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Annotations Details

The second approach is  to lessen the cost of certain bytecode instructions by 
communicating short-cuts to the Java Virtual Machine about their execution.  
For example, JVMs must always perform checks before executing potentially 
dangerous code. Static analyses at compile time can determine that some checks 
at unnecessary. This stage performs analyses and annotates particular instructions 
so that JVMs can take safe short-cuts when executing them.

int[] n = new int[2];

n[0] = 5; // safe access!
n[1] = 8; // safe access!

 int[] n = new int[2];

 n[0] = 5;
 n[1] = 8;

annotated becomes

Improving Java Performance using Soot:
via Annotations 

1) Hot methods
2) Persistent objects
3) Garbage collection
4) Branch prediction annotation
5) Hot data

1) Array bounds checks*
2) Null pointer checks*
3) Register allocation
4) Stack allocation of objects
5) Runtime static method binding
6) Parallel computations
7) Exception handling as control flow

Annotations for Optimization

Annotations for Profiling

Annotation Possibilities

Experimental Results: via Annotations

KaffeVM runtime results
 

HPCJ* runtime results: without optimizations
  

HPCJ runtime results: with optimizations
                            normal            nocheck          with attributes

mpegaudio               21.27s	           15.93s(25.1%)         20.33s(  4.4%)
FFT                          17.39s	           15.34s(1 1.8%)         19.45s(-11.8%)
LU                            21.50s	           14.84s(30.8%)         21.27s(  1.1%)
SOR                         11.93s	             8.88s(25.6%)           8.88s(25.6%)

Improving Java Performance using Soot: 
via Optimizations

The first approach is to reduce the total bytecode execution cost by directly 
reducing the number of bytecode instructions executed, or replacing expensive 
bytecodes with inexpensive ones.  The techniques for optimizing standard 
languages like C and C++ can be used here.  The main difference, however,  
is that Java bytecode instructions have a wide range of costs.  The instructions 
which usually dominate execution time are unaffected by simple optimizations 
such as common sub-expression elimination or copy propagation.  Thus higher 
level optimizations, such as virtual method call resolution and method inlining, 
must be performed  to yield a significant speed-up.  

x = 1;
y = x * z;
use(x); 

optimized becomes y = z;
use(1);

Traditional Optimizations

Complex Optimizations (interprocedural/side-effect analysis) 

1) copy propagation*
2) constant propagation and folding*
3) conditional and unconditional branch folding*
4) dead assignment elimination*
5) unreachable code elimination*

1) common sub-expression elimination*
2) loop invariant removal
3) class file splitting
4) object inlining 
5) method devirtualization and inlining*

Optimization Possibilities

Experimental Results: via Optimizations

3 Representations for Java Bytecode : 
Jimple, Grimp & Baf 

Grimp

    The Grimp intermediate representation is similar to Jimple, except that it 
    represents statements as trees.  This is extremely useful in situations where 
    Jimple's fractured nature is inappropriate.  Grimp is currently being used for 
    decompilation and bytecode generation.  

        if x + y == z goto label0;
        return;

label0:
        System.out.println("foo");

In Grimp Form

        t = x + y;
        if t == z goto label0;
        return;

label0:
        ref = System.out;
        ref.println("foo");

In Jimple Form

Jimple

    Jimple is a simple intermediate representation for Java bytecode with the 
    following features:

        * Resembles simple Java: instructions are in 3-address code form.
        * Unstructured: while's, for's, if-then-else's are broken down into multiple 
           statements.  Goto's are allowed.
        * Typed: Like Java, Jimple's local variables are typed.

    Because of these features, Jimple is well suited for implementing general 
    analyses and optimizations such as copy propagation, devirtualization and 
    method inlining.

        iload x
        iadd
        iload z
        icmpge label0
        return

label0:
        getfield System.out
        push "foo"
        invokevirtual println

In Baf Form

Baf

    Sometimes it is necessary to deal with bytecode as stack code.  The Baf inter-
    mediate representation attempts to simplify this task by hiding the encoding 
    issues in Java bytecode, such as the constant pool and the multiple variants 
    of virtually the same instructions.  Baf is currently used for peephole optimi-
    zations and for a final reordering phase.

Why Bytecode is Cumbersome

    Optimizing or annotating bytecode directly is awkward because it is stack 
    based code; computed expressions are not explicit because they are spread 
    over several instructions.  Simple analyses and transformations thus become 
    complicated. Furthermore, the bytecode format is laden with encoding issues, 
    such as the constant pool, which make it awkward to manipulate.

if(x + y != z) 
        return; 
else 
        System.out.println("foo");

Running Example: Original Java Code

`

Why is Java slow?

Useful Features...

    Java is a nice programming language for application development because of 
    the useful features it provides:

        * Platform independence: a compiled Java application can run without 
           modifications on any operating system which supports Java.

        * Execution safety: Java applications can not corrupt their memory space, 
           making them significantly easier to debug.

        * Garbage collection: the Java Virtual Machine automatically manages 
           memory use, so memory leaks never occur.

        * Object orientation: provides convenient abstractions for programming. 

...But Costly Features

    Unfortunately, these features are expensive to support; applications written in 
    Java are usually slower than their counterparts written in C or C++.  In order 
    to support these features efficiently, a high level of optimization is required.

 

The Java Execution Model

The Java Virtual Machine

    The key to Java's platform independence is the Java Virtual Machine (JVM). 
    Compiling Java applications does not produce binary code which can directly 
    be executed on a processor.  Instead, it produces Java bytecodes, which are
    instructions for this Java Virtual Machine. To execute the program, you must 
    run the Java Virtual Machine, itself a program, which in turn will execute the 
    bytecode.

Java app. Javac bytecode

Java Virtual
Machine

processor output in 
x seconds

Optimizing Java

    This split architecture gives rise to two levels for optimizing Java execution: 
    optimizing the applications themselves (a series of Java bytecodes), or 
    optimizing the program which executes applications (the Java Virtual Machine, 
    usually written in C.) 

    Optimizing the bytecode has the advantage benefiting all Java Virtual Machine 
    implementations, whereas optimizing a specific JVM will usually only improve 
    one given platform (like Linux/x86).  Soot focuses on the former approach.
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Java Virtual
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Optimizing the JVMOptimizing Bytecode

improved
bytecode
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Core Features

* The Soot framework consists of a set of Java APIs designed to facilitate the 
optimization and annotation of Java bytecode.  

* Soot provides a choice of 3 intermediate representations of varying levels for 
Java bytecode: Jimple (medium), Grimp (medium-high) and Baf (low).  This 
allows the programmer to write analyses and optimizations on bytecode at the 
most appropriate level. 

* Jimple and Baf also exist as stand alone textual representations, providing two 
convenient assembly languages for Java bytecode.

* Soot is a Java framework, and so benefits from the advantages of the Java 
programming language (mainly platform independence and ease of application 
development.)

* Soot is freed source, licensed under the GNU Library General Public License.

* By targeting Java bytecode, Soot can analyze and optimize the application 
code for Java programs, as well as for other high level languages which can 
compile to Java bytecode, such as Eiffel, Scheme, ML and Ada.

* By targeting Java bytecode, the optimizations and annotations performed by 
Soot can potentially benefit all Java Virtual Machines implementations.

Framework Overview 

Experimental results show the running time and improvement of four bench-
marks on modified Java environments: the KaffeVM(tm) and the IBM's High 
Performance Compiler for Java (HPCJ). The 'normal' column represents normal 
execution time without any check removal; the 'nocheck' gives the running time 
if the VM performs no checks (not safe); and the 'with attributes' gives the 
running time if the compiler eliminates checks as indicated in attributes (safe).

* we have implemented these optimizations in Soot.
* we have implemented these analyses in Soot.

(Array bounds check and null pointer check elimination)

The table gives the results of performing inlining using class hierarchy
analysis to resolve the call graph. The numbers given are fractional
execution times with respect to the original execution time of the bench-
marks for a given platform. For the Linux Sun JIT, the 'average' ratio is
0.92 which indicates that the average running time is reduced by 8%.

compress
db
jack
javac
jess
Jpat-p 
mpegaudio
raytrace
schroeder-s 
soot-c

average 
std-dev

                            normal            nocheck          with attributes

mpegaudio                80.83s	           62.83s(22.3%)         72.57s(10.2%)
FFT                           51.44s	           48.84s(  5.1%)         50.01s(  2.8%)
LU                            81.10s	           81.88s( -0.9%)         78.15s(  3.6%)
SOR                          46.46s	           41.23s(11.3%)          43.19s(  7.0%)

                           normal            nocheck          with attributes

mpegaudio               58.88s	          29.96s(41.1%)          39.14s(23.1%)
FFT                          28.22s	          25.09s(1 1.1%)          26.59s(  5.8%)
LU                            39.99s	          28.83s(27.9%)          32.33s(19.2%)
SOR                         24.16s	          15.46s(36.0%)         15.55s(35.6%)

Javac KAWA SmallEiffelMLJ
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class files

Optimized class files with attributes

Assemble attributed Jasmin

typed 3-addr Jimple code

optimized Jimple code

Jasmin code with
attribute directives

(a) The original class file (b) Typed Jimple code

(c) Jimple code with tags
attached to instruction units

(d) Soot method with
aggregated (unit, tag) pairs

.method m()
    ...
    iastore
    ...
    iaload
    istore
    ...

.class file
0101  0011  1100  0001  0000

m()
{
  ...
  r[i] = ...;
  ...
  j = r[i];
  ...
}

Soot
Jimple Code

m() 
{
  ...
  r[i] = ...;
  ...
  j = r[i];
  ...
}

(T,T)

(F,F)

Soot
Jimple Code

.class file
0101  0011  1100  0001  0000

.method m
    ....
    iastore
    ....
    iaload
    istore
    ...

(12)

(19)

12, 0x03
19, 0x00
   ...

(e) Annotated class file with
attribute table of (PC, value) 
entries.

JVM
m (native code)
    ...
    cmp r1, [r2+off]
    jge outofbounds
    (iastore)
    ...
    (iaload)
    ...

code with
bounds check

code without
bounds check

m()
{
  ...
u3: r[i] = ...;
  ...
u7: j = r[i];
  ...
}

u3:(T,T)
u7:(F,F)
...

Soot
Jimple Code

(f) Attribute-aware VM 
produces efficient native
code.

Soot has several steps to add attributes into the class file. The following figures
show the process of annotating the class file with array bounds check attributes. 
Soot takes bytecode from a class file and converts it to typed Jimple code, 
which is the representation used by the bounds check analysis. The analysis 
results are represented as tag objects which are attached to the instruction units 
that have array references. Tags from one method body are aggregated as a list 
of (unit, tag) pairs, and the list is attached to the method. When the attribute list 
is written into the class file with the method, each (unit, tag) pair is translated 
to a (PC, value) entry respectively.
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