
Credits

Visit our web site at www.sable.mcgill.ca

The Sable Research Group belongs to
the McGill University School of Computer Science.

This work is funded in part by
IBM's Centre for Advanced Studies, FCAR and NSERC

Soot is being designed and implemented by
the Sable Research Group, namely:

Raja Vallée-Rai, Patrick Lam,
Patrice Pominville, Feng Qian,

Etienne Gagnon and Laurie Hendren

The HPCJ experiment was done by:
Clark Verbrugge

IBM Toronto Lab.

Soot - a Java Bytecode Optimization and Annotation FrameworkSable
Research Group

http://www.sable.mcgill.ca

McGill
University

Overview of Soot framework Soot Optimizations Bytecode Annotations

Annotations Details

The second approach is to lessen the cost of certain bytecode instructions by
communicating short-cuts to the Java Virtual Machine about their execution.
For example, JVMs must always perform checks before executing potentially
dangerous code. Static analyses at compile time can determine that some checks
at unnecessary. This stage performs analyses and annotates particular instructions
so that JVMs can take safe short-cuts when executing them.

int[] n = new int[2];

n[0] = 5; // safe access!
n[1] = 8; // safe access!

 int[] n = new int[2];

 n[0] = 5;
 n[1] = 8;

annotated becomes

Improving Java Performance using Soot:
via Annotations

1) Hot methods
2) Persistent objects
3) Garbage collection
4) Branch prediction annotation
5) Hot data

1) Array bounds checks*
2) Null pointer checks*
3) Register allocation
4) Stack allocation of objects
5) Runtime static method binding
6) Parallel computations
7) Exception handling as control flow

Annotations for Optimization

Annotations for Profiling

Annotation Possibilities

Experimental Results: via Annotations

KaffeVM runtime results

HPCJ* runtime results: without optimizations

HPCJ runtime results: with optimizations
 normal nocheck with attributes

mpegaudio 21.27s	 15.93s(25.1%) 20.33s(4.4%)
FFT 17.39s	 15.34s(1 1.8%) 19.45s(-11.8%)
LU 21.50s	 14.84s(30.8%) 21.27s(1.1%)
SOR 11.93s	 8.88s(25.6%) 8.88s(25.6%)

Improving Java Performance using Soot:
via Optimizations

The first approach is to reduce the total bytecode execution cost by directly
reducing the number of bytecode instructions executed, or replacing expensive
bytecodes with inexpensive ones. The techniques for optimizing standard
languages like C and C++ can be used here. The main difference, however,
is that Java bytecode instructions have a wide range of costs. The instructions
which usually dominate execution time are unaffected by simple optimizations
such as common sub-expression elimination or copy propagation. Thus higher
level optimizations, such as virtual method call resolution and method inlining,
must be performed to yield a significant speed-up.

x = 1;
y = x * z;
use(x);

optimized becomes y = z;
use(1);

Traditional Optimizations

Complex Optimizations (interprocedural/side-effect analysis)

1) copy propagation*
2) constant propagation and folding*
3) conditional and unconditional branch folding*
4) dead assignment elimination*
5) unreachable code elimination*

1) common sub-expression elimination*
2) loop invariant removal
3) class file splitting
4) object inlining
5) method devirtualization and inlining*

Optimization Possibilities

Experimental Results: via Optimizations

3 Representations for Java Bytecode :
Jimple, Grimp & Baf

Grimp

 The Grimp intermediate representation is similar to Jimple, except that it
 represents statements as trees. This is extremely useful in situations where
 Jimple's fractured nature is inappropriate. Grimp is currently being used for
 decompilation and bytecode generation.

 if x + y == z goto label0;
 return;

label0:
 System.out.println("foo");

In Grimp Form

 t = x + y;
 if t == z goto label0;
 return;

label0:
 ref = System.out;
 ref.println("foo");

In Jimple Form

Jimple

 Jimple is a simple intermediate representation for Java bytecode with the
 following features:

 * Resembles simple Java: instructions are in 3-address code form.
 * Unstructured: while's, for's, if-then-else's are broken down into multiple
 statements. Goto's are allowed.
 * Typed: Like Java, Jimple's local variables are typed.

 Because of these features, Jimple is well suited for implementing general
 analyses and optimizations such as copy propagation, devirtualization and
 method inlining.

 iload x
 iadd
 iload z
 icmpge label0
 return

label0:
 getfield System.out
 push "foo"
 invokevirtual println

In Baf Form

Baf

 Sometimes it is necessary to deal with bytecode as stack code. The Baf inter-
 mediate representation attempts to simplify this task by hiding the encoding
 issues in Java bytecode, such as the constant pool and the multiple variants
 of virtually the same instructions. Baf is currently used for peephole optimi-
 zations and for a final reordering phase.

Why Bytecode is Cumbersome

 Optimizing or annotating bytecode directly is awkward because it is stack
 based code; computed expressions are not explicit because they are spread
 over several instructions. Simple analyses and transformations thus become
 complicated. Furthermore, the bytecode format is laden with encoding issues,
 such as the constant pool, which make it awkward to manipulate.

if(x + y != z)
 return;
else
 System.out.println("foo");

Running Example: Original Java Code

`

Why is Java slow?

Useful Features...

 Java is a nice programming language for application development because of
 the useful features it provides:

 * Platform independence: a compiled Java application can run without
 modifications on any operating system which supports Java.

 * Execution safety: Java applications can not corrupt their memory space,
 making them significantly easier to debug.

 * Garbage collection: the Java Virtual Machine automatically manages
 memory use, so memory leaks never occur.

 * Object orientation: provides convenient abstractions for programming.

...But Costly Features

 Unfortunately, these features are expensive to support; applications written in
 Java are usually slower than their counterparts written in C or C++. In order
 to support these features efficiently, a high level of optimization is required.

The Java Execution Model

The Java Virtual Machine

 The key to Java's platform independence is the Java Virtual Machine (JVM).
 Compiling Java applications does not produce binary code which can directly
 be executed on a processor. Instead, it produces Java bytecodes, which are
 instructions for this Java Virtual Machine. To execute the program, you must
 run the Java Virtual Machine, itself a program, which in turn will execute the
 bytecode.

Java app. Javac bytecode

Java Virtual
Machine

processor output in
x seconds

Optimizing Java

 This split architecture gives rise to two levels for optimizing Java execution:
 optimizing the applications themselves (a series of Java bytecodes), or
 optimizing the program which executes applications (the Java Virtual Machine,
 usually written in C.)

 Optimizing the bytecode has the advantage benefiting all Java Virtual Machine
 implementations, whereas optimizing a specific JVM will usually only improve
 one given platform (like Linux/x86). Soot focuses on the former approach.

bytecode

improved
Java Virtual
Machine

processor
output in
<x secs

Optimizing the JVMOptimizing Bytecode

improved
bytecode
+ annotations

Java Virtual
Machine

processor output in
<x secs

Core Features

* The Soot framework consists of a set of Java APIs designed to facilitate the
optimization and annotation of Java bytecode.

* Soot provides a choice of 3 intermediate representations of varying levels for
Java bytecode: Jimple (medium), Grimp (medium-high) and Baf (low). This
allows the programmer to write analyses and optimizations on bytecode at the
most appropriate level.

* Jimple and Baf also exist as stand alone textual representations, providing two
convenient assembly languages for Java bytecode.

* Soot is a Java framework, and so benefits from the advantages of the Java
programming language (mainly platform independence and ease of application
development.)

* Soot is freed source, licensed under the GNU Library General Public License.

* By targeting Java bytecode, Soot can analyze and optimize the application
code for Java programs, as well as for other high level languages which can
compile to Java bytecode, such as Eiffel, Scheme, ML and Ada.

* By targeting Java bytecode, the optimizations and annotations performed by
Soot can potentially benefit all Java Virtual Machines implementations.

Framework Overview

Experimental results show the running time and improvement of four bench-
marks on modified Java environments: the KaffeVM(tm) and the IBM's High
Performance Compiler for Java (HPCJ). The 'normal' column represents normal
execution time without any check removal; the 'nocheck' gives the running time
if the VM performs no checks (not safe); and the 'with attributes' gives the
running time if the compiler eliminates checks as indicated in attributes (safe).

* we have implemented these optimizations in Soot.
* we have implemented these analyses in Soot.

(Array bounds check and null pointer check elimination)

The table gives the results of performing inlining using class hierarchy
analysis to resolve the call graph. The numbers given are fractional
execution times with respect to the original execution time of the bench-
marks for a given platform. For the Linux Sun JIT, the 'average' ratio is
0.92 which indicates that the average running time is reduced by 8%.

compress
db
jack
javac
jess
Jpat-p
mpegaudio
raytrace
schroeder-s
soot-c

average
std-dev

 normal nocheck with attributes

mpegaudio 80.83s	 62.83s(22.3%) 72.57s(10.2%)
FFT 51.44s	 48.84s(5.1%) 50.01s(2.8%)
LU 81.10s	 81.88s(-0.9%) 78.15s(3.6%)
SOR 46.46s	 41.23s(11.3%) 43.19s(7.0%)

 normal nocheck with attributes

mpegaudio 58.88s	 29.96s(41.1%) 39.14s(23.1%)
FFT 28.22s	 25.09s(1 1.1%) 26.59s(5.8%)
LU 39.99s	 28.83s(27.9%) 32.33s(19.2%)
SOR 24.16s	 15.46s(36.0%) 15.55s(35.6%)

Javac KAWA SmallEiffelMLJ

Interpreter JIT Adaptive Engine Ahead -of-Time
 Compiler

SOOT

Jimplify and Type

Static Analysis and Transformation

Analysis and Annotation

Java
Source

SML
Source

Scheme
Source

Eiffel
Source

class files

Optimized class files with attributes

Assemble attributed Jasmin

typed 3-addr Jimple code

optimized Jimple code

Jasmin code with
attribute directives

(a) The original class file (b) Typed Jimple code

(c) Jimple code with tags
attached to instruction units

(d) Soot method with
aggregated (unit, tag) pairs

.method m()
 ...
 iastore
 ...
 iaload
 istore
 ...

.class file
0101 0011 1100 0001 0000

m()
{
 ...
 r[i] = ...;
 ...
 j = r[i];
 ...
}

Soot
Jimple Code

m()
{
 ...
 r[i] = ...;
 ...
 j = r[i];
 ...
}

(T,T)

(F,F)

Soot
Jimple Code

.class file
0101 0011 1100 0001 0000

.method m

 iastore

 iaload
 istore
 ...

(12)

(19)

12, 0x03
19, 0x00
 ...

(e) Annotated class file with
attribute table of (PC, value)
entries.

JVM
m (native code)
 ...
 cmp r1, [r2+off]
 jge outofbounds
 (iastore)
 ...
 (iaload)
 ...

code with
bounds check

code without
bounds check

m()
{
 ...
u3: r[i] = ...;
 ...
u7: j = r[i];
 ...
}

u3:(T,T)
u7:(F,F)
...

Soot
Jimple Code

(f) Attribute-aware VM
produces efficient native
code.

Soot has several steps to add attributes into the class file. The following figures
show the process of annotating the class file with array bounds check attributes.
Soot takes bytecode from a class file and converts it to typed Jimple code,
which is the representation used by the bounds check analysis. The analysis
results are represented as tag objects which are attached to the instruction units
that have array references. Tags from one method body are aggregated as a list
of (unit, tag) pairs, and the list is attached to the method. When the attribute list
is written into the class file with the method, each (unit, tag) pair is translated
to a (PC, value) entry respectively.

Sun
Int.

1.02
0.99
1.00
0.97
0.93
0.99
1.04
0.76
0.97
0.94

0.96
0.07

Sun
JIT

0.78
1.01
0.98
0.96
0.93
0.99
0.96
0.62
1.00
0.94

0.92
0.12

Borland
JIT

1.00
1.00
0.99
0.97
1.01
1.00
-
0.74
0.97
0.96

0.96
0.08

Sun
JIT

1.01
1.00
-
1.11
0.99
1.00
-
0.89
1.02
1.03

1.01
0.06

Sun
Hot.

0.99
1.00
0.97
0.93
1.00
1.00
0.97
1.01
1.06
1.05

1.00
0.04

Linux NT

