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Abstract
We apply speculative multithreading to sequential Java pro-
grams in software to achieve speedup on existing multi-
processors. A common speculation library supports both
Java bytecode interpreter and JIT compiler implementations.
Initial profiling results indicate three main optimizations:
adaptive return value prediction, online fork heuristics,and
in-order nested method level speculation.

Categories and Subject Descriptors D.4.1 [Operating
Systems]: Process Management—Concurrency; Threads;
D.2.8 [Software Engineering]: Metrics—Complexity mea-
sures; Performance measures; D.2.13 [Software Engineer-
ing]: Reusable Software—Reusable libraries; D.3.2 [Pro-
gramming Languages]: Language Classifications—Object-
oriented languages; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Procedures, functions, and
subroutines; D.3.4 [Programming Languages]: Process-
ors—Code generation; Compilers; Interpreters; Optimiza-
tion; Run-time environments

General Terms Design, Experimentation, Languages, Mea-
surement, Performance

Keywords Java, parallelism, speculative multithreading,
thread level speculation, virtual machines

1. Introduction
Speculative multithreading (SpMT), also known asthread
level speculation (TLS), is a dynamic parallelization tech-
nique that relies on out-of-order execution of sequential pro-
grams to achieve speedup> 1 on multiprocessor machines,
wherespeedup is the sequential run time over the parallel
run time. The key premise is that multithreaded program-
ming is difficult and needs as much automation as possible.
The advantage of SpMT is its ability to parallelize irregular
applications that traditional static compilers cannot handle,
at the basic block, loop, and method levels.

A large number of novel SpMT hardware designs have
been evaluated along with compilers that target these archi-
tectures [6]. Most of this prior research focuses on paral-
lelizing loops in C programs, although some work shows
potential for speculation in Java programs, particularly at the
method level [1,4,15].
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There has been less work on software SpMT. In summary,
overheads are high [11], coarser thread granularities help
offset these overheads [3], manual source code changes are
effective [5,7,14], and loop level speculation is viable [2].

This extended abstract and an accompanying poster re-
view our work to date on software speculative multithread-
ing for Java and outline immediate future directions. The
poster is available online athttp://www.sable.mcgill.
ca/publications/posters/. We focus on Java because
its object-oriented nature leads programmers to write irreg-
ular but loosely-coupled applications, a seemingly appropri-
ate source of speculative parallelism. We focus on software
SpMT because Java is a rich language with complex runtime
behaviour that may not translate well to hardware SpMT de-
signs, and because new hardware is prohibitively expensive
and may not actually be required. We usemethod level spec-
ulation, which creates child continuation threads on method
invocation and joins them upon method exit, because it can
subsume loop level speculation and also expose additional
parallelism [1]. We target Java virtual machines to maximize
SpMT transparency, compatibility, and automation.

2. Current Work
Hu et al. show that hardware return value prediction (RVP)
benefits method level speculation [4], and we start by imple-
menting software RVP in a Java virtual machine [10]. Our
baselinehybrid predictor is composed of previously studied
predictors, and per-callsite hybrid instances select the best
performing sub-predictor on each invocation. We introduce
a newmemoization predictor that hashes together method in-
puts from the Java operand stack, and find that it improves
hybrid accuracy by 10%.

We next investigate two different compiler analyses to re-
duce RVP memory costs and extract more accuracy [9]. The
first, a return value use analysis, finds unused return val-
ues as well as those compared only against constants inside
boolean expressions. The runtime system uses this informa-
tion to weaken predictor accuracy constraints. The second,
a parameter dependence analysis, finds parameters that do
not affect the return value. The runtime system excludes
these parameters from memoization predictor inputs. The
combined analyses reduce predictor memory requirements
by 5% on average and improve accuracy by 5% for thedb
benchmark. The most surprising part of these two RVP stud-
ies is just how predictable Java return values are: our hy-
brid predictor obtains 80% accuracy over SPEC JVM98 and



95% accuracy fordb. This accounts for every non-void re-
turn value in an interpreted context without inlining.

We subsequently build on this RVP implementation to
create SableSpMT, a working Java bytecode interpreter
SpMT prototype and analysis framework [11]. Ourout-of-
order speculation nesting model creates one child continua-
tion for each invocation in a non-speculative parent thread.
In a multithreaded mode, helper threads dequeue these chil-
dren from a priority queue and execute them concurrently.
Speculation stops either when a parent returns from a call
and signals its current child or when a child encounters an
illegal instruction. In a debugsingle-threaded mode, specu-
lative children execute in the same physical operating system
thread as their non-speculative parent. Both execution modes
interoperate with non-speculative multithreading.

SableSpMT also supportsdependence buffering, which
buffers reads from and writes to heap and static data like
strongly isolated transactional memory [8], andstack buffer-
ing, an optimization possible for managed code that buffers
entire stack frames at once. We measure the contributions
of different speculation support components to speculative
parallelism, and provide an analysis of safety considera-
tions specific to Java and their impact, including specula-
tive bytecode execution, garbage collection, exception han-
dling, native methods, object allocation, and synchroniza-
tion [12]. The complete system slows down execution of
SPEC JVM98 by 4.5x on a 4-way machine. However, we
compute arelative speedup of 1.3x by comparing run times
to a control experiment that does not allow successful spec-
ulation to commit but otherwise incurs the same overheads.
High overheads are expected for an initial implementation,
and profiling data indicate the optimizations in Section 3.

In the interim however, we refactor our SableSpMT im-
plementation to create libspmt, a VM-independent library
for speculative multithreading [13]. JIT compiler supportis
an ultimate goal of this work, and rather than rewrite the
speculation support and maintain two disjoint implementa-
tions we decided to isolate the reusable logic. We establisha
reasonably minimal interface and a modular C implementa-
tion that is portable and backed by unit tests. A major ben-
efit of this approach is that SableSpMT remains as a work-
ing functional test. Initial experience with libspmt suggests
that implementing new optimizations is straightforward; of
course, the true design test will be JIT integration.

3. Immediate Future Work
Our JIT compiler implementation platform is the Testarossa
JIT component of the IBM J9 Java Virtual Machine. Addi-
tional complexity over interpreted speculation lies in gener-
ating speculative method bodies that interact with libspmt.
Otherwise, we are following the same high-level client de-
sign as used by SableSpMT.

Aggressive RVP strategies are costly. We suggest that
for each speculation point there exists an optimal return
value predictor and that this predictor can be discovered
dynamically. We are investigating whether a hybrid predictor
implementation that specializes to its ideal sub-predictor is

feasible, and whether it can approximate the accuracy of an
offline oracle determined bypost mortem analysis.

Our initial system configuration forks threads on every
method invocation and so child thread lengths are usually
quite short. Existing dynamic speculation profiles can sup-
port onlinefork heuristics [15] that take into account child
continuation lengths, parent invocation lengths, speculation
success rates, and predictor confidence. JIT compiler inlin-
ing may also provide a kind of natural fork heuristic [4].

Finally, helper threads are mostly idle, which reveals a
surprising lack of parallelism despite reasonable relative
speedup. We recently extended libspmt and SableSpMT to
support in-order nesting wherein child threads can create
new child threads of their own. This populates the priority
queue, reduces idle times, exposes more parallelism, and
leads to improved relative speedup.
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