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Abstract

Speculative method-level parallelismhas been shown to benefit fromreturn value prediction. In this
paper we propose and analyse two compiler analyses designedto improve the cost and performance of
a hybrid return value predictor in a Java virtual machine setting. A return value use analysisdetermines
which return values are consumed, and enables us to eliminate 2.6% of all non-void dynamic method
calls in the SPEC JVM98 benchmarks as prediction candidates. An extension of this analysis detects
return values used only inside boolean and branch expressions, and allows us to safely substitute incor-
rect predictions for 14.1% of return values at runtime, provided all future use expressions are satisfied
correctly. We find an average 3.2% reduction in memory and up to 7% increase in accuracy. A second,
interproceduralparameter dependence analysisreduces the number of inputs to a memoization-based
sub-predictor for 10.2% of all method calls, and the combination of both analyses reduces overall mem-
ory requirements by 5.3%.

1 Introduction

Speculative parallelization is a relatively new performance optimization technique that has shown promising
speedups both in hardware [7] and software [5, 18] designs, and including Java environments [4, 10]. Spec-
ulative execution can often proceed further and with less rollbacks if unknown data values can be correctly
predicted. In the case ofSpeculative Method-Level Parallelism(SMLP) [3], predicting the value returned
from a method call can be critical to the success of speculative execution past the method invocation point,
andreturn value prediction(RVP) has been thus shown to significantly increase the potential performance
benefit of SMLP [9].

For RVP, hybrid predictors incorporating both simple prediction strategies and more complexcontextand
memoizationapproaches have been shown to be very effective, even if memory hungry. Speedups of 26%
or more over the base SMLP speedup can be achieved, with an empirical upper bound of 86% improvement
given perfect prediction [9]. There is a price to pay for high accuracy, however, and we found 10s to 100s
of megabytes in storage were required before performance limits were reached [16].

In this paper we propose and analyse two compiler analyses designed to improve the cost and performance
of a hybrid return value predictor in a Java virtual machine setting. Areturn value use analysisdetermines
which return values are consumed, and enables us to eliminate 2.6% of all non-void dynamic method calls in
the SPEC JVM98 benchmarks as prediction candidates. An extension of thisanalysis detects return values
used only inside boolean and branch expressions, and allows us to safely substitute incorrect predictions for
14.1% of return values at runtime, provided all future use expressions are satisfied correctly. We find an
average 3.2% reduction in memory and up to 7% increase in accuracy. A second, interproceduralparameter
dependence analysisreduces the number of inputs to a memoization-based sub-predictor predictor for 10.2%
of all method calls, and the combination of both analyses reduces overall memory requirements by 5.3%.

1.1 Contributions

Specific contributions of this paper include:

1. The design, implementation, and analysis of a new return value use analysis (RVU), suitable for
enhancing the effectiveness of speculative method level parallelism. Thisanalysis eliminates the need
for context and memoization tables at callsites corresponding to unconsumedreturn values, reducing
memory requirements. It also identifies relaxed accuracy requirements on the prediction of certain
used return values, reducing the need for costly rollbacks of speculative execution.
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Figure 1: Basic implementation framework.

2. The design, implementation, and analysis of a parameter dependence analysis (PD). Parameters not
essential to prediction accuracy can be ignored, and this results in better hashtable utilization, again
reducing memory requirements.

3. An experimental investigation of the effect of simple, high-level compiler analysis information on
value prediction. We are able to achieve a 0–7% increase in accuracy, along with an overall 5.3%
decrease in memory requirements.

In the following section we briefly describe the implementation environment we used for our experimenta-
tion. This is followed in Section 3 by a description of the return value use analysis, and its corresponding
improvements. Section 4 describes the design and experimental data for the parameter dependence analysis.
These two approaches are then combined in Section 5. Finally, we discuss related work in Section 6, and
then conclude and describe future work in Section 7.

2 Framework

Our analyses are implemented in Soot, an offline Java bytecode optimization framework [25], and commu-
nicate analysis data to SableVM [19] using attributes. An overview can be seen in Figure 1.

Input Java .class files are converted toJimple, Soot’s stackless, 3-address intermediate representation of
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Java bytecode. This is analyzed by Spark [11], a points-to analysis, from which can be derived side-effect
information as well as an accurate call graph. Our return value use (RVU) and parameter dependence (PD)
analyses then use the resulting information, and generate a classfileattribute to be attached to the output
class file [17].

In SableVM, the attribute is parsed and the information is used to optimize the various predictors. Predictor
data is subsequently gathered and used during actual execution. Note that our current implementation is
sufficient to gather return value prediction data, but that actual speculative execution is the subject of future
work.

Previously, in SableVM we implemented a handful of simple, well-known predictors, as well as the more
complex context and hybrid predictors. The order-5 context predictor[21] we used associates a hashtable
with each callsite, and records the observed histories of the last 5 returned values. These histories are
converted to a hash key and the hashtable consulted to predict the next value. Accuracy increases with
hashtable size, with very high accuracies achievable using storage in the 100s of megabytes.

Memoization also associates hashtables with callsites. In this case though the arguments to the called method
are hashed together, and the hash values are associated with specific method return values. Future method
calls then can predict the return value based on a hash of the argument values. This also can result in
large tables, depending on the variation in method arguments, and hashtablesare necessary to keep space
requirements manageable. Note that both context and memoization hashtables dynamically expand, and so
hashtable usage is reasonably efficient. A complete description of each predictor can be found in [16].

Context, memoization and a few other simpler predictors are then aggregated into a hybrid predictor, which
employs all strategies simultaneously and chooses the best one for prediction on a per-callsite basis. Al-
though effective, such a hybrid inherits the memory requirements of its subpredictors, and so performance
and memory limits and tradeoffs are especially important to consider. These issues inspired the design and
use of the two analyses we now define.

3 Return Value Use Analysis

In Hu et al.’s study on return value prediction [9], it was reported that not all return values are consumed in
Java programs, but the information was apparently not employed to improve prediction accuracy or reduce
memory requirements. This was likely due to the lack of compiler support in their trace-based annotation
and simulation framework. If we know that a return value isunconsumed, we do not need to allocate
predictor storage, and can simply push an arbitrary value onto the stack. In turn, we eliminate predictor
misses at unconsumed callsites altogether.

There are also other situations where it is safe to substitute an incorrect prediction. In the following code,
any prediction forr that results in correct control flow is acceptable.

r = foo (a, b, c);
if (r > 10)

{
... // r == 11, 12, 13, ...

}
else

{
... // r == 10, 9, 8, ...

}

In general, if the return valuer at a callsite appears only inside boolean and branchuse expressionsof the
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form (r opv) or (v op r), our safety constraint is relaxed from simple identity

rpredicted = ractual (1)

to identity between between use expression evaluations such that

(rpredicted op v) = (ractual op v) (2)

or

(v op rpredicted) = (v op ractual) (3)

for all use expressions. We collect use expressions statically in Jimple, and evaluate them at runtime in
SableVM, after returning from a consumed method call. If both predicted and actual return values satisfy
all use expressions identically, it is safe to substitute an incorrect prediction. We say that these return values
are consumed butinaccurate.

Although we could consider more complex analyses such as algebraic simplification [15] to relax constraints
on the return value further, preliminary results indicate that the vast majority of suitable use expressions
contain onlyr and a constant1.

An intraprocedural analysis over all methods in the Spark callgraph provides return value use information.
Pseudocode for this analysis is given in Figure 2. It is trivial to detect unconsumed return values as non-void
method calls assigned to dead variables, and we exploit Soot’s dead assignment eliminator to do so. To find
consumed but inaccurate return values, we rely on a simple reachability analysis, and on local definitions
and local uses analyses that provide us with UD/DU chains.

Having found a consumed return value at a callsitec, we add use expressions at conditional branches (if
andswitch), and at assignment statements whose rvalues are boolean expressionsthat evaluate to -1, 0,
or 1. If any use expressionui contains a local, we further assert that no definitionsd of the local occur such
that there exists a path fromc to d and fromd to ui. We allow for integer, floating point, and null constants
inside use expressions, but not string constants, as comparison of two strings is slow.

An example return value use analysis is shown in Figure 3. There are threecallsites in the control flow
graph, atS1, S2, andS6. The call tofoo() in S1 has had its assignment to a dead variable eliminated,
and we mark the return value as unconsumed and inaccurate. The call tobar() in S2 is assigned toq,
which is subsequently used only inside the branch expression(q < 5) in S3. Therefore we markS2 as
consumed but inaccurate, and record the use expression. Finally, the call to baz() atS6 is assigned tor,
which is then written intoo1.f on the heap. Without accurate (and expensive)must points-toinformation,
we are forced to markS6 as consumed and accurate.

The table of entries in Figure 3 captures the salient points of the final structure generated by Soot’s attribute
generation framework. There is one entry in the attribute per callsite, with bothconsumption and accuracy
information recorded. In the case of inaccurate consumed values, thereare extra columns for operator kind,
operand positions, operand values, operand sizes, and whetherv is a constant, stack value, parameter local,
or non-parameter local. The attributes are namedorg.sablevm.ReturnValueUseTable as per the
JVM Specification [13].

1We do consider comparisons with locals in boolean and branch expressions, but due to a temporary limitation in our analysis
framework we are unable to provide results including locals at this time.
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for each callsite c with method call m assigned to return value r

if (r is a dead variable)
consumed = false
accurate = false

else
consumed = true
accurate = false

for each use statement in DU chain of r

/* get simple conditionals */
if (use instanceof IfStmt)
add branch expression to use expressions

/* create expressions for switch-based branches */
else if (use instanceof TableSwitchStmt ||

use instanceof LookupSwitchStmt)
for all indices

add "(r == index)" to use expressions

/* get assigned boolean expressions */
else if (use instanceof AssignStmt)
if (eval(rvalue) belongs to {-1,0,1})

add rvalue to use expressions
else

accurate = true
else
accurate = true

/* assert that locals are always defined before call */
if (!accurate)

for each use in use expressions
let (r op v) or (v op r) be the use expression

if (v instanceof Local)
for each reaching def d in UD chain of v

if there exists a path from c to d
accurate = true

Figure 2: Pseudocode for return value use analysis.

Figure 3: Intraprocedural Return Value Use Analysis.CallsitesS1, S2, andS6 are marked with respect to being
consumed and needing to be accurate, and the useq < 5 is recorded forS2 as it is consumed but not accurate. This
information is conveyed to the virtual machine via classfileattributes.
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Table 1: Static Return Value Uses. unconsumedreturn values are never used,inaccuratereturn values must only
satisfy a set of use expressions, andaccuratereturn values must be predicted correctly. Class librariesare included in
the analysis and only callsites with non-void return valuesare considered

bench- non-void callsite return values
mark total unconsumedinaccurate accurate

comp 7156 23.1% 9.4% 67.5%
db 7322 22.7% 9.6% 67.7%

jack 8090 21.2% 10.0% 68.8%
javac 10503 17.3% 12.8% 69.9%
jess 9531 18.8% 9.4% 71.8%
mpeg 7586 22.4% 9.9% 67.7%
mtrt 8029 21.3% 8.7% 70.0%

average 8317 20.7% 10.1% 69.2%

Table 2: Dynamic Return Value Uses. unconsumedreturn values are never used,inaccuratereturn values must only
satisfy a set of use expressions, andaccuratereturn values must be predicted correctly. Class librariesare included in
the analysis and only callsites with non-void return valuesare considered

bench- non-void callsite return values
mark total unconsumedinaccurate accurate

comp 133M 0.0% 0.0% 100.0%
db 115M 0.0% 27.9% 72.1%
jack 34M 0.9% 24.5% 74.6%
javac 82M 1.5% 20.7% 77.8%
jess 102M 0.1% 40.9% 59.0%
mpeg 77M 14.4% 10.3% 75.3%
mtrt 267M 3.0% 2.8% 94.2%

average 116M 2.6% 14.1% 83.3%

Static analysis results over SPEC JVM98 (size 100) are given in Table 1. On average, 20.7% of callsites are
unconsumed, 10.1% are consumed but may be inaccurate provided use expressions are satisfied, and 69.2%
must be accurate. Large numbers of dynamically unreached callsites are included in the static analysis,
which is derived from Spark’smay points-toinformation, and these exist largely in class library code. This
leads to a small standard deviation and relatively similar results for all benchmarks. We reported the total
number of unique callsites reached at runtime in [16].

Dynamic results from the use of analysis information at runtime are given in Table 2. On the whole there
is a much stronger bias towards consumed but inaccurate callsites with an average of14.1%of predicted
return values not needing to be accurate, and only2.6%being unconsumed. This is comparable with the dy-
namic results for unconsumed return values reported in [9].comp, mpeg, andmtrt reach particularly low
percentages of inaccurate callsites, following from the fact that they areessentially numerical benchmarks,
comp performing numerical compression,mpeg decompressing random mp3 data, andmtrt computing a
3D scene using a raytracer. The other more object-oriented benchmarksexhibit fairly high percentages of
inaccurate return values, withjess being the highest at 40.9%.

In Figure 4, the performance of the context predictor is graphed against maximum per-callsite table size,
before and after application of the RVU analysis. Performance increases are relatively constant at all table
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Figure 4: Context Size Variation after Return Value Use Analysis.
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Figure 5: Memoization Size Variation after Return Value Use Analysis.

sizes, withjack, javac, andmtrt displaying slight increases anddb showing a nice 5–7% improvement.
The differences are somewhat larger at small table sizes, as more collisions occur and predictions are more
likely to be incorrect but still accurate enough to satisfy use expressions. mpeg performs poorly despite
elimination of 14.4% of all predictions, which indicates that these values were predicted correctly before
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Figure 6: Hybrid Size Variation after Return Value Use Analysis.

elimination; nevertheless, there is a slight 2.2% memory reduction available (Table 5). There are compa-
rable changes in the memoization predictor (Figure 5), and when context and memoization predictors are
combined in a hybrid (Figure 6), they complement each other nicely as before [16]; db maintains a 5–7%
accuracy increase, reaching as high as 95% at extreme sizes.

4 Parameter Dependence

Memoization is a well-known technique for caching function results in computer science, and we previously
introduced the first use of memoization in a speculative environment [16]. One of the nice properties of our
memoization predictor is that conservative correctness, although generally beneficial, is not required, and
this provides opportunities for aggressive optimistic analyses. In Figure 7, a memoization table is shown
that contains previously computed values for three distinct calls tofoo().

Figure 7: Memoization.Three different calls tofoo() hash to three different slots in the memoization lookup table,
and distinct return values are stored for each set of parameters.
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When we studied the performance of the memoization predictor at varying maximum table sizes ([16], also
Figures 5 and 14), we observed that forjack, javac, andjess, performance actually starts to decrease as
the maximum table sizes increase past 8, 14, and 12 bits respectively. Tag information indicated that distinct
sets of parameters were mapping to the same return value, and that the peaksof these curves actually arose
from beneficial collisions.

Our hypothesis is that such redundancy might occur if the return value ofthe method in question is not
dependent on some or all of the parameters. For example, in methodfoo(), the return value only depends
on the first and third arguments:

static int foo(int a, int b, int c) {
int k = 0;
if (a > 5)

System.out.println(b);
else

k = 7;
return (c + (k = k + 1));

}

and in Figure 8 we show three different calls tofoo() where the first and third parameters do not vary but
the second parameter does, leading to redundant entries. In general, redundant entries in memoization tables
will exist for each set of method invocations in which only unimportant parameters vary.

Figure 8: Memoization with Redundancy.Three different calls tofoo() hash to three different slots, but the same
return value of 11 is stored for each set of parameters. In this case, parameterb does not affect the return value and
redundancy is introduced.

Figure 9: Memoization with Sharing.Three different calls tofoo() hash to one slot, with a return value of 11 for
each set of parameters. This is possible after a parameter dependence analysis eliminates inputs to the memoization
hash function that do not affect the return value.

If we can remove these parameters from the set of inputs to the hash function, then we should be able to
increase positive sharing of table entries, as shown in Figure 9, leading toimproved prediction accuracy
and reduced memory requirements. Furthermore, if the return value is dependent on zero parameters, we
can avoid using memoization altogether, and let the hybrid pick the best out ofthe remaining predictors at
runtime.

9



for each statement s considered in backwards flow analysis
copy out(s) to in(s)
add s to in(s)

branch_independent =
intersection of all in(t) over all t in succ(s)

branch_dependent =
out(s) - branch_independent

h.put(s, branch_dependent)

Figure 10: Branch dependence helper analysis.

To compute parameter dependencies, we rely on a simple pre-analysis that finds branch dependent units in a
control flow graph, i.e. those units that are reached depending on a particular branch being taken (Figure 10).
This is a backwards may analysis with the value forEND and the initial approximation for all nodes being
the empty set, and the merge operator being union. We put branch dependent units of each statements in the
CFG into a hashtableh for future retrieval. This analysis may also be expressed in terms of post-dominance
and reachability, but here we opt for the simpler explanation.

Intraprocedurally, our parameter dependence analysis computes whichvalues atSTARTaffect the return
value. If we take the intersection of this set with the set of formal parameters, which includesthis for
non-static methods, we get parameter dependencies. Our analysis performs a kind of optimistic slicing; for
a review of conservative slicing techniques see [24].

Pseudocode for the analysis is given in Figure 11. This is also a backwards may analysis, with the value for
END and the initial approximation for all nodes being the empty set, and the merge operator being union.
We add value uses toin(s)as appropriate, and propagate them backward through the control flowgraph until
a least fixed point is reached. Constants and caught exception references are not propagated, minimizing the
size of flow sets.

We use the side effect information provided by Spark [11] to determine if any statements may write to a
value inout(s), and if so adduses(s)to in(s). We also record that the statement may write to a value ofout(s)
for future use. Furthermore, ifs must write to a value inout(s), we kill that value. Spark does not provide
must points-to information, and therefore we cannot kill fields and elements of objects and arrays on the
heap. In fact, we did perform some experiments where we unsafely assumed that Spark does provide a must
points-to analysis, but these did not increase the accuracy of our results.

If we encounter a return statement, we add the returned value toin(s), and if we encounter anys with
multiple successors, we adduses(s)to in(s) if the return value depends on a particular branch being taken.
This dependency between the branch condition andr exists if any branch-dependent unit ofs can write to
out(s), as previously computed.

However, we only adduses(s)if s is an explicit branch statement. Aside from an explicitthrow, many
instructions in Java and therefore Jimple can throw exceptions, and this leads to many units in the CFG
technically having multiple successors. In such cases, even though theremay be no units on the exception
handler branch that affect the return value,s will have all units in the normal path of execution marked
as branch-dependent. In a safe analysis we should also be adding the uses of these exception-throwing
statements. However, we previously observed [16] that for SPEC JVM98, exceptions are extremely unlikely
to be thrown at run-time, with the exception-heavyjack having only 1% of all method calls throw an
exception. Ignoring implicit exception handler edges is unsafe, but as noted we do not require safety in our
speculative environment; this optimization slightly improves the accuracy of ourresults.

10



let w be the set of statements writing to out(s)

for each statement s considered in backwards flow analysis

copy out(s) to in(s)

for each value v in out(s)
if (s may write to v)

add s to w
if (s must write to v)
remove v from in(s)

add uses(s) to in(s)

if (s instanceof ReturnStmt)
add uses(s) to in(s)

for each branch dependent statement d of s
if (w contains d || d instanceof ReturnStmt)

if (s instanceof IfStmt ||
s instanceof LookupSwitchStmt ||
s instanceof TableSwitchStmt ||
s instanceof ThrowStmt)

add uses(s) to in(s)

remove constants and caught exception references from in(s)

Figure 11: Pseudocode for parameter dependence analysis.

Figure 12: Intraprocedural parameter dependence analysis.This analysis captures the dependencies between the
return valuer and method parameters; in the figure, these arer→a andr→c.

An example intraprocedural parameter dependence analysis overfoo() is shown in Figure 12. Starting at
END, we add uses and kill definitions as appropriate, and the resultant flow sets are shown in between nodes.
At the merge pointif (a > 5), we must adda because one of the if statement’s branch dependent units,
k = 7, writes to itsout(s). At STARTthe intersection ofout(s)with the set of formal parameters yields
parameter dependencies, andthis is included in that set becausefoo() is non-static.

Having finished our intraprocedural analysis, we decided to build on it witha more aggressive interproce-
dural analysis. When we reach a callsite whose return value is assigned toa member ofout(s)and therefore
affects the current method’s return value, we only want to add as uses the parameter dependencies of the
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Figure 13: Interprocedural Parameter Dependence Analysis.Call graph nodesmain(), foo(), bar() andbaz()
are placed onto a worklist, and the intraprocedural parameter dependence calculated with the initial assumption that
there are zero dependencies at each callsite. If a node changes, all of its callers are placed onto the worklist, and this
continues until a least fixed point is reached.

target, iterating over all targets if the callsite is polymorphic. We treat abstracttargets as having zero de-
pendencies, and native targets as having full dependencies. If any target is itself able to write toout(s), as
detected via Spark’s side-effect information, we add all uses.

This is a relatively simple worklist-based least fixed point analysis. All nodes in the callgraph are placed
onto a worklist in pseudo-topological order, with the initial assumption being that zero parameters affect the
return value. Nodes are processed intraprocedurally, and if the computed parameter dependencies change,
all nodes with edges into the current node are placed back onto the worklist. This continues until a least
fixed point is reached. In Figure 13 an example analysis is shown for a simplecallgraph with amain()
method and a cycle betweenfoo(), bar(), andbaz().

Final parameter dependence information for each callsite is computed as the union of parameter depen-
dencies over all of its targets, and is again conveyed to SableVM via classfile attributes. At runtime these
dependencies are mapped to method argument locations on the Java stack, which in turn form the inputs to
the memoization predictor hash function. It might actually be simpler to attach attributes per method instead
of per callsite, but again we defer a full investigation of the advantages and disadvantages of per callsite vs.
per method return value prediction to future work. We do find that our interprocedural analysis as given
doubles the precision of our results.

Table 3 provides information on parameter dependencies at statically reachable callsites. We only consider
consumed callsites with more than one parameter, and find an average 24.8% having zero dependencies,
23.1% having partial dependencies, and 52.1% having full dependencies. As per the static return value use
results given in Table 1, the standard deviation is small, as the majority of callsitesconsidered reside in
common library classes.

Dynamic parameter dependence results in Table 4 are strikingly different, as was the case for dynamic return
value use results. On average far lower percentages of consumed method calls with zero or partial param-
eter dependencies occur, with 7.1% having zero dependencies and only3.1% having partial dependencies.
However, the standard deviation in dynamic results is again much larger, withmpeg having zero or par-
tial parameter dependencies for roughly half of its method calls, andcomp consuming an overwhelming
majority of fully dependent return values.
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Table 3: Static Parameter Dependencies. nis the number of parameters andd is the number of dependencies, or
parameters affecting the return value. Class libraries areincluded in the analysis and only callsites with consumed
return values havingn > 0 are considered here

bench- consumed callsites withn > 0
mark total d = 0 d > 0 ∧ d < n d = n

comp 5294 25.4% 24.3% 50.3%
db 5446 25.4% 24.1% 50.5%
jack 6159 27.0% 24.9% 48.1%
javac 8460 24.7% 20.6% 54.7%
jess 7476 23.2% 21.4% 55.4%
mpeg 5671 25.7% 24.8% 49.5%
mtrt 6100 22.6% 21.2% 56.2%

average 6372 24.8% 23.1% 52.1%

Table 4: Dynamic Parameter Dependencies. nis the number of parameters andd is the number of dependencies, or
parameters affecting the return value. Class libraries areincluded in the analysis and only callsites with consumed
return values havingn > 0 are considered here

bench- consumed method calls withn > 0
mark total d = 0 d > 0 ∧ d < n d = n

comp 133M 0.0% 0.9% 99.1%
db 115M 3.8% 0.0% 96.2%
jack 33M 7.4% 1.9% 90.7%
javac 80M 12.8% 4.2% 83.0%
jess 102M 20.3% 0.0% 79.7%
mpeg 66M 20.0% 28.0% 52.0%
mtrt 259M 2.0% 0.3% 97.7%

average 112M 7.1% 3.1% 89.8%

Performance in the context predictor remains constant after application ofthe PD analysis, as it only has
the potential to affect the memoization predictor, and therefore in turn the hybrid predictor. This analysis
reduces the total number of predictions made, as we do not predict if thereare zero dependencies. Thus
in Figure 14 we look at the memoization accuracy over memoized predictions. Westill observe the prior
decrease in performance that motivated this analysis forjack, javac, andjess, and thus put forward a
new hypothesis that even for benchmarks with partial or full parameter dependencies, beneficial collisions
may occur in hashtables at smaller sizes if external factors such as heap side-effects also global variables
also affect the return value.

In any case, we report a maximal 13% increase in accuracy forjess, with comparably large increases for
jack andjavac; this correlates with these benchmarks relatively high percentages of unconsumed return
values. At first it seems odd that there is a decrease in the performance of mpeg, but this simply means
that the untaken predictions were correct before elimination by the PD analysis; again this indicates that
values other than method parameters are likely affecting return values. In the hybrid predictor (Figure 15),
all benchmarks perform as well as before, save for a slight reductionin javac, and extra memory savings
due to the PD analysis are given in Table 5.
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Figure 14: Memoization Size Variation after Parameter Dependence Analysis.
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Figure 15: Hybrid Size Variation after Parameter Dependence Analysis.

5 Combined Analyses

Lastly we look at the combination of both return value use and parameter dependence analyses. The per-
formance of the hybrid predictor with both analyses applied is shown in Figure 16, and we see the same
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performance increases as per the hybrid with only the return value use analysis applied (Figure 6).
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Figure 16: Hybrid Size Variation after Combined Analyses.

Table 5: Context and memoization table memory.The maximum table size in bits was chosen as the highest pointon
the baseline size variation curve for each benchmark [16]

bench- context memoization
mark size base rvu savings size base rvu pd pdrvu savings

comp 24 208M 208M 0.0% 18 6.30M 6.24M 6.28M 6.22M 1.3%
db 24 361M 361M 0.0% 24 206M 205M 195M 195M 5.3%

jack 14 10.5M 10.3M 1.9% 8 939K 874K 718K 651K 30.7%
javac 20 211M 203M 3.8% 14 65.7M 61.2M 51.8M 48.5M 26.2%
jess 14 9.15M 8.76M 4.3% 12 5.01M 4.52M 4.41M 3.92M 21.8%
mpeg 12 2.27M 2.22M 2.2% 12 589K 523K 544K 477K 19.0%
mtrt 14 46.1M 43.8M 5.0% 12 15.1M 14.3M 14.8M 13.9M 7.9%

average 17 121M 120M 2.5% 14 42.8M 41.8M 39.1M 38.4M 16.0%

Previously we reported hybrid accuracies and memory consumption for profiled predictor sizes [16], choos-
ing aggressively accurate data points at the performance limit of context and memoization predictors, with
maximum table size as small as possible without sacrificing this accuracy. We report memory consumption
results at these same maximum table sizes in Table 5, noting that dramatic decreases in memory with only
marginal decreases in accuracy can be obtained by choosing more realistic table sizes. We observe an av-
erage 2.5% reduction in the context predictor obtained from the RVU analysis, and 16.0% reduction in the
memoization predictor from the combination of RVU and PD analyses. When the total memory required
by a hybrid predictor is considered, we observe a 3.2% reduction in memoryafter application of the RVU
analysis, and 5.3% reduction after application of the PD analysis.
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6 Related Work

Speculative multithreading is typically examined in the context of hardware designs [7], even for Java [3, 4].
Software approaches at the assembly or C language level however have also been proposed and shown to
have potentially good speedup [5, 18]. For Java specifically, the feasibility of a software implementation
was demonstrated by Kazi and Lilja through manual transformations [10] ofJava source code.

Value prediction itself is a well-known technique for allowing speculative execution of various forms to
proceed beyond normal execution limits, and a number of prediction strategies have been defined and anal-
ysed. These extend from relatively simple last value predictors [14] to more complex finite context (FCM)
[21, 22] and differential context (DFCM) [8] value predictors. These are also typically designed with hard-
ware constraints in mind, though again software techniques have been examined; Li et al., for example,
develop a software prediction scheme based on profiling and inserting recovery code following a cost-driven
model [12]. The utility of return value prediction for method level speculationin Java was shown by Huet
al. [9], with further prediction accuracy investigated by the authors [16].

Our approach here is to develop compiler analyses that assist or improve value prediction. Others have
also investigated software help for prediction, though with very differentanalyses. Burtscheret al. analyse
program traces to divide load instructions intoclasses,with different groupings having logically distinct
predictability properties [2]. Duet al. use a software loop unrolling transformation to improve speculation
efficiency, but also evaluate likely prediction candidates from trace data using a software cost estimation [6].
Code scheduling approaches that identify and move interthread dependencies so as to minimize the chance
of a misprediction have been developed by Zhaiet al. [26]. A more general consideration of compiler
optimization is given by Satoet al., who analyzed the effect of unrelated optimizations on predictability and
found that typical compiler optimizations do not in general limit predictability [20].

We have implemented our return value use analysis such that it only considers cases involving simple com-
parisons of the predicted variable with constants and locals. Obviously, other uses could be accommodated
in this scheme; most candidates for algebraic simplification [15], for instance, could easily allow for a va-
riety of inaccurate, predicted values. This in fact has recently been considered in hardware approaches to
speculation [1], but statically we do not expect a large number of trivial operations, which should be removed
by prior compiler optimizations.

The parameter dependence analysis we develop is similar to static, interprocedural program slicing tech-
niques [24], which compute the data and control dependencies of a given variable use. Slicing is a relatively
expensive task, although performance optimizations to slicing exist [27]. In our case we need only dis-
cover parameter dependencies, not all dependencies, and moreovercan exploit the speculative nature of the
problem to simplify the algorithm.

7 Conclusions and Future Work

We have described the design and implementation of two compiler analyses aimed at improving the fea-
sibility of software return value prediction. A return value use removes the need for prediction data to be
gathered or stored for methods that do not have their return value consumed. A further refinement reduces
prediction accuracy requirements on methods that have limited subsequent uses. Our second analysis com-
putes a simple parameter dependence relation, establishing which function input parameters may contribute
to the final value of a returned variable. This allows us to reduce false sharing in memoization hashtables,
and thus reduce cold start prediction misses and also decrease memory requirements.

16



We have implemented our analyses in Soot, and applied them in SableVM to context, memoization and
hybrid predictors. These associate prediction storage tables at each callsite, and so memory usage can be a
concern if optimal accuracy is desired. Our return value use analysis statically identifies 30.8% of callsites
in the SPEC JVM98 benchmarks as needing zero or reduced prediction accuracy, although this reduces to
16.7% of runtime callsites. Parameter dependence follows a similar pattern, with 47.0% of callsites statically
having zero or only partial dependence on parameter values, droppingto just 10.2% of dynamic callsites.

Given the reduced number of dynamic opportunities, accuracy improvements are correspondingly small,
althoughdb does well with a 5–7% improvement in the final, combined analysis. Space savings, however,
are still significant, with context memory reducing by an average of 2.5% andmemoization costs reducing
by 16%, at the highest accuracy and thus highest memory costs.

We aim to continue our work in a number of ways. More complex expressionsfor inaccurate return value
uses could be allowed, further improving predictor accuracy, although ina practical sense this would have
to be carefully balanced with the cost of runtime verification. Also, the returnvalue use analysis could
be extended, allowing for inaccurate predictions to be substituted in general purpose load value predictors.
A purity analysis [23] would identify methods which do not generate side effects, and so would be good
candidates for perfect memoization in the traditional conservative sense.

We are actively working on a Java software implementation of SMLP. This would enable us to measure the
actual performance improvement provided by return value prediction in a real speculative system running on
common multiprocessor hardware, and determine how to balance memory access costs, verification costs,
accuracy, and other factors affecting optimal speculative performance.
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