
M c G i l l

 *  Here we receive events from the JVMPI framework
 *  and process them by calling wrapper routines
 *  (Report* calls) that talk to the event pipe
 *  interface.
 */

    }
    break;

      ReportClassLoad(event−>u.class_load.class_name,
                      CurrentMethod(env));

    case JVMPI_EVENT_METHOD_ENTRY: {
      ReportMethodEntry(env, event−>u.method.method_id);
    }
    break;

    case JVMPI_EVENT_METHOD_EXIT: {
      ReportMethodExit(env, event−>u.method.method_id);
    }
    break;

    /* other event handlers... */
  }
}

/** A simple Java profile agent.
 *  The program being profiled indicates various
 *  events by invoking the corresponding method
 *  of the singleton Collector. Calls to the

 */
 *  tool such as Soot.
 *  Collector may be inserted by hand or by a

public class Collector {
  private static Collector _theInstance;
  private StepOutputStream _stepOut;

    _stepOut = new StepOutputStream(os);
  private Collector(OutputStream os) {

    Runtime.getRuntime().addShutdownHook(
      new Thread() {
        public void run() {

          _stepOut.close();
          _stepOut.flush();

        }
      });
  }

  public void recordClassLoad(String className,
                              String method) {    
    _stepOut.writeRecord(
      new ClassLoad(
        new StringField(className),
        new IdField(method)));
  }

  public void recordMethodEnter(String method) {
    _stepOut.writeRecord(
      new MethodEnter(new IdField(method)));
  }

  public void recordMethodExit(String method,
                               String exitSite) {
    _stepOut.writeRecord(
      new MethodExit(
        new IdField(method),
        new IdField(exitSite)));
  }

  // other event handlers...

  // access the singleton Collector
  public static Collector v() { return _theInstance; }

  public static void main(String[] args) {
    _theInstance =
      new Collector(new FileOutputStream(args[0]));

    // run code to be profiled
  }

Profiling Agent: Simple Example

/** A generated STEP record. */
public class ClassLoad implements StepRecord {
  public final StringField className;
  public final IdField     method;

  public ClassLoad(StringField className, IdField method) {

  }

  private static class Generator extends RecordGenerator {
    public byte[] makeBytes(Object target) {

    }

    public Object readFrom(InputStream is) {

    }
  }

  public Generator newGenerator(StepSession session) {
    return new Generator( ... );
  }

    // initialize field data...

      // transform a ClassLoad record into bytes...

      // read a ClassLoad from the InputStream of bytes...

Rhodes Brown Karel Driesen
John Jorgensen Laurie J. Hendren

Qin Wang Clark Verbrugge

School of Computer Science
McGill University

McGill
University

trace data and sources as yet unforeseen−−−may feed a STOOP profiling agent, so long as the data it produces can be described in the specification language for

instrumentation compiled into the profiled program.

To avoid restricting the set of possible data sources, STOOP imposes minimal requirements on profiling agents.  Any information source−−−including existing

STEP, the STOOP Trace Event Protocol.  The specification of the data stream is compiled into a set of interface methods which the profiling agent calls to send
its data to other components of the STOOP framework.

Profiling agents created to date include:

  − a JVMPI agent which reports class loading and method entry/exit;

  − an instrumented copy of the Kaffe virtual machine (www.kaffe.org), which reports field accesses as well as class loading and method entry/exit;

  − instrumented Java class files produced from existing programs using Soot (www.sable.mcgill.ca/soot), a framework for analyzing and transforming Java
  bytecode.  The transformed classes report their own field accesses as well as method entries and exits.

Profiling agents provide raw data to the rest of the STOOP framework.  Data may originate from a wide variety of sources.  For example, traces of method
invocations or object instantiations might come from a agent communicating with a virtual machine via the Java Virtual Machine Profiling Interface (JVMPI), maps

STOOP:  The Sable Toolkit for Object−Oriented Profiling

  

The STEP Interface

The STEP interface provides a simple abstraction
for manipulating trace data as records, as well as
methods for reading and writing the records in a
compact binary format.

A STEP record is simply an aggregation of various

are available (see the ‘"STEP Definition Language"
section above).

particular generator instance contains the
information necessary to convert a record to and
from the STEP binary format.

record has two simple fields: a string and an

    

The STEP Definition Language

The performance and behavior of object−oriented
programs is often very difficult to understand,
particularly for large, complex software systems
consisting of many packages and classes.  STOOP
provides high−level facilities which allow a
user to rapidly construct tools to collect and
visualize profile data from the execution of
object−oriented programs.

The profiling agent collects various profile
data and uses it to generate a stream of events.
Our intent is to support a wide variety of
profiling agents including agents using the Java
Virtual Machine Profiling Interface (JVMPI),
instrumented virtual machines, and instrumented
bytecode.  It is also possible to use
previously−recorded traces (off−line input).

The event pipe serves as a high−level interface
between the front−end profiling agent and the
back−end visualizer.  It converts profile data
to a binary format, buffers (and potentially
compresses) the data, then forwards it to the
visualizer.  In order to provide a clear and
flexible interface, profile events are described

high−level representations of the profile data
to a form that can easily be written to, and
read from the event pipe.

The visualizer reads the stream of profile
events leaving the pipe and presents the data
using several different views.  These views may
take different forms according to the desired
goals.  We show some example views on the right.

STOOP has been implemented in Java and we have
applied the toolkit to a variety of tasks for
profiling Java.  We are particularly interested
in applying the toolkit to study program
behavior that might suggest new optimization or
execution strategies for Java.  For example, by
examining the behavior of hot data fields and
the relationships between field accesses we may
develop new strategies to make better use of a
data cache.

As illustrated in the Figure to the right, there are

a profiling agent, an event pipe, and a visualizer.
three main components in the STOOP framework:

using the STOOP Trace Event Protocol: STEP.
A compiler, STEPc, generates code that converts

The STEP system was inspired by the Meta−TF
language introduced by Chilimbi, Jones & Zorn
(ISMM ’00) and by the SmartFile system
introduced by Haines, Mehrotra & Van Rosendale
(OOPSLA ’95).  Since our primary goal was to
create a framework that could accept arbitrary
profile data, the notion of using a profile
specification language was naturally appealing.
Originally, we had hoped to use the Meta−TF
language directly, however we found it useful to
modify and recast the ideas in a format that
resembles the SmartFile definition language.  The
result is a distinct STEP definition language.

Our approach is unlike commercial profilers such
as OptimizeIt, JProbe and Jinsight in that these
systems are fixed profiling tools where the user
interacts with the profiler to view predetermined
program properties.  The purpose of our tool is to
allow one to develop profilers to view both
standard and non−standard program properties,
and to view events that come from a variety of
sources.

types to their profiling system.

The three main constructs in a STEP definition file are:

several record types.
used to define contextual information that is shared among

are several basic field types, namely: int, string, identifier

strings that allow common values to be represented more

defined in terms of the basic types, it may in turn be used

defined as an array of simple field types.

packages, sessions and records.  Of these, only records are
required.  A package definition is simply a namespace
partitioning, similar to Java packages.  A STEP session is

A STEP record is defined as a collection of fields.  There

and data.  Identifier fields are a convenient extension of

compactly in the trace file.  Data fields are provided as
containers for arbitrary binary data.  Once a record has been

as a field type in subsequent records.  Also, a field may be

fields.  In this particular example, the ClassLoad

identifier.  In general, a wide variety of field types

Each record type has an associated generator.  A

of object addresses in memory can be produced by an instrumented garbage collector, and arbitrary application−specific data might come from custom

The STOOP event pipe and the associated STEP system serve two purposes.  First, the STEP system provides a simple, intuitive interface for manipulating
trace data.  The data is abstracted into simple records that can be accessed similar to C structs.  Each record has an associated generator that knows how to
convert the record into a compact, platform independent binary format.  This encoding process is the second purpose of the event pipe.

trace records are defined using the STEP Definition Language (see panel above).  The definitions are then fed to the STEPc compiler which creates Java or
Once a profiling agent has been created to collect various trace data, it is a relatively simple process to transform the data into the STEP binary format.  First,

C code that is added to the profile agent.  Both the profiling agent and the visualization DataSource can then manipulate the data using a high−level
representation and neither need be concerned with the details of packing and unpacking the trace records.  The generated STEP interface totally encapsulates
the encoding.

Although the data abstraction provided by the STEP interface is convenient, the true benefit of the STEP system is the binary encoding of the trace data.
In many cases, profiling agents may collect millions of trace events.  However, it is often the case that the stream of events is highly 0.  The
STEP binary encoding is designed to facilitate the compression of such streams.  Preliminary results indicate that some traces can be compressed to 0.2%
of their raw size;  a significant finding if one is considering raw traces in excess of a gigabyte.

package _a_Package_1 {
  package aSubPackage {
    record Record1 {
      // two string fields

    }

    // an inherited record type
    record Record2 : Record1 {

      x, y : string;

      // a field with a property definition
      z : int <width = 4>;
    }
  }

  // a session with parameter n 
  session Session1 {
    parameter n : int;

    record Record3 {
      // an array field
      a : aSubPackage.Record2[n];
    }
  }
}

/* Some examples of the STEP−DL syntax */

example2.step:

The STEP Definition Language and its associated STEPc
compiler, allow users to quickly and easily add new record

example1.step:

package step {
  package example { 
    record ClassLoad {
      className : string;
      method    : identifier;
    }

    record FieldAccess {
      declaringClass : identifier;
      fieldName      : identifier;
      readWrite      : int;
      // use an int as a boolean
    }

    record MethodEnter {
      method : identifier;
    }

    record MethodExit {

      exitSite : identifier;
      method   : identifier;

    }

}
  }

/* Example STEP record definitions */

Sable Research Group
www.sable.mcgill.ca

View

DescriptorController

Profiling Agent: JVMPI Example

Input Input Input

Program

In
te

rf
ac

e

Agent
Buffer

D
ecom

press In
te

rf
ac

e

Event Pipe

Writer

Input
Data

C
om

pr
es

s

Reader

STEPC

General Explanation

Source

Profiling Agent (left side of diagram) Description of Event Pipe (center of diagram) Description of  Visualizer (right side of diagram)

Data Source

Interface
EVolve Platform

Other profiling agents may include:

− Off−line static traces

Example Interface

− Instrumented JVMs

Credits

EVolve is the visualization part of STOOP. It is an extensible environment that simplifies the creation of new visualizations, and focuses on providing maximum
extensibility and flexibility. The functionality of EVolve is primarily achieved by the combination of several components, which are supported by the EVolve
platform. EVolve provides several built−in components, and new components can be created through inheritance.

The EVolve platform is the kernel of the whole environment; it takes charge of organizing the components to make them work as a single entity.  Furthermore, the
platform handles the communication among components, and also works as the connection between the data source and the components.

Components are classified into three types: views, controllers, and descriptors. The views are the core of the visualization. They construct and display graphs
as well as interact with the user. A view receives messages from controllers or other views and can send messages to the descriptors.

Controllers receive command from the user and tell the views how to construct the graph accordingly. Unlike a view, a controller only sends out messages but
doesn’t respond to messages sent by other components.  Examples of controllers are filter and palette.

When the users find what they are interested in from the view and need detail information about it, the view asks the descriptor to show it. A descriptor is
exactly the opposite of a controller, in that it only receives messages from other components without sending messages out. A source code reader is one of the
general−purpose descriptors in EVolve.

A DataUnit represents a basic data
unit. It consists of values and
attributes, as well as other
problem−specific information. A
sequence of DataUnits is sent to
the EVolve platform by the data
source when data transmission is
required.

class DataUnit

Attributes are used to represent
non−quantitative data, such as
methods, classes, etc.  A
DataAttributeDesc describes the
properties of an attribute.

class DataAttributeDesc 

A DataAttributeRel represents
relations between attributes.

class DataAttributeRel 

Values represent quantitative data,
such as time, size of an object,
etc.  A DataValueDesc describes the
properties of a value.

class DataValueDesc

/** A JVMPI Event handler.

static void NotifyEvent(JVMPI_Event *event) {
  JNIEnv *env = event−>env_id;

    case JVMPI_EVENT_CLASS_LOAD: {
  switch (event−>event_type) {

   

            

   

Thanks to:

Our predecessors in the Sable group for the Soot Java Optimization

Transvirtual for the Kaffe virtual machine (www.kaffe.org).

Etienne M. Gagnon for assistance in printing the poster

Framework (www.sable.mcgill.ca/soot).

This research supported by NSERC    public int getTarget(DataAttributeRel relation, int id); // return the target of an attribute according to the given relationship

   

public interface DataSource {

   public boolean init(); // initialize the data source and return whether the initialization was successful
   
   public DataValueDesc[] getValueDesc(); // return the descriptions of values

   public DataAttributeDesc[] getAttributeDesc(); // return the descriptions of attributes

   public DataAttributeRel[] getAttributeRel(); // return the relationships among attributes

   public DataUnit nextUnit(); // return data units one by one

   public void restart(); // restart the data source

   public String getString(int index, int id); // return the string representation of an attribute
   

}

/** DataSource is the basic data interface that any data source must implement **/

...011010100...

Storage

Secondary

...011010100...

Sable


