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Abstract
Compiling MATLAB—a dynamic, array-based language—to
JavaScript is an attractive proposal: the output code can be
deployed on a platform used by billions and can leverage
the countless hours that have gone into making JavaScript
JIT engines fast. But before that can happen, the original
MATLAB code must be properly translated, making sure to
bridge the semantic gaps of the two languages.

An important area where MATLAB and JavaScript differ is
in their handling of arrays: for example, in MATLAB, arrays
are one-indexed and writing at an index beyond the end
of an array extends it; in JavaScript, typed arrays are zero-
indexed and writing out of bounds is a no-op. A MATLAB-to-
JavaScript compiler must address these mismatches. Another
salient and pervasive difference between the two languages
is the assignment of arrays to variables: in MATLAB, this
operation has value semantics, while in JavaScript is has
reference semantics.

In this paper, we present MatJuice — a source-to-source,
ahead-of-time compiler back-end for MATLAB— and how it
deals efficiently with this last issue. We present an intra-
procedural data-flow analysis to track where each array
variable may point to and which variables are possibly aliased.
We also present the associated copy insertion transformation
that uses the points-to information to insert explicit copies
when necessary. The resulting JavaScript program respects
the MATLAB value semantics and we show that it performs
fewer run-time copies than some alternative approaches.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Code generation

Keywords MATLAB, JavaScript, dataflow analysis, pro-
gram transformation, dynamic language semantics

1. Introduction
An important semantic difference between MATLAB and
JavaScript is how they perform array assignment, pass arrays
into functions and return arrays from functions. In MATLAB,
those operations are done by value, meaning that a full copy
of the operand is made before the operation is executed; in
JavaScript, those operations are done by reference, meaning
that memory locations are copied, not the full data.

For example, in MATLAB the assignment statement
B = A means “make a complete copy of A and assign this
copy to B”. The same statement in JavaScript means “take
the address of A and assign it to B”. Figure 1 illustrates this
difference graphically.

A 1, 2, 3

B 5, 2, 3

A = [1, 2, 3];
B = A;
B(1) = 5;

(a) MATLAB: A copied to B

A 5, 2, 3

B

var A = [1, 2, 3];
var B = A;
B[0] = 5;

(b) JavaScript: B points to A

Figure 1: Value vs. reference semantics

A MATLAB-to-JavaScript compiler can handle this seman-
tic difference in a few ways. The simplest approach, and one
that is obviously correct, is to insert copies at every assign-
ment to array variables in the output program. However, this
approach pays a heavy price when arrays need not be copied,
i.e., are never mutated. For example, in a matrix multiplica-
tion function (C = mtimes(A, B)), it would be wasteful
to do full copies of A and B.

A run-time strategy, called copy-on-write, assigns arrays
by reference, bumps a counter, and makes a copy only when a
write statement is about to modify an aliased variable (when
the array’s reference count is greater than 1). This approach is
used by MathWorks’ MATLAB and GNU Octave [5, 14]. This
strategy can perform fewer copies than the naive approach,
but its main drawbacks are the more complex run-time system
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it requires and the extra instructions that must be performed
at run-time (e.g., reference count updates and checks).

Lameed and Hendren proposed an inter-procedural anal-
ysis to remove unnecessary array copies [9]; a naive code
generator inserts copies after every array assignment and a
subsequent two-phase transformation removes the copies that
are proven to be unnecessary. This inter-procedural analysis
is implemented in the JIT compiler for MATLAB, McVM.

In this paper, we present MatJuice’s new approach to
solve this problem: (1) we optimistically assume that no
array copies are needed and that assignments are performed
by reference as in the target language, (2) we run an intra-
procedural analysis to compute the aliasing relationships that
exist between the variables of a function, and (3) we run a
transformation that inserts the copy statements necessary to
obtain the MATLAB value semantics.

We have decided against a copy-on-write approach in
MatJuice to keep the run-time system simpler and to avoid
introducing extra operations that might interfere with the
JavaScript JIT’s capacity to optimize a function. We will show
that the approach MatJuice adopts performs fewer copies than
the naive strategy or a copy-on-write strategy, and is simpler
than a whole-program analysis.

This paper presents the following contributions:

1. An intra-procedural points-to analysis that considers the
semantics of the target language, rather than the source
language;

2. An associated copy-insertion transformation that adds
copy statements to bridge the semantics between two
dynamic languages;

3. An evaluation of the number of copies and performance
of this new approach.

The rest of this paper is organized as follows: in Section 2
and Section 3 we give a brief overview of MatJuice, and
the McLab and Tamer frameworks upon which it builds;
in Section 4 we show an example MATLAB program and
informally describe how we can transform it to retain the
proper value semantics in the output JavaScript program;
Section 5 presents our points-to analysis and shows how
information flows between statements in a simple example;
Section 6 describes how the points-to analysis results are used
to insert the necessary copies for local variables and output
parameters at the proper program points and also discusses
how we use a UseDef analysis to copy input parameters;
Section 7 investigates how well our transformation performs
by benchmarking our approach against alternative strategies;
Section 8 presents some related work; Section 9 concludes
and offers ideas for future work.

2. Background
In this section we present the McLab and Tamer projects, the
two major building blocks of MatJuice.

2.1 McLab
McLab is an umbrella project that regroups a large number
of compiler-related projects for the MATLAB language: a
scanner and parser, a high-level static analysis framework
(McSAF), a low-level static analysis framework (Tamer),
backends for Fortran and X10, etc. [1–3, 7, 11]

MatJuice is part of McLab, and we use the following
components:

• the front-end to scan and parse MATLAB source files and
report errors if the source program is syntactically invalid;
• the Tamer analysis framework to implement the points-to

analysis described in Section 5;
• the visitor patterns to implement the copy insertion trans-

formation, described in Section 6;
• the analyses created for other back-ends, such as the shape

analysis (obtaining the size and dimensions of a matrix at
a given program point), in the code generator;
• the UseDef analysis of the McSAF framework in the

implementation of the input parameter copy described
in subsection 6.4.

2.2 Tamer
The Tamer framework is part of the McLab project; it is such
an important building block of MatJuice that it deserves its
own section.

The two most important components of Tamer for the im-
plementation of MatJuice are its 3-address code intermediate
representation and its analysis framework.

2.2.1 TameIR
The Tamer intermediate representation, called TameIR, is
a structured 3-address code representation; it is structured
because rather than being a linear list of instructions with
labels and jumps for control flow, it is organized as a tree.
TameIR was created with the explicit goal of making it easier
to create static compiler back-ends, which is why we have
selected to use it for MatJuice. One way by which this goal is
attained is by simplifying a MATLAB program into a limited
number of basic constructs. Indeed in MatJuice we need only
the following TameIR nodes to compile MATLAB programs
into JavaScript:
• Functions definitions
• Assignment statements

Copy statement (x = y, these are the instructions we
need to deal with)
Array set (A(i) = e)
Array get (x = A(i))
Call statement ([a b] = f(x))
Literal assignment (pi = 3.14)

• If/else statements
• While loops
• For loops
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• break and continue
• Return statements

Many MATLAB constructs are translated into other basic
constructs when the TameIR representation of the program is
created; for example switch/case statements become a series
of if/else statements in TameIR and short-circuit operators
are appropriately split up. Other statements are helpfully
disambiguated. Notably, array accesses and function calls,
which have the same syntax in MATLAB, are split into two
different node types in TameIR: TIRArrayGetStmt and
TIRCallStmt. This is extremely useful when generating
code in a language where the syntax and semantics for those
two constructs are different.

2.2.2 Analysis Framework
Tamer provides a number of visitors to traverse a TameIR
program and to perform data-flow analyses. It is the Tamer
framework that is responsible for passing data forward or
backward between nodes and for checking that a fixed point
has been reached. Tamer also provides simpler visitors (i.e.,
ones that do not transmit data-flow information between
nodes) that are useful for transforming the IR, e.g., adding
new nodes.

In MatJuice we use the Tamer analysis and transformation
classes for two purposes: (1) to perform our points-to analysis,
(2) to insert explicit copies in the body of a function.

In addition, MatJuice reuses some analyses that have al-
ready been written for Tamer. One important such analysis is
the shape analysis: this inter-procedural analysis examines
the source code of the input MATLAB program and deter-
mines the shape of the variables at each program point. This
analysis can tell if a variable is a scalar or an array, and in
the case of arrays can tell us the number of dimensions and
the size of each dimension. We use this analysis to know
which variables are arrays and thus need to be included in
our points-to analysis (scalars in JavaScript are assigned by
copy and thus need not be considered).

3. MatJuice
MatJuice is a new source-to-source, ahead-of-time compiler
from MATLAB to JavaScript. Figure 2 shows a simplified flow
chart of its pipeline architecture; the ellipses represent files
on disk, the trapezoid boxes are in-memory data structures,
and the rectangle boxes are software modules. The shaded
boxes are modules that are part of MatJuice.

McLab + Tamer: in this phase, the input program is scanned,
parsed and converted to TameIR. Errors are reported if
the program is syntactically invalid.

Points-to analysis: the TameIR program is given to the
points-to analysis which produces a mapping between
every TameIR statement of the function and the points-to
abstraction that we describe in Section 5.

foo.m

McLab + Tamer

PT AnalysisTameIR Points-to info.

Copy ins.

TameIR’

Code gen.

foo.js

Figure 2: MatJuice flow chart

Copy insertion: the TameIR program and the result of the
points-to analysis are given to this module which produces
an updated TameIR program that contains instruction
nodes that explicitly copy arrays.

Code generation: the copy-inserted program is given to the
code generator which translates the different TameIR
statements (see subsubsection 2.2.1) into JavaScript and
writes the program on disk.

MatJuice represents scalars using JavaScript’s Number
type and all arrays using typed arrays [6]. Typed arrays, like
regular JavaScript arrays, have reference semantics, but offer
improved performance [4]. By using typed arrays, the code
generated by MatJuice is competitive in performance with
MathWorks’ MATLAB when it is run in Google Chrome or
Mozilla Firefox. When no array operations from MATLAB’s
highly-tuned library (e.g., matrix multiply or LU decomposi-
tion) are used in a benchmark, the JavaScript code runs faster
than MATLAB.

4. Motivating Example
In this section we look at a MATLAB function, optimisti-
cally assume that the arrays have the reference semantics of
JavaScript, and determine where copies need to be inserted
in order to reproduce the value semantics of MATLAB.

The function in Listing 1 accepts two array input parame-
ters, A and B, and returns one array, y.

4.1 Input Parameters
Our first task is to ensure that input parameters are not
mutated directly; writes should be performed on copies. We
see on line 3 of Listing 1 (B(1) = -B(1)) that one of the
input parameter, B, is modified. Under reference semantics,
this statement also mutates the actual argument in the caller
of f. To prevent this situation from occurring, we must copy B
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1 function y = f(A, B)
2 if B(1) < 0
3 B(1) = -B(1);
4 end
5 C = A;
6 C(1) = 2*C(2);
7 if A(1)
8 y = C+B;
9 else

10 y = A;
11 end
12 end

Listing 1: Motivating example

before modifying it. A simple and natural place to insert the
copy is at the beginning of the function’s body. However, we
can be more clever: notice that the mutation occurs inside an if
statement without an else block. That means that there exists
a path where B is not modified and thus need not be copied.
We avoid making unnecessary copies (when the condition on
line 2 is false) by inserting the copy statement inside the if
statement.

Since no statement in f modifies the input parameter A,
we don’t need to copy it.

4.2 Local Variables
Our next task is to make sure that local variables are not
aliased when they are modified. On line 5 of Listing 1
(C = A), the local variable C and the input parameter A
become aliased. On the next line (C(1) = 2*C(2)) the lo-
cal C is modified; because A and C are aliased, this statement
also mutates A. To respect the value semantics of MATLAB,
we must add a copy of C after line 5 where the aliasing
relationship was introduced.

4.3 Output Parameters
The last task that we need to take care of is making sure that
the output parameters are not aliased to externally allocated
memory (e.g., input parameters or global variables) and that
they aren’t aliased to other output parameters.

Let’s imagine what would happen in a caller to f after
the invocation Z = f(X, Y). If the control path in f went
through line 10, the output parameter y would be aliased to
the input parameter A. Due to our assumption of reference
semantics, in the caller, the variables Z and X would be aliased
and writing into either one would mutate the other. To prevent
this situation from occurring, we must copy y after line 10
(y = A). After the copy insertion transformation, all output
parameters point to different memory sites.

(Note: if a MATLAB function doesn’t have an explicit re-
turn instruction, the values of the declared output parameters
are returned when the control flow reaches the end of the
function’s body.)

4.4 Summary
Listing 2 shows the function f after we’ve inserted the
copy statements necessary to obtain the MATLAB semantics
(the new copy statements are preceded by a + symbol and
highlighted in blue). In addition, we’ve been able to avoid
making some unnecessary copies that a naive code generator
would have inserted:

• The input parameter B is only copied if the condition on
line 2 is true;
• the output parameter y is only copied when the condition

on line 9 is false.

1 function y = f(A, B)
2 if B(1) < 0
3 + B = copy(B);
4 B(1) = -B(1);
5 end
6 C = A;
7 + C = copy(C);
8 C(1) = 2*C(2);
9 if A(1)

10 y = C+B;
11 else
12 y = A;
13 + y = copy(y);
14 end
15 end

Listing 2: Example function after copy insertion

5. Points-to Analysis
In Section 4, we relied on our human understanding to
know which statements caused variables to become aliased
and where to insert the appropriate copy statements. In
this section, we present a data-flow analysis that computes
information that can be used by an automated process to
insert copies in the source program.

At every program point, we will compute a set of (v,m, s)
triples; v is a variable name, m is an abstract memory
site, and s is a set of aliasing statements that caused v to
become aliased with respect to the memory site m. Using
this abstraction, we can know if two variables are possibly
aliased (i.e., if they share at least one memory site) and where
to insert copy statements.

5.1 Example
Before we go into the technical details and formal presen-
tation of the analysis, let’s get an intuitive feel of how the
points-to analysis works by looking at the example in List-
ing 3, and explaining the sets that are computed at every
program point. We’ve annotated the program with comments
detailing the data-flow information after each statement. For
simplicity, and to fit within the page, we refer to statements
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1 function f() % { }
2 A = zeros(10); % { (A, m1, { }) }
3 B = ones(10); % { (A, m1, { }) (B, m2, { }) }
4 if condition % { (A, m1, { }) (B, m2, { }) }
5 C = A; % { (A, m1, {5}) (B, m2, { }) (C, m1, {5}) }
6 else % { (A, m1, { }) (B, m2, { }) }
7 C = B; % { (A, m1, { }) (B, m2, {7}) (C, m2, {7}) }
8 end % { (A, m1, {5}) (B, m2, {7}) (C, m1, {5}) (C, m2, {7}) }
9 C(1) = 42; % { (A, m1, {5}) (B, m2, {7}) (C, m1, {5}) (C, m2, {7}) }

10 end % { (A, m1, {5}) (B, m2, {7}) (C, m1, {5}) (C, m2, {7}) }

Listing 3: Points-to information

by their line numbers; in the actual implementation, we use
pointers to AST nodes.

On lines 2 and 3 of Listing 3, memory is allocated for the
variables A and B respectively. After the execution of line
3, the variable A may point to m1 and the variable B may
point to m2 (our points-to analysis is a may-analysis, and so
we use the verb “may” when describing a triple, even when
a variable definitely points to a given memory site); neither
variable has been aliased yet, hence the empty sets in both
triples.

On line 5, the assignment statement (C = A) causes C
and A to become aliased. A triple is added for C in the flow
set. In addition, it was at this program point that A and C
started pointing to the same memory sites, and we record this
fact by adding statement 5 to the aliasing sets of A and C. On
line 7, the same scenario occurs between B and C.

On line 8, a merge point, the set computed in the then
branch is combined with the set computed in the else branch.
The details of this merge operation are fully explained in
subsection 5.2; for now, we can think of this operation as a
set union. Once the merge is complete, we have the following
information:

• A may point to m1 and it became aliased on line 5;
• B may point to m2 and it became aliased on line 7;
• C may point to m1 or to m2; it became aliased with respect

to those memory sites on lines 5 and 7.

On line 9, the content of C is modified. Looking at the
data-flow information at this program point, we see that C is
possibly aliased to A (via m1) and to B (via m2). The sets of
aliasing statements associated with C indicate where copies
must be inserted to break the aliasing relationships: one copy
after statement 5, and one copy after statement 7.

Listing 4 shows the data-flow information after the copies
have been inserted and the analysis has been executed again.
We see that after the execution of the copy statement on line
6, C is associated with a fresh memory site, m3 and no longer
may point to m1. In addition, statement 5 is removed from the
sets of aliasing statements of the triples for A and for C. After

the execution of the copy statement on line 9, an analogous
scenario occurs between B and C.

At the merge point on line 10, we have a data-flow set that
says that:

• A may point to m1;
• B may point to m2;
• C may point to m3 or to m4.

When code for this new function is generated, we know
that C may point to m3 or to m4, and that it is the only
variable that may point to those two locations. Thus the
write statement of line 11 cannot affect the content of other
variables. No other copy statements are needed, function f
respects the MATLAB value semantics and is ready for code
generation.

5.2 Analysis Components
In this section, we formally present our points-to analysis: we
describe the abstraction that we use, how flow information is
propagated between nodes, how flow information is merged,
and what the initial approximations are.

Approximation We approximate points-to relationships
with a set of triples. The first component of a triple is
a variable name v; the second component is a memory
site m; the third component is a set of statements where v
became aliased with respect to m. The statements where
a variable becomes aliased are assignment statements of
the form v = u; v becomes aliased with u by pointing
to u’s memory site and u becomes aliased because a new
variable (v) points to its memory.
A memory site is an abstract object that represents one
or more zones in memory that have been allocated by a
statement for a given variable.
If a variable v may point to more than one memory site,
there are multiple triples in the set whose first component
is v.

Definition Let v be an array variable defined at a program
point d and pointing to a memory site m. We say that the
variable v points to m at a given program point p if there
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1 function f() % { }
2 A = zeros(10); % { (A, m1, { }) }
3 B = ones(10); % { (A, m1, { }) (B, m2, { }) }
4 if condition % { (A, m1, { }) (B, m2, { }) }
5 C = A; % { (A, m1, {5}) (B, m2, { }) (C, m1, {5}) }
6 + C = copy(C); % { (A, m1, { }) (B, m2, { }) (C, m3, { }) }
7 else % { (A, m1, { }) (B, m2, { }) }
8 C = B; % { (A, m1, { }) (B, m2, {7}) (C, m2, {7}) }
9 + C = copy(C); % { (A, m1, { }) (B, m2, { }) (C, m4, { }) }

10 end % { (A, m1, { }) (B, m2, { }) (C, m3, { }) (C, m4, { }) }
11 C(1) = 42; % { (A, m1, { }) (B, m2, { }) (C, m3, { }) (C, m4, { }) }
12 end % { (A, m1, { }) (B, m2, { }) (C, m3, { }) (C, m4, { }) }

Listing 4: Points-to information after copy insertion

exists at least one path from d to p with no redefinition of
v.

Direction The points-to analysis is a forward analysis; in-
formation is propagated from statement nodes to their
successors.

Merge operation A merge node (i.e., a node with multiple
predecessors) combines the information from two pre-
decessor nodes P1 and P2 in three steps. We shall call
“corresponding triples” a triple (v,m, s) in P1 and a triple
(v′,m′, s′) in P2 if v = v′ and m = m′.

• If P1 and P2 respectively contain the corresponding
triples (v,m, s) and (v,m, s′), the triple (v,m, s∪ s′)
is added to the output set;
• Triples in P1 that have no corresponding triple in P2

are added as is to the output set;
• Triples in P2 that have no corresponding triple in P1

are added as is to the output set.

We can express these rules formally using the equation
that follows.

out(S) ={(v,m, s ∪ s′) | (v,m, s) ∈ out(P1), (v,m, s
′) ∈ out(P2)}

∪{(v,m, s) | (v,m, s) ∈ out(P1), (v,m, ∗) /∈ out(P2)}
∪{(v,m, s) | (v,m, s) ∈ out(P2), (v,m, ∗) /∈ out(P1)}

Starting approximations The out set of the entry node of a
function is the set containing triples that map the array
input parameters to a common external memory site and
an empty set of aliasing statements,
out(ENTRY) = {(p,EXTERNAL, {}) | p ∈ input_params}.
Every other statement Si is approximated by the empty
set, out(Si) = {}.

Flow equations It is common to define the flow equations
of an analysis by removing a kill set and adding a gen
set. Although we could use this strategy, we found that it
makes the notation long-winded and harder to understand.
Therefore, each flow equation is going to define out(S)
directly in terms of in(S), with the help of some auxiliary

definitions. We have found the resulting equations simpler
to understand and closer to what a programmer would
write in an actual implementation.

Assign statement An assignment statement S of the form
A = B creates an output set containing the following
triples:

• For every memory site m associated with B, we
create a triple (A,m, {S}): A may point to any
memory site that B may point to and A became
aliased at S. The previous triples for A are dis-
carded;
• For every triple (B,m, s), we remove all the state-

ments that previously involved A from s and we
add the current statement S;
• For every triple (v,m, s) where v is neither A nor
B, we remove all the statements that previously
involved A from s.

We can express these rules using the following set
equation:

stmtsA =
⋃
{s | (A, ∗, s) ∈ in(S)}

memsitesB = {m | (B,m, ∗) ∈ in(S)}
out(S) = {(A,m, {S}) | m ∈ memsitesB)}
∪ {(B,m, (s− stmtsA) ∪ {S}) | (B,m, s) ∈ in(S)}
∪ {(v,m, s− stmtsA) | (v,m, s) ∈ in(S),
v 6= A, v 6= B}

Assign literal An assign statement S of the form A = x
where x is a scalar literal creates the following output
set:

• All the triples (v,m, s) where v is not A are in-
cluded in the output set and we remove all the state-
ments that previously involved A from s.
• No triples for A are included.
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stmtsA =
⋃
{s | (A, ∗, s) ∈ in(S)}

out(S) = {(v,m, s− stmtsA) | (v,m, s) ∈ in(S), v 6= A}

Function calls A function call statement S of the form
[r1 r2 . . . rn] = f(a1, a2, . . . , ak) is similar to the
assignment statement except that instead of having
a single variable on the left-hand side, we possibly
have multiple ones. As we noted in subsection 4.3, we
impose the invariant that all output parameters point to
distinct memory sites.

• A triple (ri,m, {}) is added to out(S) for every
variable ri on the left-hand side. The memory site
m is a function of the statement and the variable:
given the same statement and variable, we should
obtain the same memory site, and that memory site
must be unique (i.e., there is no other statement-
variable pair that yields the same memory site).
• The triples (v,m, s), where v is not one of the left-

hand side variables, from in(S) are included and
we remove all statements involving any of the ri
from s.

newSite(stmt, var) = unique memsite for (stmt, var)

aliasStmts =
⋃(

i=n⋃
i=1

{s | (ri, ∗, s) ∈ in(S)}

)
out(S) = {(ri, newSite(S, ri), {}) | i ∈ 1..n}

∪ {(v,m, s− aliasStmts) |
(v,m, s) ∈ in(S), v /∈ {r1, . . . , rn}}

The function newSite is necessary in order for a fixed
point to be reached, i.e., that the sets computed in
iteration k are all equal to the sets computed in iteration
k−1. If an entirely new memory site was given at every
iteration, the fixed point procedure would diverge.

Other statements A statement S of any other type lets
the information flow through unchanged. out(S) = in(S)

6. Copy Insertion Transformation
Now that we have points-to sets at each program point
of a function, let’s use use that information to insert the
copy statements necessary to obtain the MATLAB value
semantics. After the function is transformed, the following
three properties will hold:

Property 1 If there exists a statement S that modifies an
input parameter p, then all paths leading to S contain a
statement that copies p;

Property 2 If there exists a statement S that writes into a
local variable x, then x is not aliased at S;

Property 3 If there exists a statement S that returns the
output parameters o1, o2, ..., ok, then none of the output
parameters are aliased to one another or possibly point to
externally allocated memory at S.

Properties 1 and 3 are particularly important in the context
of an intra-procedural analysis. Suppose a MATLAB pro-
grams contains the following statement: [a b] = f(x).
After the function call, a MATLAB programmer has a few
expectations, notably that the content of x hasn’t changed and
that a, b, and x are independent and mutating one won’t affect
the others.

Property 1 ensures that the input parameter x will be the
same before and after the call to f ; if x is modified in the
body of the function, we copy it. An inter-procedural analysis
could detect that it’s unnecessary to copy x if it’s dead, i.e.,
never used after the call to f. However, in MatJuice’s intra-
procedural analysis we cannot tell what happens outside the
function and so we must conservatively assume that x is live.

Similarly, property 3 ensures that a and b aren’t aliased
to one another, and that neither is aliased to x or to a global
variable. This is accomplished by having the transformation
make sure that all output parameters point to memory allo-
cated inside f (i.e., memory that the intra-procedural analy-
sis has knowledge of) and that they aren’t aliased amongst
themselves. Again, in an inter-procedural analysis with the
knowledge of how a and b are used, the transformation could
decide that it’s fine for them to be possibly aliased and forgo
a copy.

6.1 General Process
The copy insertion transformation is a fixed-point algorithm
and is invoked at the beginning of MatJuice’s code generation
phase. Before a MATLAB function is translated to JavaScript,
it goes through the following loop:

1. Add copies for input parameters which may be modified;1

2. Apply the points-to analysis to the function;

3. Add copy statements for locals and output parameters;

4. If step 3 inserted at least one copy statement, goto 2.

At each iteration, after copies for one variable have been
added, we terminate the transformation process and run the
points-to analysis again. To understand why, let’s look at the
simple example in Listing 5.

If the copy insertion tried to add copies for all variables
at once, it would find that statement 4 writes into A which is
possibly aliased to B and it would add a copy after line 3. This
copy would break the aliasing relationship that exists between
A and B as they now point to distinct memory locations. If
the transformation were allowed to continue, by looking at
the now-stale information of statement 5, it would find that
A and B are possibly aliased and add a copy for B after line

1 subsection 6.4 explains why input parameters are not part of the analysis-
transformation loop.
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1 function f() % {}
2 A = zeros(2); % {(A,m1,{ })}
3 B = A; % {(A,m1,{3}) (B,m1,{3})}
4 A(1,1) = 10; % {(A,m1,{3}) (B,m1,{3})}
5 B(2,1) = 20; % {(A,m1,{3}) (B,m1,{3})}
6 end

Listing 5: Copying one variable at a time

3, thus inserting an unnecessary operation. Terminating the
transformation and re-executing the points-to analysis ensures
that the most up-to-date information is always available.

The analysis-transformation process is guaranteed to ter-
minate: in the worst case, a copy statement is added after
every assignment statement. At that point, no variables will
be possibly aliased and no more copies will be inserted.

6.2 Copying Local Variables
The copy insertion transformation visits all the statements
of a function; when an array write statement of the form
A(i) = e is found, we inspect the points-to information
at that program point. If we find that A is possibly aliased,
meaning that it shares at least one memory site with an-
other variable, we insert a copy for A after every statement
contained in the set of aliasing statements for the offending
memory sites.

This transformation inserts copies only when it finds a
write statement; if some variables are possibly aliased but
no write statements are performed on any of them, no copies
will be inserted. This is in line with our goal of not inserting
unnecessary copies. This transformation also ensures that
property 2 holds; if the variable A was not aliased, then the
assignment doesn’t affect other variables; if A was aliased,
we’ve now inserted copy statements between the aliasing
points and the assignment, thus making sure that A is no
longer aliased.

6.3 Copying Output Parameters
When the copy insertion transformation finds a return state-
ment, it inspects the points-to information of the output pa-
rameters. If an output parameter p may point to externally
allocated memory or is possibly aliased to another output
parameter, copies of p are inserted in the function at the pro-
gram points indicated by the aliasing statements set for the
offending memory sites.

In MATLAB, if the control flow falls off the end of the
function’s body, the value of the output parameters is returned
to the caller. To make this case easier to deal with, we insert a
return statement at the end of the function before performing
the points-to analysis.

This transformation ensures property 3, by making sure
that all the output parameters point to locally-allocated mem-
ory and that no two output parameters point to the same
memory.

6.4 Copying Input Parameters
In the previous sub-sections, we discussed how to use the
points-to analysis results to find the output parameters and
the local variables that are possibly aliased and how the copy
insertion transformation uses that information to add the
necessary copy statements. We now address the issue of input
parameters.

After the points-to analysis, one of the facts that the
data-flow information allows us to determine is which local
variables and output parameters are possibly aliased. In the
case of input parameters, we know that they are aliased: the
array input parameters always refer to memory that was
allocated in another function of the program, i.e., the actual
arguments passed in the function call. The question is not to
know if input parameters are aliased, but rather (1) if they
need to be copied, (2) where those copies should be inserted.

To answer the first question, which input parameters need
to be copied, we can re-use McLab’s UseDef analysis. An
array write statement of the form A(i) = e modifies an
input parameter p if p is contained in the UseDef set of A.

Algorithm 1 describes how to compute the input parame-
ters that need to be copied. If the set of statements associated
with an input parameter p is empty, the input parameter is not
modified and need not be copied (the purpose of this set of
statements will be explained shortly). If the set of statements
is not empty, a copy statement for p needs to be added.

Algorithm 1: Analysis for input parameters
paramsToCopy← emptyMap
for all p ∈ input parameters do

stmts← {}
for all s ∈ function statements do

if s has the form A(i)=e and p ∈ UseDef(A) then
stmts← stmts ∪{s}

end if
end for
if stmts 6= {} then

paramsToCopy.put(p, stmts)
end if

end for

The second question, where should an input parameter
p be copied, is answered by using the sets computed in
Algorithm 1. A copy statement is added at the beginning
of the inner-most block that is a common ancestor to all the
statements in the set associated with p. In addition, this block
must not be inside a loop. By pushing the copy as deep within
the function as possible, we can avoid making unnecessary
copies when the dynamic control flow doesn’t reach any of
the write statements for a given input parameter (as we saw
in Listing 2). Putting the copies outside of loops is necessary
to respect the semantic of MATLAB which performs only one
copy per input parameter.
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This transformation ensures that property 1 is respected;
if the input parameter p is modified at statement S, there will
definitely be a copy statement between the function’s entry
point and S.

7. Evaluation
In this section we evaluate MatJuice’s copy insertion using
three metrics:

Metric 1: the number of copies performed at run-time;

Metric 2: the impact of those copies on execution time;

Metric 3: the impact of the analysis and transformation on
compilation times.

We first investigate Metrics 1 and 2 by comparing Mat-
Juice’s copy insertion against a modified implementation of
MatJuice that copies everything (the naive strategy).

We then compare MatJuice’s copy insertion against a
copy-on-write strategy; since MathWorks’ MATLAB is closed-
source, we do the comparison against GNU Octave, a free
software implementation compatible with MATLAB. Like
MathWorks’ MATLAB, GNU Octave uses a copy-on-write
system to copy arrays. Because it is difficult to meaningfully
measure the performance impact of a single implementation
detail in two different systems, we only consider Metric 1 in
this part of the evaluation.

We use the set of benchmarks described in Table 1 for our
evaluation. We chose these benchmarks because they cover
a wide variety of problems from numerical computing and
because most of them make heavy use of two programming
constructs that are important in MATLAB: arrays and for
loops. Benchmarking against those features should give us a
fairly good idea of how MatJuice-generated code will perform
in other programs. In addition, some of these benchmarks
have been used in the past by Lameed and Hendren [8]
in the evaluation of their inter-procedural copy removal
transformation.

7.1 Naive Copy vs. Copy Insertion
Let us first examine how MatJuice’s copy insertion improves
over the naive strategy. Table 2 shows the figures we’ve
obtained. The “Naive” columns report the figures when copies
are always performed and the “CI” columns report the figures
when points-to analysis and copy insertion are performed.
The “copies” column shows how many calls to mj_clone, the
method that performs a full copy of an array, were performed.
Each benchmark was executed multiple times, specified in
the “scale” column, in order for the timings to be high enough
to be comparable.

The first thing we notice from those figures is that in all
benchmarks, the number of copies lower when copy insertion
is enabled. For some benchmarks (e.g., bubble, clos, fft, and
matmul) the number of copies goes from a handful to one or
zero; in those cases, the naive implementation copies the array
input parameters while the copy insertion implementation the

analysis is able to determine that such a copy is unnecessary.
The low number of copies is due to the nature of those
benchmarks: clos and prime compute a scalar value, while
bubble and matmul perform a single iteration (the scale factor
in this case represents the size of the input, e.g., multiplying
two 400× 400 matrices).

For other benchmarks—such as capr, crni, and nb1d—the
difference is more drastic: copy insertion reduces the number
of copies by tens of thousands in the more extreme cases.
For capr and crni, the reduction in copies comes solely from
the input parameter analysis being able to determine that
some of the input parameters are not modified during the
execution of the function and thus need not be copied. For
fdtd, the conversion from MATLAB to TameIR introduced
extra assignment in temporaries and MatJuice’s points-to
analysis can determine that these variables are read-only (i.e.,
no write is ever performed on these arrays) and need not be
copied. For nb1d, both the input parameter analysis and the
points-to analysis determine that the copies are unnecessary.

Some benchmarks, such as babai and lgdr show a large
reduction in the number of copies: this is due to the high scale
factor (i.e., the benchmark is executed many times over). In
actual fact, a single execution of babai performs two copies
and one execution of lgdr performs one.

The effects of the copy insertion transformation on ex-
ecution time are apparent: for fdtd and capr, the smarter
translation gives a speedup of 11%, and nb1d obtains a 17%
speedup. In the case of crni, the speedup is a more modest 1%.
We also observe a correlation between the “copies per sec-
ond” column and the “speedup” column; the most significant
speedups came from benchmarks that were copy-intensive,
such as capr, makechange, and nb1d.

7.2 Comparison with Octave
In this section, we look at how MatJuice’s compile-time
approach compares to a run-time approach, copy-on-write.
Copy-on-write is a system where an array is copied just before
it is modified and only if it is aliased. We have used GNU
Octave 4.0 as our comparison point because MathWorks’
MATLAB is proprietary and closed source and thus it was not
possible to get the source code and instrument it.

In Table 3, we show the number of copies performed at
run-time by GNU Octave and MatJuice with and without
copy insertion. For Octave, we have also included a column
to show the number of reference count checks made by the
make_unique function in the file liboctave/array/-
Array.h.

A number of our benchmarks were also used in Lameed
and Hendren [8]. In that paper, the authors computed, using
AspectMatlab, a lower bound on the number of copies nec-
essary to obtain the value semantics of MATLAB. For those
shared benchmarks, we’ve included the lower bound that they
computed.

We notice in the table that the number of copies performed
by the copy-on-write and the copy-insertion systems are
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Benchmark Source Description
babai MATLAB file exchange Compute the Babai estimation for an integer least square problem
bubble McLab Bubble sort, a O(n2) sorting algorithm
capr Chalmers University Compute the capacitance of a transmission line using finite difference and Gauss-

Seidel iteration
clos Otter project Compute the transitive closure of a directed graph
collatz McLab Test the Collatz conjecture up to a given integer
crni Falcon project Compute the Crank-Nicholson solution to the one-dimensional heat equation
dich Falcon project Compute the Dirichlet solution to Laplace’s equation
fdtd EEK 170 Apply the Finite Difference Time Domain (FDTD) technique on a hexahedral

cavity with conducting walls.
fft Press et. al Compute the discrete Fourier transform
fiff Falcon project Compute the finite-difference solution to a given wave equation
lgdr Unknown Compute the normalized, orthogonormal Legendre polynomials Pn(x) for all

degrees up to and including n and their first and second derivatives
makechange McLab Compute the ways to make change for a using dynamic programming
matmul McLab Naive O(n3) matrix multiplication
mcpi McLab Calculate π by the Monte Carlo method
nb1d Otter project Simulate the 1-dimensional n-body problem
numprime Burkardt and Cliff Count the number of primes up to a given integer

Table 1: List of benchmarks

MatJuice (Naive) MatJuice (CI)
Benchmark (scale) Time (s) Copies Copies/s Time (s) Copies Copies/s Speedup
babai (2000) 0.58 ± 0.00 4000 6896.55 0.56 ± 0.01 0 0.00 1.04
bubble (10,000) 3.49 ± 0.03 2 0.57 3.47 ± 0.01 1 0.29 1.01
capr (5) 8.41 ± 0.02 150000 17835.91 7.57 ± 0.01 50000 6605.02 1.11
clos (1) 19.10 ± 0.02 1 0.05 19.37 ± 0.03 0 0.00 0.99
collatz (1,000,000) 2.46 ± 0.05 0 0.00 2.48 ± 0.04 0 0.00 0.99
crni (5) 16.15 ± 0.02 45980 2847.06 15.93 ± 0.04 22990 1443.19 1.01
dich (5) 4.96 ± 0.01 0 0.00 4.97 ± 0.02 0 0.00 1.00
fdtd (1) 19.14 ± 0.59 600 31.35 17.32 ± 0.56 0 0.00 1.11
fft (9) 1.17 ± 0.01 2 1.71 1.16 ± 0.00 1 0.86 1.01
fiff (5) 5.53 ± 0.03 0 0.00 5.52 ± 0.02 0 0.00 1.00
lgdr (1000) 1.02 ± 0.01 3000 2941.18 1.02 ± 0.01 0 0.00 1.00
makechange (2000) 1.00 ± 0.04 2001 2001.00 0.89 ± 0.00 0 0.00 1.12
matmul (400) 1.67 ± 0.01 2 1.20 1.62 ± 0.01 0 0.00 1.03
mcpi (1,000,000) 1.67 ± 0.07 0 0.00 1.67 ± 0.06 0 0.00 1.00
nb1d (5) 6.34 ± 0.05 198202 31262.15 5.40 ± 0.04 0 0.00 1.17
numprime (5,000,000) 4.28 ± 0.12 0 0.00 4.41 ± 0.09 0 0.00 0.97

Table 2: MatJuice without copy insertion (Naive) vs. MatJuice with copy insertion (CI)

Octave MatJuice (Naive) MatJuice (CI)
Benchmark (scale) Copies Ref. checks Copies Copies Lower Bound †
babai (1) 2 1781 2 0 N/A
bubble (1000) 1 11,828,685 1 2 N/A
capr (1) 10,002 671,159,808 30,000 10,000 10,000
clos (1) 0 1,855,124 1 0 0
collatz (1000) 0 813,759 0 0 N/A
crni (1) 4601 460,060,064 9196 4598 4598
dich (1) 2 471,926,535 0 0 0
fdtd (1) 0 153,604 600 0 0
fft (1) 1 836,619 2 1 1
fiff (1) 0 587,737,668 0 0 N/A
lgdr (1) 0 1140 3 0 N/A
makechange (1000) 0 418 2 0 N/A
matmul (256) 0 251,791,779 2 0 N/A
mcpi (1) 0 500,143 2 0 N/A
nb1d (1) 8 3,973,171 4601 0 0
numprime (10000) 0 32,175 0 0 N/A

Table 3: Number of array copies performed at run-time — † Source: Lameed and Hendren [8]
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extremely similar: in 11 of the benchmarks, they are identical
and in 5 benchmarks copy insertion actually performs fewer
copies.

In the introduction of this paper, we mentioned that we
rejected using a copy-on-write approach, partly in order to
avoid performing extra instructions at run-time. The “Ref.
checks” column confirms that this was a good idea: in
some benchmarks, Octave performs hundreds of millions
of branching instructions. It is a testament to the efficacy of
our copy insertion approach that we are able to generate code
that performs fewer copies without the overhead of reference
counting.

In addition, for the benchmarks where we have a lower
bound on the necessary number of copies, we see that the
number of copies performed by MatJuice with copy insertion
is equal. This is a very strong indication of the effectiveness
of MatJuice’s technique.

7.3 Time Benchmarks
We ran the benchmarks from Table 2 without instrumentation
using Node.js (v4.4.0), MathWorks’ MATLAB (2015b), and
GNU Octave (4.0) to see the difference in performance
between these three implementations. The complete data is
shown in Table 4.

The bout between MATLAB and JavaScript was pretty
even; JavaScript was faster on 10 of the 16 benchmarks,
but on average MATLAB was faster by about 20%. The best
MATLAB program (fdtd) was 180 times faster than JavaScript,
and the slowest one (numprime) was 11 times slower than
JavaScript.

JavaScript is faster than GNU Octave on 12 of the 16
benchmarks. On average, Octave was 77 times slower than
JavaScript. In 10 of the benchmarks, Octave was 100 times
slower than JavaScript, and in 8 of those benchmarks, it was
in fact more than 1000 times slower; in two benchmarks (fiff
and matmul), the slowdown factor exceeds 5000x. JavaScript
is slower than Octave in the benchmarks where a loop
contains a matrix multiply operation: the naive JavaScript
implementation of MatJuice cannot compete with the highly-
tuned numeric procedures used by Octave.

7.4 Compile Time
The overhead of the points-to analysis and the copy insertion
transformation is detailed in Table 5.

The first two columns show the number of functions in the
benchmark and the number of iterations that were required to
reach a fixed point in the transformation. We can see that in all
but two functions (capr and nb1d), the number of iterations
is equal to the number of functions, meaning that a single
pass was necessary to properly transform the code.

We also computed the total time (in seconds) it took to
compile a program, and the time it took for the analysis and
transformation loop to complete. The percentage of time
taken by the analysis/transformation stage takes 5.7% of the

JavaScript MATLAB Octave
Benchmark Time (s) Time (s) Ratio Time (s) Ratio
babai 0.87 0.38 0.44 0.09 0.10
bubble 0.45 1.42 3.14 1078.55 2393.06
capr 0.78 2.23 2.84 2112.64 2691.60
crni 6.47 2.16 0.33 1800.89 278.16
clos 18.80 0.29 0.02 0.77 0.04
collatz 2.37 6.36 2.68 1421.78 599.37
dich 0.64 1.38 2.16 1667.36 2609.33
fdtd 16.88 0.09 0.01 0.17 0.01
fft 0.09 0.35 4.06 266.09 3112.19
fiff 0.35 1.95 5.52 1831.51 5173.76
lgdr 0.98 0.18 0.18 0.83 0.84
makechange 0.11 0.34 3.02 298.21 2684.13
matmul 0.11 0.72 6.27 681.32 5960.83
mcpi 1.62 2.41 1.49 23.83 14.74
nb1d 5.30 1.07 0.20 17.42 3.29
numprime 3.92 43.88 11.20 5435.18 1387.48

Table 4: Time comparison between JavaScript, MATLAB,
and Octave; ratios are relative to JavaScript

Benchmark Func. Iter. PT/CI (s) Total (s) Pct.
babai 2 2 0.10 1.20 8.4%
bubble 2 2 0.09 1.19 7.9%
capr 5 6 0.22 1.83 12.1%
clos 2 2 0.10 1.24 8.0%
collatz 2 2 0.07 1.19 5.7%
crni 3 3 0.19 1.63 11.8%
dich 2 2 0.35 2.32 15.2%
fdtd 2 2 0.76 2.48 30.5%
fft 2 2 0.42 2.11 19.6%
fiff 2 2 0.24 1.61 15.0%
lgdr 4 4 0.18 1.58 11.3%
makechange 2 2 0.11 1.26 8.4%
matmul 2 2 0.07 1.15 6.4%
mcpi 2 2 0.08 1.19 7.0%
nb1d 3 6 0.26 1.78 14.8%
prime 2 2 0.07 1.14 5.7%

Table 5: Overhead of analysis and transformation

total compilation time in the best case (collatz and prime) and
30.5% in the worst case (fdtd).

8. Related work
Lameed and Hendren have described a two-phase analysis
that was implemented in McVM, a JIT compiler for MATLAB
[9]. The first phase of McVM is similar to MatJuice’s input
parameter copy insertion: it find which input parameter
definitions reach array update statements and the parameters
that are so modified are copied at the beginning of the
function’s body. The main improvement of MatJuice is to
find the deepest block where a copy can be inserted without
affecting the MATLAB semantics, thus avoiding copies on
some execution paths.

GNU Octave uses a copy-on-write system to handle copies
[5]; arrays have a count field that indicates how many
variables point to that data object. When an array modification
occurs, if the reference count is greater than one, the array
is copied before the write occurs. Though the MathWorks’
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MATLAB source code cannot be inspected to confirm, articles
from MathWorks and other sources on the Internet indicate
that MathWorks’ MATLAB uses the same strategy [10, 14];
in addition some simple experiments strongly suggest that
arrays are not copied at assignment statements, but at array
update statements.

The R programming language [12] — a dynamic, array-
oriented programming language used extensively in the world
of statistics — also uses a copy-on-write strategy [13]. One
difference from MATLAB that is noted in the R documentation
is that rather than maintaining a reference count, an array in
R has a field (called named) that indicates whether the array
is aliased or not.

9. Conclusion
In this paper, we showed a new way to bridge the value
semantics of MATLAB arrays with the reference semantics
of JavaScript arrays. We introduced an intra-procedural data-
flow analysis that determines at each program point where the
different variables may point to, and a set of the statements
where a variable became aliased with respect to a memory
site. This analysis uses the unusual trick of considering the
MATLAB program as if it had the semantics of JavaScript. We
presented the associated copy insertion transformation that
accepts a TameIR function and points-to information to insert
the necessary copy instructions for the translated MATLAB
program to have the the proper semantics.

The figures obtained in Section 7 show that MatJuice’s
points-to analysis and copy insertion transformation can
dramatically reduce the number of copies that need to be
performed at run-time, and in fact we’ve seen that MatJuice is
able to match the number of copies of a run-time system and
matches the lower-bound of copies necessary for a number of
our benchmarks. These results tell quite clearly that an intra-
procedural approach that adds no extra run-time machinery is
definitely suitable for the kind of numerical problems typical
of MATLAB. Also, by not needing a reference counting
system in the output program, we save CPU cycles and
introduce less code that may prevent a JIT compiler from
performing aggressive optimizations.

The copy insertion transformation could be improved by
using liveness information; if at a statement A(i) = e the
variable A is possibly aliased, but the variables it is aliased to
are not live, we could avoid introducing an unnecessary copy
statement.
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