//

McGil

University STOOP: The Sable Toolkit for Object—Oriented Profiling

-

Vs N

General Explanation

The STEP Definition Language examplel.step: exanplez.step:
/* Example STEP record definitions */ /* Some examples of the STEP-DL syntax */
The performance and behavior of object—oriented o : : package step { package a Package 1 {
: - rps -y - . -y = _ The STEP Definition Language and its associated STEPc — = =
programs Is often very difficult to understand, PrOfI | l ng Agent_ S|mp|e Examp|e PrOfI | | ng Agent_ JVMPI Examp|e ool el eaTs e gLy £ Gy 26 mews eeae packagedexzi\mple {d packagedaSubPagkage {
particularly for large, complex software systems e o e et sk reccl)r (N: aSSLoat { re%rt Recgr_ 1 {f_ »
consisting of many packages and classes. STOOP ' className - string; WO string Tields
o I npUt I npUt I npUt The three main constructs in a STEP definition file are: 1 method - ldentifier; 1 Ko W = UL
SIS t‘? fap'd'Y construct tools to COIIe_Ct and packages, sessions and records. Of these, only records are
Uliel e groflle GRLA e die Seonlien g required. A package definition is simply a namespace record FieldAccess { // an inherited record type
object-oriented programs. partitioning, similar to Java packages. A STEP session is declaringClass : identifier; record Record2 : Recordl {
_ _ _ _ used to define contextual information that is shared among fieldName - identifier; // a field with a property definition
As illustrated in the Figure to the right, there are several record types. readWrite - int; z : int <width = 4>;
three main components in the STOOP framework: // use an int as a boolean }
a profiling agent, an event pipe, and a visualizer. A STEP record is defined as a collection of fields. There } }
are several basic field types, namely: int, string, identifier))
The profiling agent collects various profile and data. ldentifier fields are a convenient extension of record MethodEnter { // a session with parameter n
data and uses it to generate a stream of events. strings that allow common values to be represented more method : identifier; session Sessionl {
Our intent is to support a wide variety of compactly in the trace file. Data fields are provided as + parameter n - Int;
rofilina agents includina aaents using the Java containers for arbitrary binary data. Once a record has been _
E/irtual ?\/Ia%hine Profi“ng Ir?terface (J%/MPD defined in terms of the basic types, it may in turn be used record MethodExit { record Records {
g ’ method > 1dentifier; // an array fTield

as a field type in subsequent records. Also, a field may be

instrumented virtual machines, and instrumented : _ : g - s s) ;
defined as an array of simple field types. exitSite : identifier; a - aSubPackage.Record2[n];

bytecode. It is also possible to use 1 1
previously—recorded traces (off-line input). 1 1

+ +

The event pipe serves as a high—level interface
between the front—end profiling agent and the
back—end visualizer. It converts profile data

to a binary format, buffers (and potentially
compresses) the data, then forwards it to the
visualizer. In order to provide a clear and
flexible interface, profile events are described
using the STOOP Trace Event Protocol: STEP.
A compiler, STEPc, generates code that converts
high—level representations of the profile data

to a form that can easily be written to, and

read from the event pipe.

The visualizer reads the stream of profile

events leaving the pipe and presents the data

using several different views. These views may
take different forms according to the desired
goals. We show some example views on the right.

The STEP system was inspired by the Meta-TF
language introduced by Chilimbi, Jones & Zorn
(ISMM ’00) and by the SmartFile system

introduced by Haines, Mehrotra & Van Rosendale
(OOPSLA ’95). Since our primary goal was to
create a framework that could accept arbitrary
profile data, the notion of using a profile
specification language was naturally appealing. In put
Originally, we had hoped to use the Meta—TF
language directly, however we found it useful to
modify and recast the ideas in a format that
resembles the SmartFile definition language. The
result is a distinct STEP definition language.

Data Data Source
Buffer

Program

.--011010100. .. .--011010100. ..

Source Interface

Interface
Compress
Interface

ssaadwo2a

Our approach is unlike commercial profilers such
as Optimizelt, JProbe and Jinsight in that these
systems are fixed profiling tools where the user
Interacts with the profiler to view predetermined

program properties. The purpose of our tool is to Other prOfI i ng agents may Include:
allow one to develop profilers to view both

standard and non-standard program properties, — Instrumented JVMSs

and to view events that come from a variety of

sources. — Off-line static traces

Event Pipe

STOOP has been implemented in Java and we have
applied the toolkit to a variety of tasks for

profiling Java. We are particularly interested

in applying the toolkit to study program

behavior that might suggest new optimization or
execution strategies for Java. For example, by

examining the behavior of hot data fields and The STEP Interface
the relationships between field accesses we may
develop new strategies to make better use of a

data cache.
) \/
Credits
Rhodes Brown Karel Driesen Secondary
John Jorgensen Laurie J. Hendren Sto rage
Qin Wang Clark Verbrugge u

School of Computer Science U
McGill University u

This research supported by NSERC

Thanks to:
Transvirtual for the Kaffe virtual machine (www.kaffe.org).

Our predecessors in the Sable group for the Soot Java Optimization
Framework (www.sable.mcgill.ca/soot).

K Etienne M. Gagnon for assistance in printing the poster /

-
~

/ \ / Profiling Agent (left side of diagram) \ / Description of Event Pipe (center of diagram) \ / Description of Visualizer (right side of diagram)
Profiling agents provide raw data to the rest of the STOOP framework. Data may originate from a wide variety of sources. For example, traces of method The STOOP event pipe and the associated STEP system serve two purposes. First, the STEP system provides a simple, intuitive interface for manipulating EVolve is the visualization part of STOOP. It is an extensible environment that simplifies the creation of new visualizations. and f oroviding maximum
invocations or object instantiations might come from a agent communicating with a virtual machine via the Java Virtual Machine Profiling Interface (JVMPI), maps trace data. The data is abstracted into simple records that can be accessed similar to C structs. Each record has an associated generator that knows how to OIVE 15 the Visuallzatlon part ot 51 Ur. 115 ah extensibic EVITonMENT that SIMPTITIES e creatlon of NEw VISUallzatlons, andiioctises on providing maximu
, \ 2 of object addresses in memory can be produced by an instrumented garbage collector, and arbitrary application—specific data might come from custom convert the recordlinto/a compact, platform independent binary format,. This ericoding process is the secordlpUrpose of the event pips extensibility and erX|b_|I|ty. The funct_longllty of EVolve is primarily achieved by the combination of §evera_1l components, which are supported by the EVolve
/ a instrumentation compiled into the profiled program ’ ' ' platform. EVVolve provides several built—in components, and new components can be created through inheritance.
VA Once a profiling agent has been created to collect various trace data, it is a relatively simple process to transform the data into the STEP binary format. First, : : o " : :
/\ \ € ﬁ To avoid restricting the set of possible data sources, STOOP imposes minimal requirements on profiling agents. Any information source-—-including existing trace records are defined using the STEP Definition Language (see panel above). The definitions are then fed to the STEPc compiler which creates Java or Tlgifgr\r/r?lr:/; ng:zga:;n clgr;[\r:ﬁ krﬁ:;i: OO: ;rsﬁovr\]/hcztlgrﬁn\é:]rg:tr:eannt i I;I?ok\?\?o(;igrs: tﬁ‘;%?:: éi;?(?ntggt\(;\?ergg c:ggrg;t;osrg\arléee t;rf (;ntr\]/(\;ocrgr;a]\s gnselrr]\?sle entity. Furthermore, the
3 / trace data and sources as yet unforeseen——-—may feed a STOOP profiling agent, so long as the data it produces can be described in the specification language for C code that is added to the profile agent. Both the profiling agent and the visualization DataSource can then manipulate the data using a high—level P . g comp ! . P '
- | STEP, the STOOP Trace Event Protocol. The specification of the data stream is compiled into a set of interface methods which the profiling agent calls to send ' ' ' ' ' ' ' e : : : . :
‘ S ’ : P P P gag representa_ltlon and neither need be concerned with the details of packing and unpacking the trace records. The generated STEP interface totally encapsulates Components are classified into three types: views, controllers, and descriptors. The views are the core of the visualization. They construct and display graphs
2 its data to other components of the STOOP framework. the encoding.) : : : : ;
, (as well as interact with the user. A view receives messages from controllers or other views and can send messages to the descriptors.
‘\ Profiling agents created to date include: Although the data abstraction provided by the STEP interface is convenient, the true benefit of the STEP system is the binary encoding of the trace data. : : : : :
§ In many cases, profiling agents may collect millions of trace events. However, it is often the case that the stream of events is highly 0. The Controllers receive command from the user and tell the views how to construct the graph accordingly. Unlike a view, a controller only sends out messages but
- - - —a JVMPI agent which reports class loading and method entry/exit; STEP binary encoding is designed to facilitate the compression of such streams. Preliminary results indicate that some traces can be compressed to 0.2% doesn’t respond to messages sent by other components. Examples of controllers are filter and palette.
— an instrumented copy of the Kaffe virtual machine (www.kaffe.org), which reports field accesses as well as class loading and method entry/exit; DTNELF Y P, B ST el 7 e (& SO ey [y lirees i @/0sss ok plidys When the users find what they are interested in from the view and need detail information about it, the view asks the descriptor to show it. A descriptor is
— instrumented Java class files produced from existing programs using Soot (www.sable.mcgill.ca/soot), a framework for analyzing and transforming Java exactly the opposite of_a cont_roller, in that it only receives messages from other components without sending messages out. A source code reader is one of the
bytecode. The transformed classes report their own field accesses as well as method entries and exits. general—purpose descriptors in EVolve.

" VAN VAN VAN),

