McGill University
School of Computer Science
Sable Research Group

Speculative Multithreading in a Java Virtual Machine

Sable Technical Report No. 2005-1

Christopher J.F. Pickett and Clark Verbrugge
{cpi cke, cl unp}@abl e. ncgill.ca

March 25th, 2005

www.sable.mcgill. ca

Abstract

Speculative multithreading (SpMT) is a dynamic programaflalisation technique that promises
dramatic speedup of irregular, pointer-based programsedisas numerical, loop-based programs. We
present the design and implementation of software-only B Java at the virtual machine level.
We take the full Java language into account and we are ablstand analyse real world benchmarks
in reasonable execution times on commodity multiprocebsodware. We provide an experimental
analysis of benchmark behaviour, uncovered parallelisenjhpact of return value prediction, processor
scalability, and a breakdown of overhead costs.

1 Introduction

Although languages such as Java provide (and continue to improvehigBpevel language/API support
for explicit parallelism, taking advantage of hardware concurrency irenadifficult task. This situation
is being exacerbated by the increasing presence of multiprocessor diicbreunachines as consumer
level, commodity hardware [24]. In order to use that hardware efiggtiechniques need to be developed
that place less burden on the application programmer. Purely automatic teehifdg parallelism are thus
highly desirable, but good, general performance has so far pedusive [44, 46, 74].

Speculative MultithreadingSpMT) is a relatively new, automatic technique for medium to fine-grained
automatic parallelisation that applies to a wide variety of programs, includingulereand non-numeric
programs. It is typically defined at the hardware level [18, 69, 64 ghcsome software approaches have
been investigated [4, 30, 13]. SpMT has shown quite good potentiatigpsen simulation studies; it
does not always achieve optimal speedup, but as a tradeoff betwelemiemation complexity and use of
available hardware resources it shows excellent promise as a gengoahatic parallelisation strategy.

Here we describe the design and implementation of SableSpMT, an SpMd-bgstem for automatic par-
allelisation of Java programs. We have incorporated SpMT at the (Jat@dlymachine level, as opposed
to the hardware or pure source level. This allows us to take advantagghdeliel VM knowledge of Java
programs, while still having low level control over execution behaviowr: iplementation is the first full,
usable implementation of SpMT for a VM and the first to be able to accommodatethgete Java lan-
guage semantics. This makes our system an ideal environment for datadkstjc investigation of SpMT
performance, both as a (virtual) hardware simulation, and as a stratedgvi@ optimisation. We provide
a detailed analysis of benchmark performance as well as a breakdooweidfead costs under realistic
workloads.

Most SpMT strategies focus on loop-level optimisations. For object-oddategguages, however, the ex-
tensive use of method calls and polymorphism make simple, easy to analysédssprevalent. Java itself
is also not a generally favoured language for intensive numeric compaftiplications, and so irregular
programs with complex control structure are quite common. Our approaghMad & optimized for this
environment. We base our main designSpeculative Method-Level Paralleligf@MLP), a form of SpMT
that uses method invocations as potential spawning points for parallelteecTo further exploit frequent
method invocations we incorporate a sophisticated, hyfetigkn value predictiofRVP) system [51]; this
helps to reduce inter-thread dependences, and has been shownval e optimisation for SMLP [25].
Other optimisations specific to Java program behaviour within our implementatitext are also applied.

Our experiences with real world Java benchmarks show that SpMT sibfedn the VM environment.
Our experimental system is able to run standard industry and academibeiastamarks at reasonable
speeds, and can be used on existing multiprocessor hardware. @Vedst and processor utilization are

the major concerns in SpMT design, particularly for software basedbappes. Our design includes a
number of internal optimisations to help in both respects. Still, there is significant for further overhead
optimisation, and exploration of variant designs; at this time, we cannot clainave achieved actual
speedup. The data we provide, as well as our software environmeftatedntended to facilitate research
experimentation.

1.1 Contributions

Specific contributions of our work include:

1. We present the first actual implementation of SpMT within a non-trivialaJgirtual machine, Sa-
bleSpMT. Our design provides a complete, automatic method-level specidatisonnment for Java
programs, and incorporates an optimized return value prediction systesxgilass a variety of more
specific implementation optimisations. Our design gives full consideration toldaguage features,
including synchronization, exceptions, native methods, and GC.

2. Using our system, we have provided a detailed analysis of speculatif@mpance on the SPEC
JVM98 benchmark suite [63] with realistic input settings (ie the recommendedl8i@). Other
analyses of Java and SpMT have used simulated hardware systems witlyegtitty reduced, and
therefore not especially realistic inputs (e.g., [25] uses SPEC size 1hwidstly consists of startup
and test harness activity) or have simulated only a limited subset of VM mhdv1].

3. Our framework is designed to simplify research investigation of this probléerhave implemented
our system in a Java interpreter for simplicity of investigation and ease of wetibih. We use
SableVM, a non-trivial, standards-compliant, highly portable and oparcseaesearch virtual ma-
chine [20]. As well as true speculative multithreaded execution we alsodeau'single-threaded”
mode that safely mimics the behaviour of the speculative system without the oty pleactually
producing concurrent threads. This deterministic mode allows for edsygdang and experimenta-
tion on SpMT strategies, as well as analyses of program propertiegaciibn to speculative opera-
tions.

4. We give a complete, experimental breakdown of overhead costs @&u/oivour speculative system.
This data provides a good indication of how to further improve speculaésgds for JVMs, as well
as where to direct future optimisation strategies for achieving an industgalgsh SpMT implemen-
tation at the VM level.

1.2 Roadmap

In the next section we give basic background on both speculative mudtitimg and the virtual machine
environment we used in our study. Section 3 describes our complete impl¢imetesign, and Section 4
provides details on basic design optimisations that help make our appraesibldée In Section 5 we give
experimental results on our implementation, including a breakdown and enafythe various forms of

overhead, and how it relates to our design choices. Section 6 desaifieesl work in the area, and finally
we give directions for future work and conclude in Sections 7 and &ntisely.

2 Background

In speculative multithreading, a sequential region of code is split into two oe ithoeads so that it may
execute on multiple processors. Only the first thread, which executeeduerdially earliest code, is
guaranteed to be correct, and is termedrtbr-speculativer parent thread. All other threads execute with
the potential of computing incorrect values, and are terspagtulativeor child threads. Speculative threads
are required to execute in a completely safe state that cannot affeatl@regram correctness, and may be
aborted as soon as a violation is detected. Speculative threads may thenesehte child threads, which
will in turn be speculative.

To ensure correctness, all writes by a speculative thread get writterthieead-specific cache called a
dependence buffeand so cannot affect main memory. Similarly, all reads by a speculativadttzne
loaded into the dependence buffer. When execution in the non-speeybatient thread reaches the point
where the child thread was forked, the child receives a signal to staplsgien and begin the join process.
The buffered reads of the speculative thread are verified to notdmareged with respect main memory, and
if so the buffered writes areormmi t t ed to main memory. If there was@ependence violatiosuch that a
value read by the speculative thread was later written by the non-speeutattad, the speculative thread
aborts and the code is re-executed. Figure 1 depicts the generdespeauultithreading execution model.

T2

dependence
buffer

load / R2
o
commit

(a) (b)

Figure 1. General speculative multithreading execution moda&).Under a non-speculative execution model, thread
T1 executes sequentially, with regi®1 precedingR2, and all reads and writes access main memory directly. (b)
ThreadT1 has been partitioned into two threads, wiRh executing inT1 andR2 executing inT2. T1 is the non-
speculative parent thread wheregs is the speculative child thread. All af2’s reads and writes pass through a
dependence buffer. Wher2 attempts to read a value for the first time, it fetches theevlom main memory (or
from a value predictor) before storing it into the depenaebaffer. WhenT1 is finished,T2’s results, stored in the
dependence buffer, are checked agalriss results, stored in main memory, and if there exist no viofes, thenT2
commits its results to main memory. At this point, executiesumes non-speculatively at the endraf If there exist
violations, thenl2’s results are discarded and execution resumes non-sgieelylat the beginning oR2.

The basic speculative execution model requires a dependence bidfation testing, thread abortion, and
thread committal, but makes no demands as to how programs are partitionedéaidsthEpecifically, two
issues that must be addressed when preparing sequential codedalatpe execution are where to fork
new speculative threads, and where to verify the speculative exeauttbcommit the results to memory if
correct. There are various strategies that have evolved with respibcesal creation and termination, and
these can be categorized into four broad categories: loop-level, mietveddlock-level, and arbitrary.

In loop-level speculation (Figure 2), speculative execution of futuop lterations are started at the begin-
ning of the current loop iteration in the parent thread. Granularity of teewdption can be controlled by
forking speculative threads more than one iteration ahead of the paresd (teffectively unrolling the loop.

3

] fork T2
fork T3

Join
Ji oin

(b)

I:l loop iteration i

I:l loop iteration i+1

- loop iteration i+2

(a)

Figure 2. Loop-level Speculation execution mod@) Under a sequential, non-speculative execution mokletatl

T1 executes loop iterations: + 1, and: 4+ 2 in order. (b) In loop-level speculatiofl, at the beginning of iteration

1, forks a new speculative thred@ to begin iterationi + 1 on a separate processor, which in turn fori8s and so on
until there are no more processors available. When thféagvhich is non-speculative, completes, all speculations in
T2 are validated and committed to memory if there are no vioteti OtherwiseT2 andT3 are both invalidated, and
T2 restarts execution non-speculatively at the beginningdefl, immediately forking; + 2 in a new thread’4. This
process continues until all loop iterations have complestdavhich point speculation terminates in all child threads
(who are executing loop iterations outside loop bounds)taagrogram enters a non-speculative, non-loop region.

Many programs have complicated control structures that may not aleapsmd well to loop-based par-
allelization. Speculative Method-Level Parallelism (SMLP) focuses on mdathmcations as speculation
points, with the non-speculative thread entering the method and the spezdfagad starting from the

method return point. Speculative threads are committed when the non-4pectiieead returns from the

call at which point, if there are no violations, execution continues fronrexes the speculative thread has
reached. Under this model only the youngest thread may fork a newlagiee thread. Figure 3 depicts the
general SMLP execution model.

Lock-level speculation, or speculative locking, allows for threads tereand exit critical sections specu-
latively, and can be used to extract further parallelism from explicitly multtieel programs and permit
coarse-grained locking strategies. Arbitrary speculation subsumes loephod-, and lock-level strate-
gies: speculation may occur at any point. This is of course maximally flexibtecan offer good rewards
with sufficient analysis information [3]. It is however also complex to implemant requires maximal

preprocessing or runtime analysis overhead.

We have elected to use SMLP as the main design paradigm in SableSpMT. SMixPected to better
accommodate Java’s invocation dense program structure, as well eemded domain of irregular, non-
numeric applications, while still being a potentially feasible dynamic implementation.

2.1 VM Environment

Our implementation is integrated into the free / open source Java Virtual Mac®ableVM [20]. This is
a complete implementation of the Java specifications that is available for s&MtHLinux distributions,
and is to designed to be useful for experimentation and investigation of Mrtaehine characteristics,

INVOKE<X> INVOKE<X> [|

™ forg __ T2

<X>RETURN <X>RETURN L.
Join

(b)

l:’ pre-invoke instructions

(a) l:, method body

. post-invoke instructions

Figure 3: Speculative Method-Level Parallelism execution mo@8l.Under a sequential, non-speculative execution
model, threadl'l encounters a call to methddo(), and executes the method body before returning to the next
statement after the call. (b) Under SMLP, the same thiidadow forks a new speculative threda@ to continue past

the return point when it encounters the calftoo() . Whenf oo() returns, all flow dependences betwéehand

T2 are checked, and if there are no violatiohg,commits its results to memory.

highly portable to new architectures, and efficient, small, and robusiérfou use by end users. SableVM
has several optimized modes of interpretation, but at the time of our effdrtsotl contain a Just-in-Time
(JIT) compiler. This simplifies the implementation complexity for experimental reeea SpMT designs,
although as we discuss in Section 7, research in a JIT context wouldeaissehul.

Execution in SableVM is through a basic (or optimized) interpreter loop. ldgwa bytecode is firgire-
pared or converted to an internal code array and accompanying internellgtes. Executing code interacts
with the usual runtime services, including a semi-space copying garbégeton native thread support,
class loading, exception handling, etc. The complete language and JhiasAipported and SableVM is
capable or running Eclipse [26] and other large, complex Java programs

3 Java SpMT Design

In the following subsections we describe the main VM structures that aetedf by SpMT and how our
modifications address speculative requirements and ensure safetpas$tislesign also includes consider-
ation of distinguishing features of the Java language in Section 3.7, arsti@di®n of our single-threaded
analysis mode in Section 3.8.

The core design includes a variety of modifications to SableVM's internadtsires. Most of these changes
would be required in any VM environment, if at a somewhat more abstraalt lswr intention is to provide
a description generic but precise enough to enable direct translatioasef itheas into other Java runtimes.

.class Soot
files [<—— (AOT compiler)

method
preparation B SableVM
~ I

SpMT

/N

CPU1 CPU 2 CPU 3 CPU 4

non-speculative speculative speculative speculative

Figure 4. The SableSpMT speculative multithreading execution emvient.SableVM prepares methods at runtime
from dynamically loaded classes, which are read in from Jdaas files. Soot is used to transform and attach attributes
to these classes in an ahead-of-time step, although thid etao occur at runtime. Method preparation is enhanced
to support speculative multithreading, and the SpMT engses specially prepared method bodies to split single-
threaded tasks across multiple processors on an SMP machine

3.1 Execution Environment

An overview of the SableSpMT execution environment is given in Figuiiehé. SableVM switch interpreter
has been modified to use specially prepared speculative versionsaahétirods, which are dynamic code
arrays prepared alongside normal non-speculative versions. tietine defined in Java .class files, and part
of the extra information required for speculation may be encoded in thesgdithough there is no funda-
mental need for an ahead-of-time analysis in our design. The speculatioredorks threads at runtime,
and these execute Java in an out-of-order fashion using the speewetsions of methods. Speculative
threads run on separate processors, and there are a maximum pf— n speculative threads running at
once, wherg is the number of processors ands the number of non-sleeping non-speculative Java threads.

Any common SMP machine with a POSIX environment available is sufficienpfaridative multithreading
with SableSpMT. SableVM ports exist for 13 different architectured,@orts of the SpMT engine to these
architectures should be relatively straightforward; SableSpMT ciyresms on SMPx86 andx86_64
architectures. Since the implementation is completely POSIX-compliant and writ#¥ShC, most of the
porting complexity derives from defining the right atomic operations in asdarguage.

3.2 Method Preparation

There are numerous steps involved in preparing a method for specudageaition. We implement an
additional pass over the code array after normal Java methods hawvpreeared in SableVM, and augment
several of the other passes. SableVM uses word-sized (32-bitlut)8Arsions of the 8-bit Java instructions
for the sake of efficiency [19], and so we can add as many additiortalii®ns as necessary. Additional
instructions are not actually required, but they do reduce executioheag and simplify the design.

It is worth noting that in preparation of the speculative method code areayntjority of Java’s 200 odd
instructions can be used verbatim, and only those that have the potentidkte yitogram correctness need
special attention.

3.2.1 Fork and Join Instructions

The first critical step is the insertion of né&&PMI_FORK andSPMT_J O Ninstructions into the code array. In
speculative method-level parallelism we want to fork threads at methodteslsd join them upon return
from the method, and we need some way to instruct the VM to do this. This fuatitiopnould also be
triggered by thé NVOKE<X> and<X>RETURN instructions, but the use of specific speculative instructions
provides a clean conceptual break, and can be more easily extendguptytother speculation strategies.

Code is processed ahead of time for simplicity in this effort. Following a tecknégso employed by
JikesRVM [27] to obtain new functionality from Java instructions, we insafts to dummy static void
Spnt . fork() andSpnt . j oi n() methods around every single normal JAMVOKE<X> instruction
using the Soot [70] compiler analysis framework as a bytecode instrumentatib These empty meth-
ods have zero side effects, add minimal space overhead, and cawi&ié/ tmlined in the case of non-
speculative execution. SableSpMT, however, is engineered to reeognd replace them with the appro-
priate SPMI_FORK andSPMT_JA Ninstructions during method preparation.

Note that this approach, although simplistic, is relatively inexpensive amddes the flexibility to use
ahead-of-time analyses to determine good fork points: fork and join ittngccan simply be omitted
around undesirable fork points. Further use of compiler analysis infame part of our future work.

3.2.2 Modified Bytecode Instructions

The SPMI'_FORK and SPMT_.JO N methods surrounding evetyNVOKE<X> are present in both the non-
speculative and speculative versions of method bodies. Many othelinkiwctions require special spec-
ulative versions, and these are listed in Table 1. Through insertion & teptacement instructions into a
separate code array, speculative execution becomes almost complasbferte normal Java threads, with
the necessary exception of fork and join instructions. Branch instrugctidgth trivial fixups are not shown.

Reads from and writes to main memory require buffering, and seXbé\(LOAD| STORE) and(CGET| -

PUT) (FI ELD| STATI C) instructions are modified to read and write their data using calls to a variable
dependence buffer, as described in Section 3.5. Note that the buoffecares about the addresses and
widths of the data it holds in memory and not their location or functionality, andesgan use the same
code to buffer reading from and writing to arrays on the heap, objetzrings on the heap, and class statics
in class loader memory.

Numerous instructions may throw exceptions, and if this occurs, we staplgtion immediately. These
include the(l | L) (DI V| REM instructions that throwAr i t hnet i cExcept i on’s upon attempting in-
teger division by zero, and many others that thisw | Poi nt er Excepti on’s, Arr ayl ndexQut -

O BoundsExcepti on’s, andCl assCast Except i on’s. Full details on the exceptions that each Java
bytecode instructions may throw are given in the JVM Specification [37]addition to these implicit
instruction-specific exceptions, user or class library code may throwxplicie exception through use of
the ATHROW nstruction, and again here we stop speculation immediately. It is important tohadttop-
ping speculation does not necessarily imgligor t i ng a speculative child and thereby failing the join
process. There is actually somewhat more subtlety to Java exceptionplidisan simple termination of
speculative thread execution, and they are discussed further in S8ati8n

The |l NSTANCEOF instruction requires computing type assignability between a pre-specifiesi aa an
object reference on the stack, and is built on the assumption that theredein question is actually an
object instance. This can normally be asserted before execution byadyscode verifier, but we are

instruction reads writes locks unlocks |allocateg throws enters loads forces
global global object object | object | exception|native code classes| stop
GETFI ELD always sometimes first time| sometimes
CETSTATI C always first time| first time
<X>ALQAD always sometimes sometimes
PUTFI ELD always sometimes first time| sometimes$
PUTSTATI C always first time| first time
<X>ASTORE always sometimes sometimes
(1| L) (D V| REM sometimes sometimes
ARRAYLENGTH sometimes sometimes
CHECKCAST sometimes first time| sometimes
ATHROW always always
I NSTANCEOF first time| sometimes
RET sometimes$
MONI TORENTER always | always | always sometimes always
MONI TOREXI T always | always always sometimes always
I NVOKE<X> sometimessometimessometimes sometimes sometimes first time| sometimes
<X>RETURN sometimessometimes sometimes sometimes sometimegfirst time| sometimes
NEW always always | sometimes first time| sometimes$
NEWARRAY always always | sometimes sometimes$
ANEVWARRAY always always | sometimes first time| sometimes
MULTI ANEWARRAY always always | sometimes first time| sometimes
LDC_STRI NG first time first time

Table 1. Java instructions modified to support speculatidach instruction is marked according to its behaviours

that require special attention during speculative exeoutiThese behaviours are marked “always”, “sometimes”, or
“first time” according to whether or not their execution is\d@ional within the instruction. “Forces stop” indicatés
the instruction may force termination of a speculative @ldrebut does not have a strict correlation with abortion and
failure of the speculative sequence. Not shown are brarsthuictions; these are trivially fixed to support jumping to
the right pc.

executing this code unsafely and out of order, and so there is nothitagingcthat a valid reference will
always be on the stack; this means that we may need to stop execution ifdfenef is invalid. Detecting
whether an object reference is valid requires either a magic word in thetdigader or a bitmap defining
the positions of objects on the heap; we currently use a magic word but wi# toavbitmap-based solution
in the future, as this kind of information may be useful for other VM redeascwell, memory management
in particular.

The JSR (jump to subroutine) instruction is always safe to execute because thedddyess is hardcoded
into the code array, but the return address used by its pa&Eieis read from a local variable. In speculative
execution we always assume the worst, and therefore must check thig/\@lithe target address, because
we cannot make assertions about bytecode verifiability. Furthermame jfethe address does turn out to be
valid, it may be the case that td&R was reached non-speculatively but speculation started befoREhe
was encountered, and thus the return address in the local might pointwodhg code array; in this case
we simply look at the starting positions of the two arrays to determine where stieatéon address lies and
then fix it up if necessary. We actually need a modifRed instruction in thenon-speculativeode array as
well, in the event that speculation stops inside a subroutine and subfgqeta committed, which would
lead to non-speculative code having a speculative return addrese of @g local variables.

The | NVOKE<X> and <X>RETURN instructions may lock and unlock object monitors, avioNl TOR-

(ENTER] EXI T) will always lock or unlock object monitors. We never allow this to occur sfsively,
and so the speculative execution engine needs to be protected frono@amyhat would normally permit
synchronization operations. In addition, we mark these instructions in Taddereading from and writing
to global variables, as lockwords are stored in the header of objeataestan the Java heap. Although this
information about heap access is not particularly useful in the abséspeaulative locking, we present it
for the sake of completeness. Further details on synchronization amigisection 3.7.4.

Thel NVOKE<X> instructions are also modified to ensure that speculative threads will apteran un-
prepared method and start SableVM'’s lazy method preparation pro€esthermore, for polymorphic
callsites, i.e. thé NVOKE(VI RTUAL| | NTERFACE) instructions, we check that the receiver is a valid ob-
ject instance and that the speculative target found through its virtualpgabiter has the right net effect on
the stack and that the type of its containing class is assignable to the ré&ciper Although we could use
strcnp() or some hashing tricks to verify target signatures, entering the wrong thetttars so rarely
that it does not justify the extra overhead. It is worth noting that our smpee shows speculative coadl
invariably enter the wrong method and on occasion get trapped inside itdiofite, even for the simplest of
benchmarks such a&heck, and so a limit on the number of speculative instructions executed per tisread
needed to prevent this, as described in Section 3.8.

<X>RETURN instructions, in addition to the synchronization check, require two thingbuff¢ring of the
non-speculative stack frame from the parent thread (more on stadksuatazy stack buffering strategy in
Section 3.4), and 2) verifying that the caller method is not in the middlgoéparation sequencea special
type of instruction sequence used in SableVM to prepare and replaceciiats that have slow and fast
versions [19].

Returns must also be monitored to ensure the speculative thread doesvediyécode execution entirely.
A return in SableVM can also lead to thread death, VM death, or a returnticer@ode, all of which
are unsafe for speculative execution. These situations are trapgddraa speculation to end. Similarly,
invokes are monitored to ensure native code is not entered.

Finally, we consider the object allocation instructioQ8/JLTI) (A) NEW ARRAY) . Barring conditions
that would lead to an exception being thrown or triggering garbage colledhierg is nothing particular
to speculative multithreading that prohibits object allocation on the global Wapliscuss allocation and
garbage collection in greater detail in Section 3.7.2. Note that & STRI NG specialisation of th& DC
instruction allocates a constant object upon being reached for the firstiéiteehaving the address of this
object patched directly into the code array, and so we always stop amd thkofirst execution to occur
non-speculatively.

To the best of our knowledge Table 1 is comprehensive, and documeépitfals that are inherent in
attempting to execute Java bytecode speculatively. We welcome any clanificatiocorner cases or our
attention being drawn to omissions that we have made; so far, these modich#iea been enough to
support speculative execution of all benchmarks we have tried armbasestent with our understanding of
the JVM Specification [37].

3.2.3 Parallel Instruction Code Arrays
As discussed, the goal of this extensive instruction substitution is to grepaarallel code array for each
method that speculative threads can use without breaking sequentatieresemantics.

This code array structure is shown in Figure 5. The only instructions gtagpecial SpMT versions are
those discussed in Section 3.2SPMI'_FORK andSPMTI_J A Ninstructions are present botharrays, and

kung.Foo.bar()V‘ l lcodelspmt_code“

|

GETFIELD SPMT GETFIELD

ALOAD 1 ALOAD 1

SPMT FORK SPMT FORK
INVOKEVIRTUAL SPMT_INVOKEVIRTUAL
SPMT_JOIN SPMT _JOIN
IFNULL IFNULL
AASTORE SPMT_AASTORE
(a) (b)

Figure 5. Parallel code arrays.(a) non-speculative code array prepared for method bdn)(sgeculative version of
the same code array with modified instructions.

enable both non-speculative and speculative threads to create andijdiert. In the following sections,
we examine the use of these two code arrays in speculative method |esiéIsamn.

3.3 Forking Speculative Threads

When a non-speculative parent thread reacheSRMI'_FCORK instruction, it will attempt to fork a new

speculative child thread. The first step is to decide whether or not thentuork point is suitable for

starting speculative children. Rather than simply make an on/off binaryidecise also attempted to
build a good heuristic that assigns fork priorities depending on seveedp of dynamic and static data,
including:

1. A static upper bound on the size of code reached through the methimth @@m be obtained from a
callgraph if there are no intraprocedural or interprocedural bakivM@anches over the transitive clo-
sure of the method call. We implemented such an analysis in Soot [70] usinigniple ihtermediate
representation of bytecode and the callgraph derived from the poimatsalysis provided by Spark
[34].

2. Dynamic upper and lower bounds on transitive method size, and moretanfijpran average size.
This information is kept on either a per-target or per-callsite basis.

3. Anhistory of speculation successes and failures per-callsite, kepedher the entire execution of the
application to date or over the ladt speculative forks.

4. A history of the lengths of speculative sequences per-callsite, agptrskice application startup or
over the lastV forks. We might also be interested in a static analysis to avoid sequencesdhat
guaranteed to have a short maximum length due to an unavoidable instruetidorties speculation
to stop, such as BMONI TORENTER or anATHROWwithin 10 instructions of the fork point.

5. The number of times a speculative child was forked but joined again byatent before actually
executing any instructions; this represents 100% wasted fork/join cagrhe

10

6. The number of times a speculative child was forced to stop prematurelyseit encountered another
speculative child that had been forked at this callsite; this represenasfeskfjoin overhead inherent
in a scheme with fork points that are too frequent.

When the decision to fork a child has been made, several steps must bhe Rlmarily these involve
memory allocation, and an SpMT-specific memory manager is most helpfulucirggdoverhead here. An
enumeration of all steps required follows:

1. The thread environment of the parent is copied over to the child, althoniyg those variables in this
structure which can be touched speculatively need to be safe.

2. The current parent stack frame is copied to the child; details of ol btdfering strategy are given
in Section 3.4.

3. A dependence buffer is initialized, this will act to protect main memory frpatslative execution
and allow for child verification at join time. Dependence buffering is deedrih Section 3.5.

4. The height of the Java operand stack upon return from the nanHsgige invoke is computed,; this is
a constant for any given callsite and it is not necessary to parse magmaduses on each invoke.

5. (optional) A return value may be predicted for non-void methods. Thististniotly required for
speculation, as any random value can be used. Thus we describetuur value prediction as an
optimisation in Section 4.1.

Then, depending on the execution model, we either skip over the invokevatuth smmediately to the
speculative code array (single-threaded simulation, Section 3.8.1) neeadhe child on a global priority
gueue and proceed with non-speculative execution (true speculatikghreading, Section 3.8.2. It is
better if the enqueuing takes place as soon as possible, to reduce the titoesjostulative forking in the
non-speculative parent thread, and in our current system only stepvk is completed by the parent.

3.4 Speculation and the Java Stack

During execution of a Java method, the VM will interpret bytecode instrustaond use them to modify
the Javabperandstack; Java bytecode provides the basis for a stack machine at runtirtie $gme time,
each method gets its own frame on the Jeathstack. In SableVM, the operand stacks and call stacks are
interleaved; the arguments to a callee method at the callsite in the caller franmeeodheaocallee’s parameter
local variables when its frame is pushed.

Speculatively, we need to buffer all stack accesses, to protect thetpam-speculative thread in the event
of failure. The simplest way to do this is to copy the entire parent stack otbetohild. A lazy strategy is
more efficient, however, and we instead copy stack frames from thatpanly as the child exits them. We
now present a moderately complex example of a parent thread with twoatpezahildren to illustrate the
details and safety mechanisms of our stack buffering strategy.

In Figure 6 a non-speculative parent thread and its two speculativeeide shown. Each thread moves
up and down the Java call stack as it enters and exits methods. Speocesatvgion proceeds as follows.
The parent thread pushes franféghroughf4 on the stack. Just before the callsite that will pdshit
decides to fork a child. After forking the parent executes methods dsl&andf6. The child gets the
caller frame copied over and continues execution past the invoke. Itféxitsd so needs to copy ovEt

11

A parent child

f
6 grandchild
5 5 >

- (fork)

£ | | |

I

o f4 - b

S| (fork)

©

ki - - -

G f3 | -q--------e-- el EEEEEEETEE b
f2 | e >
fl buffered at fork

L] meeeeee- buffered lazily after fork

Figure 6: Call stack buffering. fxhroughf6 are stack frames corresponding to Java methods. A speeutdtild is
forked atf4 in the parent, and in turn a second-generation grandchiédthis forked at5 in the child.

from the parent. This is always safe, because the parent will join theatfiddefore either returning tt3
in the event of a failure, or jumping ahead to the child’s current position ietkat of success.

Sometime inf3, the child encounters another invoke and moves back up té4thevel. This may be a
completely different method from that in which the child was forked. Noéuif is needed, as this is new
speculative execution without immediate dependence on prior computation. r§imitaen the child enters
f5, it does not copy the frame over from the parentfSrbefore enterinds, the child decides to fork itswn
child; this is the grandchild of the original non-speculative parent. Betoe child return froni6 to f5, the
grandchild exits several methods and ends up dov2 #tgain it is safe to copy4 andf3 from the child as
the child will stop when it gets téb, where it sees the grandchild has been forked.

Furthermore, it is safe for the grandchild to buff@rfrom the parent the parent can only return @ if

it aborts the initial child forked iff4, and this will lead recursively to the abortion of the grandchild (see
Section 3.6 on joining); otherwise, it will commit the child, copy over all staekfes entered speculative
and jump ahead, not returning bel®before joining the grandchild. By ensuring that a given thread never
leaves a stack frame without joining its child, we can promise that speculedivie$ copied from ancestors
will never be corrupted.

A novel concept in this design is that it allows for multiplemediatechildren in a parent non-speculative
thread: at each method entered we allow a child to be forked, and aseootads€hildren with stack frames,
this means that there can be one child per frame on the stack. This exjgpsisasitly more parallelism
than a model in which each thread is restricted to a single immediate descendaltippleMmmediate
children per thread anmeot shown in Figure 6, but the result of the extension is a tree of childrenrrétae

a chain.

3.5 Dependence Buffering
Common to all speculative multithreading proposals is a mechanism for bigffastentially unsafe memory

reads and writes in speculative threads. We already buffer stackSrangemodification of local variables
as described in the previous section, and so now we need only worty aboesses to main memory. In

12

speculative Java stack

SPMT_GETSTATIC SPMT_PUTSTATIC
SPMT_GETFIELD SPMT_PUTFIELD
SPMT_<X>ALOAD SPMT_<X>ASTORE

write buffer ‘ Al

read buffer 1 A

main

memory Java heap values and class statics

Figure 7: Dependence bufferindqRead and write buffers are allocated in a layered structutleaiow for speculative
threads to communicate with main memory. The dashed lineadtes that the read buffer is searched during specu-
lative heap/static loads only if the value has not alreadynberitten into the write buffer by a speculative heap/stati
store.

Java, main memory consists of data on the garbage-collected heap andsstalites.

Each speculative thread gets its own dependence buffer. This is initialifexdk time, so that when a thread
starts up, all of the buffer entries are empty. Furthermore, by settingranitialized” flag, we can defer

the real initialization until the buffer is actually used, thus eliminating overhe#iteievent that it remains
unused. We can still further break down overhead costs by havintypebuffers internally, one for each
of the 8 Java primitive types and a 9th for object references.

Each per-type buffer in turn consists of two sub-buffer layers, d trdfer and a write buffer. These
are implemented as hashtables with a backing array acting as a linked list; testreguivalent in the
Java Collections Framework jsava. uti | . Li nkedHashMap. The hashtable uses direct addressing
and provides fast entry lookup, and the backing list allows for fasttiterahrough non-NULL elements.
Value addresses are the keys in these buffers, and values themselggsrad as mappings to these keys.
Dependence buffers are typically implemented as fixed-size table strsigturardware SpMT designs, and
we have followed the same conventions here.

A model of a dependence buffer is pictured in Figure 7. When the speeuPMI_(GET(STATI (] -

FI ELD) | <X>ALOAD) load instructions are executed, first the write buffer is searched, anddés not
contain the address of the desired value then the read buffer is sealfdhe value address is still not found,
the value at that address is loaded from main memory. When the spec@tifle (PUT(STATI C| -

FI ELD) | <X>ASTORE) instructions are executed, the write buffer is searched, and if no erfoynsl a
new mapping is created. The default buffer size is 128 entries per prirtypes and we find this is more
than sufficient, with overflow occurring rarely. It is likely that some small mgnsavings can be achieved
here; however, this is not a pressing concern, and we can affor rauich more liberal with memory in a
software implementation of SpMT.

3.6 Joining Speculative Threads

Upon reaching some termination condition, a speculative thread will stoptxea@nd leave its entire state
ready for joining by a parent thread. This termination condition may be: Aespre-defined speculative
sequence length limit being reached; B) a parent thread signalling the clstdgonhen it reaches the
SPMT_JA N instruction; C) the parent signalling the child to stop when it reaches the tdpdfM ex-

ception handler loop in that stack frame (refer to Section 3.7.3); or D) titetrefaching an instruction that

13

presents speculatively impermissable behaviour as discussed in Sectibn 3.2

The join process is straightforward. The parent thread returns framthod call and finds a speculative
child on the stack. Either way the parent will ensure that the child has stexgeution before proceeding.
If in the VM exception handler loop, the child is simply aborted and its memory &dfte a free list;
execution continues non-speculatively until the exception is either caudgrds to VM death. Otherwise,
the child may be successfully joined, and the following validation process {d&ee:

1. Ifthe method returned a value, that value is checked for safety atfanslue used by the speculative
thread. This value may have been predicted, or it may have been randamsafe, the child is
aborted.

2. The child is checked for having seen the same number of garbagetiookeas the parent (refer to
Section 3.7.2 for more about GC). If fewer, the child is aborted.

3. The status of dependence buffers is checked, and if overflowtherwise corrupted, the child is
aborted.

4. All values in the read dependence buffer are compared with the vathe aame address in main
memory; if violations occur, the child is once again aborted.

At this time, if the child has not been aborted, all values in the write buffeflasbed to main memory, the
buffered stack frames entered by the child are copied to the parentparsbeculative execution resumes
at thepc and operandt ack_si ze where the child left off. If aborted, the child’'s memory is freed and
execution continues non-speculatively at the first instruction pagSkRME_JO N.

3.7 Intricacies of the Java Language

Several traps await the unsuspecting implementor when trying to enhandd goJsupport speculative
multithreading. We assert that it is necessary for an SpMT implementationdariddaensider these features
in order for it to be considered fully general.

The features to be covered in the next four sections are native metfastiage collection, exceptions, and
synchronization. The common patterns that will emerge from them are that:

1. They are unsafe to execute speculatively in our current model. Wowhis does not entirely pre-
clude future work to support them.

2. Theyare able to execute in a parent non-speculative thread that has specuglitiien running
concurrently.

3. They formspeculation barrierscross which speculation cannot occur.

4. They do not necessarily force abortionatif speculative children when they occur, and their impact
can be minimized.

14

3.7.1 Native Methods

The Java specification has provisions for native methods, which are dsetiod implemented in Java and
executed as bytecode but implemented in a platform-specific language likegeteaompiled to machine
code, and interacts with Java through a native interface such as theaaxalnterface (JNI) [36] or directly
as part of the VM internals. Native code can thus be found as part @ldke libraries, the JVM itself, or
user code. Native methods are fundamental to Java execution, butdragare nicely hidden away from
your typical programmer. For example, all thread management, timing, andoB@tmns require native
methods, as the functions they require are simply outside the scope ofylavade, but programmers are
provided with pure Java wrappers around them.

In speculative execution, we need explicit control over the code begauéed, and since this is not available
for native methods they form a hard speculation barrier. However, we still be able to execute native
code non-speculatively, and it is safe to do so while speculative thegadaive. In terms of our model,
we can fork and join children at callsites that have native targets, andbmmadly we can do so at any call
over which the transitive closure contains a native method.

As an example of where speculation is still useful for timing-dependemiixa, consider mp3 playback.
It should be possible to structure the application such that all I/O occunsler and at the right time, but
that decoding and processing of the mp3 can occur speculativelyttsatdhe playback buffer suffers fewer
underruns for a given computation load. Depending on the applicatiomifig be achievable without any
transformations.

3.7.2 Garbage Collection

All objects in Java are allocated on the garbage-collected Java heajs ®hesof the main attractions of the
language, and as such, any proposal to extend it should considegdhisef; indeed, many Java programs
will simply run out of memory without GC.

SableVM uses a simple copying collector [19], and so object referegetanvalidated upon every collec-
tion. This means that a speculative thread started before GC will be invalidéier GC. However, since
the threads are speculative, they must be invisible to the rest of the VMnaaditicular cannot be traced
during collection. All reads from and writes to the heap are buffered,sanhaving a speculative thread
attempt to access the heap during GC is completely safe. Our solution to thenpafnvalidating threads
is to keep a count of the number of collections that any given non-speeularead has seen. When a child
is forked, this count is copied over. Upon returning to the fork pointjaming the child, if the number of
collections seen in the parent is greater than the count in the child, weit®fadure.

The default copying collector in SableVM is invoked relatively infrequerahd we find that GC is respon-
sible for a negligible amount of speculative invalidations. Other garbaligction strategies are assuredly
more difficult to negotiate with, and it is likely the case that pinning of speceligtimccessed objects is
required to handle them properly. Needless to say, exploration of theas isl outside the scope of this
paper, but it would be entirely possible to pursue them within our framework

As for object allocation, ware able to allocate objects speculatively, as discussed in Section 3.2.2. Specu-
lative threads compete with non-speculative threads to acquire the glotead pratecting the heap, and any
allocated objects are reachable starting only from the stack of the speetifmgad. If allocation would trig-

ger either GC or aiut OF Menor yEr r or , we stop speculation immediately (and thus slightly modified
routines for speculative object allocation are required). When a Fieeuthread gets joined and commit-

15

ted, child stack frames are copied to the parent and allocated objects bezarhable non-speculatively.
If on the other hand a child with speculatively allocated objects is invalidated, e objects become
completely unreachable and will be collected in the next collection.

The disadvantage of allocating objects speculatively is that more colledivityathan normal will be
necessary, as aborted children will pollute the heap with unreachablebjtowever, we did not observe
a large increase in GC counts when speculation was enabled, andrifustegsroviding this facility greatly
extends the maximum length of speculative sequences, as objects aredltuften in many Java programs.
Another advantage is that technically we do not need to buffer readfsanal writes to speculative objects,
but this is an optimisation not implemented at this time.

3.7.3 [Exceptions

Java allows for bytecode instructions to throw exceptions, either implicitly@srsin Table 1 or explicitly
through use of th&THROWinstruction.

Speculatively, we stop immediately upon encountering an exception. Thealtir this design decision
is three-fold. First, exceptions are rarely encountered in normal 8gacd exception-heavy applications
like jackthrow an exception for less than 1% of all method calls [51]. Second, gthibwould be possible,
writing a speculative exception handler is a somewhat tricky processairilenbest use of our resources at
this time. Third, and perhaps most importantly, exceptions that would oceaulkgtively are likely to be the
result of incorrect computation and have a high correlation with sequaiees, meaning that attempting
to process the exception speculatively would result in even more wastks cy

Non-speculatively, if an exception is thrown, caught, and handled witlers#ime method without being
rethrown, then there is no need to abort speculative children, and theegw is completely invisible to
them. However, exceptions may be thrown out of methods, and this leadskastainding in the search
for an appropriate handler, eventually ending in VM death if none anedoif in the process of popping
stack frames we encounter a speculative child, we must signal that chitdp@sd force its immediate
failure, to prevent memory leaks and unwanted computation. Howeverowetcheed to invalidate all

children on the stack in the event of an exception, only those that areeteced during stack unwinding.

Java compilers likg i kes andj avac compile idioms such asry {} catch () {} andtry {}
catch () {} finally {}inthe Javalanguage to use exception handlers MR andRET instruc-
tions [37]. The safety of these instructions with respect to speculateeugrn is discussed in Section
3.2.2. Itis worth noting that other bytecode compilers are permitted to explait ftneother purposes, and
our considerations about them with respect to speculative safety dimited to exception handling.

There is a hidden complication with exception handlers and forking speautdtildren. One of the prop-
erties we would like to guarantee is that no stack frame ever has more thapendative child, and this
is checked with an assertion in our implementation of $RMI'_FORK instruction. If thel NVOKE<X>
following a fork were to throw an exception non-speculatively, we might @méh a bytecode exception
handler with a speculative child on the stack. This would not be a problerari tlvere no callsites within
the handler, but in fact frequently exception handlers do call methodgptmrt errors or otherwise act
on the thrown exception object, and thus we also encounter fork and jefodtiens within the handlers
themselves!

To avoid reaching a fork with a child on the stack, it is imperative that the friaawe its child aborted at
the top of theVM exception handler loop, i.e. before looking up and jumping to any particytacbde
exception handler pc. This technique also solves a problem fwithal | y blocks: if an exception is

16

thrown within at ry block and uncaught in the current frame, control will pass toftheal | y block
before proceeding to theat ch block [37]. Fortunately, the VM exception handler loop must still be
entered before jumping to thie nal | y block, and thus any children can easily be aborted.

3.7.4 Synchronization

The last feature of the Java language that requires treatment is the abilityctorenize threads and protect
shared data using per-object monitors. In bytecode this can be accoadpiisbwo ways, either explic-
itly through theMONI TORENTER and MONI TOREXI T instructions, or implicitly through a synchronized
method entry or exit. As noted in Section 3.2.2, these operations cannottgen speculatively.

Speculative locking, in which child threadse allowed to acquire and release monitors, has been previously
explored by several groups [42, 43, 58, 55], and is discusse@atgrdetail in Section 6. It would be most
interesting to evaluate these methods within our current system, and is a leseafch we intend to pursue

in the near future. In particular, the structured locking rules of the JVéti§ipation ensure that the state
of an object lock will be identical before and after synchronized metheacation on that object, which
should simplify analysis and afford certain optimisations.

As for non-speculative locking and unlocking while speculative childmenalive, it is safe, just as garbage
collection, exception handling, and native method calls are safe. Pettepwost interesting thing to note
is that we can safely start speculative threads inside a critical sectigaianidem before exiting the critical
section. Thus code which is traditionally thought of as a parallelism bottlecetke parallelised, in turn
encouraging coarse-grained locking, which is desirable from a s&®@vagineering perspective for its easier
programmability.

3.8 Execution Modes

Now that we have described in detail all the steps and data structureésecefr speculation in Java byte-
code, we present two execution models. We developed our designrtaiadd with our implementation;
many of the previously described techniques were non-obvious, amteveated between finding flaws in
implementation that we had not previously considered and refining oundesig

There were a couple of key factors that allowed us to progress thi§ifat was the clean and compliant
implementation of the JVM Specification that is SableVM. At the expense of spemdsoptimisations,
it is written in a way that is very easy to extend, and we did not suffer majearel bottlenecks trying
to understand the structure of the VM. Second was the use of a singseltii®mulationof speculative
multithreading to work out the problems in our design (Section 3.8.1. This magel s from having
to debug concurrency issues at the same time as general speculatiyeissties, and also allowed for
relatively easy experimentation on uniprocessors.

3.8.1 Single-threaded Simulation

In the single-threaded simulation mode, we interleave non-speculativepacdlative execution of Java
in a single thread. This is accomplished through state saving and restoeattbiransitions between the
non-speculative and speculative parallel code arrays.

The complete execution of a speculative child is shown in Figure 8. All of th@iitapt steps have been
previously examined, and so for the most part this is review. The stepsdh@msre listed in point form

17

allocate child thread from free list
copy parent JNIEnv to child
copy parent stack frame to child
initialize dependence buffer

SPMT_FORK adjl.(]ﬁt operand sltack(height)
if instance is null then stop predict return value (optiona
if address not in write buffer save parent pckand stack_size
if address not in read buffer Jump over Invoke
insert address as key ~.._| switch to speculative code array
read value into read buffer o~
return value SPMT_GETFIELD

if instance is null then stop SPMT_PUTFIELD
if address not in write buffer
insert address as key i
write value into write buffer

enter parent target non-speculatively

stop speculation immediately 7 SPMTiMONITOREXIT R al_l %%%ﬁg%?g;ﬁgﬁ{ﬁéﬁg}y

save child pc and stack_size Cwrit ;

restore parent pc and stack_size INVOKEVIRTUAL _ mrrlct)lvr‘}igngoeT?elr;t?gﬁ?ory

- - entering native methods

- locking and unlocking objects
- starting the garbage collector

get child pointer from stack frame
if (actual return value == prediction &&
gcf\;vas 805 called ir;ﬂpare&r:g&&
: : uffers did not overflow
non-speculative execution . ARETURN - read buffer passes validation)
SPMT_JOIN then
- commit all values in write buffer

transition points |:| copy all stack frames entered by child
h restore child pc and stack_size

speculative execution free child thread to free list
“~.._| continue execution non-speculatively

Figure 8: Single-threaded simulation mod#ava execution transitions to speculative execution &tgomts, contin-
ues past the invoke until a termination condition is reachedps back to non-speculative execution to complete the
body of the invoke, and attempts to the join the child wherjsirepoint is reached.

in the figure, and so here we simply draw attention to the features of the simulation

When anSPMTI_FORK instruction is reached, we prepare the speculative starting state and swviteh
execution of that state. So that we can return to callsite to executeNMEKE<X> non-speculatively,
we save the non-speculatipe and operandt ack_si ze, set the child state as the current environment,
switch code arrays, and begin speculative execution immediately pastlgieca

After some speculative instructions, which may or may not involve the depeedbuffer (in the figure,
both a speculative heap read and a speculative heap write are sha@neach some termination condition,
be it a pre-defined sequence length limit or an instruction we cannot texspaculatively (in the figure,
we reach arSPMI_MONI TOREXI T and stop because exiting a critical section speculatively is currently
unsupported).

At this termination condition, we now save thpeculativepc andst ack_si ze, restore the parent non-
speculativepc and st ack_si ze in the ordinary code array, and go back to execute the body of the
I NVOKE<X> non-speculatively. Upon return, we encounter the forked child ontdek sand begin the
validation and committal process. If speculation succeeded, we jump aheadr®the child left off, at the
equivalent position in the non-speculative code array, and otherwigé the child and re-execute its body
non-speculatively. In the event of a successful join in the figure, é&xéinstruction to be executed would
be a non-speculativeONl TOREXI T.

Moving development from simulation mode to the true multithreading mode descnilibd next section
was relatively straightforward. We hope this simpler mode will improve theldpagent speed of and
effort required for future implementation variations as well. Speculativerage data obtained using this

18

non-speculative parent

thread T1 0 O(1) priority queue

SPMT_FORK enqueue C1
INVOKE<X>

SPMT_FORK enqueue C2
INVOKE<X>

freé SpMT helper thread pool

SPMT_FORK enqueue C3 Y

INVOKE<X>
S1 S2 S3
SPMT_GETFIELD *\
<X>RETURN || ;
SPMT_JOIN dequeue C3 | | SPMT_PUTFIELD
<X>RETURN CPU 2 CPU 3 CPU 4
SPMT_JOIN dequeue C2 I:I SPMT MONITOREXIT ‘

free CPU pool

cleanup
<X>RETURN
SPMT_JOIN join C1

Figure 9: Multithreaded modeNon-speculative parent threads enqueue children a@n(ah priority queue. Specula-
tive helper threads remove children from the queue, andittigalize and execute them, leaving them on the parent
stack to be joined. If a parent thread reaches a child thajieued before that child has been started, it dequeues it
and continues non-speculatively without attempting trecafative child join procedure.

simulation mode is presented in Section 5.3.

3.8.2 Multithreaded Mode

Multithreaded execution occurs much the same as in the single-threaded simuatiowe focus on the
specifics of our threading implementation.

At a fork point, as mentioned in Section 3.3, a minimal amount of work is donespenulatively to reduce
the overhead of thread startup. As soon as the parent environmepiesl ¢o a child, we enqueue the child
on anO(1) priority queue, using a scoring heuristic with the components describectctinS$8.3. This is
a global priority queue that must be locked using an atomic operation bafaddication, however as we
shall see in Section 5.1 it is likely not the most efficient implementation or design.

As shown in Figure 9, there is a pool of SpMT helper threads. Thede@8#X pt hr eads, and currently

there is one executing for every free CPU in the system. Other threadr@ppings are possible, indicated
by the crossed lines in the figure, and determining the best mapping fotieugsar situation is a good

direction to take in future work. These threads are waiting for speculakitdren to be enqueued, and
as soon as one becomes available it will get picked up by a free helpénitialized, and then bytecode
interpretation will begin. In the figure, chil@l is picked up by helper threg8il and the same speculative
as shown for the single-threaded simulation is executed, albett in a sefhaeate on a separate processor.

Meanwhile, the parent thread reaches addttional fork points highen tigeccall stack, and enqueues child

19

C2 andC3. For whatever reason, these do not get picked up by helper thE2aasd S3 (assume for the
sake of argument th&2 andS3 are busy wtth other children not pictured), and so the parent threeldaga
them again before they have been started. This leadS tand C2 being dequeued, in that order, rather
than stopped, validated, and etther commttted or aborted by the parent. éfaning to the fork/join point
of C1, the parent find§$1 has left it on the stack already stopped atSRMI_MONI TOREXI T, and so the
usual validation procedure takes place. If successful, the parensjahgad, and if not, the parent simply
continues.

4 Optimisations

Given a basic SMLP implementation as described in which speculative thaeafisrked at every method
call, there is ample room for optimisation. In this section we discuss what wsdmrio be two of the most
important techniques for improving SMLP performance: return valueigiied and efficient enqueuing
algorithms.

4.1 Return Value Prediction

One of the key optimisations that exists for SMLP is return value predictiorPjR¥Il non-void Java
methods return values, and in dvespeculation strategy, random values are pushed onto the operelnd sta
at fork points to adjust the stack height correctly, and speculation ig¢egbifrthese values turn out to be
incorrect.

Hu et al. previously showed that the SPEC JVM98 benchmarks benefit signifidaotiyRVP in a simula-
tion of 8-processor SMLP hardware [25]. Without any RVP, they vedale to achieve an average speedup
of 1.52 over the benchmark suite, with their best hybrid predictor a spegfdu92, and with perfect RVP a
speedup of 2.76. On this basis we concluded that accurate return vatlietijpn was highly desirable, and
set out to achieve the highest prediction rates possible and to explomrdtierrship between table-based
predictor memory requirements and predictor accuracy [51].

We implemented several well-known predictors from the literature in Sableh®yding fixed-space last
value and stride predictors, and a table-based context predictor. »alast predictor simply predicts the

last value seen at a given callsite, and a stride predictor applies theedifee(stride) between the last two
returned values to the last return value to predict the next value. An-kintext predictor keeps a history

of return values over the laktcalls, and using hashtables to associate predictions with value histories; we
implemented a standard order-5 context predictor. Performance oftabéet prediction strategies naturally
depends on table-size, up to a certain point, and at the performance linxisthg prediction strategies
using per-callsite hashtable, we were able to achieve an average@coliv2% over SPEC JVM98.

We also introduced a new memoization-based predictor that uses methodeatguas inputs to a hash
function to predict values. This complemented existing prediction strategiely,rand when included in a

hybrid increased the average prediction rate over SPEC JVM98 frémt@81%. Models of context and

memoization predictors are shown in Figure 10; they are functionally quite sithiéadifference being that

the context predictor gets its inputs from a history of return values, vals¢he memoization predictor gets
its inputs from method arguments.

After implementation of these return value predictors in SableVM, we lookedtwmple of ahead-of-time
compiler analyses for improved return value prediction in Soot [50], withatlreof increasing accuracy
and reducing memory costs. The first is a slicing-bgsm@émeter dependen@nalysis that finds method

20

T1

return value

Java
stack

L]
L]
objectref
pl
p2

history (context) /—
rl r2r3rdr5 .
INVOKE<X>] en
hash ‘ hash
32-bit | | 32-bit
hash value hash value
context memoization
table lookup table lookup
prediction | | | | prediction

(a) Context Predictor

(b) Memoization Predictor

Figure 10: Context and memoization predictor modelstiifioughr5 are the most through least recent return values,
andplthroughpN are method parameters.

parameters upon which the return value does not depend, and alloredfimtion of inputs to the memoiza-
tion predictor hash function. At runtime, this analysis finds 10% of all noid-galls return a return value
that is not fully dependent on method arguments. The seconckisiian value usanalysis that tracks the
use of return values after a method call and determines if they are umaedsin which case the value does
not need to be at all accurate, or if they are consumed but used onlg m&idolean or branch expression,
in which case accuracy constraints are relaxed. This analysis allowas forerage 17% of return values at
runtime to be substituted with partially or completely inaccurate predictions.

We now employ the best hybrid prediction strategy from our RVP implementdiibjy &nd furthermore
use classfile attributes to exploit the results of our compiler analyses [5@hile SpMT. The impact of our
return value prediction optimisations is examined in Section 5.3.

4.2 Efficient Speculation Decisions

As our experimental data on speculation overhead show (refer to Séctipra good choice of fork points
and efficient enqueing algorithms are critical to the success of SMLP gd $ general.

In Section 3.3, several relevant pieces of static and dynamic data degoeith methods, callsites, and
speculative sequences are described. The current per-callsiisticame use to assign priorities between 0
and 10 to threads for placement on the shared priority queue descriBedtion 3.8.2 is:

score = average_sequence_l ength * success_rate

total _spnt_instructions total _spnt_conmits

cal l site_fork_count call site_fork_count

priority = (score > 1000) ? 10 : (score / 1000)

We find that this algorithm gives decent priority distributions, if somewheagdadowards lower priorities.

21

We also experimented with disabling speculation at callsites if 1) failure reg¢e@high; 2) average specu-
lative sequence lengths are too short; or 3) if the callsite is reached gftamother speculative child forked
higher up on the stack. In all cases, we found that disabling speculati@hnért sequences had a strong
correlation with increased speed, but we also found that the numbertfdtisns executed speculatively
dropped significantly. Thus we are hesitant to report data on the efatisabling speculation, as it is
unclear if the increase in performance is due primarily to reduced fork/j@rhead, or to eliminating short
and failing sequences. A full study that aims to reduce the overheactofilspive execution in our system
without sacrificing parallelism is needed; here we aim to provide a complstgrdand initial baseline
implemention.

Another component of time-efficient speculation is the actual enqueuingthlg and associated data struc-
tures. Although our priority queue providég1) enqueue, dequeue, andr enpve_max operations, itis
globally synchronized and a sure source of speculation overheathggand Blelloch provide an in-depth
analysis of queuing algorithms and an implementation strategy for speculatiives in an abstract func-
tional language running on an abstract machine [21, 22]. Their reselps@bably not directly transferrable,
as their model evaluates function arguments speculatively as opposetstwlioh executes speculative
continuations past method invocations. Nevertheless, the ideas and giasi for time-efficient queuing
algorithms and data structures in speculative execution are relevant tooitkisamd deserve consideration
in future optimisation research.

On the other hand, Shawit al. consider scalable priority queues in [61], finding that for queues with
a bounded number of priorities running on systems with a small number oégsors that our design is
efficient, except that we should consider both synchronizing periyriand using CLH [39] or MCS [45]
gueue locks instead of test-ahést - and- set spinlocks.

5 Experimental Analysis

In the following subsections we present data gathered over SPEC J{8@pat size 100, using true spec-
ulative multithreading on a 4-way SMP machine, with the exception of some resufigeculative thread
sizes obtained using our single-threaded simulation for purposes of csompa

We do not obtain speedup over sequential execution in our present impbgioe. Current running speeds
over the SPEC benchmarks are within one order of magnitude of the unnddsiifide VM switch interpreter
engine (up to 10 times slower). As discussed in Section 4.2, optimisations bothegfitect to the choice
of fork points and the queuing algorithms employed are expected to impraof@mpance, but this is a
significant research effort in its own right and outside the scope ofttrert work.

Nevertheless, as we examine speculation overhead, speculativestaesdind the percentage of bytecode
instructions that can be executed in parallel, we shall see that there isfooaptimism regarding the
ultimate performance and moreover the current value of our design andmepiation.

5.1 Speculation Overhead

In Figure 11, the parent thread is depicted as suffering overhead fehidng, enqueuing, joining, and
validating a child thread. Similarly, the child suffers overhead when it starsnd when it reaches some
stopping condition, as outlined in Section 3.6. We instrumented our SableSpiifiecusing the dt sc
instruction in order to profile execution times, and present overheaétdoeas for both non-speculative
parent and speculative helper threads in Tables 2 and 3.

22

parent

fork and :
enqueue child
child

remove_max
and initialize

signal child and terminate and
await termination save state
validate child and

commit or abort

. non-speculative execution

I:‘ fork/join overhead
D speculative execution

Figure 11: Speculation overheaddoth non-speculative parent and speculative child threaffer wasted cycles due
to overhead at fork at join points.

executioﬂicorrp db |j ack|j avac|j ess|npeg|mtrt| rt
bytecode 39% 24% 29% 30% 21% 59% 49% 58%
fork| 6% 15% 13% 13% 11% 5% 3% 4%
enqueue 4% 109% 10% 9% 7% 3% 2% 2%
othen 2% 5% 3% 4% 4% 2% 1% 2%
join| 53% 59% 57% 56% 67% 34% 47% 36%
predupdate¢ 7% 13% 12% 11% 12% 6% 7% 7%
dequeue 5% 5% 5% 4% 5% 2% 2% 2%
wait| 15% 14% 11% 119% 19% 8% 26% 11%
predcheck 4% 4% 4% 5% 7% 3% 2% 3%
buffercheck 4% 6% 6% 5% 5% 3% 1% 2%
child_pas$ 5% 5% 7% 6% 6% 3% 2% 3%
child_fail| <1%<1% <1% <1% <1%) <1% <1%<1%
cleanup <1%<1% <1% <1% <1% <1% <1%<1%
othen 119 10% 109% 1294 1194 7% 5% 6%

Table 2. Non-speculative thread overhead breakdowrhe three main categories of execution times are normal
bytecode and native method execution, time spent forkimgudgative children, and time spent joining speculative
children. enqueue is incorporated into fork time, and the categories bejaw n make up total join time. The

ot her categories account for execution cycles that we did notunstnt directly, and partially include the cost of
instrumentation overhead itself.

The striking result in Table 2 is that the parent spends so much of its time doakid joining speculative
threads that its opportunities for making progress through normal Jagedue execution are reduced by
up to 5-fold. We see that joining threads is significantly more expensiveftitéimg threads, and that
within the join process, predictor updates and waiting for the speculatiletothalt execution are the most

23

executioficonp| db |j ackl|j avac|j ess|npeg|ntrt| rt
child_wait| 86% 82% 78% 78% 78% 55% 53% 71%
child.init) 3% 4% 4% 4% 4% 2% 5% 4%
child_-run| 9% 12% 16% 16% 17% 41% 40% 24%
child_cleanup <1%<1% <1% <1% <1% <1% <1%<1%
bytecode¢ 58% 50% 65% 64% 57% 83% 51% 56%
fork| 35% 409 28% 29% 36% 13% 41% 36%
predquery 33% 38% 25% 26% 33% 11% 38% 33%
othen 2% 2% 3% 3% 3% 2% 3% 3%
join| 2% 2% 2% 2% 2% 1% 2% 2%

Table 3: Speculative thread overhead breakdowmelper SpMT threads execute in a loop, waiting to removedcbi
from the priority queue, initializing them, running thenmdacleaning them up after thread termination. The running
process itself¢hi | d_r un) is divided into bytecode execution, the end of the fork psscwhich involves making

a return value prediction, and coming to a halt such thaingithe parent non-speculative thread is possible. The
ot her sub-category unddror k accounts for the parts of tHeor k process, once the child is actually executing
bytecode, that were not instrumented directly.

costly sub-categories. Other overhead sub-categories are notifigsigty and in general, optimisations
to any of them will improve performance. We did not measure the speedrofahdytecode execution
vs. speculative bytecode execution, although it will be instructive to lodhenadditional overhead on the
SPMI_<X> instructions in Table 1.

The easiest way to eliminate overhead and bring non-speculative bgtegedution times much closer to
100% and thus overall running speed much closer to normal, is to disaldelaen at fork points with
histories of short and/or unsuccessful speculation attempts. Howeviést we acknowledge that this tech-
nique is probably necessary to achieve speedup in any finalized syspeesdants two immediate problems.
First, it reduces the amount of parallelism in the system as fewer speeutateads are forked and joined;
thus, the limit on potential speedup and processor scalability obtainableythtioe implementation is re-
duced. Second, it sidesteps the problem of addressing overhead &3 designing efficient speculation
algorithms to eliminate them.

In future studies, we will first attempt to reduce overhead as much atbfgogsing aggressive optimisation
techniques, whilst still enqueuing children at every fork point, and wieeare confident that a performance
limit has been reached, we will begin to disable speculation. At this time it is liketyctirapiler analyses
to suggest good fork points and also reorganize code such that itaistricmore amenable to SMLP can
be exploited.

In Table 3, we observe several notable points about the executiorciliggive children. First, the SpMT
helper threads spend the majority of their time waiting to dequeue children fepritrity queue and run
them. The implication is that the priority queue is empty most of the time. In the expdsmene in this
section, we do not allow for speculative children to fork speculative ddildand it is fairly intuitive that
this is a contributor to the queue being empty. We do allow for multiplaediatechildren on the stack, as
described at the end of Section 3.4, and in future work will analyse theteffat forking several generations
of children has on both non-speculative and speculative overhead.

We also note that when the helper threadsrunning speculative children, they spend a majority of their
time executing Java bytecode; in fact, proportionally more time is spent in Jagaode speculatively

24

Percentage of speculative threads

Figure 12:

Percentage of speculative threads

100
90
80
70
60
50
40
30
20
10

-10
-20
-30
-40
-50
-60
-70
-80
-90

-100

IIDasseci Threa{ds
Failed Threads

0 10 20 30 40 50 60 70 80 90
Speculative thread size in Java bytecode instructions

100

Speculative sequence lengths in single-threaded simulatiode.

100
90
80
70
60
50
40
30
20
10

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

IIDassedI Three;ds
Failed Threads

0 10 20 30 40 50 60 70 80 90
Speculative thread size in Java bytecode instructions

100

Figure 13: Speculative sequence lengths in multithreaded mode onay&MP machine.

than non-speculatively. Outside of bytecode execution, we see ttditimrelookup is expensive, most
likely because of synchronization on dynamically-expanding hashtaeswill address this category of
overhead when we revisit our return value prediction work in the confextrue speculative multithreading
environment; the implementation employed here was developed primarily to atinigvaccuracies in the
single-threaded simulation mode [51] (although in Section 5.3 it is shown thaxiktng return value

prediction framework still helps to expose additional parallelism in the multiteeasecution mode).

25

5.2 Speculative Thread Sizes

In Figures 12 and 13, we see speculative thread sizes taken as ageaweer all of SPEC JVM98, for both
single-threaded simulation and true speculative multithreading modes. Fadeds$hran be considered as
wasted cycles, and are thus shown as negative percentages in theAgape move from the simulation to
a multiprocessor, the speculative thread sizes decrease rather driynatioping from 30% of all threads
having a length of 0—10 bytecode instructions to nearly 80%.

The explanation for this shift is two-fold. First, in the simulation, speculativedtis execute until they
reach either 1000 instructions or an unpassable speculative instrustiomsVONI TOREXI T. In the mul-
tithreaded mode, however, as soon as a parent returns from a céih@sd child on the stack, it will signal
it and await its termination. Thus the question is one of load balancing, anel da¢s indicate that the
parent is likely to enter a short leaf method after forking a child. Compilestoamations such as inlining
that increase method granularity should in general allow children to exemreinstructions before being
joined; indeed, one of the contributors to speedup thaetal. identified in their SMLP experiments was
the presence of an inlining JIT compiler [25]. Alternatively, we could agitto fork children if the parent
is known either statically or dynamically to be entering a short method.

Second, speculative execution overhead is non-existant in the simgésldd simulation, whilst during true
multithreaded execution children suffer delays that impede the progresmtie before being joined by
their parent. As we eliminate the overhead identified in Section 5.1, we exgemi¢hage speculative child
thread size to grow.

Thread lengths are usually small in hardware SpMT designs and simulgtemtisularly for non-numeric
programs; in [28] SPECINT2000 benchmarks result in thread sizes 4 tmachine instructions, a signif-
icant improvement over previous work. Our Java bytecode thread keogthbe much larger, not uncom-
monly 100s and sometimes 1000s of bytecodes; of course this does rottydinap to improved perfor-
mance, and the relation between Java bytecodes and machine instructionsriigal, but it can be seen
as an indication that improvements in parallelism are possible through higlkeéafgywoaches. One of the
reasons that speculative threads actually succeed at such long lentgths we have information about
language features that is not available at the hardware level, and wandhecused to avoid entering into
unsafe speculative situations (refer to Section 3.2.2 for a detailed anaiiyisisa bytecode and its effect on
speculative safety).

5.3 Speculative Coverage

Finally we look at speculativeoverage or the amount of parallelism in terms of bytecode instructions that
our implementation is able to uncover in multiprocessor systems. In Figuresdl#ibanve examine the
effect that introducing additional CPUs into our system has on uncaypsrellelism in the SPEC JVM98
benchmarks, and the benefits of return value prediction. In theseimgmds, there is one helper SpMT
thread mapped to each additional CPU after the first, which executegeonlstive Java code.

We find that introducing more CPUs increases parallelism, and that in awnt@ystem, in which specu-
lative threads arenly forked by the parent non-speculative thread, the processor scaliegt as we move
from zero to one to two speculative CPUs; adding a third CPU, whilst stileti@nl, does not have as
great an impact. We also find that return value prediction plays an importi@ninrepeculative method-
level parallelism, corroborating the result previously obtained byHual . in their analysis of the SPEC
benchmarks in trace-based Java SMLP. In the absence of RVP, we&ealn average bytecode instruction
parallelism of 19%, and with the introduction of RVP into the system this incsgasg3%.

26

100
compress —&—
db —=—

90 |+ _jack —o—
javac —e—
ldio —a—
mpegau
80 I Peo mtrt —o—

raytrace —e—

70

60 |-

50

40

30 |

20 |

10

bytecode instructions executed speculatively in parallel (%)

1 2
number of processors
Figure 14: Speculative coverage without RVP

o

wrFEm »
IS

100

compress —&—
db —=—

90 + _jack —e—
javac —e—

ldo —~
mpegaudio ——
80 - peg mtrt ——
raytrace —+—

70

bytecode instructions executed speculatively in parallel (%)

number of processors

Figure 15: Speculative coverage with RVP

Finally, it would appear from the graphs that the SPEC JVM98 benchnsarkbe broken into two classes.
Somewhat predictably,ayt r ace andmnt rt exhibit the highest degrees of parallelism, as these programs
are known to be embarrassingly parallel; nevertheless, it is interestingi¢ghedn obtain this extra paral-
lelism out ofr ayt r ace without actually using any concurrent transformations of the code. Ifuthiee,
we plan to study a set of concurrent algorithms and determine just how 8ME® is able to bring a se-
guential program to its hand-parallelized equivalgriick andj ess are in the same class asrt and
rayt r ace, exhibiting relatively high degrees of parallelism both with and without Ruterkestingly, with
respect to the second class of benchmarks which exhibit lower degfreasallelism, adding RVP to the
system allows for separation db andj avac from npegaudi o andconpr ess. Again this supports
that accurate return value prediction can significantly impact performameeSMLP system, and can often
change the observed behaviour of a program.

27

6 Related Work

In a general senses, automatic approaches to parallelism have bgbehfsoumany years [5]. These have
been most successful when analysing loop-based, highly-structoieatific applications, typically C or
Fortran based [12, 23], though Java experiments have been dorald&]wVarious efforts have looked
at analysis methods to improve applicability and performance of such ajy@®and more abstract mea-
surements have been done in this context [44, 54, 62], but designesuits for arbitrary, irregular, OO
programs remain less common.

Speculative multithreading approaches have been developed primarily cotiext of novel hardware
environments. A number of general purpose speculative architetuodsas the Multiscalar architec-
ture [18], the SuperThreaded architecture [69], Trace procefs8), MAJC [68], and several other designs
[64, 17, 32] have been proposed, and simulation studies have gerséi@aly quite good potential speedups.
Steffan et al. give a recent implementation and good overview of the stéte aft in [65]. An abstract,
general formula for speculative efficiency is defined by Greiner detidgh [21, 22].

From the speculative hardware level, an executing Java Virtual Mactiae not exhibit distinguished
performance in comparison with other applications [71]. As an interpreteglige, however, Java can
provide higher level abstractions and information than generic machiree aad the performance of spe-
cialized hardware and software for speculative Java execution haeibdlem of interest. Chen and Olukotun
pioneered work on method level speculation for Java, showing relaleosiaeedups on a simulated specula-
tive architecture [9]. This work has been extended to incorporateMaaedanalysis modules that cooperate
with the VM to improve runtime performance [11], and has culminated in an wBsign that achieves
excellent speedups in simulated executions of a variety of benchmarksHilOet al. used Java traces
applied to simulated hardware as part of a study of the impact of return peddéection [25].

Whether applied to Java or not, hardware designs necessarily recpliiexgbnsive step of hardware con-
struction. Still, there have been fewer studies purely at the software 18aftSpec” is a software specula-
tion environment: loops with identifiable strides are speculatively parallelizecshtime [4]. Kazi and Lilja
analysed a software form of the SuperThreaded architecture [3@Jnare general software designs have
been evaluated on C [57] and Fortran benchmarks [13] with respeabpelével speculation. Prahbu and
Olukotun have advocated manual, C source transformations and an@lysglp thread level speculation
map to SpMT hardware [53].

Only very limited studies on language-level speculation for Java have dwen previously. Yoshizoet

al. give results from a partially hand-done loop-level speculation strategieimgnted in a rudimentary
(e.g., no GC) prototype VM [72]. They show good speedup for simpletgitug but lack of heap analysis
limits their results. Kazi and Lilja provided the first convincing evidence thaguage level speculation
can be very effective in Java using manual source transformatiohsd8ough source level (versus VM-
level) transformations mitigate the features of SpMT that can be supporese, $ftudies show that special
hardware is not a requirement of SpMT, and also that there are nemt@oblems with the Java language,
platform, or programming model. Using data from Java programs translatedrtd Executed on simulated
hardware, Warg and Stendtn argue that Java-based SpMT has inherently high overhead cdstsaain
only be addressed through hardware support [71]. Data fromxparienents, however, indicates that there
is sufficient potential parallelism to offset quite large overheads.

28

6.1 Value Prediction

We have made extensive use of return value prediction to improve owilapee system. Value prediction
itself is a well-known technique for allowing speculative execution of varifmrms to proceed beyond
normal execution limits, and a wide variety of prediction strategies have lefred and analyzed. These
extend from relatively simple last value predictors [38] to more complexréifitial context (DFCM) value
predictors [59, 6], hybrid predictors [8, 25, 51], and even machéaening based perceptron predictors [67,
60]. Most value predictors are designed with hardware implementatiotraons in mind, though again
software techniques have been examinedttlal., for example, develop a software prediction scheme based
on profiling and inserting recovery code following a cost-driven mo8@g].[Value prediction in SpMT has
been explored by several groups [25, 14, 9, 48, 49, 71]. The utilitgtarn value prediction for method
level speculation in Java was shown by Hu et al. [25], with further ptieti@accuracy investigated by the
authors [51], and many optimizations to value prediction accuracy anti@esteen considered [7, 16, 50].
The return value prediction approach here is based on the design iar{f8150].

6.2 SpMT Optimizations

A naive implementation of software or VM-based SpMT can result in relgthigh overhead costs, and so
optimization of the different operations involved is critical, both in terms ofaadeexploration, and with
respect to practical usage as a research tool. As well as return vallietipn we have employed a number
of optimization techniques specific to our implementation, discussed in Sectidhdr. dptimizations exist,
however, that have shown good promise in more general situations.

Selecting appropriate speculation sites is of course a crucial aspgeaflative performance, and several
static techniques based on ahead-of-time compiler transformations for Spiitectures have been sug-
gested. Bhowmik and Franklin describe a general compiler supportvrarkéncluding both loop-based
and non-loop-based thread partitioning [3]. Johnebal. transform and solve the partitioning problem
using a weighted, min-cut cost model [28]. Dynamic thread partitioning gieteeduce preprocessing
needs and have been described for several simulated architectbydd].1Unfortunately, being aimed at
SpMT hardware the threads extracted from these approaches arevttevé and fine grained (e.g. 11-43
machine instructions in SPEC-INT 2000 benchmarks in [28]) to apply directyr environment.

Specific compiler optimizations have also been developed. &hal. define and evaluate instruction
scheduling optimizations based on the length ofdtigcal forwarding path or time between a definition
and a dependent use of the same variable [73]. This can be quiteeffattieducing stalls when variable
dependencies between threads are enforced through synchraniZafiow analysis described in [31] de-
pends on a compiler to label memory referenceglampotenif they need not be tracked in speculative
storage and can instead access main memory directly. This reduces theaal/gr terms of space and time
of buffering the reads and writes of a speculative thread.eDail. develop further optimizations to reducing
buffer costs given hardware buffering constraints [47]. In SMloHatals are visible from other threads,
and so can easily be designated idempotent without implementing an analy¥salthis means that val-
ues on a thread’s stack need not be tracked in the speculative stdiag&/M environment, however, is
well suited to incorporating compiler optimizations and analyses, and uselofrformation is part of our
future work.

Lock synchronization poses another potential problem for speculetigeution; lock changes affect the
program globally, and conservatively may require the speculativedistea if not carefully tracked. How-
ever, locking itself can be quite amenable to speculation, and optimizationsdaedipossible. Mariez

29

and Torrellas show how Speculative Locking can reduce the impactdéigtion on coarse-grained lock-
ing structures [42, 43]; this has been extended to apost-factolock acquisition ordering through the
Speculative Lock Reordering strategy of Rundberg and Stansfb8]. Rajwar and Goodman define a
microarchitecture-based speculative lock acquisition system [55]. Higewwent implementation synchro-
nization causes speculative threads to stop speculating, and so inclugispezulative approach to locking
would be quite useful.

7 Future Work

Our SableSpMT design is an initial, prototype implementation. We have achievtedrgasonable perfor-
mance levels in this context, and are able to handle a fairly complete rangaibprograms. Nevertheless,
there are a number of restrictions that could be lifted, as well as enhantsamal optimizations that could
be applied to improve performance and applicability.

Although we handle the complete Java language, to ensure safety outadpechreads must stop specu-
lating at synchronization points. The impact of these reductions in speculatiwt large in our (mostly
sequential) benchmark suite, but to better accommodate lock intensiveam®gome form of speculative
locking [42, 58] would be quite useful. An implementation within our framewodula allow for detailed
analysis of the interaction with other optimizations to speculative behaviour.

Experimentation in our system is simplified through use of a highly-portabdeareh virtual machine,
SableVM. We would also like to port our work to a JIT compiler environmernthsas Jikes [27], or very
recently a branch of SableVM itself [2]. Although the presence of a dfiplicates a research SpMT
implementation, JITs have a significant impact on performance, and the iethparformance of natively
executing code in a VM may expose more relative overhead in the SpMT implatioen Unrelated JIT

optimizations, such as inlining, may also change the character of spec@atigation, and costs of RVP.
Of course a JIT also implies new optimization opportunities, including specializdide speculative code,
and techniques based on the presence of dynamic program analysisatiém.

Many SpMT hardware studies make use of (static) compiler analysis inform{&tia0]. Part of our return
value prediction design also allows for the optional use of static analysisriatmon through the Java class-
file attribute mechanism [52]. There are, of course, many other compigdysas that may help different
aspects of speculative operation. Information on expected relativihlehgpeculative threads, critical for-
warding path information [73], return value predictability, method purity [@6ld so on can be computed
offline, and applied at runtime. Dynamic information tends to be more preais¢hd use of static analy-
ses has the advantage of minimal extra runtime overhead. A larger-seabé alsead-of-time information
would be to optimize for a specific VM startup sequence. Startup code in eca¥iMccount for a significant
fraction of execution time for smaller Java programs, and the use of a buiiptimized sequence of SpMT
operations could improve the common startup path.

Our existing optimizations could also be further tuned, and increased ie.s@xgneral load value predic-
tors [8], for example, could be used to predict heap values, and thusumppeculation depth. Software
overhead for load prediction is potentially quite high, and so this would have tmmbined with profiling
or static information to select prediction sites judiciously. Our current engient provides an excellent
base for such experimentation.

We have designed and used a single-threaded mode for both debugdingsaarch purposes. This mode
has been instrumental in experimentally validating the functionality and coescbf the implementation,
and it has also been useful in determining the potential limits of speculatierage. We would like to

30

extend this mode to other speculative approaches, and use it as a topktcnmeatally determine upper
bounds on speculative behaviour. This information would be useful icklyuevaluating properties of
different speculative strategies for Java, or even specific Javdoaois.

Finally, we have not yet given full consideration to the impact of the nexa d@mory model [40] on our

optimizations. The use of strongly ordering instructions during queuingtaedd joins act as a memory
barrier before and after each speculative execution. This limits threadsrstency, but write buffering and
a hierarchy of speculative threads implies that a detailed consideratioquise®. \We hope to investigate
and enforce JMM compliance in future versions.

8 Conclusions

Efficient automatic parallelization is a difficult goal. There have been ssesgfor scientific applications,
but in the context of object-oriented languages and programs basecdkgular data structures traditional
static, loop-based techniques are less effective. Thread levellapeothas shown considerable promise
for being able to extract some parallelism from such applications. Signifigether research is required,
however, in order to optimally exploit SpMT for use in higher level environte@nd on commodity multi-
processors.

We have examined the use of thread level speculation within a Java virtulimadzy implementing a
complete, robust design for speculative method level parallelism. Ouoagpincludes optimized designs
for thread communication, memory management, and a high quality return valdietipn system. We are
able to handle the entire Java language, including exceptions, garbd&gsiao, native methods, finaliza-
tion, and already multithreaded inputs. This implementation runs at reasonabkldssand is thus both a
practical tool for larger scale investigations of various forms, and d gadication that SpMT is feasible at
the VM level.

We have gathered and analysed data on speculative performanaeuimibar of relatively large, real-world

benchmarks. We are thus able to provide non-trivial results on SpMorpaance and overhead costs in
the VM context. This data shows where overhead costs are concentmateprovides important indicators
for the direction of future optimization and implementation research.

This work is research level, and experimental; we do not claim to havedsalMperformance issues related
to SpMT in a VM environment. There is certainly room for improvement in owal fperformance figures.
However, we have demonstrated that an implementation is feasible, andqut@viplortant data and analysis
information. We hope our work here, both in future optimization directionsiarmoviding a practical
vehicle for experimentation, inspires further research in this area.

9 Acknowledgements

We would like to thank Etienne Gagnon for his help in SableVM developmentjrapdrticular for sug-
gesting the single-threaded simulation mode. This research was fundBdlby.¢ Fonds Qébécois de la
Recherche sur la Nature et les Technologies and the Natural ScientEsngineering Research Council of
Canada. C. Pickett was additionally supported by a Richard H. Tomlins@telgin Science Fellowship
and an NSERC PGS A award.

31

References

[1]

[2]

P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira. Automatic powansformations and paral-
lelization for Java. IHCS '00: Proceedings of the 14th international conference on Supgratng,
pages 1-10. ACM Press, 2000.

D. Bélanger. SablelIT: a retargetable just-in-time compiler. Master’s thesigilMgdniversity,
Montréal, Canada, February 2005.

[3] A. Bhowmik and M. Franklin. A general compiler framework for splktive multithreading. In

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Proceedings of the 14th ACM Symposium on Parallel Algorithms and Actinies (SPAA '02)Aug.
2002.

D. Bruening, S. Devabhaktuni, and S. Amarasinghe. Softspdbowv&e-based speculative parallelism.
In 3rd ACM Workshop on Feedback-Directed and Dynamic Optimization (BE3)) December 2000.

M. Burke, R. Cytron, J. Ferrante, W. Hsieh, V. Sarkar, and Dielfls. Automatic discovery of
parallelism: a tool and an experiment (extended abstract)PREALS '88: Proceedings of the
ACM/SIGPLAN conference on Parallel programming: experience williegtions, languages and
systemgpages 77-84. ACM Press, 1988.

M. Burtscher. An improved index function for (D)FCM predictor€omputer Architecture News
30(3):19-24, June 2002.

M. Burtscher, A. Diwan, and M. Hauswirth. Static load classificationifoproving the value pre-
dictability of data-cache misses. Rroceedings of the ACM SIGPLAN 2002 Conference on Program-
ming language design and implementatipages 222—-233. ACM Press, 2002.

M. Burtscher and B. G. Zorn. Hybrid load-value predictortfEEE Transactions on Computers
51(7):759-774, July 2002.

M. K. Chen and K. Olukotun. Exploiting method-level parallelism in sintfleeaded Java programs.
In Proceedings of the 1998 International Conference on Parallel Archites and Compilation Tech-
niques (PACT)Oct. 1998.

M. K. Chen and K. Olukotun. The Jrpm system for dynamically paliaitey Java programs. In
Proceedings of the 30th annual International Symposium on Computkitécture (ISCA) pages
434-446. ACM Press, June 2003.

M. K. Chen and K. Olukotun. TEST: A tracer for extracting spetiwathreads. IfSymposium on
Code Generation and Optimization (CGO 'Q8)ar. 2003.

J.-H. Chow, L. E. Lyon, and V. Sarkar. Automatic parallelizationdgmmetric shared-memory mul-
tiprocessors. ICASCON '96: Proceedings of the 1996 conference of the Centre fankdd Studies
on Collaborative researctpage 5. IBM Press, 1996.

M. Cintra and D. R. Llanos. Toward efficient and robust sofevgpeculative parallelization on mul-
tiprocessors. IProceedings of the 9th ACM SIGPLAN Symposium on Principles and Rraaftic
Parallel Programming (PPoPR)pages 13-24. ACM Press, June 2003.

32

[14] M. Cintra and J. Torrellas. Eliminating squashes through learningsettread violations in specu-
lative parallelization for multiprocessors. HKighth International Symposium on High-Performance
Computer Architecture (HPCA '02eb. 2002.

[15] L. Codrescu and D. S. Wills. On dynamic speculative thread partitipaimd the MEM-slicing algo-
rithm. Journal of Universal Computer Sciend{10):908-927, 2000.

[16] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai. Astalriven compilation framework
for speculative parallelization of sequential programs.Ptaceedings of the ACM SIGPLAN 2004
conference on Programming language design and implementgtages 71-81. ACM Press, 2004.

[17] R. Figueiredo and J. Fortes. Hardware support for extractiagse-grain speculative parallelism in
distributed shared-memory multiprocessors, 2001.

[18] M. Franklin. The Multiscalar ArchitecturePhD thesis, University of Wisconsin—Madison, 1993.

[19] E. M. Gagnon. A Portable Research Framework for the Execution of Java Bytec&®® thesis,
McGill University, Montréal, Qebec, Dec. 2002.

[20] E. M. Gagnon. SableVMnht t p: / / ww. sabl evm or g/ , 2004.

[21] J. Greiner and G. E. Blelloch. A provably time-efficient parallel implatagon of full speculation. In
Proceedings of the 23rd ACM Symposium on Principles of Programn@nguagespages 309-321,
Jan. 1996.

[22] J. Greiner and G. E. Blelloch. A provably time-efficient parallel implatagon of full speculation.
ACM Transactions on Programming Languages and Syst2h(2):240-285, 1999.

[23] E. Gutierrez, O. Plata, and E. L. Zapata. A compiler method for the parallel 8maaf irregular re-
ductions in scalable shared memory multiprocessoC8700: Proceedings of the 14th international
conference on Supercomputjmpges 78—-87. ACM Press, 2000.

[24] M. Hachman. Intel to redefine performance at IDFhtt p://ww. extrenmet ech. conl
article2/0, 1558, 1641930, 00. asp, September 2004.

[25] S. Hu, R. Bhargava, and L. K. John. The role of return valwedigtion in exploiting speculative
method-level parallelismlournal of Instruction-Level Parallelisn®:1-21, Nov. 2003.

[26] O. T. International. Eclipse platform technical overviewhtt p://wwv. ecl i pse. org/
whi t epaper s/ ecl i pse- overvi ew. pdf , February 2003.

[27] Jikes Research Virtual Machine. http://www 124.i bm com devel oper wor ks/ oss/
jikesrvniindex.shtm .

[28] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-cut pamg decomposition for thread-
level speculation. If#°LDI '04: Proceedings of the ACM SIGPLAN 2004 conference on Rrogning
language design and implementatjgrages 59—-70. ACM Press, 2004.

[29] I. H. Kazi and D. J. Lilja. JavaSpMT: A speculative thread pipelinparallelization model for Java
programs. InProceedings of the 14th International Parallel and Distributed ProcesS8gmposium
(IPDPS) pages 559-564. IEEE, May 2000.

33

[30] I. H. Kaziand D. J. Lilja. Coarse-grained thread pipelining: Agpative parallel execution model for
shared-memory multiprocessot&EE Transactions on Parallel and Distributed Systet(9):952—
966, 2001.

[31] S. W. Kim, C. Ooi, R. Eigenmann, B. Falsafi, and T. N. Vijaykumar.éRefice idempotency analysis:
a framework for optimizing speculative execution. AGM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP '01yolume 36, pages 2—11, June 2001.

[32] S. W. Kim, C.-L. Ooi, |. Park, R. Eigenmann, B. Falsafi, and T. N. Wjamar. Multiplex: Unifying
conventional and speculative thread-level parallelism on a chip multigsoce2001.

[33] D. Lea. Thej ava. util.concurrent synchronizer framework. IIRPODC Workshop on Con-
currency and Synchronization in Java Prograrmages 1-9, St. John’s, Newfoundland, Canada, July
2004.

[34] O.Lhotak. Spark: A flexible points-to analysis framework for J&aster’s thesis, McGill University,
Montréal, Qwebec, Dec. 2002.

[35] X.-F. Li, Z.-H. Du, Q. Zhao, , and T.-F. Ngai. Software value pectidn for speculative parallel
threaded computations. [Fhe First Value-Prediction Workshppages 18-25, San Diego, CA, jun
2003.

[36] S. Liang. The Java Native Interface. Programmer’s Guide and Specificataldison-Wesley, Read-
ing, Massachusetts, 1st edition, June 1999.

[37] T. Lindholm and F. Yellin. The Java Virtual Machine Specificatio®un Microsystems, 2nd edition,
1999.

[38] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and lealde prediction. IfProceed-
ings of the seventh international conference on Architectural suppoprégramming languages and
operating systempages 138-147. ACM Press, 1996.

[39] P. S. Magnusson, A. Landin, and E. Hagersten. Queue locksache coherent multiprocessors.
In Proceedings of the 8th International Symposium on Parallel Procesgiages 165-171. IEEE
Computer Society, Jan. 1994.

[40] J. Manson, W. Pugh, and S. V. Adve. The Java memory mod&OIRL '05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT sysposium on Principles of programming laregipgges 378-391. ACM
Press, 2005.

[41] P. Marcuello and A. Gonzalez. Thread-spawning schemes &musgitive multithreading. IRroceed-
ings of the 8th International Symposium on High-Performance Computbitécture (HPCA)pages
55-64, Feb. 2002.

[42] J. F. Martnez and J. Torrellas. Speculative locks for concurrent executioritwfal sections in shared-
memory multiprocessors. M/orkshop on Memory Performance Issues (WMPI), at the Interredtion
Symposium on Computer Architecture (ISCA ,@dthenburg, Sweden, June 2001.

[43] J. F. Martnez and J. Torrellas. Speculative synchronization: Applying threaa-&peculation to
explicitly parallel applications. Iimternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS [)es 18-29, San Jose, CA, Oct. 2002.

34

[44] K. S. McKinley. Evaluating automatic parallelization for efficient ex@ému on shared-memory mul-
tiprocessors. IHCS '94: Proceedings of the 8th international conference on Superatingp pages
54-63. ACM Press, 1994.

[45] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synctization on shared-memory
multiprocessorsACM Transactions on Computer Systems (TQGQ)):21-65, Feb. 1991.

[46] N. Mukherjee and J. R. Gurd. A comparative analysis of foualalisation schemes. IICS '99:
Proceedings of the 13th international conference on Supercompuiames 278-285. ACM Press,
1999.

[47] C. Ooi, S. W. Kim, I. Park, R. Eigenmann, B. Falsafi, and T. N. Vijaylar. Multiplex: unifying
conventional and speculative thread-level parallelism on a chip multigsocelninternational Con-
ference on Supercomputingages 368—380, 2001.

[48] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam, andXukotun. Software and hardware
for exploiting speculative parallelism with a multiprocessor. Technical R€BL-TR-97-715.

[49] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of spectdatiread-level parallelism. IRro-
ceedings of the 1999 International Conference on Parallel Architestarel Compilation Techniques
(PACT) IEEE, Oct. 1999.

[50] C. J. F. Pickett and C. Verbrugge. Compiler analyses for improgan value prediction. Technical
Report SABLE-TR-2004-6, Sable Research Group, McGill Unitgréct. 2004.

[51] C.J.F. Pickett and C. Verbrugge. Return value prediction in a Jatual machine. I'second Value-
Prediction and Value-Based Optimization Workshogges 40-47, Boston, MA, October 2004.

[52] P. Pominville, F. Qian, R. Vale-Rai, L. Hendren, and C. Verbrugge. A framework for optimizing java
using attributes. ICompiler Construction, 10th International Conference (CC 20payes 334-554,
2001.

[53] M. K. Prabhu and K. Olukotun. Using thread-level speculation to Biynmanual parallelization.
In PPoPP '03: Proceedings of the ninth ACM SIGPLAN symposium on Ptegignd practice of
parallel programmingpages 1-12. ACM Press, 2003.

[54] W. Pugh and D. Wonnacott. Static analysis of upper and lower lmomdependences and parallelism.
ACM Transactions on Programming Languages Systégi(gl):1248-1278, 1994.

[55] R. Rajwar and J. Goodman. Speculative lock elision: Enabling highgarrent multithreaded exe-
cution, 2001.

[56] E. Rotenberg.Trace Processors: Exploiting Hierarchy and Speculatid?hD thesis, University of
Wisconsin—Madison, 1999.

[57] P. Rundberg and P. Steriatn. An all-software thread-level data dependence speculation system for
multiprocessorsJournal of Instruction-Level Parallelisp8:1-28, Oct. 2001.

[58] P. Rundberg and P. Steriatn. Reordered speculative execution of critical section®raceedings of
the International Conference on Parallel Processing (ICPP '02) (sitted) Feb. 2002.

[59] Y. Sazeides and J. E. Smith. The predictability of data valueBrdneedings of the 30th International
Symposium on Microarchitecture (MICR®gages 248—-258, Dec. 1997.

35

[60] J. Seng and G. Hamerly. Exploring perceptron-based registee yaediction. InSecond Value-
Prediction and Value-Based Optimization Workshogpges 10-16, Boston, MA, October 2004.

[61] N. Shavit and A. Zemach. Scalable concurrent priority queueriéthgas. In Proceedings of the
eighteenth annual ACM symposium on Principles of distributed comput@®@'99), pages 113—
122. ACM Press, 1999.

[62] B. So, S. Moon, and M. W. Hall. Measuring the effectivenessutbrnatic parallelization in SUIF. In
ICS "98: Proceedings of the 12th international conference on Supgrating pages 212-219. ACM
Press, 1998.

[63] The SPEC JVM Client98 benchmark suite.t p: / / www. spec. or g/ j vimB8/ j vnD8/ .

[64] J.G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A sciapproach to thread-level speculation.
In ISCA pages 1-24, 2000.

[65] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. The stadgapproach to thread-level
speculation ACM Transactions on Computer Syste2@05. to appear.

[66] A. Salcianu and M. Rinard. A combined pointer and purity analysis for javarpmg. Technical
Report MIT-CSAIL-TR-949, Massachusetts Institute of Technolddgy 2004.

[67] A. Thomas and D. Kaeli. Value prediction with perceptronsSatond Value-Prediction and Value-
Based Optimization Workshppages 3-9, Boston, MA, October 2004.

[68] M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and S. &.TThe MAJC architecture: A
synthesis of parallelism and scalabilitiZEE Micro, 20(6):12—-25, 2000.

[69] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yew. The stipeaded processor architecture.
IEEE Transactions on Computer3(9):881-902, 1999.

[70] R. Vallee-Rai. Soot: A Java bytecode optimization framework. Master's thesiilMdniversity,
Montréal, Quwebec, July 2000.

[71] F. Warg and P. Stenéim. Limits on speculative module-level parallelism in imperative and object-
oriented programs on CMP platforms.Rnoceedings of the 2001 International Conference on Parallel
Architectures and Compilation Techniques (PAG#ges 221-230. IEEE, Sept. 2001.

[72] K. Yoshizoe, T. Matsumoto, and K. Hiraki. Speculative parallelceti®on on JVM. InFirst UK
Workshop on Java for High Performance Network Computii®$8.

[73] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compilptimmization of scalar value com-
munication. INASPLOS XSan Jose, CA, USA, Oct. 2002.

[74] G. Zhang, P. Unnikrishnan, and J. Ren. Experiments with autaipbzing SPEC2000FP bench-
marks. InLCPC '04: The 17th International Workshop on Languages and Conspite Parallel
Computing 2004.

36

