
McLab: An extensible compiler toolkit for MATLAB and
related languages

Andrew Casey, Jun Li, Jesse Doherty
Maxime Chevalier-Boisvert, Toheed Aslam, Anton Dubrau

Nurudeen Lameed, Amina Aslam, Rahul Garg
Soroush Radpour, Olivier Savary Belanger, Laurie Hendren

Clark Verbrugge

Sable Research Group,
School of Computer Science, McGill University

Email: [acasey, jli127, jdoher1, mcheva, taslam, adubra, nlamee,
aaslam1, garg, sradpo, osavary, hendren, clump]@cs.mcgill.ca

Website: http://www.sable.mcgill.ca/mclab

Abstract

MATLAB is a popular language for scientific computation. Effec-

tively compiling MATLAB presents many challenges due to the dy-

namic nature of the language. We present McLab, an extensible

compiler toolkit for the MATLAB and related languages. McLab

aims to provide high performance execution of MATLAB on mod-

ern architectures while bringing modern programming concepts such

as aspect-oriented programming and other extensions to MATLAB.

McLab consists of several components. The first component is an

extensible frontend to parse and analyze MATLAB as well as ex-

tensions to MATLAB. The second component, called McFor, is a

compiler to translate a static subset of MATLAB to FORTRAN. The

third component, McVM, is a virtual machine including a JIT com-

piler to execute MATLAB code. Finally we also provide language

extensions such as AspectMatlab. We present the current state of

the implementation of McLab and describe ongoing work and fu-

ture directions of the project.

Keywords: Compiler, MATLAB, programming languages, scien-

tific computing, JIT compilation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

C3S2E-10 Montreal [QC, CANADA]
Editor: B.C. Desai
Copyright 2010 ACM 978-1-60558-901-5/10/05 $5.00.

1. INTRODUCTION

MATLAB R©1 is currently one of the most popular languages for

scientific and numerical computing. MATLAB is known for its flex-

ible handling of arrays, simplicity of learning and its dynamic fea-

tures. However, there remain many challenges. First, new compila-

tion and virtual machine techniques are required to get faster execu-

tion which can also take advantage of modern processors. Second,

new language support is required for the effective expression of

general purpose data structures and algorithms beyond arrays and

numeric codes.

The McLab project aims to combine the ease and familiarity of

the core MATLAB language with a more modern feature set based

upon the work of programming language theory and compiler com-

munities. McLab provides an extensible set of compilation, anal-

ysis and execution tools built around the core MATLAB language

to experiment with new language features and compiler optimiza-

tions. The extensibility of the toolkit has already been demon-

strated with an aspect-oriented programming extension to MATLAB

language implemented within McLab.

2. COMPONENTS OF MCLAB

McLab is built as a set of reusable, extensible and mostly inde-

pendent components and thus provides the compiler community an

opportunity to use the components within their own projects.

Figure 1 shows the overall structure of McLab. The shading in

the components indicates the maturity of each component. The

darker shaded components have complete initial implementations

and the unshaded components are our future plans. In the remain-

1MATLAB is a registered trademark of The Mathworks, Inc. (www.

mathworks.com/products/matlab/).

Domain−Specific LanguagesAspectMatlab Matlab

Extension

Frontend

Matlab

Optimizer Framework

Analysis Framework

Data Dependence Analyzer

Transformation Framework

Extension

McLab IR

Matlab Generator

Fortran

Matlab

McFor

Converter

Matlab−to−Fortran

McVM

Virtual Machine

McLab Framework

McLab

Figure 1: Structure of McLab

ing sections we discuss the components in more detail.

2.1 Frontend and static analysis

The first component of McLab is an extensible lexer and parser

framework for MATLAB language. The framework is built around

the JastAdd[6, 1] compiler compiler and our own extensible lexer

called Metalexer[3, 2]. The second component is a static analy-

sis framework which provides a framework for writing static flow

analysis passes. The lexer, parser and static analysis system to-

gether constitute the McLab frontend. The frontend first translates

MATLAB to a clean subset of MATLAB we call Natlab. The sub-

set is then converted into a tree-based intermediate representation

we call McIR. Our static analysis and transformation framework

operates on McIR. Apart from traditional compiler optimizations,

we have also utilized the static analysis framework in implementa-

tion of our AspectMatlab[8, ?] extension and continue to look into

opportunities for usage in other tools.

A new component of the frontend is a loop analysis and transfor-

mation framework. Typically loop dependence analysis requires

the knowledge of loop bounds but these are typically not avail-

able statically in a language such as MATLAB. The basic aim of

loop analysis framework is to avoid expensive run time dependence

analysis tests by predicting the loop bounds which are required for

data dependence testing based on the profiled information and do

most of the computations at compile time. It consists of a profiler

to record loop bounds from program runs, a heuristic engine to pre-

dict loop bound ranges based on profiling information as well as a

dependence analyzer and loop transformer.

2.2 McFor

McLab provides two different backends: McFor[7] andMcVM[4,

5]. McFor is a backend of McLab compiling statically to Fortran. It

supports a subset of MATLAB with fewer dynamic features, which

allows more aggressive static analyses like type inference and can

thus produce highly-optimized Fortran code. This allows tapping

into the high performance of existing advanced Fortran compilers.

Although MATLAB has too many dynamic features to allow for

the full MATLAB language to be compiled efficiently to a static lan-

guage like Fortran, we are pushing the envelope and attempting to

handle as much of the language as possible. This effort is leading us

to understand more about the tradeoffs between static and dynamic

languages and is leading to an interesting subset of MATLAB that

can be effectively automatically translated to Fortran. Our previ-

ous work has focused on compiling to Fortran 95. We have now

started exploring the possibility of utilizing the polymorphic capa-

bilities provided in newer versions of Fortran. These capabilities

have only recently been implemented in Fortran compilers.

2.3 McVM

McVM is an high-performance virtual machine for the MAT-

LAB programming language. It includes a generic interpreter and a

type-specialization based JIT compiler. The VM performs a range

of classical optimizations and some more advanced dynamic opti-

mizations, including advanced type-inference optimization to achieve

high performance.

MATLAB poses many new challenges in VM implementation

and we continue to develop new sets of analysis and optimization

techniques to increase performance. One such problem posed by

MATLAB is that MATLAB has copy semantics for array assignment

operator. However many such copies are not necessary. For exam-

ple, if array A has been assigned to an array B, and if neither array

is modified after the assignment, then there is no need to create a

copy of B and all references to array A can then be replaced by ref-

erences to array B. We are implementing a new analysis algorithm

inMcVM to identify the avoidable copies thus eliminating the over-

head of unnecessary copies. Another optimization under develop-

ment is inlining and polymorphic inlining caching implementation

for McVM. Polymorphic inline caching will cache the last results

of call dispatch for each call site. These cached dispatch results will

then be inlined. Inlining will make function calls faster by remov-

ing the overhead associated with it (i.e. creating stack-frame, copy-

ing parameters) and will allow us to do use intra-procedural anal-

ysis and optimizations on the program instead of having to write

more complex inter-procedural ones. Apart from the optimizations

mentioned, we are also exploring the adaptation of techniques such

as on-stack replacement for application in McVM.

We have also started a research project to extend McVM to gen-

erate code for multi-core CPUs and GPUs. GPUs have recently

emerged as a high-performance alternative to CPUs for certain classes

of highly parallel numerical codes such as dense matrix operations,

n-body codes and many DSP algorithms. However, GPUs currently

are typically situated on a PCI-express bus and have their own

separate on-board memory and thus the programming model be-

comes heterogeneous instead of a homogeneous parallel program-

ming model utilized for typical multi-core CPUs. Further, current

GPU computation APIs such as OpenCL are low-level and require

the programmer to write a different optimized version for each tar-

get architecture.

We aim to provide a much simpler programming paradigm pro-

viding a uniform parallel programming model for a wide class of

homogeneous and heterogeneous parallel architectures. The com-

piler will be responsible for generating the optimized code for each

architecture and will provide a simpler virtualized view of mem-

ory. We are currently investigating loop analysis and transforma-

tions and the runtime support required to support such a virtualized

view of resources. We are also investigating loop transformations

to generate efficient code for multiple architectures by taking mem-

ory hierarchy, parallel execution resources and SIMD instruction

sets of each architecture into account.

2.4 Language extensions to Matlab

One of the central goals of McLab is to provide convenient pro-

gramming abstractions to the scientific programmer. We aim to im-

plement many new extensions to MATLAB providing both general

purpose extensions as well as domain-specific extensions. We have

implemented one such new extension called ASPECTMATLAB, an

aspect-oriented extension to MATLAB [8, ?].

ASPECTMATLAB brings aspect-oriented programming to the sci-

entific programming community. It is designed to be simple to use

and understand and it is also focused towards the needs of the nu-

merical programming domain by providing loop-level extensions

apart from more classical aspects provided in other languages. We

have already demonstrated the utility of ASPECTMATLAB in writ-

ing aspects which provide better insight to the programmer about

performance and correctness of the program.

3. RESULTS

We tested the performance of McVM against MATLAB on a

number of benchmarks[5]. Testing was done on a Core 2 Quad

Q6600 running Ubuntu 9.10 and MATLAB R2009a. Results are

reported in Table 1. Column 2 presents absolute runtimes in sec-

onds. Columns 3,4 and 5 present execution time relative to McVM

JIT. In columns 3,4 and 5, a value of less than 1 indicates better

performance than McVM JIT and a value of greater than 1 in-

dicates worse performance than McVM JIT. McVM outperforms

MATLAB in 8 out of 20 cases tested. JIT compilation in McVM

provides over two orders of magnitude performance improvement

over a pure interpreter. McFor was able to compile 13 of the bench-

marks to Fortran and compiled Fortran code outperformed MAT-

LAB in 12 out of 13 cases.

AspectMatlab system has been used for writing aspects such as

counting the number of floating point operations and determining

the sparsity of matrices used in a computation. Such aspects are

useful for scientists and engineers attempting to understand the

Table 1: Results

Benchmark McVM MATLAB McVM McFOR

(JIT) (no JIT)

seconds Relative to McVM JIT

adpt 13.4 0.20 0.94 0.05

beul 3.07 1.01 0.51 N/A

capr 3.51 2.31 478 0.36

clos 6.84 0.11 1.99 1.15

crni 1321 0.01 1.35 0.0026

dich 2.80 1.68 410 0.67

diff 30.0 0.17 1.39 0.021

edit 54.9 0.20 1.48 0.0023

fdtd 20.1 0.17 0.43 0.014

fft 12.8 1.27 193 0.72

fiff 5.37 1.30 285 0.18

mbrt 34.6 0.13 2.84 0.03

nb1d 4.1 2.40 1.03 0.18

nb3d 3.88 0.40 0.65 0.23

nfrc 15.7 0.32 1.66 N/A

nnet 6.95 0.91 1.05 N/A

play 3.37 2.57 1.26 N/A

schr 2.48 0.84 1.22 N/A

sdku 1.23 7.93 13.1 N/A

svd 8.24 0.29 0.85 N/A

characteristics of a program.

4. CONCLUSIONS

McLab provides an extensible toolkit for compiler construction

for MATLAB and related languages. One extension to MATLAB,

AspectMatlab, has already been provided. A FORTRAN backend

and a VM to execute MATLAB code has also been provided. We

continue to improve upon the tools already built and are working

on new optimizations as well as improving our compatibility to

MATLAB. We are also working on taking the project to new direc-

tions such as compilation to GPUs and exploring new extensions to

MATLAB.

It is our hope that our tools will provide a framework for other

compiler teams to make progress on developing new language ex-

tensions and new compiler techniques for languages related to MAT-

LAB. We also hope that the actual compilers and VMs produced

using the toolkit will be useful for scientists by providing new lan-

guage abstractions and better performance, especially for modern

processors.

5. REFERENCES

[1] JastAdd. http://jastadd.org/.

[2] Metalexer. http://www.sable.mcgill.ca/metalexer/.

[3] T. Aslam. AspectMatlab: An aspect-oriented scientific

programming language. Master’s thesis, McGill University,

2010.

[4] A. Casey. The MetaLexer lexical specification language.

Master’s thesis, McGill University, September 2009.

[5] M. Chevalier-Boisvert. McVM: An optimizing virtual

machine for the MATLAB programming language. Master’s

thesis, McGill University, August 2009.

[6] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge.

Optimizing MATLAB through just-in-time specialization. In

International Conference on Compiler Construction, March

2010. To Appear.

[7] T. Ekman and G. Hedin. The Jastadd extensible Java compiler.

In OOPSLA ’07: Proceedings of the 22nd annual ACM

SIGPLAN conference on Object-oriented programming

systems and applications, pages 1–18, New York, NY, USA,

2007. ACM.

[8] J. Li. McFor: A MATLAB to FORTRAN 95 compiler.

Master’s thesis, McGill University, August 2009.

[9] A. D. Toheed Aslam, Jesse Doherty and L. Hendren.

AspectMatlab: An aspect-oriented scientific programming

language. In Proceedings of 9th International Conference on

Aspect-Oriented Software Development, March 2010. To

appear.

