
*J Agent

Data Structures

JVM Runtime

While the JVMPI profiler is our main trace
generator, we wanted to be able to collect data
from other sources, such as instrumented VMs
or instrumented programs. Therefore, the trace
file format had to be generic enough to allow
different data sources to generate traces with
potentially different information. We designed
the trace files to include space for arbitrary
attributes in the header, which are very similar
in nature to classfile attributes in Java. They
allow a data source to encode arbitrary informa−
tion about the events found in a trace in a
portable way. Standard attributes which must
be recognized by all trace consumers are pro−
vided to encode common information. For
example, one attribute is reserved for encoding
the bytecode prediction strategy. In addition,
the trace header contains bit masks for each
event that indicate which of its fields are present
in the trace. Each trace file also gets tagged with
a major and a minor version number in order
to allow for major changes in the format that
cannot be dealt with using simple attributes.

Thread ID Set

Object ID Set

Method ID Set

Arena ID Set

Class : Methods Map

Method : Code Map

Arena : Objects Map

Bruno Dufour bdufou1@cs.mcgill.ca

Clark Verbrugge clump@cs.mcgill.ca

Laurie Hendren hendren@cs.mcgill.ca

School of Computer Science
McGill University

www.sable.mcgill.ca

Sable Research Group

Thanks to Tobias Simon for the dynamic website and database
interface and Marc−André Dufour for the metric icons

This research was supported by NSERC and FQRNT

− Triggers:

− Transformers:

− Printers:

− Metrics:

Currently, our trace generator uses the buit−in Java Virtual Machine Profiler Interface (JVMPI) to dynamically receive events
from an executing Java Virtual Machine (JVM). Command−line options can modify the agent’s behaviour, and in particular, a
specification file can be used to select which events and which of their fields have to be recorded in the trace file, without
requiring any modification to the agent. This agent runs on any platform implementing the JVMPI specification.

Complete traces of even small programs can be very large. *J thus supports splitting trace files into more manageable sizes.
*J is also designed to make use of a pipe or socket between the agent and the analyzer, eliminating the need to store trace
files on disk. While *J can output GZipped trace files, more appropriate compression techniques and alternative trace
generators are part of active future work.

M c G i l l

Sable

Trace AnalyzerTrace Generator Trace File Output Processing Examples of Dynamic Metrics
The analyzer in *J processes the generated traces and computes appropriate metrics. This component is itself a pipeline of
modular metric computations and other components, and so provides flexibility in trace processing as well as easy modification

Triggers are used to invoke other specific operations when a particular criterion is met, such as the execution
of 1000 bytecode instructions. Triggers allow metric values to be computed over various intervals by modifica−
tion of a simple counting trigger rather than by having to modify or create new, complex metric operations.

dynamic call graph based on the recorded method invocations.
Printers are responsible for converting the trace file to other formats. For example, one printer generates a

Transformers modify the event objects in order to provide services to subsequent operations. For
example, one transformer maps JVMPI identifiers to unique identifiers.

its own output. This is flexible, but not always convenient, and

results and generating a single XML file for the entire set of

We provide an XSL stylesheet that allows such XML files to
be viewed in common web browsers by converting them to
static HTML files.

PHP. The website supports arbitrary user−defined database
queries. This dynamic website has the advantage of being
very easy to update since its contents immediately reflects
changes made to the database. This also facilitates the
distribution of dynamic metric results to a group of users, and

so the default metric pack is capable of aggregating all metric

More interestingly, we have implemented a parser for the

analysis data into a MySQL database. This database is then
used to generate dynamic HTML pages on our website using

XML files that is designed to insert the dynamic metric

*J: A Tool for Dynamic Analysis of Java Programs

In *J, each operation and/or pack is responsible for generating

computations.

can form the basis of a benchmark knowledge base.

size.appRun.value:

HelloWorld: 4 Javac: 26267 Compress: 5084

touched

concurrency.lockDensity.value:

polymorphism.appReceiverArityCalls.bin:
a call site with one, two and more than two different receiver types. This measurement captures the amount
of polymorphism in a program, and does not include startup.
HelloWorld: 100%,0%,0% Javac: 73%,15%,12% Jack: 90%,10%,0%

data.floatDensity.value:
bytecode instructions. This measurement captures the relative importance of floating−point operations.
HelloWorld: 2.0 Javac: 0.1 Mtrt: 308.5

1000 executed bytecode instructions. It captures the amount of synchronization found in a program.
HelloWorld: 0.19 Compress: 0.0 Jack: 2.13

memory.byteAllocationDensity.value:
bytecode instrucitons. It captures the "memory−hungry" aspect of a program.
HelloWorld: 1734 Compress: 11 Javac: 132

Trace Collection Trace Analysis Output Processing

to the set of analyses.

This pack contains all of the analyses that are used as part of the dynamic metrics project.

More metrics descriptions and values can be found at:
http://www.sable.mcgill.ca/metrics/

Analysis operations in *J are organized hierarchically as Packs or Operations. Pack objects are containers for other Packs,
whereas Operations perform computations. This hierarchical formation is conceptually clean and allows for modular use of
Operations or Packs.

Because of the large amount of information that is to be processed for each trace file, an event dispatch system that simply
propagates events through the Pack tree is impractical. Instead, *J preprocesses this tree and generates a mapping from events

interested in an event will therefore receive it, thus eliminating the cost of recursively traversing the tree for each event.

Packs and Operations can be added, removed or redefined. *J’s default Pack tree contains several operations grouped into
different Packs based on their functionality:

to sets of Operations, effectively "flattening" the hierarchy while keeping the relative ordering of Operations. Only Operations

This metric measures the number of bytecode instructions which are executed at least once, or
, during the entire duration of a program’s execution. This measurement is not affected by dead code.

This metric measures the number of floating−point operations per 1000 executed

This metric measures the percentage of all calls that occur from

This metric measures the average number of lock operations (monitorenter)per

This metric measures the number of bytes allocated per 1000 executed
*J is distributed at:
www.sable.mcgill.ca/~bdufou1/starj/

Conceptually, *J is a pipeline consisting of three
major components. The trace generator produces
and serializes a stream of events from a program
execution in the form of a trace file. The trace is

primarily used to compute dynamic metrics.
Finally, the metric data is emitted in the form of
an XML file, which is then ready to be processed
and incorporated into a database constituting the
core of a dynamic website, or viewed using other
means.

then passed on to the trace analyzer, which is

Traces in *J are formed of records of runtime events, and use a simple, generic and extensible trace format. This simplifies the
task of collecting data from multiple sources. This design also makes it easy to add new metrics because they can be calculated
by reprocessing old data, thus avoiding costly trace generation phases.

Unfortunately, while the JVMPI is reasonably ubiquitous it has several drawbacks. The most obvious one is the fact that the
JVMPI’s callback mechanism is inherently slow for frequent events, which results in a very significant increase in execution
time even for simple benchmark programs. The JVMPI implementation also does not guarantee complete trace data: some
events may be skipped during VM startup and have to be explicitly requested in order to obtain a precise execution trace. This
requires non−trivial internal state in order to track and handle missing events. A further limitation of the JVMPI is in the data
it provides. Not only are the event types fixed (limiting dynamic metric possibilities), but even the event data can be insufficient:
the JVMPI reports instruction executions using code offsets, and so locating the actual opcode of the executed instruction
requires classfile parsing.

It is intended to capture the dynamic size of a program, and does not include startup.

.class files JVMPI

Classfile Parser Instruction Predictor

Scene

Classfile ParserInstruction Predictor

Trace Reader

Event
Specification

XSLT

Static
HTML

DB Frontend

MySQL DB

HTML
Dynamic

Credits

Events

Pack/Operation Hierarchy Event:Operations Map

Trace File

− Pipe
− FIFO
− Socket

− Disk

Flattening

Events
JVMPI Backend

Requests

Dependencies

Events

XML File

stdout

. . .

Regular File

P

P2 P3 P4

O6OO4OOO

1

32 51 INST

EXIT

FREE

ALLOC

ENTRY

O1 O5

O2 O5 O6

O3O1

Overview

