
Build a compiler using sableCC

Old SableCC conflict message

Parse-Tree Viewer

Compiler generator Visual Debugger

Basic Concepts

shift/reduce conflict in state [stack: TIf PExp TThen PInstr *] on TElse in
{
 [PInstr = TIf PExp TThen PInstr * TElse PInstr] (shift),
 [PInstr = TIf PExp TThen PInstr *] followed by TElse (reduce)
}

This messages tells us that after the parser has successfully parsed the
sequence of tokens and productions [if exp then instr], if it sees an
’else’ token, it cannot decide whether it is:

a) (shift) parsing an if/then/else construct,

 if exp then
 instr
 else
 instr

 or

b) (reduce) if it has seen a complete if/then instruction followed
 by the upcoming ’else’.

 if exp then
 instr

 else …

Unintuitive message

If the parser interprets the prefix [if exp then exp] as [instr], it is
somehow saying that there should exist a program of the form [instr
else ...]. Yet, no such program can exist, given the grammar wrote in
the previous section.

We have modified the way SableCC informs us that a grammar
contains a conflict.

When SableCC processes a conflictual grammar, it issues a conflict
message and exits. Here is the old conflict message issued by
SableCC for the grammar wrote in the previous section :

Our visual debugger aims to simplify the task of understanding
and fixing conflicts in a grammar.

The figure below illustrates where the visual debugger appears
in the steps to build a compiler using SableCC.

Parse trees specification file
By now, when SableCC processes a conflictual grammar, it
provides two parse trees to the visual debugger by using a text
file.

Our visual debugger illustrates a conflict in a grammar by
showing the parse trees obtained from the compiler generator.

Here is the parse-tree viewer that illustrates the conflict found
in the grammar seen before.

The table below lists the various types of node found in the
parse-tree viewer.

Default Expansion
The debugger provides a default tree expansion which only
shows the important elements involved in a conflict.

This expansion can be performed by expanding parent nodes,
as shown in the figure below.

Link Back to the Grammar
Once a conflict has been understood, the user must go back to
editing the grammar to eliminate the conflict. To simplify this,
our visual debugger provides a contextual menu that allows
the user to navigate from a symbol in a parse-tree viewer to
the related line of the input grammar file.

Equivalent Nodes Matching
Double clicking on any main prefix, prefix, or lookahead node
of a tree causes the appropriate expansion of the other tree in
order to highlight the related equivalent node.

This should help the user to better identify similarities and
differences between the two parse trees to understand the
conflict.

UQÀM
Université du Québec à Montréal

Sébastien Adam
sebastien@sablecc.org

Eclipse Plug-ins
In Eclipse, we have created a new perspective containing a grammar editor and a view that shows
our visual debugger.

In addition, we have integrated SableCC to allow the users to process his grammar. Hence, the
users can write, process, and fix his grammar in the same environment.

Visual Debugger Plug-in

SableCC Plug-in
Until now, SableCC was useable only from the command line. We have integrated SableCC in
Eclipse by creating a new workbench menu and a new editor context menu. We have
implemented some menu items that trigger the functionalities of SableCC.

A compiler generator is a program that translates a specification into a
compiler for the programming language described in the specification.

Grammar
We use a grammar to define the accepted sentences of a language. As
seen in the previous figure, a grammar is a set of productions of the
form :

symbol = symbol … symbol

Specification file
A specification file specify the words and the sentences accepted in a
language. Here is an example:

Visual Conflict Debugger
Eclipse Plug-in

for the
SableCC compiler generator

Derivation
To show that a sentence is in the language described by a grammar,
we can perform a derivation.

Using the previous grammar, here are two derivations of the sentence
if a==b then if b==c then d=a==c else d=a==b :

Parse tree
A parse tree is made by connecting each symbol in a derivation to the
one from which it was derived. Here are two incomplete parse trees for
the previous derivations :

Ambiguous grammar
A grammar is ambiguous if it can derive a sentence with two parse
trees. In this case, we said that the grammar contains a conflict.

SableCC
SableCC is an object-oriented framework that generates
compilers (and interpreters) in the Java programming
language.

SableCC

http://sablecc.org

[1] Gagnon, Etienne. SableCC, An Object-Oriented Compiler
Framework. Master's thesis, McGill University, Montreal
Quebec, March 1998.

[2] SableCC: A Compiler Generator. http://sablecc.org/.

[3] Eclipse: An Open Extensible IDE. http://eclipse.org/.

[4] IBM Corporation. Eclipse Platform Technical Overview,
2003. World-Wide Web page URL: http://www.eclipse.org/
articles/index.html.

// Words

Tokens

 if = 'if';
 then = 'then';
 else = 'else';
 assign = '=';
 eq = '==';
 neq = '!=';
 id = ['a'..'z']+;

// Sentences

Productions

instr
 = {if} if exp then instr |
 {if_else} if exp then instr else instr |
 {assign} id assign exp;

exp
 = id op id;

op
 = {equal} eq |
 {unequal} neq;

instr

if exp then elseinstr instr

if exp then instr

instr

if exp then instr

if exp then elseinstr instr

First

instr = if exp then instr
instr = if a==b then instr
instr = if a==b then if exp then instr else instr
instr = if a==b then if b==c then instr else instr
instr = if a==b then if b==c then d=exp else instr
instr = if a==b then if b==c then d=a==c else instr
instr = if a==b then if b==c then d=a==c else d=exp
instr = if a==b then if b==c then d=a==c else d=a==b

Second

instr = if exp then instr else instr
instr = if a==b then instr else instr
instr = if a==b then if exp then instr else instr
…

First Second

by

3 4 5

Process the
grammar

Communicate
parse trees

Eliminate the
conflict

SableCC

Specification

1

2

Visual
Debugger

Visual Debugger

Eclipse

References

By using a text file, we separate the debugger tool from
SableCC itself. This choice allows for other parser generators
to use our visual debugger.

1. Construct two parse trees
2. Write these parse trees in a text file

SableCC

Visual
Debugger

3. Parse the file to extract the parse trees
4. Show the parse trees in a view

Communicate
parse trees

We have integrated our visual debugger in Eclipse by implementing a view, two tree viewers, a
label provider, and a content provider.

Here are the steps to build a compiler
using SableCC :

1. Creating a SableCC specification file.

2. Launching SableCC.

3. Creating the working classes.

4. Creating a main compiler class.

5. Compiling the compiler.
SableCC

Specification

Compiler
framework

*.java

Actions

*.java
Main.java

Java Compiler

Compiler

*.class

1

2

3 4

5

