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Abstract

Array-based programming languages have shown signifi-

cant promise for improving performance of column-based in-

memory database systems, allowing elegant representation

of query execution plans that are also amenable to standard

compiler optimization techniques. Use of loop fusion, how-

ever, is not straightforward, due to the complexity of built-in

functions for implementing complex database operators. In

this work, we apply a compiler approach to optimize SQL

query execution plans that are expressed in an array-based

intermediate representation. We analyze this code to deter-

mine shape properties of the data being processed, and use a

subsequent optimization phase to fuse multiple database op-

erators into single, compound operations, reducing the need

for separate computation and storage of intermediate values.

Experimental results on a range of TPC-H queries show that

our fusion technique is effective in generating efficient code,

improving query time over a baseline system.

CCS Concepts · Software and its engineering→Com-

pilers; · Information systems → Database query pro-

cessing.

Keywords IR,Compiler optimizations,Arrayprogramming,

SQL database queries, Loop fusion
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1 Introduction

While database systemshave traditionally stored relational ta-

bles on a per-row basis, recent developments have shown that

a column-store format can outperform traditional RDBMS for

many workloads, particularly when the data fits into main

memory. One of the first research prototypes of a column-

based database manage systems (DBMS) was MonetDB [8],

still an active research project, but many commercial systems

now also support column-based storage (e.g. Microsoft SQL

Server [17], SAP HANA [5], and HyPer [18]). This fundamen-

tal shift in database architecture has resulted in a large body

of research efforts within the database community looking

into efficient SQL query execution on such a data format.

Given that in a column store each columnof a table is stored

as an array, array programming languages appear as a promis-

ing construct to implement query execution. In fact, Chen et

al. [1] introduced an intermediate representation (IR),HorseIR,

providing efficient database operators. At the same time, it

is a general-purpose high-level language, and can therefore

serve not only as an effective representation for SQL, but also

other higher-level operators and array-based languages such

as MATLAB. Thus, compared to existing query compilers

that translate from relational algebra to optimized code (e.g.

Hyper [18]), it is much more general and extensible.

SQL queries are first transformed into execution plans us-

ing standard database optimization techniques that consider

the order and algorithms to execute database operators such

as joins, selections and aggregations depending on the data to

be analyzed. Once translated into HorseIR, the resulting code

can be optimized and compiled into multi-platform C code.

The approach used in HorseIR, however, does not take full

advantage of the optimization techniques available. Instead,

it is restricted to basic fusion of element-wise operators, and

although it explores some high-level pattern-based optimiza-

tions, these require considerable knowledge of database oper-

ators. The optimization potential is also reduced by extensive

use of complex built-in functions.

For example, it is common for SQL queries to do a selection

(selecting some rows based on the filter criteria on one col-

umn) and then perform aggregation, such as a summation. In

an array-based language this can be represented as
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R = sum(filter(C, A))

where the condition C is a boolean vector, the input array A is

a vector with the same number of elements, and the result R is

a scalar. A straightforwardway to generateC code from this is

to generate two loops, the first applying the boolean selection

and producing an intermediate result, and the second loop

performing the reduction on this intermediate result. A more

optimized version, however, would fuse the two loops into

one, performing the reduction on the fly and avoiding the

generation of an intermediate result:

R=0; for(i=0; i<C.size; i++){ if(C[i]){ R += A[i]; }}

The analysis required to generate such code from a series of

built-in functions, however, is complex, depending on non-

trivial array dependency analysis as well as knowledge of

array dimensions, and while possible in principle, our expe-

rience has been that these optimization opportunities are not

found by available C compilers.

Pattern-based
Fusion

Element-wise
Fusion

Automatic Fusion

(x0, x1, ..., xn)

(y0, y1, ..., yn)

Figure 1.Automatic operator fusion for SQL queries includes

element-wise fusion and a small set of patterns.

In this paper we provide a systematic approach to analyze

the SQL query programs and generate optimized code. As

shown in Fig. 1, automatic fusion is a blend of smart element-

wise fusion and a limited set of patterns for cases that cannot

behandled.More specifically,weprovideadetailed analysis of

the most important built-in functions used for executing SQL

operators and explain how to optimize across such functions.

Our approach is based on a shape analysis, which describes

the layout and size of variables as functions are applied. This

allows us to fuse loops extensively, and avoid unnecessary

iterations over the data and intermediate results.

The contributions of this paper are summarized as follows:

• We explore a new approach to improve database query

performancebyapplying techniquesderived fromarray

programming. We focus on HorseIR, an IR specifically

designed to support database query execution.

• We perform shape analysis on the built-in functions of

HorseIR that represent database operators. This allows

us to collect precise shape information and provide a

conformability analysis to identify fusible sections.

• We present a set of optimization and code generation

strategies to automatically generate optimized code.

• We conduct experiments on the database benchmark

TPC-H, to show the effectiveness of our technique.

2 Motivation and Background

In this section, we first present the principles of loop fusion

techniques for array-based optimization, and then provide

background on HorseIR and its optimization capabilities.

2.1 Loop Fusion

Loop fusion is an effective performance optimization tech-

nique as loops usually dominate the execution. In array-based

languages, loop fusion is applied during the code generation

phase, when array-based functions are translated into loops

of the target language such as C. The goal of loop fusion is to

minimize thenumberof loops in the target program.There are

two kinds of loop fusion: (1) Fusion for removing intermediate

results, and (2) Fusion when sharing the same loop head.

Ideally, a smart compiler can optimize loops in steps: (I) re-

solve the data dependency between variables inside loops; (II)

identify the use of temporary, intermediate result arrays; and

(III) fuse the for loops and avoid the intermediate result arrays

whenever possible. However, automatic loop fusion is chal-

lenging for compilers [10, 11]. Instead, we believe it is much

easier if the potential of loop fusion is already performed

looking at the high-level language (i.e., in the array-based

program) due to the higher level of abstraction.

2.2 HorseIR: AnArray-based IR for SQL Queries

HorseIR [1] was designed to represent execution plans for

SQL queries where data is represented in column-format and

assumed to reside in main memory. HorseIR represents the

columns of the database tables as vectors, and uses lists for

compound data. It provides dozens of data types to accommo-

date themanydata types found indatabase systems.Moreover,

it supports a large set of array-based built-in functions that

represent the arithmetic and database-related operators that

are commonly used in SQL queries.

Fig. 2 shows a motivating example of queries executing

with HorseIR framework. Fig. 2a shows a SQL query on the

database table store_items. TheWHERE clause represents

a selection filtering only those records of the table that fulfill

certain conditions on the item_date column. The SELECT

clause projects on columns item_price and item_discount,

performing an element-wise arithmetic function (multiplica-

tion) and then aggregation over the result.

Such a query is first translated into a query execution plan.

Chen et al. [1] use the advanced query optimizer of the HyPer

database system[18] to generatehigh-performance execution

plans. Then, the execution plan is translated into HorseIR us-

ing both standard array language and database-specific built-

in functions. By not directly translating queries into HorseIR

but instead translating the optimized execution plans, the

approach leverages the extensive SQL-specific query opti-

mization experience of the database community.

Fig. 2b shows the resulting HorseIR programwithout op-

timization and many intermediate results. From there, Chen
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1 SELECT

2 SUM( i t em_p r i c e ∗

i t em_d i s c oun t ) AS sav ing

3 FROM

4 s t o r e _ i t em s

5 WHERE

6 i t em_da te >= 2 0 1 0 . 0 9 . 0 1 AND

7 i t em_da te < = 2 0 1 0 . 0 9 . 3 0 ;

(a)An SQL query example

/ / . . . l o a d co lumns from t a b l e

( S0 ) t 0 : boo l = @geq ( c0 , 2 0 1 0 - 09 - 0 1 : d a t e ) ;

( S1 ) t 1 : boo l = @leq ( c0 , 2 0 1 0 - 09 - 3 0 : d a t e ) ;

( S2 ) t 2 : boo l = @and ( t0 , t 1 ) ;

( S3 ) t 3 : f 6 4 = @compress ( t2 , c1 ) ;

( S4 ) t 4 : f 6 4 = @compress ( t2 , c2 ) ;

( S5 ) t 5 : f 6 4 = @mul ( t3 , t 4 ) ;

( S6 ) t 6 : f 6 4 = @sum( t 5 ) ;

/ / . . . r e t u r n r e s u l t a s a t a b l e

(b) Core part of HorseIR code for (a)

1 / / . . . l o a d co lumns c0 , c1 , c 2

2 t 6 = 0 ;

3 f o r ( i n t i = 0 ; i <n ; i ++) {

4 i f ( c0 [ i ] >= 20100901

5 && c0 [ i ] <= 20100930 ) {

6 t 6 += c1 [ i ] ∗ c2 [ i ] ;

7 }

8 }

9 / / . . . r e t u r n t6 , a s c a l a r

(c)Optimized C Code generated from (b)

Figure 2. Translating an SQL query from (a) to the corresponding HorseIR code shown in (b) (with columns: c0 (item_date), c1

(item_price), and c2 (item_discount)), and generating optimized C code in (c).

et al. [1] propose optimizations based on element-wise fu-

sion and fusion with patterns. For example, statements (S0)

and (S1) in the HorseIR program are easily fused into one

statement, as @gt and @lt are element-wise functions. Since

there is a large set of such functions, this approach has shown

to be very beneficial. Moreover, generating parallel code for

element-wise functions is easy as they are dependence-free.

However, once functions are more complex, such as the

@compress functions of statements (S3) and (S4) in the exam-

ple, fusion is no longer straightforward, as these high-level

built-in functions contain data-dependent loops implicitly.

Thus, fusion across such functions is not supported by [1]

which instead generates separate loops for them. This can

become a severe performance bottleneck, especially when

the intermediate results are barely reused.

The boolean selection function @compress is common in

SQL queries because of theWHERE clause. In the example, t2

is a boolean vector indicating the indices of records that fulfill

the filtering condition. In (S3) and (S4) @compress retrieves

the corresponding element values of the item_price and

item_discount columns. However, the intermediate results

of t3 and t4 can be avoided because the retrieval can be fused

with the subsequent arithmetic and aggregation functions.

In fact, for the given example, it is possible to fuse the en-

tire program as shown in Fig. 2 (c). In this paper, we describe

automatic and systematic fusion across built-in functions can

be using a principled shape and conformability analysis.

Importantly, note thatChenet al. [1], in addition to element-

wise fusion, also support fusion based on pattern rules, such

as tree-based patterns.However, using patterns is challenging

as it requires the expertise of SQL execution plans. Further-

more, there exist many different types of queries, and thus

potentially many different patterns. It is not clear, whether

the patterns presented in [1] are exhaustive.

3 Overall Structure of the Optimizer

We have implemented our approach for generating fused and

efficient C code in the HorseIR compiler. An overview of the

workflow can be found in Fig. 3.

Just as in [1], we first generate an optimized query execu-

tion plan using the HyPer database system [18] 1 from the

input query, and translate this plan into HorseIR.

Next, local data-flow analysis processes the intermediate

program and computes the shape information at each expres-

sion. Shapes are propagated according to rules defined for

eachbuilt-in function.Using thegenerated shape information,

we then employ conformability analysis to identify fusible

sections of code on a data-dependence graph.

Lastly, we optimize the set of fused sections using pre-

defined patterns and generate target C code. Patterns ex-

ploit additional optimizationopportunities that are frequently

present in SQL queries.

Get Plans
from Database

Fuse Statements
with Fusion

Nodes
Shape Analysis

Generate Code
with Patterns

SQL
Queries

Optimized
C Code

Build Data
Dependence

Graph
Conformability

Analysis

Translate Plans
to HorseIR

Figure 3.Analysis and code generation overview.

4 Shape Analysis

Shape information is key to identify fusible sections of built-

in functions. In this section we: (1) introduce our shape ab-

straction; (2) categorize built-in functions in groups by shape

behaviour; and (3) describe propagation rules for each group.

4.1 Shape Abstraction

Shapes describe the in-memory layout of data. HorseIR has

two important shapes used in queries: vectors and lists.

1We can access HyPer’s plan generator online, but HyPer’s execution engine

is no longer publicly available. See http://hyper-db.de/interface.html
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4.1.1 Vector

A vector shape describes a fixed-length one-dimensional ar-

ray of homogeneous data. It is therefore characterized based

on the number of elements as shown in Table 1.

Table 1.Definitions of vector shapes.

Shape Description

V(1) Vector of constant size 1 (i.e. scalar)

V(c) Vector of constant size cwhere c ̸= 1

V(d) Vector of unknown static size (unique ID d)

Vs (a) Vector from boolean selection a

The number of elements may either be a compile-time con-

stant, or a dynamic value only known at runtime. We include

a separate shape for scalar data as some built-in functions

exhibit specialized behaviour depending on the exact size.

Dynamic vector shapes describe objects that depend on

runtime properties. Our system assigns a unique ID to such

vectors, so two vectors with the same ID have the same shape.

Aspecializeddynamic shape,Vs (a), describes theoutput result

of the boolean selection function@compresswith the boolean

mask a. The code generator uses this boolean selection shape

for further fusion and avoids storing intermediate results.

4.1.2 List

A list shape is composite, storing heterogeneous data in an
ordered group of cells. Each cell has its own shape, either a
vector or a nested list.

list_shape ::= { cell_shape };

cell_shape ::= list_shape | vector_shape;

Wedenote a list shape as list<L0,L1,...,Ln−1>, whereLi is the

shape of cell i for n cells. Note that for SQL queries, list cells

are always vectors, as they typically represent collections of

columns or row indices.

4.2 Built-in Function in Groups

Built-in functions are categorized based on their predefined
shape behaviours. This simplifies later analyses which de-
pend on the shape behaviour and not the exact operation.
For example, element-wise binary functions @plus and @mul
share identical structure and may therefore share a single set
of shape propagation rules.

a:i32 = @plus(A, B);

b:i32 = @mul(A, B);

HorseIR built-in functions can be categorized into the follow-

ing groups based on shape behaviour:

Element-wise (E) : unary and binary functions, includ-

ing arithmetic, boolean, and math. They are frequently

used to represent the operators found in theWHERE

clause (selection) and the SELECT clause (projection);

Reduction (R) : reduction functions @sum, @avg, @min,

and @max. Aggregation functions of SQL;

Scan (S) : boolean selection functions @compress. After

the selection, they retrieve the relevant elements for

the projection;

Indexing (X) : indexing function @index;

Special Boolean (B) : functions that return a boolean

vectorwithout implicit data dependency, such as @like

and @member;

Each (H) : list functions @each, @each_left,

@each_right, @each_item, and @raze. They are often

needed in SQL statements with a GROUP BY;

Others (O) : all other functions.

Groups can be extended as needed with additional built-in

functions as the language and libraries evolve. Each group

is also associated with an abbreviation that is used in the

following sections.

4.3 Shape Propagation Rules

Shape propagation rules are defined for each group of vector

functions, list functions @each*, and other functions.

4.3.1 Vectors

For vector functions, the return shape can be: (1) a parameter

shape; (2) anewvector shape; (3) anerroroccursdue toa shape

mismatch. For case 2, we introduce notation, I , that generates

a new dynamic shape. While the new shape may be identical

to other shapes at runtime, our static analysis is conservative.

Binary element-wise functions. Binary element-wise

functions take two vectors as input, perform an element-wise

operation and produce a new vector. If either operand is a

scalar, the single value is broadcast. Table 2 presents the shape

propagation rules for binary element-wise functions.

Statically known vector lengths provide exact shape prop-

agation rules and can throw errors at compile time. If one or

more argument is a dynamically known shape, then the result-

ing shape is also dynamic. If both arguments have the same

unique ID or boolean mask, then the argument shape is prop-

agated. In all other cases, a new unique shape is generated.

Table 2. Rules for binary element-wise Functions (E)

FB (x,y) x

y V(1) V(c0) V(d0) Vs (a0)

V(1) V(1) V(c0) V(d0) Vs (a0)

V(c1) V(c1) V(c0)
1

I I

V(d1) V(d1) I V(d0)
2

I

Vs (a1) Vs (a1) I I Vs (a0)
3

1: if c0==c1 otherwise error
2: if d0==d1 otherwise I
3: if a0==a1 otherwise I

Unary element-wise functions. Unary element-wise

functions take a single vector as input and produce a new

output vector of the same size. Dataflow rules for shape are

the identity in this case.
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Reduction functions. Reduction functions take a vector

as input and compute a scalar output value. In all cases this

thus produces aV (1) shape.

Table 3. Rules for the scan function (S)

FS (x,y) x

y V(1) V(c0) V(d0) Vs (a0)

V(1) I error I I

V(c1) error I
1

I I

V(d1) I I Vs (x)
2

I

Vs (a1) I I I Vs (x)
1: if c0==c1 otherwise error
2: if d0==d1 otherwise I

Scan function. The boolean selection function @compress

takes two vectors of equal length: a boolean mask vector, and

a values vector. The output vector contains only those values

with a corresponding TRUE flag in the mask. Table 3 describes

the full shape ruleswherex is themask andy the values vector.

For constant sized vectors where the length agrees, the

output shape is determined at runtime. If the lengths differ

a compile-time error is thrown. Dynamic length vectors also

generatenewscan shapes parameterizedon thebooleanmask.

As multiple value vectors may be compressed using the same

mask, we internally map each boolean mask to its output

shape. When propagating, this map is first checked before

generating a new unique shape. Fig. 4 shows an example of

two vectors which have the same output scan shape.

/ / b : b oo l , x : i 3 2 , y : i 3 2 ( v e c t o r s o f same l e n g t h )

t 0 : i 3 2 = @compress ( b , x ) ;

t 1 : i 3 2 = @compress ( b , y ) ;

/ / t 0 and t 1 s h a r e t h e same s can shape

Figure 4. Example propagating the scan shape.

Array indexing function. The array indexing function

@index takes two vectors as input (values and indexes) and

performs an indexed read. The output vector therefore con-

tains one element per index, and thus its shape is determined

by the shape of the index vector.

Specialbooleanfunctions. Specialboolean functions take

a data vector as input and return a boolean vector indicating

adherence to a specified property. For example, @like(x, y)

checks if the data values xmatch search string y. Functions

in this group therefore return the shape of the first argument.

4.3.2 Lists

List functions apply a function (@f) on cells individually and

merge the results into a new list. For example, the @each

function is shown in Fig. 5.

Function each applies function @f to each cell in a list.

Each cell shape is therefore transformed by the function to

/ / x : i 3 2 , y : i 3 2 v e c t o r s ; @f f u n c t i o n

t 0 : l i s t < i32 > = @l i s t ( x , y ) ;

t 1 : l i s t < i32 > = @each (@f , t 0 ) ;

/ / t 1 c o n t a i n s c e l l s [@f ( x ) , @f ( y ) ]

Figure 5. Example of a list function.

create a new list. Given input shape list<L0, ... ,Ln−1> the

output shape is thus list<@f(L0),...,@f(Ln−1)>.

Function each_left takes two parameters: a list and a

variable of any type. The function is applied on each cell

of the list and the variable to form a new list with cells

for each pairing. Given input shapes list<L0, ... , Ln−1>

and A, the function produces a new list with shape

list<@f(L0, A),...,@f(Ln−1, A)>.

Function each_right takes two parameters: a vari-

able of any type and a list. The function is applied on

the variable and each cell of the list to form a new list

with cells for each pairing. Given input shapes A and

list<L0, ... ,Ln−1>, the function produces a new list with

shape list<@f(A, L0),...,@f(A, Ln−1)>.

Function each_item takes two lists of equal length

as input and evaluates the given function on each pair

of cells to form a new list. Given input shapes list<La>

and list<Lb> the function returns a new list of shape

list<@f(La0,Lb0),...,@f(La(n−1),Lb(n−1))>.

Function raze flattens a homogeneous list of vectors into a

single vector, removing cell divisions. For any list, the output

shape is a dynamically sized vector V(d).

4.3.3 Other Functions

For all other functions, a new dynamic shape (either list or

vector depending on the return type) is generated as the

output shape. This is conservative, but correctly prevents

fusing any unknown or non-fusible function. Further

optimization is possible using pre-defined patterns.

5 Conformability Analysis

Conformability analysis determines fusible statements of a

HorseIR program for code generation. Using the output of

shape analysis, we partition the data dependence graph into

fusible sections and the independent statements. Two state-

ments are in the same fusible section if they are conforming.

5.1 Fusible Sections

A fusible section is a subgraph of the program data depen-

dence graph. Let G = (V ,E) represent the data dependence

graphwith statement nodes and dependence edges. Note that

for each statement there is one incoming edge per parameter.

The complete graphG can be divided into two parts: fusible

(ΓF ) and non-fusible (ΓN ) disjoint subgraphs.

67



CC ’20, February 22ś23, 2020, San Diego, CA, USA Hanfeng Chen, Alexander Krolik, Bettina Kemme, Clark Verbrugge, and Laurie Hendren

5.2 Conformability

Two statements are conforming if they may be fused in the

generated code, thereby eliminating intermediate results. As

with the shape analysis, this check is conservative, fusing

statements only if provably correct. Trivially, element-wise

functions operating on the same vector shape may be fused,

but we can also fuse both boolean selection and reductions.

The basic rules for conformability are described in Table 4. In

our approach, we check conformability between statements

and their definition statements of the input parameters

(predecessors in the data dependence graph).

Table 4. Conforming rules for two shapes

V(1) V(c0) V(d0) Vs (a0)

V(1) ✓ × × ×

V(c1) × c0==c1 × cond(a0,c1)

V(d1) × × d0==d1 cond(a0,d1)

Vs (a1) × cond(a1,c0) cond(a1,d0) a0==a1
cond(a,y) is ✓ if a.size == y else ×

5.2.1 Algorithm

Conformability analysis produces a list of fusible sections

given the conformability of the statements. It traverses

bottom up on the dependency graph (reverse topological

order), and recursively fuses definition statements that

are conforming with their uses. Each recursive call tree

therefore forms a single fused section that ends when no

more statements may be fused. In addition to conformability,

we ensure that reductions may only terminate fused sections

and not be internal nodes. This restriction is due to the

synchronization and implicit data-dependence introduced

by the reduction behaviour. Our algorithm for vector fusion

is described in detail in Algo. 1 and subsequent sections.

5.2.2 Vector Conformability

Identifying fusible sections for vector functions is divided

into two passes. The first pass identifies the main fusible

sections, while the second pass corrects any data dependen-

cies between sections. The algorithm terminates when all

statements have been visited.

1st pass: Finding all eligible statements for a fusible section

verifies for type and shape conformability.

Rule 1: candidate statements need concrete types (no

wildcard or unknown types) and have built-in functions

belonging to groups {E,R,S,X,B}.

Rule 2: candidate statements must be conforming with the

shape of the definition statements according to Table 4.

Each iteration of the algorithm identifies statements

adhering to the first rule, and recursively checks definition

statements for both rules 1 and 2 as seen in function

findFusibleStmts. If the definition statement contains a

Algorithm 1: Finding Fusible Sections for Vectors.

Input:Data dependence graph G

Output:A list of fusible sections

let� be an empty vector;

allStmts← reversed topological order of the graph G;

foreach stmt A in allStmts do

if isNotVisited(A) then

if getOp(A) is a reduction function then

section← findFromReduction(A);

else

section← findFusibleSection(A);

Function findFusibleSection(A):

if isNotVisited(A) then

setVisited(A);

if isGroupE_Binary(A) or isGroupS(A) then

list← fetchFusibleStmts(A, A.first.parent);

list.append(fetchFusibleStmts(A,

A.second.parent));

else if isGroupE_Unary(A) or isGroupB(A) then

list← fetchFusibleStmts(A, A.first.parent);

else if isGroupX(A) then

list← fetchFusibleStmts(A, A.second.parent);

else

list←�;

return {A}.append(list)

return�;

Function fetchFusibleStmts((A,P)):

if isConforming(A, P) then /* Rule 2 */

return findFusibleSection(P);

return�;

Function findFromReduction(A):

setVisited(A);

return {A}.append(findFusibleSection(A.first.parent));

reduction, a new fusible section is started and processed in

the function findFromReduction.

The function findFusibleSection traverses the built-in

functions according to their group: (1) traversing the parents

of both parameters for binary element-wise functions E and

the scan function S; (2) traversing the parent of the first

parameter for unary element-wise functions E and special

boolean functions B; and (3) traversing the parent of the

second parameter for indexing functions X. Other functions

leave the list of fusible sections unchanged.

2nd pass: Trimming sections that introduce dependencies.

The algorithm described in Algo. 1 optimistically creates

fusible sections, assuming that intermediate results are not

required for other computations. If a definition is used inmore

than one successor and the successors are partitioned into

separate fused sections, a data dependence will exist between

sections. This dependency would require an intermediate

result be stored, which negates the purpose of our approach.

We therefore remove any statement whose successors are

in different fused sections from the fused section.
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5.2.3 List Conformability

A fusible section of list-shaped code ends with the pairing

of a list reduction (e.g. @each(@sum,...)) and @raze. This

combination produces a vector with a single value per list

cell. We then recursively expand the section checking con-

formability between the current statement and predecessor

@each* calls as done for vectors. We additionally impose

that the applied function in the @each* calls has appropriate

shape behaviour: @each_left requires either group B or E,

@each_right requires group X or E, and @each_item only

group E. Boolean selection functions (S) are not supported.

5.3 An Example

S0 S1

S2

S3 S4

S5

S6

S0(E):	t0::V(d)
S1(E):	t1::V(d)
S2(E):	t2::V(d)
S3(S):	t3::Vs(t2)
S4(S):	t4::Vs(t2)
S5(E):	t5::Vs(t2)
S6(R):	t6::V(1)

Figure 6. A fusible section for the HorseIR program

in Fig. 2b. The text format on the right hand side is

<statement>(<group>): <variable>::<shape>.

Given the HorseIR program in Fig. 2b, our algorithm

identifies a fusible section shown in Fig. 6. Initially, the

variable c0 is assigned a dynamic vector shape with a unique

ID,V(d), as the exact size depends on the input table.Next, the

3 element-wise functions in statements S0, S1, and S2 propa-

gate the vector shape V(d) according to the shape rules. Both

compression functions in S3 and S4 generate a new shared

scan shape Vs(t2) as they both use the same boolean mask.

The following binary function uses this equality to correctly

infer its output shape. Finally, the reduction function @sum

returns a vector with one element. Note that all functions in

the computed fusible section share the same loop range, V(d).

The code in Fig. 2c shows the generated C code for the

complete fusible section. Note the if-condition for boolean

selection and the accumulator for the reduction. The code

generation strategy for fusible sections is found in Sec. 6.

6 Code Generation Strategies

Our code generation strategy follows a pattern based

approach for fused sections, whereas normal (non-fused)

code calls optimized library functions. First, each fused

section is associated with a fusion node, the nodes are

optimized, and lastly the code is emitted.

6.1 Fusion Nodes

Each fused section is associated with a fusion node, a

collection of metadata used for generating the loop. For

each section, we traverse the statements and collect: (1) loop

bounds; (2) fused expressions; (3) boolean mask (if any);

and (4) reduction operation (if any). The set of properties

determines which code generation pattern is used.

6.2 Code Generation for Vectors

// reduction: YES

// scan: YES

for(i=0; i<len; i++){

if(cond[i]){

z = z Rop expr_rhs;

}}

z = Rfinal(z);

(a) Case 0

// reduction: YES

// scan: NO

for(i=0; i<len; i++){

z = z Rop expr_rhs;

}

z = Rfinal(z);

(b) Case 1

// reduction: NO

// scan: YES

c = 0;

for(i=0; i<len; i++){

if(cond[i]){

z[c++] = expr_rhs;

}}

(c) Case 2

// reduction: NO

// scan: NO

for(i=0; i<len; i++){

z[i] = expr_rhs;

}

(d) Case 3

Figure 7. Code generation for vectors. Rop: reduction oper-

ation; Rfinal: final reduction step (e.g. divide by element

count); z: accumulator/output vector.

Code generation for fused vector operations follows 4

patterns depending on the presence of reduction and boolean

selection. Each iterates over the length of the list, fuses the

RHS expressions, and produces the appropriate output. Re-

duction nodes accumulate a scalar value,while non-reduction

nodes create a new vector. Rfinal performs the final step

of the reduction (e.g. dividing by the number of elements to

compute an average). In the case of compression, the con-

dition is first evaluated and the RHS computed if necessary.

Fig. 7 shows the variations of the code generation patterns.

Note that when generating parallel code for Fig. 7c, we

employ a strategy that: (1) counts the number of true elements

in each segment and computes an offset for each segment;

and (2) divides the boolean vector into segments evenly

based on the number of cores. Each thread thus maintains

a segment of the boolean vector independently. For all other

cases, typical parallel strategies are effective.

6.3 Generating Code for Lists

List fusion nodes compute a single value per list cell and

return a vector. Fig. 8 shows the code generation pattern for

lists. As seen in the figure, there are two loops present: an
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for(i=0; i<list.len; i++){ /* loop over cells */

cell = list[i]; /* fetch one cell */

/* init t */

for(j=0; j<cell.len; j++){ /* loop over content */

t = t Rop (cell[j])

}

z[i] = Rfinal(t); /* store final value */

}

Figure 8.Code generation for lists. Rop: reduction operation;

Rfinal: final reduction step (e.g. divide by element count); t:

cell accumulator; z: output vector.

outer loop iterating over cells and an inner loop computing

the reduction expression for each cell.

Note that the ratio of list.len and cell.lenmay vary

greatly. When parallel code is generated, we may therefore

parallelize the outer or inner loop depending on the data. In

our implementation, we use a simple runtime heuristic based

on the size ratio to choose which loop runs in parallel.

6.4 Further Fusion Opportunities

Fusible sections can bemerged if: (1) they share the same loop

head, and (2) there is no data dependency between the loop

bodies. This is particularly useful in column-based IMDBs

where data is fetched from multiple independent columns

using a single array of indices (e.g. the result of a join). It also

reduces the number of parallel synchronization barriers.

7 Evaluation

In this section we evaluate the performance of our optimiza-

tions by conducting experiments on the TPC-H benchmark.

7.1 Methodology

Experimental setup. We run all benchmarks under

Ubuntu 16.04.6 LTS on a server which has 4 Intel Xeon

E7-4850 2.00GHz (total 40 cores/80 threads) and 128 GB

RAM. We use GCC compiler with the version v8.1.0 to

compile the generated C code with optimization level -O3

and -march=native enabled. We use the latest MonetDB [8]

released in Apr2019 with version v11.33.3, as a baseline

comparison for the following HorseIR versions: (1) HorseIR-

noopt: no optimizations; (2) HorseIR-opt1 : element-wise and

pattern-based fusion from [1]; and (3) HorseIR-opt2 : fusion

approach presented in this paper.

Execution time. Our results present the core execution

time of the database query. That is, compilation time, input

data loading time and results output time are not considered

as we want to zoom in on the effects of the optimization. The

results present the average over 15 executions for each query.

TPC-H SQL benchmarks. TPC-H [23] is a widely used

SQL benchmark suite for analytical data processing simulat-

ing real Business to Consumer (B2C) database applications.

The database has 8 tables and 22 queries. The database size is

set using a scale factor (SF). For example, a scale factor of 1 (i.e.

SF1) means 1GB of input data. As the scale factor increases,

(nearly) all of tables hold more records. Our results are for

SF1 but initial results on larger scale factors are similar.

For this paper, we have selected the subset of queries in

which the basic built-in functions that we aim to fuse have

a major impact on execution time. In particular, these queries

have a maximum of 2 joins. Joins are very expensive, and in

queries with more than 2 joins, the join execution takes up

most of the time, thus, the optimizations presented in [1] and

in this paper have less impact. Hence, we have such 8 queries

(q1/4/6/12/14/16/19/22) in our experiments. Future work will

look more closely at fusion potential for join operations.

7.2 Execution Time Results

Fig. 9 shows the execution times using MonetDB, HorseIR-

noopt, HorseIR-opt1, and HorseIR-opt2 on SF1 with

increasing number of threads. Execution time generally

decreaseswith increasingnumber of threads up to a threshold.

The sweet spot for both MonetDB and HorseIR, where the

best performance is achieved, is around 16 threads. Thus,

using parallel execution is beneficial for most queries. In q16,

however, there are many small cells (18314 cells, average size

6.5) and thus our vector parallelization is underutilized.

HorseIR-noopt has the worst performance in most cases

showing that optimization is crucial when exploiting array-

based languages for query execution. The two HorseIR-opt

versions are generally not as sensitive to the number of

threads as MonetDB, which shows poor performance for

many queries when there are only a few threads. Focusing on

the optimal thread count (T=16),MonetDB shows the best per-

formance for one query, HorseIR-opt1 for one query, HorseIR-

opt2 for two queries, HorseIR-opt1 and HorseIR-opt2 for two

queries, and all three behave very similarly for two queries.

That is, there are only 2 queries where our approach is worse

than one of the other approaches, and only by a small margin.

To understand the performance benefit of our approach

across all thread counts, Fig. 10 presents the geometric mean

speedup for HorseIR-opt2 over HorseIR-opt1 and MonetDB.

HorseIR-opt2 provides a significant improvement over

MonetDB (speedup > 1) for all but one query.

When we are better. In q1, our optimizer identifies eight

fusible sections that are merged into one big loop. In q6,

two blocks of element-wise functions separated by a non-

element-wise statement (@compress) are fused together. In

both cases, intermediate results are avoided and performance

improved. In q12/q19, more statements are fused and less

intermediate results created but the effect is weaker.

When we are worse. In q14/q22, the fused loop sizes are

relatively small with complex expressions in the body.
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Figure 9. The result of TPC-H queries with 1GB input data (SF1).
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For example, the complex code is generated for fusing

element-wise and like functions in q14.

Whenwe behave similarly. For queries q4 and q16, the filters

are very selective and only a few rows qualify. Thus, fusing

loops has little benefit but also does not harm the execution.

Compared to HorseIR-opt1, we improve four queries, are

the same for two queries, and areworse for two queries giving

a geometric speedup of 12%. This performance improvement

is due to the significant increase in fused statements discussed

in Sec. 7.3. Our technique thus effectively identifies fusion op-

portunities in HorseIR programs generated from SQL queries

using a more systematic and general approach than patterns.

7.3 Fusing Statements

Fig. 11 shows the number of fused statements using element-

wise fusion in HorseIR-opt1 and the more general function

fusion in HorseIR-opt2. Pattern-based fusion is not shown

as both approaches use the same patterns.
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Figure 11. Number of element-wise fused statements in

HorseIR-opt1 and our new fusion in HorseIR-opt2.
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Figure 12. Compilation time for generated C code.

As shown, our approach always fuses more statements

than HorseIR-opt1. In q1 and q22, the large increase in fused

statements is due to list-related statements that can now be

fused without fixed patterns. Furthermore, our optimizer

exploits fusion of mixed function kinds such as element-wise

and reduction functions. However, as seen in the previous
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analysis, fusing is not always beneficial. In q22, we fuse

significantly more than HorseIR-opt1, but the resulting

complex loop bodies decrease performance.

The compilation timeof thegeneratedCcode seen inFig. 12

shows that our technique is slower to generate the binary than

more naive approaches. However, the increase in compilation

time is associatedwith the exploitation of additional optimiza-

tion opportunities that benefit the execution time. With large

data sizes common to modern applications or repeated query

execution, the compilation time can be effectively amortized.

7.4 Discussion

Fusionacross statements is beneficial inmanycases.However,

there are two situations in which to be careful. Firstly, fusing

too many statements might become sub-optimal, likely due

to increased register pressure. In practice, heuristics could

determine a maximum number of statements to be fused.

The second situation arises when filtering conditions have

a high selectivity, e.g., when only 10 out of a million records

qualify. In this case, the benefit of avoiding intermediate

results is negligible, while the overhead of code fusion might

become a factor. With additional data metrics, such unneces-

sary fusions could be avoided. Therefore, introducing runtime

optimizations is an interesting avenue for future research.

8 RelatedWork

Fusion techniques are popular due to their success in

reducing intermediate results. This is especially true for

compiled environments which easily allow code fusion.

8.1 Fusion in Programming Languages

In the MATLAB-to-FORTRAN compiler [20], shape and size

information can be obtained from a conformability analysis

with a set of well-defined conforming operators for scalar,

vector, and matrix. However, no further operator fusions

after conformability analysis are provided.

In the R programming language, a vectorizer is proposed

for the built-in function Apply [24]. The function Apply is

similar to our list-based functions, which take a function

and a list of data inputs as parameters and repeatedly

apply the function. Their vectorizer involves both code and

data transformation while we focus on code optimization.

Additionally, we explore a wider set of built-in functions

rather than only a single list-based function.

Ju et al. [9] investigate built-in function fusion in a pure

array-based programming language, APL. They classify

functions into groups based on the features and present

a model to help generate parallel code. Ching et al. [4]

use simple techniques to fuse arithmetic functions when

compiling APL to parallel C code. In contrast, our work is

aimed at array-based programs generated from SQL queries,

considering functions important to database operators.

Similar to optimizations for arrays [6, 14], we exploit type

and shape information of arrays to generate efficient code.

But due to the high-level semantics of HorseIR programs, we

avoid complicated vectorization techniques [2, 16].

8.2 Fusion in Database Query Optimizations

Loop fusion for query programs is typically achieved through

a fixed set of complex predefined rules. The DBLAB/LB

query compiler [22] provides rules for different loop fusion

algorithms to generate optimized code [21]. WeldIR [19]

adopts rule-based optimizations for element-wise and

common-loop-head fusion. HorseQC [7] and HIQUE [12]

present rule-based fusion strategies. However, just as the

patterns in [1], rules are challenging to generalize.

HyPer [18], an in-memory database system, adopts a data-

centric model when compiling SQL queries to LLVM code.

They developed a greedy algorithm to produce/consume

operators directly in an execution plan and fuse relational

operations directly. Peloton [15] considers operator fusion

for operators within a pipeline. The stream-fusion [21] needs

to define extra fusion-related constructs for collections.

By contrast, our fusion strategy is a systematic approach

which collects precise shape information on a well-defined

array-based language for automatic fusion.

8.3 Performance-Oriented Systems

TVM [3], a system designed for deep learning, introduces

operator fusion for graph operatorswhen generating efficient

GPU code. Their approach is limited, as the fusion rules are

fairly simplewith specific patterns.We provide amore sophis-

ticated fusion approach which considers more groups and

defines systematic data-flow analysis to identify fusion op-

portunities. LIFT [13] shows a different approach by defining

complex functional patternswith precise descriptions for gen-

erating efficient code for parallel devices such as FPGA, as its

input code fromvarious domains rather thandatabase queries.

9 Conclusions and FutureWork

Array-based languages are a natural fit for column-oriented

database systems. With a straightforward code generation

strategy, however, benefits are reduced by the need to store

intermediate results, and this is not easily compensated for

by low-level optimizations on the generated code. Our work

exploits a higher-level intermediate representation (HorseIR)

to demonstrate that a methodical optimization approach can

help identify loop fusion opportunities, allowing the multiple

steps in query execution to be efficiently aggregated into sin-

gle loops with composite operations. This greatly improves

performance over more naive query-code generation, both

in single and multi-processor execution contexts.

Future work is aimed at expanding the set of strategies we

have for fusing array-based operations. Much of our current

design remains conservative, and dynamic specialization or

more complex, in-loop control flowmay allow fusing state-

mentswith different shapes.We are also interested in optimiz-

ing compilation time, useful for runtime query generation.

72



Improving DatabaseQuery Performance with Automatic Fusion CC ’20, February 22ś23, 2020, San Diego, CA, USA

References
[1] Hanfeng Chen, Joseph Vinish D’silva, Hongji Chen, Bettina Kemme,

and Laurie Hendren. 2018. HorseIR: Bringing Array Programming

Languages Together with Database Query Processing. In Proceedings

of the 14th ACM SIGPLAN International Symposium on Dynamic

Languages (DLS’18). 37ś49.

[2] Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie J. Hendren.

2016. Automatic Vectorization for MATLAB. In Languages and

Compilers for Parallel Computing (LCPC’16). 171ś187.

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.

Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An

AutomatedEnd-to-EndOptimizingCompiler forDeepLearning. In 13th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI’18). 578ś594.

[4] Wai-Mee Ching and Da Zheng. 2012. Automatic Parallelization of

Array-oriented Programs for a Multi-core Machine. International

Journal of Parallel Programming 40, 5 (2012), 514ś531.

[5] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd,

Stefan Sigg, andWolfgang Lehner. 2012. SAP HANADatabase: Data

Management for Modern Business Applications. Special Interest Group

on Management of Data (SIGMOD’12) 40, 4 (2012), 45ś51.

[6] Vincent Foley-Bourgon and Laurie J. Hendren. 2016. Efficiently

Implementing the Copy Semantics of MATLAB’s Arrays in JavaScript.

InDynamic Languages Symposium (DLS’16). 72ś83.

[7] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and

Jens Teubner. 2018. Pipelined Query Processing in Coprocessor

Environments. In Proceedings of the 2018 International Conference on

Management of Data (SIGMOD’18). 1603ś1618.

[8] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd

Mullender, and Martin Kersten. 2012. MonetDB: Two Decades of

Research in Column-oriented Database Architectures. IEEE Data Eng.

Bull. 35, 1 (2012), 40ś45.

[9] D-CR Ju, Chuan-Lin Wu, and Paul Carini. 1994. The classification,

fusion, and parallelization of array language primitives. IEEE

Transactions on Parallel andDistributed Systems 5, 10 (1994), 1113ś1120.

[10] Ken Kennedy. 2001. Fast Greedy Weighted Fusion. International

Journal of Parallel Programming 29, 5 (2001), 463ś491.

[11] Ken Kennedy and Kathryn S. McKinley. 1993. Maximizing Loop Par-

allelism and Improving Data Locality via Loop Fusion and Distribution.

In Languages and Compilers for Parallel Computing (LCPC’93). 301ś320.

[12] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. 2010.

Generating Code for Holistic Query Evaluation. In Proceedings of the

26th International Conference on Data Engineering, ICDE ’10. 613ś624.

[13] Martin Kristien, Bruno Bodin, Michel Steuwer, and Christophe Dubach.

2019. High-level Synthesis of Functional Patterns with LIFT. In

ARRAY@PLDI ’19. 35ś45.

[14] Vineet Kumar and Laurie J. Hendren. 2014. MIX10: compilingMATLAB

to X10 for high performance. In Conference on Object Oriented Program-

ming Systems Languages and Applications (OOPSLA’14). 617ś636.

[15] Prashanth Menon, Andrew Pavlo, and Todd C. Mowry. 2017. Relaxed

Operator Fusion for In-Memory Databases: Making Compilation,

Vectorization, and Prefetching Work Together At Last. PVLDB 11, 1

(2017), 1ś13.

[16] Vijay Menon and Keshav Pingali. 1999. A Case for Source-level

Transformations in MATLAB. InDomain-specific Languages (DSL’99).

ACM, 53ś65.

[17] Microsoft. 2019. Microsoft SQL Server. Retrieved September 2019

from https://www.microsoft.com/en-ca/sql-server/sql-server-2019

[18] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans

for Modern Hardware. PVLDB 4, 9 (2011), 539ś550.

[19] Shoumik Palkar, James J. Thomas, Deepak Narayanan, Pratiksha

Thaker, Rahul Palamuttam, Parimarjan Negi, Anil Shanbhag, Malte

Schwarzkopf, Holger Pirk, Saman P. Amarasinghe, Samuel Madden,
andMatei Zaharia. 2018. Evaluating End-to-End Optimization for Data

Analytics Applications inWeld. PVLDB 11, 9 (2018), 1002ś1015.

[20] Luiz De Rose and David A. Padua. 1999. Techniques for the Translation

of MATLAB Programs into Fortran 90. ACM Trans. Program. Lang. Syst.

21, 2 (1999), 286ś323.

[21] Amir Shaikhha, Mohammad Dashti, and Christoph Koch. 2018. Push

versus pull-based loop fusion in query engines. J. Funct. Program. 28

(2018), e10.

[22] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown,

Mohammad Dashti, and Christoph Koch. 2016. How to Architect

a Query Compiler. In Special Interest Group on Management of Data

(SIGMOD’16). 1907ś1922.

[23] TransactionProcessingPerformanceCouncil. 2017. TPCBenchmarkH.

[24] HaichuanWang, David A. Padua, and PengWu. 2015. Vectorization of

Apply to Reduce Interpretation Overhead of R. InOOPSLA. 400ś415.

73

https://www.microsoft.com/en-ca/sql-server/sql-server-2019

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Loop Fusion
	2.2 HorseIR: An Array-based IR for SQL Queries

	3 Overall Structure of the Optimizer
	4 Shape Analysis
	4.1 Shape Abstraction
	4.2 Built-in Function in Groups
	4.3 Shape Propagation Rules

	5 Conformability Analysis
	5.1 Fusible Sections
	5.2 Conformability
	5.3 An Example

	6 Code Generation Strategies
	6.1 Fusion Nodes
	6.2 Code Generation for Vectors
	6.3 Generating Code for Lists
	6.4 Further Fusion Opportunities

	7 Evaluation
	7.1 Methodology
	7.2 Execution Time Results
	7.3 Fusing Statements
	7.4 Discussion

	8 Related Work
	8.1 Fusion in Programming Languages
	8.2 Fusion in Database Query Optimizations
	8.3 Performance-Oriented Systems

	9 Conclusions and Future Work
	References

