of available speculative threads; maximal speedup, greedy speedup, and average speedup are grouped and shown for in-order, then
out-of-order, and finally mixed speculative strategies respectively. Maximum theoretical speedup is 10, except for tree which is 7.

heuristic [8]. Given the significant impact of speculation
style and code structure on TLS performance, however, it
is important to quantify the relative effects.

Methodically examining misspeculation within synthetic
benchmarks has interesting complexities. Our model al-
lows us to induce misspeculation on any call-site, but if
we naively continue to measure best-case performance then
we end up merely considering situations where speculation
at that call-site is simply avoided altogether—this tends to
have a detrimental impact on performance, but does not fully
represent the cost of misspeculation itself. Alternatively, if
we force misspeculation at a call-site we are also necessarily
forcing speculation at that call-site, which in general may
not be an optimal choice.

To analyze the potential impact of misspeculation on per-
formance, we conducted experiments for various misspecu-
lation behaviours. Each misspeculation behaviour was con-
sidered with two measures; one wherein actual misspecu-
lation is indeed forced, and one wherein the call-site will
misspeculate if speculated upon, and thus is in most cases
skipped. The latter can also be viewed as the steady-state
response of an adaptive system which learns that a site mis-
speculates and so learns to avoid it.

Misspeculation has a large impact on speedup of course.
We do not show numerical results, however, both for space
reasons and as the results can be easily interpreted analyt-
ically. A single, forced misspeculation, for instance, gener-

ally cuts speedup by half, independently of the misspecula-
tion location. This is, however, a natural consequence of how
speedup is calculated. There are N units of work, optimally
executed concurrently for a total parallel time of N/t, and
thus a speedup of t. If one thread’s work is re-executed then
total time is increased by N/t, reducing speedup to t/2. In
general, with m misspeculations, we expect speedup to be
reduced to t/(m + 1). Note that this behaviour is in some
sense worst-case, and exposed by the high degree of par-
allelism the benchmarks are otherwise able to achieve—if
non-speculative execution is significantly longer than spec-
ulative execution, and so speedup is already non-optimal,
it may sometimes be possible for the misspeculation of a
grand-child thread to occur within an otherwise idle specu-
lative thread, and thus not to have as large a relative impact
on overall speedup. For benchmarks with less parallelism,
the impact on speedup is lower.

Within all our misspeculation experiments, an important
observation is with respect to the relative scale of degrada-
tion (or improvement). While misspeculation has an impor-
tant and significant impact, it is not necessarily larger than
the variations shown earlier due to the interaction between
speculative design and code structure. Effective speculation
is best achieved by considering both these aspects, and nei-
ther a focus purely on misspeculation nor on design/code is
sufficient as a general, optimal solution.

31

4.3 Scalability
Our basic exhaustive analysis generates all possible traces,
and is thus limited in scalability. When only the optimal so-
lution is interesting, however, such as in potential implemen-
tations of MLS, the dynamic programming solution given in
section 3.5 offers much better performance and is thus more
practical for analyzing larger scale traces and systems. Fig-
ure 9 summarizes scalability results for the analysis itself.

Differences in the length of the input trace have the most
important effect on the performance of the algorithm. We are
able to analyze an NQueens problem of size 7 in reasonable
time, a respectable result, although the rapid growth in anal-
ysis time clearly limits the size of traces that can be analyzed
to short segments, or requiring coarser granularity.

The right side of figure 9 shows that the algorithm per-
formance is also directly affected by the system resources,
in that a larger number of threads is more costly to explore,
although the impact is much less dramatic. For both in-order
and out-of-order speculation modes the execution time is
linear in the number of threads, and even for mixed mode,
where all thread allocations are considered, the execution
time scales quadratically.

5. Related Work
A wide variety of TLS [13] (and MLS [6]) approaches
have been defined, in most cases supporting unique vari-
ants of out-of-order, in-order, or different forms of nested
threading models. Research has concentrated on hardware
and hybrid hardware/software designs [26], primarily as a
means of ensuring low overhead and maximizing potential
speedup. Pure software approaches to TLS are less common,
but have also been explored [20, 21]; fine-grain speculation
and short thread-lengths, however, can easily lead to rela-
tively large overhead concerns. More recently, Ding et al.
proposed coarse-grain, software-based Behavior Oriented
Parallelism, which uses the virtual memory system to iso-
late “possibly-parallel” regions [10]. This design allows for
overhead concerns to be hidden by larger scale parallelism,
and the authors show factor-of-2 speedups on several realis-
tic, originally sequential benchmarks.

Yiapanis et al. have also proposed software speculative
systems, MiniTLS and Lector, that have reduced speculative
overhead compared with traditional systems [31]. Focusing
on small numbers of threads, their systems use an optimized
structure for storing speculative data that allows the “ea-
ger” implementation to have minimal rollback time and the
“lazy” variant to have quick data dependence checks. In a
more recent work, Yiapanis et al. summarize the consider-
ations when designing a software TLS system (violations,
thread scheduling, data visibility, etc.) and the recent devel-
opments in these areas [32].

Other work on software speculative systems has explored
optimizing existing systems for specific contexts. Martinsen
et al. researched the effect of speculative parameter tuning

on a previously implemented JavaScript engine [17]. By lim-
iting the speculative depth and thread count, web applica-
tions can improve speculative performance while reducing
the system’s memory usage.

Whatever the threading model, determining where and
when to fork threads is one of the fundamental challenges of
TLS systems. As well as the basic safety problem of avoid-
ing or repairing data-dependencies, to show speedup it is
necessary that the amount of work exceeds any actual over-
head, and thus the “length” or duration of speculative threads
is recognized as an important heuristic criterion. Warg and
Stenström explore this behaviour in an MLS system and
show that a simple “last-value” predictor (applied to thread
length) can be a very effective way of ensuring this property,
eliminating a large amount of unnecessary overhead from
lack of actual parallelism [28]. Other work on fork heuristics
has shown that a careful balance must be achieved in heuris-
tic choices—applied too conservatively, fork heuristics can
lead to significant under-speculation, also reducing perfor-
mance [29]. The recent POSH system uses several optimiza-
tions as part of fork (task refinement) heuristics, consider-
ing thread-length, dependency and profiler information [16].
Their system requires tasks be spawned in reverse execution
order, imposing an out-of-order speculation model. Simula-
tion results with this design show an average 1.3 speedup
on SpecInt benchmarks, the same behaviour others have re-
ported with optimized out-of-order designs [23].

TLS can also be combined with other techniques for in-
creased performance. Xekalakis et al. explore combining
TLS with “HelperThreads”, “RunAhead” and “MultiPath”
execution to improve instruction level parallelism [30]. Us-
ing the SESC simulator, experiments show a mixed execu-
tion model reduces L2 cache misses, pipeline flushes and
improves ILP, the primary cause of increased performance.

Abstract models of parallel execution have been of inter-
est for some time. Many have been developed in the context
of pure or partial functional languages, where dependency
requirements are simplified. An early approach was given
by Greiner and Blelloch, defining a parallel speculative λ-
calculus to model “call-by-speculation,” an approach to par-
allelism wherein function arguments are evaluated concur-
rently with the function itself [14]. Their concern is in further
parallelizing initial designs that serialize behaviour within
a queueing model typically used to block threads access-
ing the same, but unavailable argument data. Provable time
efficiency is then demonstrated within a λ-calculus imple-
mentation. Baker-Finch et al., develop a detailed operational
semantics for an extended λ-calculus representing GPH, a
parallel version of the Haskell language with lazy evalua-
tion [1]. Their design allows for expression of control-based
parallelism based on the par annotation, although it could be
extended to implicit and fully speculative models.

Our approach in this work is partly inspired by previ-
ous work done by Oplinger et al., examining behaviour of

32

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1 2 3 4 5 6 7

E
x
e

c
u

ti
o

n
 T

im
e

Number of Queens

Dynamic programming trace scalability (NQueens, signaling)

In-order

Out-of-order

Mixed

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 6 7 8 9

E
x
e

c
u

ti
o

n
 T

im
e

Number of Speculative Threads

Dynamic programming thread scalability (NQueens N=6, signaling)

In-order

Out-of-order

Mixed

Figure 9. Performance of the dynamic programming algorithm, assuming join points at every call. Left varies the trace size of NQueens with
9 speculative threads, and right the number of speculative threads on a fixed NQueens (N=6) trace. Time in s, using a Java 1.6 implementation
on a 2.00GHz Xeon.

an abstract “greedy” TLS thread model, either always fork-
ing threads or (in the case of a bounded number of threads)
using heuristic thread-priorities to model scheduling con-
cerns [19]. They also use a trace-based analysis, abstract-
ing many overhead and machine details to determine opti-
mal performance, at least under their fork and scheduling as-
sumptions. Although their design considers only one thread-
ing behaviour and is not an exhaustive exploration, this al-
lows for some important conclusions to be made about struc-
ture, and in particular they are able to show that both loop
and procedure-based parallelism are necessary to best ex-
ploit the potential parallelism of realistic applications. This
is a position also argued in more recent experimental work
by other researchers [16].

The abstraction we investigate here does not form an
explicit taxonomy, but instead builds on previous work on
modeling and understanding MLS [20]. This earlier work
does not perform exhaustive analysis, aiming more at devel-
oping a stack model for MLS execution with corresponding
visualization, but has inspired our basic approach, and we
have used several of the code idioms extracted in the course
of that work in the context of our investigation.

With less abstraction, detailed performance models have
also been defined, with the majority of attention devoted to
improving loop-based speculation. As an extension to their
Hydra design, Chen and Olukotun’s TEST system defines
hardware-based support for estimating the performance of
different thread decompositions [5]. This is applied during
runtime to help identify loops appropriate for TLS execu-
tion, allowing the rest of the Jrpm hardware-software hybrid
system [7] to then recompile the corresponding method to
take advantage of speculative hardware. The TEST system
considers iteration dependencies, as well as lower-level con-
siderations such as the potential for buffer overflows.

There are many ways to approach and estimate the po-
tential of loop-level speculation. Du et al. also define a cost
metric, using a data-dependence graph annotated with prob-
abilities to estimate the cost of misspeculation [12]. They

use this to locate minimal cost candidates suitable for TLS.
Wang et al. build a loop graph, modeling the nesting relation
between loops within a program, and use this in conjunction
with coverage and individual loop speedup estimates to com-
pute a heuristically optimal selection of loops upon which to
apply loop-level TLS [27].

Dou and Cintra take a more comprehensive approach, in-
corporating thread sizes as well as branch probabilities and
TLS overheads, in order to form “tuples” describing differ-
ent combinations of all possible executions of a loop body,
from which a minimal execution set can be extracted [11].
To maintain practicality within a compiler framework, they
do not consider nested loops or recursion. Interestingly, even
with this intricate model simulation results show a broad
range of speedups and slowdowns depending on the bench-
mark, again emphasizing the need to better understand how
choices in parallelization interact with program structure.

6. Conclusions and Future Work
Our work complements and extends the many existing ef-
forts that concentrate primarily on ameliorating the impact
of data-dependencies in TLS systems. We have shown that a
deep and more holistic understanding of code structure is a
further, essential property of MLS performance that must be
considered to achieve reliable and practical speedup. Using
an exhaustive exploration applied to common code structure
idioms we demonstrate the large impact code structure has
on potential speedup, and show how structure, speculative
design, and fork choices can interact to drastically alter per-
formance, as much as or more than misspeculation.

There are many interesting aspects of TLS we can fur-
ther explore with our model. A detailed, but still abstract
model of data dependencies would allow for finer-grain anal-
ysis of misspeculation, and enable us to abstractly evalu-
ate and compare the impact of various techniques that ei-
ther stall at dependencies or aim to reduce critical path
lengths. We would also like to extend our model to ac-
commodate bidirectional-signaling and different inheritance

33

models. Our main interest, however, is scaling up the design
and combining it with models of expected control flow to
dynamically select an appropriate speculation strategy in the
context of a complete MLS prototype.

Acknowledgments
Thanks to the IBM Centre for Advanced Studies and the Nat-
ural Sciences and Engineering Research Council of Canada.

References
[1] C. Baker-Finch, D. J. King, and P. Trinder. An operational

semantics for parallel lazy evaluation. In ICFP ’00, pages
162–173, 2000.

[2] S. Balakrishnan and G. S. Sohi. Program demultiplexing:
Data-flow based speculative parallelization of methods in se-
quential programs. In ISCA’06, pages 302–313, June 2006.

[3] A. Bhowmik and M. Franklin. A general compiler framework
for speculative multithreading. In SPAA ’02, pages 99–108,
Aug. 2002.

[4] Z. Cao and C. Verbrugge. Mixed model universal software
thread-level speculation. In ICPP ’03, pages 651–660. IEEE,
Oct 2013.

[5] M. Chen and K. Olukotun. TEST: a tracer for extracting
speculative threads. In CGO ’03, pages 301–312, 2003.

[6] M. K. Chen and K. Olukotun. Exploiting method-level paral-
lelism in single-threaded Java programs. In PACT’98, pages
176–184, Oct. 1998.

[7] M. K. Chen and K. Olukotun. The Jrpm system for dynami-
cally parallelizing Java programs. In ISCA’03, pages 434–446,
June 2003.

[8] P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. D.-C. Ju, and J. K.
Lee. Compiler support for speculative multithreading archi-
tecture with probabilistic points-to analysis. In PPoPP’03,
pages 25–36, June 2003.

[9] M. Cintra and D. R. Llanos. Toward efficient and robust
software speculative parallelization on multiprocessors. In
PPoPP ’03, pages 13–24, June 2003.

[10] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In PLDI ’07, pages
223–234, 2007.

[11] J. Dou and M. Cintra. A compiler cost model for speculative
parallelization. TACO, 4, June 2007.

[12] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F.
Ngai. A cost-driven compilation framework for speculative
parallelization of sequential programs. In PLDI ’04, pages
71–81, 2004.

[13] M. Franklin. The Multiscalar Architecture. PhD thesis, Uni-
versity of Wisconsin–Madison, Madison, Wisconsin, USA,
1993.

[14] J. Greiner and G. E. Blelloch. A provably time-efficient
parallel implementation of full speculation. TOPLAS, 21(2):
240–285, 1999.

[15] S. Hu, R. Bhargava, and L. K. John. The role of return value
prediction in exploiting speculative method-level parallelism.
JILP, 5:1–21, Nov. 2003.

[16] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. POSH: a TLS compiler that exploits program
structure. In PPoPP ’06, pages 158–167, 2006.

[17] J. K. Martinsen, H. Grahn, and A. Isberg. The effects
of parameter tuning in software thread-level speculation in
javascript engines. TACO, 11(4):46:1–46:25, Jan. 2015.

[18] C. E. Oancea, A. Mycroft, and T. Harris. A lightweight in-
place implementation for software thread-level speculation. In
SPAA’09, pages 223–232, Aug. 2009.

[19] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of
speculative thread-level parallelism. In PACT’99, pages 303–
313, Oct. 1999.

[20] C. J. F. Pickett. Software Method Level Speculation for Java.
PhD thesis, School of Computer Science, McGill University,
Montréal, Québec, Canada, Apr. 2012.

[21] C. J. F. Pickett and C. Verbrugge. SableSpMT: A software
framework for analysing speculative multithreading in Java.
In PASTE’05, pages 59–66, Sept. 2005.

[22] C. G. Quiñones, C. Madriles, J. Sánchez, P. Marcuello,
A. González, and D. M. Tullsen. Mitosis compiler: an infras-
tructure for speculative threading based on pre-computation
slices. In PLDI ’05, pages 269–279, 2005.

[23] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas.
Tasking with out-of-order spawn in TLS chip multiprocessors:
Microarchitecture and compilation. In ICS’05, pages 179–
188, June 2005.

[24] P. Rundberg and P. Stenström. An all-software thread-
level data dependence speculation system for multiprocessors.
JILP, 3:1–28, Oct. 2001.

[25] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry.
Improving value communication for thread-level speculation.
In HPCA ’02, pages 65–75, 2002.

[26] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The
STAMPede approach to thread-level speculation. ACM Trans-
actions on Computer Systems, 23(3):253–300, Aug. 2005.

[27] S. Wang, X. Dai, K. Yellajyosula, A. Zhai, and P.-C. Yew.
Loop selection for thread-level speculation. In LCPC’05,
volume 4339 of LNCS, pages 289–303, 2006.

[28] F. Warg and P. Stenström. Improving speculative thread-level
parallelism through module run-length prediction. In IPDPS
’03, pages 12.2–, 2003.

[29] J. Whaley and C. Kozyrakis. Heuristics for profile-driven
method-level speculative parallelization. In ICPP’05, pages
147–156, June 2005.

[30] P. Xekalakis, N. Ioannou, and M. Cintra. Mixed speculative
multithreaded execution models. TACO, 9(3):18:1–18:26,
Oct. 2012.

[31] P. Yiapanis, D. Rosas-Ham, G. Brown, and M. Luján. Opti-
mizing software runtime systems for speculative paralleliza-
tion. TACO, 9(4):39:1–39:27, Jan. 2013.

[32] P. Yiapanis, G. Brown, and M. Luján. Compiler-driven soft-
ware speculation for thread-level parallelism. TOPLAS, 38(2):
5:1–5:45, Dec. 2015.

34

