
*J: A Tool for Dynamic Analysis of Java Programs∗

Bruno Dufour, Laurie Hendren and Clark Verbrugge
School of Computer Science

McGill University
Montréal, Québec, CANADA H3A 2A7
[bdufou1,hendren,clump]@cs.mcgill.ca

ABSTRACT
We describe a complete system for gathering, computing and pre-
senting dynamic metrics from Java programs. The system itself
was motivated from our real goals in understanding program be-
haviour as compiler/runtime developers, and so solves a number
of practical and difficult problems related to metric gathering and
analysis.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.11 [Software Archi-
tectures]: Domain-specific architectures

General Terms
Experimentation, Design, Languages, Measurement, Performance

Keywords
Dynamic Metrics, Software Metrics, Program Analysis, Java, Pro-
filing, Execution Traces

1. INTRODUCTION
This work describes a complete system for gathering trace data

from runs of Java programs, calculating dynamic metrics based on
that input (offline), and presenting the output in a usable fashion.
The system itself was motivated from our real goals in understand-
ing runtime program behaviour as compiler and runtime system de-
velopers, and so solves a number of surprisingly difficult problems:

• Dynamic metrics do not yet form a well-defined corpus of
calculations. Individual metrics were motivated from ongo-
ing investigations into program behaviours, and so consider-
able flexibility must be built into the system to allow for new
metric calculations to be easily added.

• Existing dynamic data gathering systems did not provide all
the data required for the metrics we wanted to compute. For
future metrics, as well as comparative features, we needed
the ability to calculate metrics from a wide variety of in-
put sources, including Java’s built-in profiling interface, in-
strumented programs and virtual machines, and more. This
genericity impacted both trace format and how calculations
could be done.

∗This work was supported, in part, by NSERC, FCAR and McGill
FGSR. Special thanks to Tobias Simon for the web pages and Marc-
André Dufour for designing the icons for the metrics.
Copyright is held by the author/owner.
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

• Trace data from running programs can be quite voluminous,
even under compression. Handling such large inputs as well
as the performance limitations of some trace generators se-
verely constrains the design of the system.

Section 2 describes the overall pipeline design of the software
tool, describing each of its 3 basic components. Related systems
are discussed in section 3, and future work and conclusions are
given in sections 4 and 5 respectively.

2. DESIGN
Conceptually, *J is a pipeline composed of three major compo-

nents. The trace generator produces a stream of program events
from a program execution, which is then fed to the analyzer. The
analyzer calculates the actual metrics and produces summary in-
formation as an XML file which can then be incorporated into a
database or viewed using different means.

2.1 Trace Generator
Traces in *J are formed of records of runtime events, and use a

simple, generic and extensible trace format. This simplifies the task
of collecting data from multiple sources. This design also makes it
easy to add new metrics because they can be calculated by repro-
cessing old data, thus avoiding costly trace generation phases.

Currently, our main trace generator uses the built-in Java Vir-
tual Machine Profiling Interface (JVMPI) [1] to dynamically re-
ceive events from a JVM. Command-line options can modify the
agent’s behaviour, and in particular, a specification file can be used
to select which events and which of their fields have to be recorded
in the trace file, without requiring any modification to the agent.
This agent runs on any platform implementing JVMPI.

Unfortunately, while JVMPI is reasonably ubiquitous it has sev-
eral drawbacks. The most obvious one is the fact that JVMPI’s
callback mechanism is inherently slow for frequent events, which
results in a very significant increase in execution time even for sim-
ple benchmark programs. JVMPI also does not guarantee complete
trace data—some events may be skipped during VM startup and
have to be explicitly requested in order to obtain a precise execu-
tion trace; this requires non-trivial internal state in order to track
and handle missing events. A further limitation of JVMPI is in
the data it provides. Not only are event types fixed (limiting metric
possibilities), but even the event data can be insufficient: JVMPI re-
ports instruction executions using code offsets, and so locating the
actual opcode of the executed instruction requires classfile parsing.

Complete traces of even small programs can be very large. *J
thus supports splitting trace files into more manageable sizes. *J is
also designed to make use of a pipe or socket between the agent and
the analyzer, eliminating the need to store trace files on disk. Ap-



propriate compression techniques and alternative trace generators
are part of active future work.

2.2 Analyzer
The analyzer in *J processes the generated traces and computes

appropriate metrics. This component is itself a pipeline of modular
metric computations and other components, and so provides flexi-
bility in trace processing as well as easy modification to the set of
analyses.

Analysis operations in *J are organized hierarchically as Packs
and Operations. Pack objects are containers for other Packs
or Operations, whereas Operations perform computations.
This hierarchical formation is conceptually clean and allows for
modular use of operations or packs.

Because of the large amount of information that is to be pro-
cessed for each trace file, an event dispatch system that simply
propagates events through the Pack tree is impractical. Instead,
*J preprocesses this tree and generates a mapping from events to
sets of Operations, effectively “flattening” the hierarchy while
keeping the relative ordering of operations. Only operations inter-
ested in an event will therefore receive it, thus eliminating the cost
of recursively traversing the tree for each event.

*J’s default Pack tree contains several operations grouped into
different packs based on their functionality:

• transformers: Transformers modify the event objects in order
to provide services to subsequent operations. For example,
one analysis will map JVMPI identifiers to unique identifiers.

• metrics: This pack contains all of the analyses that are used
as part of our dynamic metrics project.

• triggers: Triggers are used to invoke other specific operations
when a particular criterion is met, for example the execution
of 1000 bytecode instructions. Triggers allow metric values
to be computed over various intervals by modification of a
simple counting trigger operation rather by having to modify
or create new, complex metric operations.

• printers: Printers are responsible for converting the trace file
to other formats. For example, one printer generates a dy-
namic call graph based on the recorded method invocations.

2.3 Output Processing
In *J, each operation and/or pack is responsible for generating

its own output. This is flexible, but not always convenient, and so
the default metric pack is capable of aggregating all metric results
and generating a single XML file for the entire set of results.

We provide an XSL style sheet that allows XML files to be viewed
in common web browsers by transforming them into standard HTML
files. More interestingly, we have implemented a parser for the
XML files that is designed to insert the metric analysis data into a
MySQL database. This database is then used to generate dynamic
HTML pages on our website using PHP. The website supports arbi-
trary user-defined database queries. This dynamic website has the
advantage of being very easy to update since its contents immedi-
ately reflects changes made to the database.

3. RELATED WORK
Dynamic metrics themselves are discussed in [6, 4].
There are several JVMPI-based profilers for Java programs, e.g.

JInsight [7], JProbe [2], and Optimizeit [3]. These profilers tend to
provide a fixed set of performance metrics, and do not allow one to
define new calculations or metrics.

Several offline Java profilers exist. “Caffeine” [5] uses Java’s
built in debugging interface (JVMDI) to produce traces of pro-
gram behaviour. Caffeine includes a Prolog engine that can an-
swer queries about program execution, with the goal of reconciling
high level model conjectures about a program with its runtime be-
haviour. “Shimba” [9] traces Java programs for reverse engineering
purposes. In comparison we focus on generating diverse summary
information relevant to compiler/runtime developers.

Online Java profiling systems such as [8] also exist; such ap-
proaches of course have very different engineering requirements.

4. FUTURE WORK
There are dynamic metrics that are not possible to compute using

the JVMPI agent in *J, e.g. stack and memory layout are necessary
for some memory-related metrics. In order to address this problem,
we are working on modifying SableVM, an open-source JVM, to
generate *J traces. Other possibilities include program instrumen-
tation using SOOT, a Java bytecode transformation framework.

In order to handle large traces more efficiently, integration with
trace compression systems are also planned. We are also investi-
gating the use of summary information to encode execution data
instead of our current stream-based approach.

Of course, more metrics are continually being added.

5. CONCLUSIONS
We have described the design of a system that solves several

problems arising from the need to investigate dynamic behaviour of
Java programs. Data collected from this system for a wide variety
benchmarks is available on the web at www.sable.mcgill.-
ca/metrics, as well as *J itself. We are actively improving this
software, and welcome feedback including metric suggestions.

6. REFERENCES

[1] URL: http://java.sun.com/products/jdk.
[2] URL: http://java.quest.com/jprobe/jprobe.shtml.
[3] URL: http://www.optimizeit.com.
[4] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark

Verbrugge. Dynamic metrics for Java. In Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’03), 2003.

[5] Yann-Gaël Guéhéneuc, Rémi Douence, and Narendra Jussien.
No Java without Caffeine – a tool for dynamic analysis of Java
programs. In 17th IEEE Conference on Automated Software
Engineering, pages 117–126, Edinburgh, UK, September
2002.

[6] Sherif M. Jacoub, Hany H. Ammar, and Tom Robinson.
Dynamic metrics for object oriented designs. In Sixth IEEE
International Symposium on Software Metrics, pages 50–61,
1999.

[7] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky,
John Vlissides, and Jeaha Yang. Visualizing the execution of
Java programs. In Software Visualization 2001, number 2269
in LNCS, pages 151–162, 2002.

[8] Steven P. Reiss. Visualizing Java in action. In Proceedings of
the ACM 2003 Symposium on Software Visualization, pages
57–65, San Diego, California, USA, 2003.

[9] Tarja Systä. Understanding the behavior of Java programs. In
Seventh Working Conference on Reverse Engineering
(WCRE’00), pages 214–223, 2000.


