
HorseIR: Bringing Array Programming Languages
Together with Database Query Processing
Hanfeng Chen
McGill University

Canada
hanfeng.chen@mail.mcgill.ca

Joseph Vinish D’silva
McGill University

Canada
joseph.dsilva@mail.mcgill.ca

Hongji Chen
McGill University

Canada
hongji.chen@mail.mcgill.ca

Bettina Kemme
McGill University

Canada
kemme@cs.mcgill.ca

Laurie Hendren
McGill University

Canada
hendren@cs.mcgill.ca

Abstract
Relational database management systems (RDBMS) are oper-
ationally similar to a dynamic language processor. They take
SQL queries as input, dynamically generate an optimized ex-
ecution plan, and then execute it. In recent decades, the emer-
gence of in-memory databases with columnar storage, which
use array-like storage structures, has shifted the focus on
optimizations from the traditional I/O bottleneck to CPU and
memory. However, database research so far has primarily fo-
cused on CPU cache optimizations. The similarity in the com-
putational characteristics of such database workloads and
array programming language optimizations are largely unex-
plored. We believe that these database implementations can
benefit from merging database optimizations with dynamic
array-based programming language approaches. Therefore,
in this paper, we propose a novel approach to optimize data-
base query execution using a new array-based intermedi-
ate representation, HorseIR, that resides between database
queries and compiled code. Furthermore, we provide a trans-
lator to generate HorseIR from database execution plans and
a compiler that optimizes HorseIR and generates efficient
code. We compare HorseIR with the MonetDB RDBMS, by
testing standard SQL queries, and show how our approach
and compiler optimizations improve the runtime of complex
queries.

CCS Concepts • Software and its engineering→Com-
pilers; • Information systems → Database query pro-
cessing;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DLS ’18, November 6, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6030-2/18/11. . . $15.00
https://doi.org/10.1145/3276945.3276951

Keywords IR, Compiler optimizations, Array programming,
SQL database queries
ACM Reference Format:
Hanfeng Chen, Joseph Vinish D’silva, Hongji Chen, Bettina Kemme,
and Laurie Hendren. 2018. HorseIR: Bringing Array Programming
Languages Together with Database Query Processing. In Proceed-
ings of the 14th ACM SIGPLAN International Symposium on Dynamic
Languages (DLS ’18), November 6, 2018, Boston, MA, USA.ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3276945.3276951

1 Introduction
Relational Database Management Systems (RDBMS) have
been the primary data management software of choice for or-
ganizations for decades with SQL being the de facto standard
query language [16]. Being a declarative language based on
relational algebra [11], SQL gives RDBMS implementers the
opportunity to optimize the execution plan for a query [7].
In this aspect, one can think of an RDBMS as a dynamic
language processor which receives SQL queries as input and
dynamically translates the SQL query to an optimized plan
that minimizes the execution cost of the query and executes
the plan.

Traditionally, these optimizations were targeted at the pri-
mary resource bottleneck, I/O [17]. A major RDBMS storage
optimization, termed column-store architecture [1], where a
column’s data structure in the disk is akin to that of a pro-
gramming language array, introduced significant reduction
in I/O costs for large-scale data processing. At the same time,
the increase in the size of the main memory had improved
disk caching, making many database (DB) workloads CPU
and memory bound [3, 5].
This had the database researchers looking for new op-

timization strategies. The “array like” nature of a table’s
columns in column-store based RDBMSes, especially its
working data sets1, naturally led to a series of studies and op-
timization strategies focused on the benefits of CPU caching
[4, 19]. However, to the best of our knowledge, beyond these
1The term working dataset is used to denote the copy of data that has been
brought from the disk to main memory for processing a request.

37

https://doi.org/10.1145/3276945.3276951
https://doi.org/10.1145/3276945.3276951

DLS ’18, November 6, 2018, Boston, MA, USA H. Chen, J. D’silva, H. Chen, B. Kemme, and L. Hendren

Translate

Optimize

C

Libraries

Binary

Execution
Plans

HorseIR
(raw)

HorseIR
(opt.)

Compile

Compile

Link

SQL
Queries

Query
Result

RDBMS
Front-End

Output

Figure 1. Overview of our approach. Shaded boxes corre-
spond to our contributions.

excursions into exploiting CPU cache-based optimizations,
the database community at large is yet to benefit from more
comprehensive optimization techniques that the compiler
community has amassed from its decades of research on
array programming languages. We believe that working
datasets of column-stores are good candidates to apply array
programming optimizations, as a column essentially contains
homogeneous data which maps nicely to array-based/vector-
based primitives.
In this paper, we follow a layered approach that facili-

tates a wide range of compiler optimizations in a systematic
way that exploits and further builds upon the many opti-
mizations developed by the database community in terms of
generating efficient execution trees for declarative queries.
Specifically, we propose an approach where SQL queries
are first translated into execution plans using standard DB
optimization techniques that consider the operators in the
query and the characteristics of the input dataset. These DB
optimized plans are the basis on which we explore compiler
optimizations. To do so in a systematic way, we translate
the conventional database query execution plan into a new
array-based intermediate representation (IR), called HorseIR,
on which compiler optimization strategies are then applied.
An array-based IR is a natural choice, given the columnar
structure of the working data sets. The modular approach of
using an IR spares the RDBMS implementers from having to
tailor specific DB operators and algorithms to benefit from
various hardware related optimization techniques. Instead,
such optimizations can be performed on HorseIR.

The core data structure in HorseIR is a vector (correspond-
ing to columns in the DB tables) and the implementation
has a rich set of well-defined built-in functions with clearly
defined semantics. They are easy to optimize, and in the case
of elementwise built-in functions, are easy to vectorize and
parallelize. The type system of HorseIR facilitates declaring
variables with explicit types, as well as a wild-card type and
associated type inference rules.
Fig. 1 shows the overview of our approach. Queries are

first translated to query execution plans. Then, a plan-to-
HorseIR translator translates the execution plans into raw
HorseIR programs. Our current implementation uses the

plans produced by the columnar RDBMS, HyPer [19], but
the principles of translating execution plans of any RDBMS
to HorseIR is largely the same. The HorseIR optimizer first
performs standard compiler optimization techniques, such
as dead code elimination and loop fusion. Next, an intelli-
gent pattern-based code generation strategy is deployed to
recognize the patterns of HorseIR that have efficient C im-
plementations and replace them with such libraries. Finally,
the generated C code is compiled into executable form.

The idea of generating array-based code from SQL is both
novel and challenging. To the best of our knowledge, we are
the first to introduce an array-based IR that allows column-
based in-memory database systems to benefit from a whole
range of compiler optimizations. Prior researchers mainly
focused on how to generate low-level code directly from SQL
queries. Rather than implementing complex operations such
as joins directly, HorseIR provides a repertoire of smaller
built-in primitives that can be combined to achieve the same
functionality. Introducing a high-level IR might open a new
research direction for database query optimizations. How-
ever, having an additional IR for performing compiler opti-
mizations may result in some overhead and must be consid-
ered along with the performance benefits that they bring.

To demonstrate the importance of compiler optimizations
and the feasibility of our approach, we performed exten-
sive experiments, using a subset of the TPC-H SQL bench-
mark [32]. We compare the performance of HorseIR with
that of a popular open source column-store RDBMS, Mon-
etDB [14]2. Execution times are overall relatively similar,
showing that an intermediate representation and the use of
an array-based programming language is a promising ap-
proach that can compete with a highly optimized DB engine.
In fact, the optimized HorseIR even outperforms MonetDB.
We also analyze in detail as to which compiler optimizations
are particularly important for database queries.

The main contributions of this paper are that we:
• identified the need for a common IR for SQL queries;
• designed and implemented an array-based IR, called
HorseIR, to represent SQL queries;
• delivered a translatorwhich is able to generateHorseIR
code from execution plans automatically;
• identified and applied important compiler optimiza-
tions for generating efficient code from HorseIR;
• demonstrated performance benefits of these compiler
optimizations, and compared the overall performance
with MonetDB, a popular column-store based RDBMS.

The rest of the paper is organized as follows. We first pro-
vide the relevant background about array programming and
RDBMS in Sec. 2. We then present the details of the design
and implementation of HorseIR in Sec. 3; the translation

2While we would have liked to compare with HyPer, whose plan generator
we used, this was not possible as only the plan generator but not the HyPer
execution engine are public. See http://hyper-db.de/interface.html

38

http://hyper-db.de/interface.html

HorseIR: Bringing Array Prog. Lang. Together with DatabaseQuery Proc. DLS ’18, November 6, 2018, Boston, MA, USA

from SQL to HorseIR in Sec. 4; the subsequent optimizations
and code generation fromHorseIR to C code in Sec. 5; Finally,
we provide our experimental evaluation in Sec. 6, related
work in Sec. 7, and conclusions in Sec. 8.

2 Background
2.1 Database Query Processing
SQL is based on relational algebra. RDBMS usually parse
a SQL query into a relational algebraic representation [6],
as the latter has been known to be easier to optimize [31].
Relational algebra operators are unary or binary, in the sense,
they accept one or two tables3 as input. Their output is al-
ways a single table. Therefore it is easy to chain these opera-
tors into operator trees where the output of one relational
operator serves as the input of another operator in order to
solve complex SQL queries. Each of the operators can be im-
plemented in various ways. Which one is the most efficient
depends on the location in the operator tree and the input
data.
Thus, modern RDBMS optimizers have a query re-write

subsystem that generates multiple semantically equivalent
relational algebra operator trees [15, 17] for a given query.
Execution plans are then generated for each of them, which
differ in the implementations they choose for individual
operators in the tree. The overall cheapest execution plan
is then chosen. The cost model for this has traditionally
focused on I/O cost as computations were assumed to be I/O
bound [17].

However, asmainmemory has become cheaper and cheaper,
RDBMS workloads have become compute bound, often not
leveraging the underlying processor/memory architecture ef-
ficiently [3, 13]. This has resulted in the exploration of “block
optimization” techniques [27, 36] to leverage CPU perfor-
mance, with [4] being more sophisticated in their approach
by accounting for CPU cache utilization.

2.2 Compilers Meet Databases
The importance of leveraging compiler optimization tech-
niques for database query processing has gained traction
in recent years [21]. A survey of compiler-based optimiza-
tions that have been attempted by the database community
is presented in [34]. A popular approach has been to use
query compilers that can compile SQL to low-level program-
ming languages, as offloading the portion of computation-
intensive code to efficient compiled languages can improve
performance over a native interpreter. A well-known exam-
ple is HyPer [26], an RDBMS which provides a compiler to
translate SQL queries to LLVM directly (with some hybrid
calls to C++ functions) before generating binary code. It is
shown in [30], however, that introducing additional layers
between SQL queries and low-level code can benefit from

3In relational algebra, the term relation is often used instead of table, but
these are synonymous in the context of our discussion.

more compiler optimizations as higher-level intermediate
languages have the potential to preserve more information
from SQL queries.

2.3 Array Programming Overview
Array programming is supported by a wide range of pro-
gramming languages, such as APL, MATLAB, and FORTRAN
90. The main characteristics of array programming are as fol-
lows. 1) Array objects are the main data structure. An array
object is able to represent an arbitrary dimensional array. As
a consequence, programming with arrays comes with suc-
cinct and expressive code; 2) Array programming languages
provide a rich family of operators as built-in functions. The
fundamental idea of array programming is applying an op-
eration on all items of an array without an explicit loop. If
an operation is mappable, it can be executed in parallel on
each item of the array. For instance, MATLAB’s elementwise
built-in functions are well tuned for implicit data parallelism.

A special concept in array programming is vectorization.
It can take place in either low-level hardware or high-level
programming languages. Modern hardware is actively adopt-
ing the concept of vectorization in their chip design. For
instance, Intel Advanced Vector Extensions (AVX)4 is an in-
struction set designed for efficient vector operations. One
instruction performs one operation on multiple data items
simultaneously. Another kind of vectorization is the source-
level translation from a scalar form to a vectorized form to
reduce the overhead of explicit loop iterations [9, 24].
HorseIR is influenced by ELI [8], Q [23], and Q’Nial [18].

It provides a set of special built-in functions, introduces ho-
mogeneous vector as a basic type, and proposes a set of
list-based types for handling heterogeneous data. Compared
with conventional array programming, our design simpli-
fies the complexity of language semantics, while keeping
the flexibility of handling complex data structures as this is
needed to support database queries.

3 HorseIR: Design and Implementation
The design of HorseIR was motivated by the need for a very
clean array-based IR with clear semantics, which enables
optimizations and automatic parallelizations. The IR also
needs to handle both array-based computations and compu-
tations from SQL queries in a unified manner. In this section,
we provide a brief introduction to HorseIR by giving the
key program structures, types, shapes, and implementation
details.

3.1 HorseIR: Language Design
At its core, HorseIR is a typed, 3-address intermediate rep-
resentation with: a simple module system; static scoping;
call-by-value semantics; a rich set of base types including a

4https://software.intel.com/en-us/articles/
introduction-to-intel-advanced-vector-extensions

39

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions

DLS ’18, November 6, 2018, Boston, MA, USA H. Chen, J. D’silva, H. Chen, B. Kemme, and L. Hendren

wild-card type; key compound types including arrays, lists,
dictionaries, tables, and keyed-tables; and a rich set of well-
defined primitive array operations.

3.1.1 Program Structure

SELECT COUNT (∗) AS S to r e sWi thB i gD i s coun t
FROM s t o r e s
WHERE d i s coun t >=0 . 5 AND d i s coun t < 0 . 8 ;

module BigDiscount {
import Builtin .*; / / impo r t a l l b u i l t i n s
def main (): table { / / an e n t r y method

/ / l o a d t a b l e : s t o r e s
a0:table = @load_table(`stores:sym);

/ / l o a d column d i s c o u n t from t a b l e
t1:f64 = check_cast(

@column_value(a0,`discount:sym),f64);
/ / f i n d a l l s t o r e s w i th d i s c o u n t s b e tween [5 0% , 8 0%)

t2:bool = @geq(t1, 0.5: f64);
t3:bool = @lt(t1, 0.8: f64);
t4:bool = @and(t2, t3);
/ / c oun t t h e number o f such s t o r e s
t5:i64 = @sum(t4);

/ / r e t u r n t a b l e
t6:sym = `StoresWithBigDiscount:sym;
t7:? = @list(t5); / / ? => l i s t < i 6 4 >
t8:table = @table(t6, t7);
return t8;

}
}

Figure 2. An example HorseIR module (bottom) for an SQL
query (top) which returns the number of stores with rela-
tively big discounts (50-80%).

Modules A valid HorseIR program consists of a set of
modules, with eachmodule defining zero or more static fields
and zero ormore static methods. For example, Fig. 2 shows an
SQL query example and its corresponding example HorseIR
module, BigDiscount. If a module contains a method called
main, then this can be used as an entry point of a program. In
the BigDiscount module, there is a main method that reads
from the database table stores, loads the column discount,
and then executes the subsequent statements.
In addition to the named modules, there is also a pre-

defined default module which collects any fields or meth-
ods that are defined outside of a module. Further, a module
can import one or more methods from another module using
an import statement. Imported methods may be called using
the name of the method (without the name of the module),
except in the case where there is a conflict between a method
being imported and the current module, in which case the
method must be called with the module name explicitly.

With this simple module design, HorseIR provides a mech-
anism [28] for modularizing complex software and provides a
manageable way of specifying reusable libraries, such as the

standard library Builtin in Fig. 2 which loads pre-defined
functions, for example, load_table, geq, etc.
Methods Amethod has zero or more parameters and 0 or 1
return values. Parameters are passed by value, which simpli-
fies program analysis, but also means that copy-elimination
is an important optimization, as in the case of efficiently
executing MATLAB [12]. Method calls preceded by the @
indicate user-defined or library method calls, whereas those
without the @ are system calls such as check_cast. Methods
may be overloaded, but the type signatures of overloaded
methods must not allow for any ambiguous invocations.
Static Fields and Local Variables A static field has the
scope of its defining module, and local variables have the
scope of their enclosing method. Each static field and local
variable must have a declared type, although that type may
be a wild-card type.

3.1.2 IR Types
Deciding on the type system was a very important decision
in the design of HorseIR. The first key decision was that Hor-
seIR should be statically typed, but with a special wild-card
type that allows for the case when a static type is unknown,
thus indicating where a static type inference at compile time
or a dynamic type check at runtime must be made. This ten-
sion between static and dynamic typing is partly due to the
fact that database tables have declared types; thus, generat-
ing statically-typed HorseIR from queries should be possible,
and is preferred. Furthermore, it has been well established
that static types and shapes can lead to much more efficient
array-based code, therefore one should aim for as much static
typing as possible [22]. However, many common array lan-
guages are dynamically typed, and by offering a wild-card
type, it is possible to generate HorseIR from those languages,
thus providing the potential to use HorseIR for further pur-
poses than pure DB queries, and opens the possibility of
combining user-defined functions written in a traditional
programming language [29] and SQL queries in a unified
manner.
Base Types and Homogeneous Arrays A second key
decision was to support quite a rich set of base types which
includes: (1) all the base types typically found in an array-
based language (boolean, char, short, int, long, float, double,
and complex); (2) additional base types that are used in SQL
(string, month, date, time, datetime, minute, and second);
and (3) a special type symbol, which provides for an efficient
representation of immutable strings which is very important
for efficient in-memory database representations.

An underlying principle in array-based languages is that
many built-in operations are defined over homogeneous
arrays. Since each homogeneous array can be stored in a
contiguous memory region, it is a cache-friendly design, as
well as being easily partitionable for parallelism. Thus, our
declarations actually denote arrays, with each array having

40

HorseIR: Bringing Array Prog. Lang. Together with DatabaseQuery Proc. DLS ’18, November 6, 2018, Boston, MA, USA

an explicit base type, and an implicit extent (number of di-
mensions) and a shape (the size of all dimensions). Only the
base type is declared, but the extent and/or shape may some-
times be inferred. For example, the parameter declaration,
t1:f64, in Fig. 2 declares that t1 is a homogeneous array
with a base type of f64. In this case, a shape inference would
be able to determine that it is actually a vector, based on the
output shape of the built-in method column_value.
Advanced Heterogeneous Data Structures Although
homogeneous arrays are excellent for core scientific com-
putations, the data stored in an SQL database is not homo-
geneous but has columns with different data types. Thus,
HorseIR was defined with key heterogeneous data types to
effectively capture SQL-like data in a manner that interacts
well with array-based primitives. Furthermore, HorseIR sup-
ports many important built-in functions for dealing with
these data structures, and they are used extensively in the
code generation strategies described in Sec. 4.2.

A list type is a fundamental type which provides cells for
holding different types and lists can be nested. Fundamental
to list creation is the built-in function list which takes an
arbitrary number of arguments and returns a list with each
argument saved into a single cell. The length of the returned
list is the number of arguments. The function raze unrav-
els an input list (including nested lists), creating a vector
containing all of the leaf elements of the list. Note that raze
expects all leaf elements to be of the same type since vectors
are homogeneous data structures.
A specific subtype is associated with a list type when all

cells of the list have the same subtype. For example, the
variable t7 in Fig. 2 is initially associated with a wild-card ?
but later inferred as a list type list<i64> at compile-time. It
stores the value returned from the function list that has in
this particular example only one input parameter, namely t5,
which is an array of type i64 (and in our example this array
happens to be of size 1 as it was created by the sum primitive).
Therefore, the type of the variable t7, list<i64>, means it
is a list which has a set of cells (in our case only one), all
of which are homogeneous arrays with a base type of i64.
Finally, a table is formed with given column names (i.e. the
variable t6) and column values (i.e. one column stored in the
variable t7), where the number of column names is equal to
the number of columns and all columns agree on their sizes.
Other advanced types derive from this nested list type

such as dictionary, table, keyed table, and enumeration. A
dictionary is a list of pairs of keys and values. A table is a
special case of a dictionary. Each key represents a column
name, and the associated value is an array representing the
corresponding column of the table. Thus, the values of all
pairs in the dictionary have the same length, namely the
number of rows in the table. HorseIR supports the built-
in functions keys and values for fetching keys and values
from a dictionary. A keyed table is defined as a table with

primary keys, which is distinct from a normal table. Since a
keyed table may have a portion of columns as primary keys,
our implementation contains two sub-tables for handling
it: columns with primary keys are grouped as one sub-table
and the other columns are grouped as another sub-table.
This design simplifies our implementation by reusing the
previous implementation of a normal table. An enumeration
is used to maintain the mapping between two columns by
storing the indices of the first occurrence of one column’s
value in the other one. Thus, it is introduced to emulate a
key/value pair representing a foreign key in database tables.
An example of enumeration is depicted in Fig. 3, and details
of the use of the enumeration in HorseIR programs for SQL
joins are described in Sec. 4.2.
Elementwise Operations for Arrays Like many array-
based languages, HorseIR supports a large collection of ele-
mentwise operations which take either one (unary) or two
(binary) parameters. An elementwise unary operation takes
one argument and maps its operation on each item of the
argument. Thus, the shape of the output is the same as the
shape of the input. An elementwise binary operation takes two
arguments. If neither of the lengths of the two parameters
is one, they must agree on the length, denoted N. Therefore,
there are three possibilities: 1-to-N, N-to-1, and N-to-N. The
result will always be of length N, with the binary operation
being applied in a pairwise fashion on each element (in the
case where one argument is a scalar, it is virtually expanded
through replication to a vector of length N).
Each Operations for Lists Since HorseIR also includes
list-based data structures, it provides a variety of map-like
operations. HorseIR supports one unary operation, each_it
em(f,x), which applies a function f over all elements of list x,
and three binary operations, each(f,x,y), each_left(f,x,y)
and each_right (f,x,y). For the binary operations, the
i’th elements of the outputs are computed as f(x(i),y(i)),
f(x(i),y), and f(x,y(i)) respectively.
Other Functions HorseIR also supports helper functions
and system functions. For example, the function len returns
a scalar which indicates the length of its input argument,
and function load_table loads a database table into a HorseIR
table.

3.2 HorseIR: Language Implementation
We have implemented three core components for HorseIR:
(1) a HorseIR front-end, which parses, performs semantic
checks, and generates an AST from a HorseIR program; (2)
a library of efficient and parallelized implementations for
the rich set of built-ins for HorseIR; and (3) a compiler for
HorseIR.
HorseIR Front-end The HorseIR front-end is built with
Flex & Bison which are popular tools for building compilers.
We defined a clean grammar for HorseIR. The front-end also

41

DLS ’18, November 6, 2018, Boston, MA, USA H. Chen, J. D’silva, H. Chen, B. Kemme, and L. Hendren

performs the type and shape propagation, replacing wild-
card types with inferred types whenever possible.
Built-in-function Library HorseIR employs a single-fu
nction-multiple-implementation strategy to embrace the
various kinds of data from database systems. One built-in
function may have one or more implementations that are
specialized to the correct base type, or the size, or shape of
the input data.

Since elementwise operations have no explicit data depen-
dencies, the HorseIR library provides a parallelized version
for all of them. Moreover, HorseIR also supports parallel code
for other frequently used operations. For example, the opera-
tion sum is implemented with the aggregation of partial sums
from each parallel thread. We use OpenMP to implement par-
allel C code with SIMD vectorization enabled in the library,
and it is also convenient for generating efficient parallel code
from fusing elementwise as operations described in Sec. 5.
The design of HorseIR enables simple parallelization and
exposes more information to subsequent optimizations since
we support simple and clear combinations of vectors/arrays
and lists.
However, parallelizing a single function is not sufficient

because a synchronization barrier introduced after each op-
eration is expensive. Thus, it is often beneficial to merge
two or more functions by generating code on which loop fu-
sion based optimizations have been applied. HorseIR exploits
such fusion, generating specific fused C code for the set of
fused statements with specific type and shape information.
HorseIR Compiler The HorseIR compiler uses a standard
compiler design, which directly compiles the input HorseIR.
Instead of generating specific C code for each built-in func-
tion, it generates C code with invocations to the pre-built
functions in the built-in-function library, except when opti-
mizations occur among statements that require specialized
C code to be generated with specific type and shape infor-
mation. In spite of the fact that the HorseIR compiler can
generate efficient C code in terms of execution time because
the code makes good use of the efficient built-in library func-
tions, the cost of compiling the C code is quite expensive.
In the future, we plan to add a JIT compiler with caching
of compiled code in order to further reduce the overhead of
compiling HorseIR and its compiled C code.

4 HorseIR Generation
In this section, we explain how to generate HorseIR programs
from standard database SQL queries.

4.1 Starting from Optimized Execution Plans
Database systems have sophisticated query translators and
optimizers that, given an SQL query as input, generate an
optimized execution plan which is an operator tree, where
its leaves are database tables and inner nodes represent rela-
tional operators: the most common ones being projection,

selection, join, and various aggregation operators. By keep-
ing statistics about data and by analyzing the selectivity of
certain operators (the ratio of output vs. input records) the
query optimizer decides on an order for the operators that
typically aims at minimizing the number of records that flow
from operator to operator, and that takes advantage of the
best implementation of an operator depending on the charac-
teristics of the data. Thus, it makes sense to take advantage of
all these optimizations, and generate HorseIR code starting
with an optimized execution plan. For this purpose, we use
the query translator and optimizer of HyPer, a sophisticated
column-based database system that exposes the execution
plans it generates in the form of easily readable JSON ob-
jects. We take an optimized plan from HyPer and translate
it into a HorseIR program. We would like to note that many
database systems expose their execution plans in readable
formats5 and a similar translation to HorseIR is possible. In
the following, we show how this translation is done.

4.2 Mapping Relational Algebra to HorseIR
In this section, we discuss how the most fundamental rela-
tional operators are translated into HorseIR.
Projection Πa1, ...,an (R) takes the records of table R as in-
put and returns the same records but only the columns of R
with column names a1, ...,an .6 In HorseIR, the function col-
umn_value loads a column given a table name. The column
names are formed into a string or symbol vector. Then, a new
table is returned with the function table which takes both
column names and values. Let colk = @column_value(T ,ak)
where k ∈ [1,n]. Thus, we can have the project operation in
HorseIR as follows.
columnName :? = (a_1 ,a_2 ,...,a_n);
columnVal :? = @list(col_1 ,col_2 ,..., col_n);
newTable :? = @table(columnName ,columnVal);

Selection is denoted as σP (R) where P is a collection of
selection predicates and R is a table. The selection returns
those records of R whose attribute values fulfill the condition
P . Formally, P = (P1 <op> ... <op> Pn) where <op> is either
∧ for a logical AND operation or ∨ for a logical OR operation.7
A predicate returns True or False when its input data sat-
isfies a specific condition or not.8 In HorseIR, we need two
steps to achieve selection. First, the <op> is replaced with
one of two built-in boolean functions and or or. The func-
tion compress(A,B) is defined as {Bt | At = true, t ∈ [1,n]},
where A is a boolean vector and both A and B have the same
5Database designers need them to decide on secondary index structures and
database administrators need them to understand performance bottlenecks.
6Projection refers to the SELECT clause of a SQL query, e.g. SELECT
a1, ...an FROM R.
7P is represented in the WHERE clause of a SQL query, e.g., WHERE a1 <

100 AND a2 = 10.
8While SQL follows three-value logic, our current implementation of Hor-
seIR supports only boolean logic, we will address this in a future work. Our
current test scenarios do not require three-value logic.

42

HorseIR: Bringing Array Prog. Lang. Together with DatabaseQuery Proc. DLS ’18, November 6, 2018, Boston, MA, USA

length n. Second, the result of a predicate is a boolean vector,
which is applied to a vector to fetch valid records. In the
example below, p1 and p2 are two boolean vectors and a new
vector is returned after filtering data.
pred:? = @and(p1,p2);
newVector :? = @compress(pred ,vector);

col.. … row id deptid
… 0 14
… 1 76
… 2 46
… 3 54

Department
deptid … col…

14
14
46
76
14

Employee

Enumeration … col…
0 …
0 …
2 …
1 …
0 …

Employee
The concept of Enumeration.
deptid of Employee table is
replaced by the index (row id) of
the corresponding value in the
Department table.

Tr
an

sf
or

m
ed

 to

Figure 3. An example of an enumeration in a join with a
pair of key and foreign key.

▷◁

σk

key

fkey

(a) Case 1

▷◁

key σf

fkey

(b) Case 2

▷◁

σk

key

σf

fkey

(c) Case 3

Figure 4. Three cases of joins on two columns (i.e. keyed
and foreign keyed) when selections applied (i.e. σk and σf).

Join A join operation takes two tables as input and connects
records from the two tables that fulfill certain conditions.
Let R1 be a table with columns (cola1, ..., colan), and R2 be
another table with columns (colb1, ..., colbm). Then, the join
operation returns a new table:

R1 ▷◁COND R2

where (COND ← (cola1 = colb1) ∧ ...). The new table con-
tains the columns from both the tables R1 and R2. A record
r1 from R1 together with a record r2 from R2 build a record
in the new table, if r1 and r2 fulfill the conditions COND.
Since joining two tables is expensive, we provide a prim-

itive data type, enumeration, that can be used if the join
is over two tables with a primary/foreign key relationship.
Each record of a table has a unique value in its primary key
column, and each value in a foreign key column must be one

of the values that exist in the primary key column of (usually
another) a table. For example, in Fig. 3, deptid is a foreign
key in Employee table referring to the primary key deptid
of the Department table, establishing a primary/foreign key
relationship between the two table. Joins over tables with a
primary/foreign key relationship are extremely common as
they link related tables. Thus, handling such joins efficiently
is important. Therefore, we pre-compute such joins and store
them as an enumeration.
An enumeration takes two parameters as a pair of <key

(K), value (V) >. The type and shape of K and V must be
the same. Then, the enumeration records the indices of the
first occurrence of V’s value in K. On the other hand, the
target variable K is stored, while the source variable V can
be ignored since all the information has been saved into the
enumeration. In our example, deptid of the Employee table
is representedwith the index (row-id) position of that value in
the deptid column of the Department table. Enumerations
are similar in principle to the join index concepts used in
some RDBMS implementations [33]. The builtin function
enum constructs an enumeration.

newEnum :? = @enum(K, V)

With enumeration, joins can be handled efficiently as follows:
1. In Fig. 4a, when a key is selectedwith a filter, its foreign

key gets a boolean mask by indexing through indices
stored in the enumeration ev before being compressed;

2. In Fig. 4b, when a foreign key is selected with a filter,
its key stays the same. We only need to update ev to
ev′ with fewer items in its fkey part.

3. In Fig. 4c, when a key and its foreign key both are
selected, the relation can be updated in the following
steps: (i) update fkey to fkey′in case 2; (ii) update key
to key′and fkey′to fkey′′in case 1; and (iii) return a
new enumeration with <key′, fkey′′>.

Aggregation An aggregation function takes a list of val-
ues as input and returns a single value as output, such as
sum (sum of values) and count(number of values). A formal
definition of aggregation is

(G1,G2, ...,Gn) AGGR F1(a1),F2(a2), ...,Fm (an) (R)

where (i) G1,G2, ...,Gn is a list of columns (in the table R) to
be grouped; (ii) a1,a2, ...,an are names of columns in R; and
(iii) F1, F2, ..., Fm are aggregation functions. In HorseIR, the
function group aggregates values which can be a vector or
a list, and returns a dictionary in which a key is the index
of the first value in a group and a value consists of the in-
dices of same values in a group. (i.e. dict<i64, list<i64>>).
After array indexing with lists, the aggregation functions are
applied. As result, each cell of a list contains a single value.
Finally, this is unraveled with the function raze and a vector
is returned. The following example shows the aggregation
function count on column G_1.

43

DLS ’18, November 6, 2018, Boston, MA, USA H. Chen, J. D’silva, H. Chen, B. Kemme, and L. Hendren

listG :? = @list(G_1 ,G_2 ,...,G_n);
dictG :? = @group(listG);
indexG :? = @values(dictG);
valG1 :? = @each_right(@index ,G_1 ,indexG);
countG1 :? = @each_right(@count ,valG1);
vectorG1 :? = @raze(countG1);

4.3 Overall Code Generation Strategy
As we have just seen, each of the operators in an execution
plan can be mapped into one or more lines of HorseIR code.
An optimized plan (called plan in this section) has a nested
tree-based structure (in the case of HyPer, it is in JSON for-
mat). Our code generator traverses the tree, generating code
for each operator node. Code for each child is generated, and
then the results passed to the operator.
Environment Objects In our code generation strategy,
intermediate results are passed via an environment object.
The object is similar to a table but has some additional el-
ements for the purpose of delivering more information for
optimizations at this translation level. Therefore, the object
consists of:

• table_name: a string for a table name (a unique name
is assigned for a temporary table);
• cols_names: a vector of strings for column names;
• cols_alias: a vector of strings for variables to rep-
resent the corresponding columns (it has the same
length as cols_names);
• cols_types: a vector of strings for the corresponding
variable types (it has the same length as cols_alias);
• mask : a string for masking (or no masking if its value
is empty or null);
• mask_a : a vector of strings for variables to represent
the corresponding columns after masking (it has the
same length as cols_alias).

Expressions and Types Operators may have expressions
as their children. Some expressions, such as lt, correspond
directly to one HorseIR statement, whereas others, such as
between require generating several HorseIR statements.

While generating HorseIR code, we take care to generate
the most efficient types. For example, a string type in HyPer
may be generated as a symbol type in HorseIR, if it corre-
sponds to a read-only value. This results in more efficient
code.
Eliminating Dead Code HorseIR code is generated as-
suming that all results will be needed. However, the final re-
sults table may contain only some columns, and thus we only
need to retain the code needed to compute those columns.
We use a backward slice from the final result to identify the
code that needs to be retained, and eliminate all other code,
as it is effectively dead code.

5 Optimizations and Code Generation
In this section, we introduce our optimizer which adopts a
set of the loop fusion based optimizations and provides a
brief description of emitting optimized C code.

5.1 Loop Fusion Based Optimizations
Loop fusion is a key optimization for array-based languages [10,
20], and it is similarly important for HorseIR. In our context,
we have identified both fusions of elementwise functions,
which is the normal case, as well as fusions/specializations
based on patterns specific to the kind of HorseIR code gen-
erated for database operations.

Algorithm 1: Fuse elementwise functions
Data: HorseIR statements, UDChain, and DUChain
foreach stmt in statements with a reversed order do

if isNotVisited(stmt) then
FuseTree← fuseElementwise(stmt);
if number of nodes in FuseTree > 1 then

/* Match and return FuseTree */

Function fuseElementwise(stmt):
if isElem(fetchFuncName(stmt)) then

if size(DUChain(stmt)) == 1 then
rtn = [stmt]; setVisited(stmt);
foreach def in UDChain(stmt) do

rtn.append(fuseElementwise(def));

return rtn;

return ∅;

Fusing Elementwise Functions (FE). An elementwise
function contains an implicit loop and no data dependency
inside the loop. Therefore, elementwise functions are usually
implemented with a parallel loop. It is ideal if two or more
elementwise functions can be fused into a single loop when
generating C code, to save the cost of synchronization be-
tween loops, to reduce loop overhead, and to provide larger
loop bodies to the underlying C compiler optimizer.

We found that this sort of fusion is particularly useful for
logic operations performed on boolean vectors (i.e. boolean
short-circuit expressions). This is common in HorseIR code
generated from the WHERE clause in SQL where predicates
return boolean vectors for boolean operation and/or. Algo. 1
presents the algorithm for collecting those elementwise built-
in function statements that can be fused. By leveraging UD
and DU chains, a statement can trace all of its previous defi-
nitions and decide to fuse them together if the function of
the statement is elementwise and the variable defined by
the statement has only one use. The fusible elementwise
statements are collected into a FuseTree, and then the code
generation strategy will generate one fused loop for all of
those statements, as discussed in Sec. 5.2.

44

HorseIR: Bringing Array Prog. Lang. Together with DatabaseQuery Proc. DLS ’18, November 6, 2018, Boston, MA, USA

Table 1. Fusing with Patterns: Code Examples

Name Code Examples

FP-1 t 0 : ? = @compress (mask , k0) ;
t 1 : ? = @compress (mask , k1) ;

FP-2
t 0 : ? = @each_r ight (@index , k0 , k1) ;
t 1 : ? = @each (@sum, t 0) ;
t 2 : ? = @raze (t 1) ;

FP-3

t 0 : ? = @lt (k0 , k1) ;
t 1 : ? = @compress (t0 , k2) ;
t 2 : ? = @len (k2) ;
t 3 : ? = @vector (t2 , 0 : boo l) ;
t 4 : ? = @index_a (t3 , t1 , 1 : boo l) ;

FP-4

t 0 : ? = @each_r ight (@index , k0 , k1) ;
t 1 : ? = @each (@unique , t 0) ;
t 2 : ? = @each (@len , t 1) ;
t 3 : ? = @raze (t 2) ;

Fusingwith Patterns (FP). Fusing elementwise functions
is beneficial, but there are other optimization opportunities
for common patterns of array operations that occur in the
code generated for the database operators. Therefore, a set
of patterns, identified and adopted for optimizing these situ-
ations, can be found in Table 1. 9 Patterns are designed for
merging statements and guiding our optimizer to generate
efficient C code.

raze

[each, sum/avg]

[each_right, index]

(a) FP-2

index_a

vector

len

compress

lt ?

(b) FP-3

raze

[each, len]

[each, unique]

[each_right, index]

(c) FP-4

Figure 5. Patterns designed for FP-2, FP-3, and FP-4

Algo. 2 presents how a pattern can be matched in a Hor-
seIR program. There are two directions for matching: (1)
Top-to-Bottom needs the information of uses of statements
by looking up DU chains (i.e. FP-1); and (2) Bottom-to-Top re-
quires the information of definitions of statements by search-
ing in UD chains (i.e. FP-2, FP-3, and FP-4), especially Fig. 5
shows that patterns are formed in a tree-based structure for
Bottom-to-Top matchings. Once a pattern is matched, all
matched statements need to be set visited and their informa-
tion is saved for later code generation in Sec. 5.2.

Algorithm 2: Identify patterns for fusion
Data: HorseIR statements, UDChain, and DUChain
foreach stmt in statements do

if stmt is assignment then
if isTopToBottom then /* FP-1 */

UseStmts← DUChain(stmt);
/* match if at least two statements in

UseStmts contain the function compress
and share the same mask */

else /* FP-2, FP-3, and FP-4 */
if fetchFuncName(stmt) == target then

// ’raze’ or ’index_a’

if matchPattern(stmt, pattern) then
/* match! */

Function matchPattern(stmt ,pattern):
value← fetchValue(pattern);
func← fetchFuncName(stmt);
if value == func then

DefStmts← UDChain(stmt);
if size(DefStmts) ̸= size(pattern.child) then

return False;

for i = 0 to size(DefStmts)-1 do
return matchPattern(DefStmts[i],
pattern.child[i]);

if pattern.name == "?" OR pattern.name == func then
return True;

return False;

t0:? = @gt(x, 10); / / x > 10
t1:? = @lt(x, 20); / / x < 20
t2:? = @and(t0, t1); / / t 0 && t 1

#define AND(x , y) (x) && (y)
#define GT (x , y) (x) > (y)
#define LT (x , y) (x) < (y)
for (i = . . .) {

. . . = AND(GT(x [i] , 1 0) , LT (x [i] , 2 0)) ;
}

Figure 6.An example code for fusing elementwise functions:
HorseIR statements (top) and the generated C code (bottom).

5.2 Code Generation
A HorseIR program is compiled to C code. Instead of com-
piling to C code directly, we deploy multiple strategies for
handling the following cases: (1) if a statement marked as vis-
ited is the root of a FuseTree, C code is generated by fusing
statements with in-order traversal, for example, Fig. 6 shows
that we provide a set of macros to assist the code generation
of fused operations that makes the generated code clear; (2)
9The details of built-in functions and code examples can be found at: http:
//www.sable.mcgill.ca/~hanfeng.c/horse/docs/horseir/functions/

45

http://www.sable.mcgill.ca/~hanfeng.c/horse/docs/horseir/functions/
http://www.sable.mcgill.ca/~hanfeng.c/horse/docs/horseir/functions/

DLS ’18, November 6, 2018, Boston, MA, USA H. Chen, J. D’silva, H. Chen, B. Kemme, and L. Hendren

if a statement marked as visited matches a Top-to-Bottom
pattern and it matches the last statement of the pattern, all
statements matched are fused; (3) if a statement marked as
visited matches a Bottom-to-Top pattern and it matches the
root of the pattern, it is translated with a prepared template
to optimized C code; (4) if a statement is only marked as vis-
ited, the statement is skipped (this operation will have been
part of a FuseTree); and (5) if a statement is not marked as
visited, it is translated to an invocation to a library function
which is written in C (this statement was not found to be
fusible with anything).

6 Evaluation
In this section, we present the results of our evaluation an-
alyzing the overall performance of our approach, compar-
ing against the performance of a state-of-the-art columnar
RDBMS, MonetDB. Since MonetDB stores the columns of
a table in consecutive space, its internal structure is con-
siderably similar to an array. Furthermore, we provide a
detailed analysis of the impact of the compiler optimizations
deployed.

6.1 Methodology

Experimental Setup The experiments are conducted on
a multi-socket multi-core server equipped with 4 Intel Xeon
E7-4850 2.00GHz (total 40 cores with 80 threads) and 128
GB RAM running Ubuntu 16.04.2 LTS. We use GCC v7.2.0
to compile C code with the optimization options -O3 and
-march=native; andMonetDB version v11.27.9. The response
time is measured only for the core computation, and does not
include the overhead for parsing SQL, plan generation, and
serialization for sending the results to the client. We only
consider execution time once data resides in main memory.
We guarantee this for all systems by running each test 15
times but only measure the average execution time over the
last 10 times. After the first 5 runs, response times stabilizes
showing that all data has been brought from disk to main
memory by then. Scripts and data used in our experiments
can be found in our GitHub repository. 10

TPC-H SQL Benchmark Our tests use TPC-H [32], a
widely used SQL benchmark suite for analytical data process-
ing. TPC-H mimics a Business to Consumer (B2C) database
application. It has 8 tables. The data is synthetically created
and can vary in size. A scale factor (SF) of 1 corresponds
to a database size of approximately 1 GB, with higher scale
factors proportionately increasing the size of the database.
The benchmark contains a suite of 22 SQL queries from sim-
ple to complex. Due to the limitations of our translator in
terms of joins and the naive implementation of string match-
ing for SQL like operation, we can handle so far of these
queries (1, 4, 6, 12, 14, 16, 19, 22) and present results from

10https://github.com/Sable/dls18-analysis

them. Profiling data on the right side of Table 2 shows that
these queries cover a variety of performance impacting di-
mensions such as the number of joins, condition predicates,
and aggregations. For each of the queries, we took the exe-
cution plan generated by HyPer and translated it to HorseIR
as outlined in Sec. 4, followed by compiler optimizations and
code generation indicated in Sec. 5.

6.2 Experimental Results
6.2.1 Overall Analysis
In a first experiment, we want to analyze the overall feasibil-
ity of our approach by analyzing the performance for scale
factor SF1. We compare the performance of HorseIR with-
out the compiler optimizations enabled (HorseIR-Nonopt),
with compiler optimizations enabled (HorseIR-Opt) and with
MonetDB. It should be noted that the time to pre-compute
the enumeration data structures in HorseIR that represent
the primary/foreign key relationship between the tables is
not included in the execution time as the same structure can
be used for many queries. Unfortunately, MonetDB does not
provide its optimized execution plans in a readable format.
A query is first translated into an unoptimized plan, which
is then optimized and at the same time translated into an
assembly-like language, called MAL, which makes plan anal-
ysis difficult. In particular, we do not know the details of their
join implementations which might not have a pre-computed
index available (as HorseIR does). Furthermore, MonetDB
performs not only DB optimizations but also some compiler
optimizations such as dead code elimination [25], while this
is interweaved with code generation and not done at such a
systematic level as in HorseIR. Thus, one has to be careful
to draw detailed conclusions from the experiment. Instead,
this experiment is intended to provide a first insight into
performance.

Fig. 7 presents the execution times for the three approaches
with increasing number of threads (from 1 to 64) for 8 of
the queries. Overall, the execution times for MonetDB and
HorseIR have, at large, the same order of magnitude. Given
that MonetDB is a mature and considerably optimized data-
base engine while HorseIR is still in a prototype status, these
results are very promising showing that the use of array
programming techniques for database query evaluation is
worth investigating. In fact, for 6 of the 8 queries, HorseIR-
Opt has actually lower response times than MonetDB, in one
case (q16), it is slower, and in one case, both are close (q1). In
contrast, HorseIR-Nonopt has the worst performance for 5
queries, lies in between HorseIR-Opt and MonetDB for two
queries and is as good as HorseIR-Opt for one query (q22).
This shows that the compiler optimizations are an important
contribution to make an array-based implementation inter-
esting. We discuss the impact of individual optimizations in
a later experiment.

46

HorseIR: Bringing Array Prog. Lang. Together with DatabaseQuery Proc. DLS ’18, November 6, 2018, Boston, MA, USA

T1 T2 T4 T8 T16 T32 T64

0
5

0
0

1
0

0
0

1
5

0
0

q1

(m
s
)

HorseIR−Nonopt

HorseIR−Opt

MonetDB

T1 T2 T4 T8 T16 T32 T64

0
5

0
1

0
0

1
5

0

q4

(m
s
)

HorseIR−Nonopt

HorseIR−Opt

MonetDB

T1 T2 T4 T8 T16 T32 T64

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

q6

(m
s
)

HorseIR−Nonopt

HorseIR−Opt

MonetDB

T1 T2 T4 T8 T16 T32 T64

0
5

0
1

0
0

1
5

0

q12

(m
s
)

HorseIR−Nonopt

HorseIR−Opt

MonetDB

T1 T2 T4 T8 T16 T32 T64

0
2

0
4

0
6

0
8

0
1

0
0

q14

(m
s
)

HorseIR−Nonopt

HorseIR−Opt

MonetDB

T1 T2 T4 T8 T16 T32 T64

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

q16
(m

s
)

HorseIR−Nonopt

HorseIR−Opt

MonetDB

T1 T2 T4 T8 T16 T32 T64

0
2

0
0

4
0

0
6

0
0

8
0

0

q19

(m
s
)

HorseIR−Nonopt

HorseIR−Opt

MonetDB

T1 T2 T4 T8 T16 T32 T64

0
2

0
4

0
6

0
8

0
1

2
0

q22

(m
s
)

HorseIR−Nonopt

HorseIR−Opt

MonetDB

Figure 7. Performance comparison between HorseIR and MonetDB on SF1 with different number of threads, from 1 to 64.

In terms of parallelism, when the number of threads is in-
creased, performance first improves but then remains stable
or decreases. The improvement is most significant for Mon-
etDB while HorseIR-Opt has already quite low execution
times with few threads and then cannot improve as much
with further parallelism. We assume the reason is the need
to synchronize between threads.
An interesting case is q16 where HorseIR-Nonopt per-

forms very bad with a large number of threads. The problem
is the special shape of the input data for the function each,
which is a long list with a short vector in each of its cells
(e.g. 18314 cells with the average length of 6.5 vectors in
SF1). Therefore, a cell-by-cell strategy is inefficient when the
data in the cell is small. HorseIR-Opt fuses these statements
(patter FP-4), avoiding this issue.

SF1 SF2 SF4 SF8 SF16

0
2
0
0

6
0
0

1
0
0
0

(G
e
o
m

e
tr

ic
 M

e
a
n
 T

im
e
:
m

s
)

HorseIR
MonetDB

Figure 8. Geometric mean execution time for HorseIR and
MonetDB with 16 threads (T16) across five different SFs.

As a second experiment, Fig. 8 shows the geometric mean
over all queries for the optimized HorseIR andMonetDBwith
increasing scale factors when using 16 threads (which has the
best performance for most queries). The behaviours of the

two systems are very similar, showing excellent performance
with a sublinear increase in execution times when data sizes
increase. HorseIR performance overall better than MonetDB.
This shows that our approach can easily handle larger data
sizes without any further tuning.

6.2.2 Effect of Optimizations on HorseIR

Table 2. Query details left: number of optimization fusing el-
ementwise functions (FE) and fusing with patterns (FP); right:
number of joins, condition predicates, and aggregations.

Query FE FP-1 FP-2 FP-3 FP-4 Joins Pred. Aggr.
q1 2 1 2 0 0 0 1 8
q4 1 0 0 1 0 1 5 1
q6 1 1 0 0 0 0 4 0
q12 3 0 1 0 0 1 5 2
q14 4 1 0 0 0 1 3 1
q16 1 1 0 0 1 2 6 1
q19 6 2 0 0 0 2 21 1
q22 2 1 0 0 0 2 6 2

In order to study the effect of the different compiler opti-
mizations, we tested queries compiled using HorseIR with
four different optimization options: (1) No optimization; (2)
Fusing elementwise functions only (FE-only); (3) Fusing with
patterns only (FP-only); and (4) All optimizations (All-opt).
The left side of Table 2 shows for each of the queries how
often the different optimizations occur. To evaluate the im-
pact of these optimizations under non-parallel and parallel
environments we tested with 1 and with 16 threads.

Table 3 shows the speedup in execution time for the differ-
ent optimized configurations compared to running with no

47

DLS ’18, November 6, 2018, Boston, MA, USA H. Chen, J. D’silva, H. Chen, B. Kemme, and L. Hendren

Table 3. Performance speedups on SF1 obtained by various
HorseIR optimizations for different queries.

FE-only FP-only All-opt
Query 1 th. 16 th. 1 th. 16 th. 1 th. 16 th.
q1 1.10 1.05 2.25 2.08 2.83 2.09
q4 1.05 1.22 2.27 5.83 2.5 6.27
q6 3.19 1.58 1.09 1.35 4.22 2.30
q12 1.73 1.39 1.01 1.05 1.74 1.37
q14 1.22 1.11 1.43 1.50 1.91 1.80
q16 0.95 0.98 1.31 7.69 1.23 7.56
q19 1.47 0.97 1.31 1.65 2.28 1.86
q22 1.02 0.99 1.02 1.01 1.03 1.00
Geo. Mean 1.35 1.14 1.39 2.06 2.03 2.39

optimization enabled. A first observation is that the impact
of these optimizations varies quite a bit among the different
queries. For instance, for q1, FP has much more impact than
FE, while the opposite is true for q6. Even though q6 has only
one fusion for elementwise functions, it is the longest fu-
sion chain, which fuses 9 statements. Some queries, however,
barely benefit from any optimization, such as q22. Comput-
ing the geometric mean over all the queries, the speedup
is around 2 for 1 thread, and 2.39 for 16 queries, which is
considerable, meaning the queries run, on an average, in
half the time with all optimizations enabled. For FE only, the
number of threads has no impact on scale-up, while it does
play a role for FP.

7 Related Work
Several approaches in the past have looked at exploiting
compiler optimization techniques. A formal method for con-
structing a query compiler in Scala is introduced in [30].
This method emphasizes the use of multiple IRs to translate
from SQL to C code so that optimization opportunities can
be exposed on the different layers of IRs. HorseIR, on the
other hand, uses a single IR.

HyPer aims in improving the query performance by com-
piling SQL to LLVM exploiting LLVM’s compiler optimiza-
tion mechanisms [26]. DBToaster targets high-performance
delta processing in data streams by compiling SQL to C++
code [2]. These systems rely on a compiler for optimizing
generated code, LLVM or C++. While these compilers are
good at optimizing procedural code, they know little about
what a query does at a conceptual high-level. HorseIR is able
to optimize queries with a relatively high-level view by rep-
resenting queries as arrays-based programs with less code
but with more information about the queries themselves that
it then exploits for compiler optimizations.

SciQL [35] provides array-based extensions to SQL. They
use the array-based design to improve the performance of
SQL queries and offer the possibility of mixing SQL queries

and array programming. Compared to HorseIR, SciQL sup-
ports more general arrays targeted for scientific computing,
while HorseIR keeps vector and list as primary data struc-
tures for efficient core SQL support.
HorseIR relies on many optimizations specifically devel-

oped for array programming languages to generate efficient
parallel code, such as loop fusion known from array-based
APL [10] and FORTRAN 90 [20]. However, focusing on code
that represents SQL queries, these optimizations had to be
adapted to the specific HorseIR context which goes well
beyond a pure array programming language.
KDB+/Q [23], which was adopted in financial domains,

attempts at fusing SQL and programming languages. Its data-
base system was implemented in the array programming
language Q, which is an interpreter-based language. It pro-
vides an SQL interface as a form of a wrapper on top of
the language Q. The system internally maintains a database
system, while seamlessly supporting an array programming
language. However, with an interpreter-based design, its per-
formance heavily relies on hand optimizations rather than
systemic compiler optimizations.

8 Conclusion
In this paper, we discussed how the similarities betweenmod-
ern in-memory databases and array programming languages
provide an opportunity for optimizing database query exe-
cution by leveraging compiler optimization techniques used
in array programming languages.

We proposed HorseIR, an array-based intermediate repre-
sentation that can be used to represent the SQL execution
plans of an RDBMS. HorseIR code is generated automatically
by a translator that takes as input the optimized SQL exe-
cution plan of an RDBMS (in our case HyPer). A variety of
compiler optimization techniques are applied by the HorseIR
compiler to generate efficient C code. Performance results
using the SQL TPC-H Benchmark testify that our imple-
mentation of HorseIR is on par with current state-of-the-art
column-based RDBMS, and show that applying compiler op-
timization techniques over RDBMS execution plans provides
substantial performance benefits. Further, the results also
demonstrate that the multi-threading capability of HorseIR is
on par with MonetDB when it comes to scalability to process
large data sets.
For our future work, we are planning to explore new op-

timizations for array-based primitive functions integrating
with database heuristics, in order to enable HorseIR prim-
itives to make the right algorithmic choice based on the
characteristics of the inputs, and the context in which the
primitive is being used. Furthermore, we also plan to explore
the possibility of performing JIT compilation of HorseIR with
support for both CPUs and GPUs.

48

HorseIR: Bringing Array Prog. Lang. Together with DatabaseQuery Proc. DLS ’18, November 6, 2018, Boston, MA, USA

References
[1] Daniel J Abadi, Samuel R Madden, and Nabil Hachem. 2008. Column-

Stores vs. Row-Stores: How Different Are They Really?. In Special
Interest Group on Management of Data (SIGMOD). ACM, 967–980.

[2] Yanif Ahmad and Christoph Koch. 2009. DBToaster: A SQL Compiler
for High-Performance Delta Processing in Main-Memory Databases.
The Proceedings of the VLDB Endowment (PVLDB) 2 (2009), 1566–1569.

[3] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and David A Wood.
1999. DBMSs On A Modern Processor: Where Does Time Go?. In
Conference on Very Large Data Bases (VLDB). 266–277.

[4] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100:
Hyper-Pipelining Query Execution. In Conference on Innovative Data
Systems Research (CIDR). 225–237.

[5] Qiang Cao, Pedro Trancoso, J-L Larriba-Pey, Josep Torrellas, Robert
Knighten, and Youjip Won. 1999. Detailed Characterization of a Quad
Pentium Pro Server Running TPC-D. In International Conference on
Computer Design (ICCD). IEEE, 108–115.

[6] Stefano Ceri and Georg Gottlob. 1985. Translating SQL into Relational
Algebra: Optimization, Semantics, and Equivalence of SQL Queries.
Transactions on Software Engineering 4 (1985), 324–345.

[7] Donald D Chamberlin and Raymond F Boyce. 1974. SEQUEL: A Struc-
tured English Query Language. In Proc. ACM SIGFIDET (now SIGMOD)
Workshop on Data Description, Access and Control. ACM, 249–264.

[8] Hanfeng Chen and Wai-Mee Ching. 2013. ELI: A Simple System for
Array Programming. Vector, the Journal of the British APL Association
26, 1 (2013), 94–103.

[9] Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie J. Hendren.
2016. Automatic Vectorization forMATLAB. InWorkshop on Languages
and Compilers for Parallel Computing (LCPC). 171–187.

[10] Wai-Mee Ching and Da Zheng. 2012. Automatic Parallelization of
Array-oriented Programs for a Multi-core Machine. International
Journal of Parallel Programming 40, 5 (2012), 514–531.

[11] Edgar F Codd. 1970. A Relational Model of Data for Large Shared Data
Banks. Commun. ACM 13, 6 (1970), 377–387.

[12] Vincent Foley-Bourgon and Laurie J. Hendren. 2016. Efficiently Imple-
menting the Copy Semantics of MATLAB’s Arrays in JavaScript. In
Dynamic Languages Symposium (DLS). 72–83.

[13] Stavros Harizopoulos, Daniel J Abadi, Samuel Madden, and Michael
Stonebraker. 2008. OLTP through the Looking Glass, and What We
Found There. In Special Interest Group on Management of Data (SIG-
MOD). ACM, 981–992.

[14] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd
Mullender, and Martin Kersten. 2012. MonetDB: Two Decades of
Research in Column-oriented Database Architectures. IEEE Data Eng.
Bull. 35, 1 (2012), 40–45.

[15] Yannis E Ioannidis. 1996. Query Optimization. Comput. Surveys 28, 1
(1996), 121–123.

[16] ISO/IEC 9075-1:2016 2016. Information technology – Database lan-
guages – SQL – Part 1: Framework (SQL/Framework). Standard. Inter-
national Organization for Standardization.

[17] Matthias Jarke and Jurgen Koch. 1984. Query Optimization in Database
Systems. Comput. Surveys 16, 2 (1984), 111–152.

[18] Michael A. Jenkins. 1989. Q’Nial; A Portable Interpreter for the Nested
Interactive Array Language, Nial. Software: Practice and Experience 19,

2 (1989), 111–126.
[19] Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid

OLTP&OLAP Main Memory Database System Based on Virtual Mem-
ory Snapshots. In International Conference on Data Engineering (ICDE).
195–206.

[20] Ken Kennedy. 2001. Fast Greedy Weighted Fusion. International
Journal of Parallel Programming 29, 5 (2001), 463–491.

[21] Christoph Koch. 2014. Abstraction Without Regret in Database Sys-
tems Building: a Manifesto. IEEE Data Eng. Bull. 37, 1 (2014), 70–79.

[22] Vineet Kumar and Laurie J. Hendren. 2014. MIX10: compiling MAT-
LAB to X10 for high performance. In Conference on Object-oriented
Programming, Systems, and Applications. 617–636.

[23] kx. 2018. KDB+/Q Database System. Retrieved June 2018 from
https://kx.com/

[24] Vijay Menon and Keshav Pingali. 1999. A Case for Source-level Trans-
formations in MATLAB. In Conference on Domain-specific Languages
(DSL). ACM, 53–65.

[25] MonetDB. 2018. MonetDB Optimizer Pipelines. Retrieved June
2018 from https://www.monetdb.org/Documentation/Cookbooks/
SQLrecipes/OptimizerPipelines

[26] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans
for Modern Hardware. The Proceedings of the VLDB Endowment
(PVLDB) 4, 9 (2011), 539–550.

[27] Sriram Padmanabhan, Timothy Malkemus, Anant Jhingran, and
Ramesh Agarwal. 2001. Block Oriented Processing of Relational Data-
base Operations in Modern Computer Architectures. In International
Conference on Data Engineering (ICDE). IEEE, 567–574.

[28] David Lorge Parnas. 1972. On the Criteria to Be Used in Decomposing
Systems into Modules. Commun. ACM 15, 12 (1972), 1053–1058.

[29] Mark Raasveldt and Hannes Mühleisen. 2016. Vectorized UDFs in
Column-Stores. In Proceedings of the 28th International Conference on
Scientific and Statistical Database Management, SSDBM 2016, Budapest,
Hungary, July 18-20, 2016. 16:1–16:12.

[30] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mo-
hammad Dashti, and Christoph Koch. 2016. How to Architect a Query
Compiler. In Special Interest Group on Management of Data (SIGMOD).
1907–1922.

[31] John Miles Smith and Philip Yen-Tang Chang. 1975. Optimizing the
Performance of a Relational Algebra Database Interface. Commun.
ACM 18, 10 (1975), 568–579.

[32] Transaction Processing Performance Council. 2017. TPC Benchmark
H.

[33] Patrick Valduriez. 1987. Join Indices. ACM Transactions on Database
Systems (TODS) 12, 2 (1987), 218–246.

[34] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui
Zhang. 2015. In-Memory Big Data Management and Processing: A
Survey. IEEE Trans. on Knowl. and Data Eng. 27, 7 (2015), 1920–1948.

[35] Ying Zhang, Martin L. Kersten, and Stefan Manegold. 2013. SciQL:
Array Data Processing Inside an RDBMS. In Special Interest Group on
Management of Data (SIGMOD). 1049–1052.

[36] Jingren Zhou and Kenneth A Ross. 2004. Buffering Databse Operations
for Enhanced Instruction Cache Performance. In Special Interest Group
on Management of Data (SIGMOD). 191–202.

49

https://kx.com/
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/OptimizerPipelines
https://www.monetdb.org/Documentation/Cookbooks/SQLrecipes/OptimizerPipelines

	Abstract
	1 Introduction
	2 Background
	2.1 Database Query Processing
	2.2 Compilers Meet Databases
	2.3 Array Programming Overview

	3 HorseIR: Design and Implementation
	3.1 HorseIR: Language Design
	3.2 HorseIR: Language Implementation

	4 HorseIR Generation
	4.1 Starting from Optimized Execution Plans
	4.2 Mapping Relational Algebra to HorseIR
	4.3 Overall Code Generation Strategy

	5 Optimizations and Code Generation
	5.1 Loop Fusion Based Optimizations
	5.2 Code Generation

	6 Evaluation
	6.1 Methodology
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	References

