
Speculative Multithreading in a Java Virtual Machine

Chris Pickett and Clark Verbrugge
School of Computer Science

McGill University

May 17, 2005

Outline

1 Introduction

2 Design

3 Experimental Analysis

4 Conclusions and Future Work

Outline

1 Introduction

2 Design

3 Experimental Analysis

4 Conclusions and Future Work

Motivation

Speculative multithreading (SpMT) has great promise:

Dynamic parallelisation of irregular, non-numerical programs
Good potential for speedup in Java (1.5 to 5.0 over SPECjvm98 on
a simulated 8-way machine).

Simulated hardware is the primary target; software SpMT is rare.

Not being hardware people, we wanted to try our hand at a
software implementation.

The Java Virtual Machine provides a convenient hardware
abstraction layer.

Decided to use SableVM, our lab’s free/open source JVM.

Speculative Method-Level Parallelism (SMLP)

Contributions

1 First complete implementation of (SMLP-based) SpMT in a (Java)
virtual machine (SableVM)

2 Ability to run SPECjvm98 at size 100

3 Single-threaded simulation and true multithreaded execution modes

4 Experimental analysis of overhead costs and parallelism achieved

Unfortunately, no speedup :(

Outline

1 Introduction

2 Design

3 Experimental Analysis

4 Conclusions and Future Work

Execution Environment

Parallel Instruction Code Arrays

Modified Java Bytecode Instructions

instruction reads writes locks unlocks allocates throws enters loads forces

global global object object object exception native code classes stop

Modified Java Bytecode Instructions

instruction reads writes locks unlocks allocates throws enters loads forces

global global object object object exception native code classes stop

GETFIELD always sometimes first time sometimes

GETSTATIC always first time first time

<X>ALOAD always sometimes sometimes

Modified Java Bytecode Instructions

instruction reads writes locks unlocks allocates throws enters loads forces

global global object object object exception native code classes stop

GETFIELD always sometimes first time sometimes

GETSTATIC always first time first time

<X>ALOAD always sometimes sometimes

PUTFIELD always sometimes first time sometimes

PUTSTATIC always first time first time

<X>ASTORE always sometimes sometimes

Modified Java Bytecode Instructions

instruction reads writes locks unlocks allocates throws enters loads forces

global global object object object exception native code classes stop

GETFIELD always sometimes first time sometimes

GETSTATIC always first time first time

<X>ALOAD always sometimes sometimes

PUTFIELD always sometimes first time sometimes

PUTSTATIC always first time first time

<X>ASTORE always sometimes sometimes

(I|L)(DIV|REM) sometimes sometimes

ARRAYLENGTH sometimes sometimes

CHECKCAST sometimes first time sometimes

ATHROW always always

INSTANCEOF first time sometimes

Modified Java Bytecode Instructions

instruction reads writes locks unlocks allocates throws enters loads forces

global global object object object exception native code classes stop

GETFIELD always sometimes first time sometimes

GETSTATIC always first time first time

<X>ALOAD always sometimes sometimes

PUTFIELD always sometimes first time sometimes

PUTSTATIC always first time first time

<X>ASTORE always sometimes sometimes

(I|L)(DIV|REM) sometimes sometimes

ARRAYLENGTH sometimes sometimes

CHECKCAST sometimes first time sometimes

ATHROW always always

INSTANCEOF first time sometimes

RET sometimes

Modified Java Bytecode Instructions

instruction reads writes locks unlocks allocates throws enters loads forces

global global object object object exception native code classes stop

GETFIELD always sometimes first time sometimes

GETSTATIC always first time first time

<X>ALOAD always sometimes sometimes

PUTFIELD always sometimes first time sometimes

PUTSTATIC always first time first time

<X>ASTORE always sometimes sometimes

(I|L)(DIV|REM) sometimes sometimes

ARRAYLENGTH sometimes sometimes

CHECKCAST sometimes first time sometimes

ATHROW always always

INSTANCEOF first time sometimes

RET sometimes

MONITORENTER always always always sometimes always

MONITOREXIT always always always sometimes always

Modified Java Bytecode Instructions

instruction reads writes locks unlocks allocates throws enters loads forces

global global object object object exception native code classes stop

GETFIELD always sometimes first time sometimes

GETSTATIC always first time first time

<X>ALOAD always sometimes sometimes

PUTFIELD always sometimes first time sometimes

PUTSTATIC always first time first time

<X>ASTORE always sometimes sometimes

(I|L)(DIV|REM) sometimes sometimes

ARRAYLENGTH sometimes sometimes

CHECKCAST sometimes first time sometimes

ATHROW always always

INSTANCEOF first time sometimes

RET sometimes

MONITORENTER always always always sometimes always

MONITOREXIT always always always sometimes always

INVOKE<X> sometimes sometimes sometimes sometimes sometimes first time sometimes

<X>RETURN sometimes sometimes sometimes sometimes sometimes first time sometimes

Modified Java Bytecode Instructions

instruction reads writes locks unlocks allocates throws enters loads forces

global global object object object exception native code classes stop

GETFIELD always sometimes first time sometimes

GETSTATIC always first time first time

<X>ALOAD always sometimes sometimes

PUTFIELD always sometimes first time sometimes

PUTSTATIC always first time first time

<X>ASTORE always sometimes sometimes

(I|L)(DIV|REM) sometimes sometimes

ARRAYLENGTH sometimes sometimes

CHECKCAST sometimes first time sometimes

ATHROW always always

INSTANCEOF first time sometimes

RET sometimes

MONITORENTER always always always sometimes always

MONITOREXIT always always always sometimes always

INVOKE<X> sometimes sometimes sometimes sometimes sometimes first time sometimes

<X>RETURN sometimes sometimes sometimes sometimes sometimes first time sometimes

NEW always always sometimes first time sometimes

NEWARRAY always always sometimes sometimes

ANEWARRAY always always sometimes first time sometimes

MULTIANEWARRAY always always sometimes first time sometimes

LDC STRING first time first time

Fork Decision Factors

Child threads are forked taking several factors into account.

1 Static upper bound on method size

2 Dynamic min, max, and average method sizes

3 History of speculation successes and failures

4 History of sequence lengths

5 Number of zero length threads joined

6 Forced stop due to reaching another child (“elder sibling”)

Forking Speculative Threads

The actual fork process consists of several steps:

1 Copy thread JNIEnv from parent to child

2 Copy parent stack to child

3 Initialize dependence buffer

4 Adjust child’s operand stack height

5 Jump child pc over the INVOKE<X>

6 (optional) Predict return value for non-void methods

Dependence Buffering

Joining Speculative Threads

Every SpMT child eventually reaches one of four termination
conditions:

1 A pre-defined sequence length limit is reached
2 The parent thread reaches SPMT JOIN and signals the child
3 The parent thread throws an uncaught exception, and signals the

child
4 Unsafe control flow is encountered

Once stopped, we begin the validation process.

Joining Speculative Threads

Validation consists of 4 steps

1 Verify return value (if any)
2 Check number of GC’s in child
3 Dependence buffers checked for corruption, overflow
4 Values in read buffer compared with main memory

If validation succeeds, then:

Values in write buffer are flushed to main memory
Child stack frames are copied to parent
Non-speculative execution resumes where the child left off

Otherwise, the child is aborted.

Single-threaded Simulation Mode

Multithreaded Mode

Intricacies of the Java Language

There are four Java-specific problems:
1 Native methods
2 Garbage collection
3 Exceptions
4 Synchronization

Native Methods

Java allows for execution of non-Java, i.e. native code

Native methods can be found in:

Class libraries
User code
VM-specific method implementations

Native methods are needed for (amongst other things):

Thread management
Timing
All I/O operations

Safe to fork children if parents encounter native methods

Unsafe for children to enter native code

Garbage Collection

SableVM uses a simple semi-space copying collector

Child threads started before GC are invalidated after GC

Could be fixed by pinning objects, or by updating references in the
dependence buffers.

Child threads are invisible to the collector, and can continue
execution during GC.

We are able to allocate objects speculatively

Heap is protected by global mutex
Instead of OutOfMemoryError, speculation stops
Disadvantage is increased collector pressure from failed threads

Exceptions

Speculatively, exceptions force threads to stop immediately

Exceptions are rarely encountered
Writing a speculative exception handler is tricky
Speculative exceptions are likely to be incorrect

Non-speculatively, exceptions can be thrown and caught in the
parent

If uncaught, children are aborted one-by-one as stack frames are
popped

Since method calls frequently occur in exception handlers, we
might expect to fork children inside them.

This is safe!

Synchronization

Java allows for synchronization on a per-method and per-object
basis

Safe non-speculatively, unsafe speculatively

However, we can start child threads once inside a critical section;
only entering and exiting is prohibited

Speculative Locking allows for critical sections to be entered and
exited speculatively

We’ll look into this in the future

Outline

1 Introduction

2 Design

3 Experimental Analysis

4 Conclusions and Future Work

Speculation Overhead

Non-speculative Thread Overhead Breakdown

execution comp db jack javac jess mpeg mtrt rt

bytecode 39% 24% 29% 30% 21% 59% 49% 58%

fork 6% 15% 13% 13% 11% 5% 3% 4%

enqueue 4% 10% 10% 9% 7% 3% 2% 2%

join 53% 59% 57% 56% 67% 34% 47% 36%

pred update 7% 13% 12% 11% 12% 6% 7% 7%

dequeue 5% 5% 5% 4% 5% 2% 2% 2%

wait 15% 14% 11% 11% 19% 8% 26% 11%

pred check 4% 4% 4% 5% 7% 3% 2% 3%

buffer check 4% 6% 6% 5% 5% 3% 1% 2%

child pass 5% 5% 7% 6% 6% 3% 2% 3%

child fail <1% <1% <1% <1% <1% <1% <1% <1%

cleanup <1% <1% <1% <1% <1% <1% <1% <1%

Speculative Thread Overhead Breakdown

execution comp db jack javac jess mpeg mtrt rt

child wait 86% 82% 78% 78% 78% 55% 53% 71%

child init 3% 4% 4% 4% 4% 2% 5% 4%

child run 9% 12% 16% 16% 17% 41% 40% 24%

child cleanup <1% <1% <1% <1% <1% <1% <1% <1%

bytecode 58% 50% 65% 64% 57% 83% 51% 56%

fork 35% 40% 28% 29% 36% 13% 41% 36%

pred query 33% 38% 25% 26% 33% 11% 38% 33%

join 2% 2% 2% 2% 2% 1% 2% 2%

Speculative Thread Sizes (single-threaded simulation)

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 s

pe
cu

la
tiv

e
th

re
ad

s

Speculative thread size in Java bytecode instructions

Passed Threads
Failed Threads

Speculative Thread Sizes (multithreaded mode)

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 s

pe
cu

la
tiv

e
th

re
ad

s

Speculative thread size in Java bytecode instructions

Passed Threads
Failed Threads

Speculative Coverage (no RVP)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

by
te

co
de

 in
st

ru
ct

io
ns

 e
xe

cu
te

d
sp

ec
ul

at
iv

el
y

in
 p

ar
al

le
l (

%
)

number of processors

compress
db

jack
javac
jess

mpegaudio
mtrt

raytrace

Speculative Coverage (with RVP)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

in
st

ru
ct

io
ns

 e
xe

cu
te

d
in

 p
ar

al
le

l (
%

)

number of processors

compress
db

jack
javac
jess

mpegaudio
mtrt

raytrace

Outline

1 Introduction

2 Design

3 Experimental Analysis

4 Conclusions and Future Work

Conclusions

Automatic parellisation is a difficult goal

We provide a complete design and working implementation

The full Java language is handled

Overhead costs show where to focus optimisation efforts

We showed an increase in parallelism as:

Processors are added
Return value prediction is added

SableSpMT is a good base for future research

Future Work in SableVM

Eliminate overhead costs

Implement speculative locking

Look at processor scalability

Allow for children to fork children

Load value prediction

Compiler analyses

Speculative dependences
Finding good fork points

Clarify memory model issues

Compare sequential algorithms running under SpMT against their
hand-parallelised equivalents (start with JOlden).

Future Work in Testarossa and J9

Implement this design in IBM’s Testarossa JIT / J9 VM

Initial target is PPC (Power4, Power5)

Assembly versions of dependence buffer and value predictors

Some mechanism to switch between non-speculative and
speculative code (e.g. on-stack replacement)

Goal is speedup and an (eventual) PLDI or OOPSLA paper

	Outline
	Introduction
	Motivation
	Background
	Contributions

	Design
	Execution Environment
	Method Preparation
	Forking Speculative Threads
	Dependence Buffering
	Speculation and the Java Stack
	Joining Speculative Threads
	Execution Modes
	Intricacies of the Java Language

	Experimental Analysis
	Speculation Overhead
	Speculative Thread Sizes
	Speculative Coverage

	Conclusions and Future Work
	Future Work in SableVM
	Future Work in Testarossa and J9

