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Abstract

Speculative method-level parallelisgras been shown to benefit fraeturn value predictionin this
paper we propose and analyse two compiler analyses dedigimgrove the cost and performance of
a hybrid return value predictor in a Java virtual machinérsgt A return value use analysigetermines
which return values are consumed, and enables us to elinié% of all non-void dynamic method
calls in the SPEC JVM98 benchmarks as prediction candida&asextension of this analysis detects
return values used only inside boolean and branch expressind allows us to safely substitute incor-
rect predictions for 14.1% of return values at runtime, jed all future use expressions are satisfied
correctly. We find an average 3.2% reduction in memory aneu# increase in accuracy. A second,
interproceduraparameter dependence analysézluces the number of inputs to a memoization-based
sub-predictor for 10.2% of all method calls, and the comtimeof both analyses reduces overall mem-
ory requirements by 5.3%.

1 Introduction

Speculative parallelization is a relatively new performance optimization tegéigt has shown promising
speedups both in hardware [7] and software [5, 18] designs, ahdling Java environments [4, 10]. Spec-
ulative execution can often proceed further and with less rollbacks iiamk data values can be correctly
predicted. In the case @&peculative Method-Level ParallelisfBMLP) [3], predicting the value returned
from a method call can be critical to the success of speculative execasbhe method invocation point,
andreturn value predictioRVP) has been thus shown to significantly increase the potential perfoema
benefit of SMLP [9].

For RVP, hybrid predictors incorporating both simple prediction strategidsvaore complexontextand
memoizatiorapproaches have been shown to be very effective, even if memoryyaBeedups of 26%
or more over the base SMLP speedup can be achieved, with an empipealhgund of 86% improvement
given perfect prediction [9]. There is a price to pay for high acograowever, and we found 10s to 100s
of megabytes in storage were required before performance limits weree L 6].

In this paper we propose and analyse two compiler analyses designed twéntipe cost and performance
of a hybrid return value predictor in a Java virtual machine settingetérn value use analysidetermines
which return values are consumed, and enables us to eliminate 2.6% of-&ibrubdynamic method calls in
the SPEC JVM98 benchmarks as prediction candidates. An extension ah#lisis detects return values
used only inside boolean and branch expressions, and allows usliossdfstitute incorrect predictions for
14.1% of return values at runtime, provided all future use expressiensagisfied correctly. We find an
average 3.2% reduction in memory and up to 7% increase in accuracyoAsseaterprocedurgarameter
dependence analysisduces the number of inputs to a memoization-based sub-predictor préoiid0.2%

of all method calls, and the combination of both analyses reduces overallmesgoirements by 5.3%.

1.1 Contributions

Specific contributions of this paper include:

1. The design, implementation, and analysis of a new return value use ian&y4J), suitable for
enhancing the effectiveness of speculative method level parallelismanaigsis eliminates the need
for context and memoization tables at callsites corresponding to unconsetuedvalues, reducing
memory requirements. It also identifies relaxed accuracy requirement® gudtiction of certain
used return values, reducing the need for costly rollbacks of speeutatecution.
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Figure 1: Basic implementation framework.

2. The design, implementation, and analysis of a parameter dependetyssafiRD). Parameters not
essential to prediction accuracy can be ignored, and this results in bastegahle utilization, again
reducing memory requirements.

3. An experimental investigation of the effect of simple, high-level compiteryssis information on
value prediction. We are able to achieve a 0—7% increase in accuragy, \&ith an overall 5.3%
decrease in memory requirements.

In the following section we briefly describe the implementation environment we s our experimenta-
tion. This is followed in Section 3 by a description of the return value use sisalgnd its corresponding
improvements. Section 4 describes the design and experimental data fardhesper dependence analysis.
These two approaches are then combined in Section 5. Finally, we distatesirwork in Section 6, and
then conclude and describe future work in Section 7.

2 Framework

Our analyses are implemented in Soot, an offline Java bytecode optimizatisewoak [25], and commu-
nicate analysis data to SableVM [19] using attributes. An overview candreisd-igure 1.

Input Java .class files are convertedJimple, Soot’s stackless, 3-address intermediate representation of
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Java bytecode. This is analyzed by Spark [11], a points-to analysia,\fihich can be derived side-effect

information as well as an accurate call graph. Our return value use \BN@parameter dependence (PD)
analyses then use the resulting information, and generate a classfibate to be attached to the output

class file [17].

In SableVM, the attribute is parsed and the information is used to optimize theisgmiedictors. Predictor
data is subsequently gathered and used during actual execution. Noteitltarrent implementation is
sufficient to gather return value prediction data, but that actual sgaeuseecution is the subject of future
work.

Previously, in SableVM we implemented a handful of simple, well-known ptedicas well as the more
complex context and hybrid predictors. The order-5 context predigigrwe used associates a hashtable
with each callsite, and records the observed histories of the last 5 rétuahges. These histories are
converted to a hash key and the hashtable consulted to predict the hext veccuracy increases with
hashtable size, with very high accuracies achievable using storage i6Gb@flmegabytes.

Memoization also associates hashtables with callsites. In this case thougiutmeats to the called method
are hashed together, and the hash values are associated with specifid retiin values. Future method
calls then can predict the return value based on a hash of the argunhggs.va his also can result in
large tables, depending on the variation in method arguments, and hasht@bliesxessary to keep space
requirements manageable. Note that both context and memoization hashyalalesodhlly expand, and so
hashtable usage is reasonably efficient. A complete description of ezdilstpr can be found in [16].

Context, memoization and a few other simpler predictors are then aggregatechiybrid predictor, which
employs all strategies simultaneously and chooses the best one for predicté per-callsite basis. Al-
though effective, such a hybrid inherits the memory requirements of itgadicpors, and so performance
and memory limits and tradeoffs are especially important to consider. Thess isspired the design and
use of the two analyses we now define.

3 Return Value Use Analysis

In Hu et al’s study on return value prediction [9], it was reported that not all retatues are consumed in
Java programs, but the information was apparently not employed to impregiEiion accuracy or reduce
memory requirements. This was likely due to the lack of compiler support in tlaee-fbased annotation
and simulation framework. If we know that a return valueuiwonsumedwe do not need to allocate
predictor storage, and can simply push an arbitrary value onto the sta¢kirn, we eliminate predictor
misses at unconsumed callsites altogether.

There are also other situations where it is safe to substitute an incoregltmn. In the following code,
any prediction forr that results in correct control flow is acceptable.

r =foo (a, b, ¢);
if (r > 10)

/[l r == 11, 12, 13,

/1 r =10, 9, 8, ...

In general, if the return value at a callsite appears only inside boolean and brarsehexpressionsf the



form (r opv) or (v opr), our safety constraint is relaxed from simple identity

Tpredicted = Tactual (1)

to identity between between use expression evaluations such that

(rpredicted op 1)) = (Tactual op U) (2)

or

(’U op rpredicted) = (U op Tactual) (3)

for all use expressions. We collect use expressions statically in Jimples\atuate them at runtime in

SableVM, after returning from a consumed method call. If both predictddaatual return values satisfy

all use expressions identically, it is safe to substitute an incorrect pradidtie say that these return values
are consumed bumaccurate

Although we could consider more complex analyses such as algebraic siatj@ifif15] to relax constraints
on the return value further, preliminary results indicate that the vast majdrigyitable use expressions
contain onlyr and a constatht

An intraprocedural analysis over all methods in the Spark callgraphida®veturn value use information.
Pseudocode for this analysis is given in Figure 2. Itis trivial to detesbnsumed return values as non-void
method calls assigned to dead variables, and we exploit Soot's deadmassigriiminator to do so. To find
consumed but inaccurate return values, we rely on a simple reachabillfysisnand on local definitions
and local uses analyses that provide us with UD/DU chains.

Having found a consumed return value at a callgjtere add use expressions at conditional branchés (
andswi t ch), and at assignment statements whose rvalues are boolean exprédsai@sluate to -1, 0,
or 1. If any use expressiafy contains a local, we further assert that no definitidms the local occur such
that there exists a path froato d and fromd to ;. We allow for integer, floating point, and null constants
inside use expressions, but not string constants, as comparison dfitvgs $s slow.

An example return value use analysis is shown in Figure 3. There aredaltsites in the control flow
graph, atS1, S2, andS6. The call tof oo() in S1 has had its assignment to a dead variable eliminated,
and we mark the return value as unconsumed and inaccurate. The ball (J in S2 is assigned ta,
which is subsequently used only inside the branch expregsior 5) in S3. Therefore we marls2 as
consumed but inaccurate, and record the use expression. Finallglitheltaz () atS6 is assigned to,
which is then written int@1. f on the heap. Without accurate (and expensima$t points-tanformation,

we are forced to mark6 as consumed and accurate.

The table of entries in Figure 3 captures the salient points of the final steuggmerated by Soot’s attribute
generation framework. There is one entry in the attribute per callsite, withdomdumption and accuracy
information recorded. In the case of inaccurate consumed values aifeeegtra columns for operator kind,
operand positions, operand values, operand sizes, and whédtharconstant, stack value, parameter local,
or non-parameter local. The attributes are named. sabl evm Ret ur nVal ueUseTabl e as per the
JVM Specification [13].

We do consider comparisons with locals in boolean and branch expissbiat due to a temporary limitation in our analysis
framework we are unable to provide results including locals at this time.



for each callsite ¢ with nethod call massigned to return value r

if (r is a dead variable)

consunmed = fal se

accurate = fal se
el se

consunmed = true

accurate = fal se

for each use statenment in DU chain of r

/* get sinple conditionals */
if (use instanceof |fStnt)
add branch expression to use expressions

/* create expressions for sw tch-based branches */
else if (use instanceof TableSw tchStnt ||
use instanceof LookupSwi tchStnt)
for all indices
add "(r == index)" to use expressions

/* get assigned bool ean expressions */
else if (use instanceof AssignStnt)
if (eval (rvalue) belongs to {-1,0,1})
add rval ue to use expressions
el se
accurate = true
el se
accurate = true

/* assert that locals are always defined before call */
if (laccurate)
for each use in use expressions
let (r opv) or (v opr) be the use expression

if (v instanceof Local)
for each reaching def d in UD chain of v
if there exists a path fromc to d
accurate = true

Figure 2: Pseudocode for return value use analysis.

consumed accurate uses
S1 no no _
S2 yes no q<5
S6 yes yes -

Figure 3: Intraprocedural Return Value Use Analysi€allsitesS1, S2, andS6 are marked with respect to being
consumed and needing to be accurate, and thg use5 is recorded folS2 as it is consumed but not accurate. This
information is conveyed to the virtual machine via classfiteibutes.



Table 1: Static Return Value Uses. unconsunmetlrn values are never usddaccuratereturn values must only
satisfy a set of use expressions, aeguratereturn values must be predicted correctly. Class libraatesncluded in
the analysis and only callsites with non-void return valaesconsidered

bench- non-void callsite return values
mark || total | unconsumedinaccuratg accurate

comp | 7156 23.1% 9.4% 67.5%

db 7322 22.7% 9.6% 67.7%
jack | 8090 21.2% 10.0% | 68.8%
javac || 10503 17.3% 12.8% | 69.9%
jess | 9531 18.8% 9.4% 71.8%
npeg || 7586 22.4% 9.9% 67.7%
nmrt | 8029 21.3% 8.7% 70.0%
average| 8317 20.7% 10.1% | 69.2%

Table 2: Dynamic Return Value Uses. unconsumetdirn values are never usedaccuratereturn values must only
satisfy a set of use expressions, atgduratereturn values must be predicted correctly. Class libratesncluded in
the analysis and only callsites with non-void return valaesconsidered

bench- non-void callsite return values
mark || total | unconsumediinaccuratg accurate
conp | 133M 0.0% 0.0% | 100.0%
db 115M 0.0% 27.9% | 72.1%
jack | 34Mm 0.9% 24.5% | 74.6%
j avac || 82M 1.5% 20.7% | 77.8%
jess || 102M 0.1% 40.9% | 59.0%
npeg || 77M 14.4% 10.3% | 75.3%
nrt ||267M 3.0% 2.8% 94.2%
average| 116M 2.6% 14.1% | 83.3%

Static analysis results over SPEC JVM98 (size 100) are given in Tabla avéage, 20.7% of callsites are
unconsumed, 10.1% are consumed but may be inaccurate providedussséons are satisfied, and 69.2%
must be accurate. Large numbers of dynamically unreached callsiteschréeid in the static analysis,
which is derived from Spark’'may points-tanformation, and these exist largely in class library code. This
leads to a small standard deviation and relatively similar results for all bemkbmé@/e reported the total
number of unique callsites reached at runtime in [16].

Dynamic results from the use of analysis information at runtime are givenkite Za On the whole there
is a much stronger bias towards consumed but inaccurate callsites withragexe$14.1% of predicted
return values not needing to be accurate, and 2riyobeing unconsumed. This is comparable with the dy-
namic results for unconsumed return values reported irc[@p, npeg, andnt r t reach particularly low
percentages of inaccurate callsites, following from the fact that thegsaentially numerical benchmarks,
conp performing numerical compressiampeg decompressing random mp3 data, amd t computing a
3D scene using a raytracer. The other more object-oriented benchexduikét fairly high percentages of
inaccurate return values, withess being the highest at 40.9%.

In Figure 4, the performance of the context predictor is graphed dagasemum per-callsite table size,
before and after application of the RVU analysis. Performance ingeasaelatively constant at all table
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Figure 4: Context Size Variation after Return Value Use Analysis.
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Figure5: Memoization Size Variation after Return Value Use Analysis

sizes, withj ack,j avac, andnt rt displaying slightincreases and showing a nice 5-7% improvement.
The differences are somewhat larger at small table sizes, as more cslligiomr and predictions are more
likely to be incorrect but still accurate enough to satisfy use expressignsg performs poorly despite
elimination of 14.4% of all predictions, which indicates that these values werigbed correctly before
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Figure 6: Hybrid Size Variation after Return Value Use Analysis.

elimination; nevertheless, there is a slight 2.2% memory reduction available @abThere are compa-
rable changes in the memoization predictor (Figure 5), and when contxhemoization predictors are
combined in a hybrid (Figure 6), they complement each other nicely asebgfé}f; db maintains a 5-7%

accuracy increase, reaching as high as 95% at extreme sizes.

4 Parameter Dependence

Memoization is a well-known technique for caching function results in compoiense, and we previously
introduced the first use of memoization in a speculative environment [I@&.0Dthe nice properties of our
memoization predictor is that conservative correctness, although dgrmraeficial, is not required, and
this provides opportunities for aggressive optimistic analyses. In Figusentemoization table is shown
that contains previously computed values for three distinct caflety ) .

hash(a,b,c) return value
foo(7,5,3) —M8M8M —— 11
foo(4,6,8) —M—— 9
foo(9,1,2)
\
T~ 10

Figure 7: MemoizationThree different calls td oo() hash to three different slots in the memoization lookupeabl
and distinct return values are stored for each set of pasmet



When we studied the performance of the memoization predictor at varying maxiatle sizes ([16], also
Figures 5 and 14), we observed thatjffarck, j avac, andj ess, performance actually starts to decrease as
the maximum table sizes increase past 8, 14, and 12 bits respectivelyfdragdtion indicated that distinct
sets of parameters were mapping to the same return value, and that thefjh@ise curves actually arose
from beneficial collisions.

Our hypothesis is that such redundancy might occur if the return valtieeafnethod in question is not
dependent on some or all of the parameters. For example, in miettad , the return value only depends
on the first and third arguments:

static int foo(int a, int b, int c) {
int k =0;
if (a>05)
System out. println(b);
el se
k =7;
return (¢ + (k = k + 1));
}

and in Figure 8 we show three different call§too() where the first and third parameters do not vary but
the second parameter does, leading to redundant entries. In geeguaidant entries in memoization tables
will exist for each set of method invocations in which only unimportant pataraeary.

hash(a,b,c) return value
foo(7,5,3) —mM8M8M —— 11
foo(7,2,3) —m8 ————— 11
foo(7,8,3)
\
T~ 11

Figure 8: Memoization with Redundancyhree different calls td oo() hash to three different slots, but the same
return value of 11 is stored for each set of parameters. fnddse, parametérdoes not affect the return value and
redundancy is introduced.

hash(a,c) return value
foo(7,5,3) —7 11
f00(7.2,3) /
foo(7,8,3)

Figure 9: Memoization with SharingThree different calls td oo() hash to one slot, with a return value of 11 for
each set of parameters. This is possible after a paramgiendence analysis eliminates inputs to the memoization
hash function that do not affect the return value.

If we can remove these parameters from the set of inputs to the hash fyrtbiém we should be able to
increase positive sharing of table entries, as shown in Figure 9, leadingptoved prediction accuracy
and reduced memory requirements. Furthermore, if the return value isdiagieon zero parameters, we
can avoid using memoization altogether, and let the hybrid pick the best the eémaining predictors at
runtime.



for each statement s considered in backwards flow anal ysis
copy out(s) to in(s)
add s to in(s)

branch_i ndependent =
intersection of all in(t) over all t in succ(s)

branch_dependent =
out (s) - branch_i ndependent

h. put (s, branch_dependent)

Figure 10: Branch dependence helper analysis.

To compute parameter dependencies, we rely on a simple pre-analysiedkdirfinch dependent units in a
control flow graph, i.e. those units that are reached depending otieutarbranch being taken (Figure 10).
This is a backwards may analysis with the valueEdND and the initial approximation for all nodes being
the empty set, and the merge operator being union. We put branch daepaniig of each statemesin the
CFG into a hashtablle for future retrieval. This analysis may also be expressed in terms of pasitience
and reachability, but here we opt for the simpler explanation.

Intraprocedurally, our parameter dependence analysis computes vahigs atSTARTaffect the return
value. If we take the intersection of this set with the set of formal parametéiish includes hi s for
non-static methods, we get parameter dependencies. Our analysiereaf@ind of optimistic slicing; for
a review of conservative slicing techniques see [24].

Pseudocode for the analysis is given in Figure 11. This is also a bad&waay analysis, with the value for
END and the initial approximation for all nodes being the empty set, and the mergatapleeing union.
We add value uses tn(s) as appropriate, and propagate them backward through the contrgriéglv until

a least fixed point is reached. Constants and caught exceptiomedsrare not propagated, minimizing the
size of flow sets.

We use the side effect information provided by Spark [11] to determineyifstatement may write to a
value inout(s) and if so addises(s}join(s). We also record that the statement may write to a valumit(s)
for future use. Furthermore, §must write to a value iut(s) we Kkill that value. Spark does not provide
must points-to information, and therefore we cannot kill fields and elemdrbjects and arrays on the
heap. In fact, we did perform some experiments where we unsafelgnagghat Spark does provide a must
points-to analysis, but these did not increase the accuracy of oliistesu

If we encounter a return statement, we add the returned valuggp and if we encounter ang with
multiple successors, we addes(s}o in(s) if the return value depends on a particular branch being taken.
This dependency between the branch conditionraexists if any branch-dependent unit®tan write to
out(s) as previously computed.

However, we only addises(s)f sis an explicit branch statement. Aside from an expliditr ow, many
instructions in Java and therefore Jimple can throw exceptions, and thistleawlany units in the CFG
technically having multiple successors. In such cases, even thougmtagree no units on the exception
handler branch that affect the return valseyill have all units in the normal path of execution marked
as branch-dependent. In a safe analysis we should also be addingethefuhese exception-throwing
statements. However, we previously observed [16] that for SPEC 8y&i&eptions are extremely unlikely
to be thrown at run-time, with the exception-hegvgck having only 1% of all method calls throw an
exception. Ignoring implicit exception handler edges is unsafe, buttasl mee do not require safety in our
speculative environment; this optimization slightly improves the accuracy aesuits.
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let wbe the set of statements writing to out(s)
for each statenment s considered in backwards flow anal ysis
copy out(s) to in(s)

for each value v in out(s)
if (s my wite to v)
add s to w
if (s must wite to v)
remove v fromin(s)
add uses(s) to in(s)

if (s instanceof ReturnStnt)
add uses(s) to in(s)

for each branch dependent statement d of s
if (wcontains d || d instanceof ReturnStnt)
if (s instanceof IfStnt |
s instanceof LookupSwitchStnt ||
s instanceof Tabl eSwitchStnt |
s instanceof ThrowStnt)
add uses(s) to in(s)

renmove constants and caught exception references fromin(s)
Figure 11: Pseudocode for parameter dependence analysis.

public int foo (int a, int b, int c)

int k, r

parameter
{a, ¢, k} dependencies
{c, k} {c}
i writes to
[ print(b) | [ k=7 | —— utie)

{c., K} AW L {c.k}

{c, k}
{r}

I:l branch dependent
{} - branch independent

Figure 12: Intraprocedural parameter dependence analysiis analysis captures the dependencies between the
return valuer and method parameters; in the figure, these-aser andr — c.

An example intraprocedural parameter dependence analysi$ ogél) is shown in Figure 12. Starting at
END, we add uses and kill definitions as appropriate, and the resultant fisargeshown in between nodes.
Atthe merge point f (a > 5), we must adé because one of the if statement’s branch dependent units,
k = 7, writes to itsout(s) At STARTthe intersection obut(s)with the set of formal parameters yields
parameter dependencies, drd s is included in that set becauteo() is non-static.

Having finished our intraprocedural analysis, we decided to build on it avitiore aggressive interproce-
dural analysis. When we reach a callsite whose return value is assigaedamber obut(s)and therefore
affects the current method’s return value, we only want to add as usgsmthmeter dependencies of the
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r = foo(a,b,c)

klist
workdis which uses do we add?

bar(d,e, f)

AERAAE

foo(a,b,c)
main
baz

baz(x,y,z)

Figure 13: Interprocedural Parameter Dependence Analy€iall graph nodesai n() ,f oo(),bar () andbaz()

are placed onto a worklist, and the intraprocedural parantgpendence calculated with the initial assumption that
there are zero dependencies at each callsite. If a node ehaafjof its callers are placed onto the worklist, and this
continues until a least fixed point is reached.

target, iterating over all targets if the callsite is polymorphic. We treat abgaeysts as having zero de-
pendencies, and native targets as having full dependencies. Ifraey imitself able to write t@ut(s) as
detected via Spark’s side-effect information, we add all uses.

This is a relatively simple worklist-based least fixed point analysis. All sadeéhe callgraph are placed
onto a worklist in pseudo-topological order, with the initial assumption beiagziro parameters affect the
return value. Nodes are processed intraprocedurally, and if the cechparameter dependencies change,
all nodes with edges into the current node are placed back onto the worHiis continues until a least
fixed point is reached. In Figure 13 an example analysis is shown for a saalidgaph with amai n()
method and a cycle betweéwo() , bar (), andbaz() .

Final parameter dependence information for each callsite is computed asitimeali parameter depen-
dencies over all of its targets, and is again conveyed to SableVM via tdastifibutes. At runtime these
dependencies are mapped to method argument locations on the Java ktalbkipwurn form the inputs to
the memoization predictor hash function. It might actually be simpler to attach &sipar method instead
of per callsite, but again we defer a full investigation of the advantaggsliaadvantages of per callsite vs.
per method return value prediction to future work. We do find that our imdegalural analysis as given
doubles the precision of our results.

Table 3 provides information on parameter dependencies at staticallyatdadallsites. We only consider
consumed callsites with more than one parameter, and find an average 2Bf rero dependencies,
23.1% having partial dependencies, and 52.1% having full dependerd@ger the static return value use
results given in Table 1, the standard deviation is small, as the majority of calisitssdered reside in
common library classes.

Dynamic parameter dependence results in Table 4 are strikingly diffesangsathe case for dynamic return
value use results. On average far lower percentages of consumedimatisowith zero or partial param-
eter dependencies occur, with 7.1% having zero dependencies an8l. t¥lyhaving partial dependencies.
However, the standard deviation in dynamic results is again much largermpéth having zero or par-
tial parameter dependencies for roughly half of its method calls,camp consuming an overwhelming
majority of fully dependent return values.
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Table 3: Static Parameter Dependencies.isnthe number of parameters adds the number of dependencies, or
parameters affecting the return value. Class librariesrenleded in the analysis and only callsites with consumed
return values having > 0 are considered here

bench- consumed callsites with > 0
mark |[total[d=0]d>0Ad<n|d=n

conp | 5294|25.4% 24.3% 50.3%

db 5446| 25.4% 24.1% 50.5%
j ack | 6159|27.0% 24.9% 48.1%
j avac || 8460| 24.7% 20.6% 54.7%
j ess || 7476|23.2% 21.4% 55.4%
npeg || 5671 25.7% 24.8% 49.5%
nrt ||6100|22.6% 21.2% 56.2%
average| 6372| 24.8% 23.1% 52.1%

Table 4: Dynamic Parameter Dependenciesistthe number of parameters adds the number of dependencies, or
parameters affecting the return value. Class librariesrenleded in the analysis and only callsites with consumed
return values having > 0 are considered here

bench-|| consumed method calls with > 0
mark || total | d=0[d>0Ad<n|d=n
conp | 133M| 0.0% 0.9% 99.1%
db 115M| 3.8% 0.0% 96.2%
jack | 33M | 7.4% 1.9% 90.7%
j avac || 80M | 12.8% 4.2% 83.0%
jess ||102M|20.3% 0.0% 79.7%
npeg || 66M | 20.0% 28.0% 52.0%
nrt ||259M| 2.0% 0.3% 97.7%
average| 112M| 7.1% 3.1% 89.8%

Performance in the context predictor remains constant after applicatithe D analysis, as it only has
the potential to affect the memoization predictor, and therefore in turn thédngtedictor. This analysis
reduces the total number of predictions made, as we do not predict ifdherzero dependencies. Thus
in Figure 14 we look at the memoization accuracy over memoized predictionstiNabserve the prior
decrease in performance that motivated this analysisdaik, j avac, andj ess, and thus put forward a
new hypothesis that even for benchmarks with partial or full parametariiencies, beneficial collisions
may occur in hashtables at smaller sizes if external factors such asiteeagffects also global variables
also affect the return value.

In any case, we report a maximal 13% increase in accuragydss, with comparably large increases for
j ack andj avac; this correlates with these benchmarks relatively high percentages @fisunmed return
values. At first it seems odd that there is a decrease in the performangeeg, but this simply means
that the untaken predictions were correct before elimination by the PDsigiagain this indicates that
values other than method parameters are likely affecting return values hylinid predictor (Figure 15),
all benchmarks perform as well as before, save for a slight reduictipavac, and extra memory savings
due to the PD analysis are given in Table 5.
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Figure 14: Memoization Size Variation after Parameter DependencdyAisa
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Figure 15: Hybrid Size Variation after Parameter Dependence Analysis
5 Combined Analyses

Lastly we look at the combination of both return value use and parametendispee analyses. The per-
formance of the hybrid predictor with both analyses applied is shown in &ij6y and we see the same
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performance increases as per the hybrid with only the return value aiesisrapplied (Figure 6).
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Figure 16: Hybrid Size Variation after Combined Analyses.

Table 5: Context and memoization table memadrjie maximum table size in bits was chosen as the highest point
the baseline size variation curve for each benchmark [16]

bench- context memoization
mark |[size| base| rvu [savingg size| base| rvu | pd |[pdrvu]savings
conmp || 24 | 208M| 208M| 0.0% || 18 [6.30M|6.24M|6.28M|6.22M| 1.3%

db 24 | 361M| 361M| 0.0% || 24 | 206M| 205M| 195M| 195M| 5.3%
jack || 14 |10.5M|10.3M| 1.9% || 8 | 939K| 874K| 718K| 651K| 30.7%
javac || 20 | 211M| 203M| 3.8% || 14 |65.7M|61.2M|51.8M|48.5M| 26.2%
jess || 14|9.15M|8.76M| 4.3% | 12 |5.01M|4.52M|4.41M|3.92M| 21.8%
npeg || 12 (2.27M|2.22M| 2.2% || 12 | 589K| 523K| 544K| 477K]| 19.0%
mrt 14 |46.1M|43.8M| 5.0% || 12 |15.1M|14.3M|14.8M|13.9M| 7.9%
average 17 | 121M| 120M| 2.5% | 14 |42.8M|41.8M|39.1M|38.4M| 16.0%

Previously we reported hybrid accuracies and memory consumptiondfileprpredictor sizes [16], choos-
ing aggressively accurate data points at the performance limit of comtéxhamoization predictors, with
maximum table size as small as possible without sacrificing this accuracy.pié neemory consumption
results at these same maximum table sizes in Table 5, noting that dramatic dedne@gmory with only
marginal decreases in accuracy can be obtained by choosing moréa¢alike sizes. We observe an av-
erage 2.5% reduction in the context predictor obtained from the RVU asalysd 16.0% reduction in the
memoization predictor from the combination of RvU and PD analyses. When tddemiemory required
by a hybrid predictor is considered, we observe a 3.2% reduction in meafteryapplication of the RVU
analysis, and 5.3% reduction after application of the PD analysis.
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6 Related Work

Speculative multithreading is typically examined in the context of hardwaigriel], even for Java [3, 4].
Software approaches at the assembly or C language level howeerlsavbeen proposed and shown to
have potentially good speedup [5, 18]. For Java specifically, the fetysdd a software implementation
was demonstrated by Kazi and Lilja through manual transformations [1I§waf source code.

Value prediction itself is a well-known technique for allowing speculativecetien of various forms to
proceed beyond normal execution limits, and a number of prediction strategie been defined and anal-
ysed. These extend from relatively simple last value predictors [14] te wmmnplex finite context (FCM)
[21, 22] and differential context (DFCM) [8] value predictors. These also typically designed with hard-
ware constraints in mind, though again software techniques have beminexa Li et al., for example,
develop a software prediction scheme based on profiling and insertioggrgacode following a cost-driven
model [12]. The utility of return value prediction for method level speculaitiodava was shown by Het

al. [9], with further prediction accuracy investigated by the authors [16].

Our approach here is to develop compiler analyses that assist or impxme prediction. Others have
also investigated software help for prediction, though with very diffeagalyses. Burtschet al. analyse
program traces to divide load instructions imd@asseswith different groupings having logically distinct
predictability properties [2]. Det al. use a software loop unrolling transformation to improve speculation
efficiency, but also evaluate likely prediction candidates from trace ditig a software cost estimation [6].
Code scheduling approaches that identify and move interthread deyéesiso as to minimize the chance
of a misprediction have been developed by Zétal. [26]. A more general consideration of compiler
optimization is given by Satet al., who analyzed the effect of unrelated optimizations on predictability and
found that typical compiler optimizations do not in general limit predictability [20]

We have implemented our return value use analysis such that it only cansases involving simple com-
parisons of the predicted variable with constants and locals. Obviousgy, aslkes could be accommodated
in this scheme; most candidates for algebraic simplification [15], for instaotdd easily allow for a va-
riety of inaccurate, predicted values. This in fact has recently beesidered in hardware approaches to
speculation [1], but statically we do not expect a large number of tripi@fations, which should be removed
by prior compiler optimizations.

The parameter dependence analysis we develop is similar to static, intelymralcerogram slicing tech-
niques [24], which compute the data and control dependencies of@\giviable use. Slicing is a relatively
expensive task, although performance optimizations to slicing exist [27but case we need only dis-
cover parameter dependencies, not all dependencies, and maranweploit the speculative nature of the
problem to simplify the algorithm.

7 Conclusions and Future Work

We have described the design and implementation of two compiler analyses diimgataving the fea-
sibility of software return value prediction. A return value use removes ¢eel fior prediction data to be
gathered or stored for methods that do not have their return valueroedstA further refinement reduces
prediction accuracy requirements on methods that have limited subsegeenQur second analysis com-
putes a simple parameter dependence relation, establishing which functibpampmeters may contribute
to the final value of a returned variable. This allows us to reduce falseghia memoization hashtables,
and thus reduce cold start prediction misses and also decrease menuirgmeaqts.
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We have implemented our analyses in Soot, and applied them in SableVM to tcon&xroization and
hybrid predictors. These associate prediction storage tables at disitle cand so memory usage can be a
concern if optimal accuracy is desired. Our return value use analyssafitaidentifies 30.8% of callsites
in the SPEC JVM98 benchmarks as needing zero or reduced predictioraag, although this reduces to
16.7% of runtime callsites. Parameter dependence follows a similar pattern,Aldé 4f callsites statically
having zero or only partial dependence on parameter values, drajogingt 10.2% of dynamic callsites.

Given the reduced number of dynamic opportunities, accuracy improwsraesn correspondingly small,
althoughdb does well with a 5—-7% improvement in the final, combined analysis. Spaceysabhiowever,
are still significant, with context memory reducing by an average of 2.5%rerdoization costs reducing
by 16%, at the highest accuracy and thus highest memaory costs.

We aim to continue our work in a number of ways. More complex expres$iwnsaccurate return value
uses could be allowed, further improving predictor accuracy, althoughpiactical sense this would have
to be carefully balanced with the cost of runtime verification. Also, the retalne use analysis could
be extended, allowing for inaccurate predictions to be substituted in denepose load value predictors.
A purity analysis [23] would identify methods which do not generate side effestssa would be good
candidates for perfect memoization in the traditional conservative sense.

We are actively working on a Java software implementation of SMLP. Thigdxenable us to measure the
actual performance improvement provided by return value predictiongal@peculative system running on
common multiprocessor hardware, and determine how to balance memorg aosts verification costs,
accuracy, and other factors affecting optimal speculative perforenanc
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