
McGill University

School of Computer Science

Sable Research Group

Speculative Multithreading in a Java Virtual Machine

Sable Technical Report No. 2005-1

Christopher J.F. Pickett and Clark Verbrugge
{cpicke,clump}@sable.mcgill.ca

March 25th, 2005

w w w . s a b l e . m c g i l l . c a

Abstract

Speculative multithreading (SpMT) is a dynamic program parallelisation technique that promises
dramatic speedup of irregular, pointer-based programs as well as numerical, loop-based programs. We
present the design and implementation of software-only SpMT for Java at the virtual machine level.
We take the full Java language into account and we are able to run and analyse real world benchmarks
in reasonable execution times on commodity multiprocessorhardware. We provide an experimental
analysis of benchmark behaviour, uncovered parallelism, the impact of return value prediction, processor
scalability, and a breakdown of overhead costs.

1 Introduction

Although languages such as Java provide (and continue to improve [33])high-level language/API support
for explicit parallelism, taking advantage of hardware concurrency remains a difficult task. This situation
is being exacerbated by the increasing presence of multiprocessor and multicore machines as consumer
level, commodity hardware [24]. In order to use that hardware effectively techniques need to be developed
that place less burden on the application programmer. Purely automatic techniques for parallelism are thus
highly desirable, but good, general performance has so far provedelusive [44, 46, 74].

Speculative Multithreading(SpMT) is a relatively new, automatic technique for medium to fine-grained
automatic parallelisation that applies to a wide variety of programs, including irregular and non-numeric
programs. It is typically defined at the hardware level [18, 69, 64], though some software approaches have
been investigated [4, 30, 13]. SpMT has shown quite good potential speedups in simulation studies; it
does not always achieve optimal speedup, but as a tradeoff between implementation complexity and use of
available hardware resources it shows excellent promise as a general,automatic parallelisation strategy.

Here we describe the design and implementation of SableSpMT, an SpMT-based system for automatic par-
allelisation of Java programs. We have incorporated SpMT at the (Java) virtual machine level, as opposed
to the hardware or pure source level. This allows us to take advantage of high level VM knowledge of Java
programs, while still having low level control over execution behaviour. Our implementation is the first full,
usable implementation of SpMT for a VM and the first to be able to accommodate the complete Java lan-
guage semantics. This makes our system an ideal environment for detailed,realistic investigation of SpMT
performance, both as a (virtual) hardware simulation, and as a strategy for Java optimisation. We provide
a detailed analysis of benchmark performance as well as a breakdown ofoverhead costs under realistic
workloads.

Most SpMT strategies focus on loop-level optimisations. For object-oriented languages, however, the ex-
tensive use of method calls and polymorphism make simple, easy to analyse loops less prevalent. Java itself
is also not a generally favoured language for intensive numeric computingapplications, and so irregular
programs with complex control structure are quite common. Our approach to SpMT is optimized for this
environment. We base our main design onSpeculative Method-Level Parallelism(SMLP), a form of SpMT
that uses method invocations as potential spawning points for parallel execution. To further exploit frequent
method invocations we incorporate a sophisticated, hybridreturn value prediction(RVP) system [51]; this
helps to reduce inter-thread dependences, and has been shown to be avaluable optimisation for SMLP [25].
Other optimisations specific to Java program behaviour within our implementation context are also applied.

Our experiences with real world Java benchmarks show that SpMT is feasible in the VM environment.
Our experimental system is able to run standard industry and academic Javabenchmarks at reasonable
speeds, and can be used on existing multiprocessor hardware. Overhead cost and processor utilization are

1

the major concerns in SpMT design, particularly for software based approaches. Our design includes a
number of internal optimisations to help in both respects. Still, there is significantroom for further overhead
optimisation, and exploration of variant designs; at this time, we cannot claim tohave achieved actual
speedup. The data we provide, as well as our software environment itself, are intended to facilitate research
experimentation.

1.1 Contributions

Specific contributions of our work include:

1. We present the first actual implementation of SpMT within a non-trivial (Java) virtual machine, Sa-
bleSpMT. Our design provides a complete, automatic method-level speculationenvironment for Java
programs, and incorporates an optimized return value prediction system aswell as a variety of more
specific implementation optimisations. Our design gives full consideration to Java language features,
including synchronization, exceptions, native methods, and GC.

2. Using our system, we have provided a detailed analysis of speculative performance on the SPEC
JVM98 benchmark suite [63] with realistic input settings (ie the recommended size 100). Other
analyses of Java and SpMT have used simulated hardware systems with either greatly reduced, and
therefore not especially realistic inputs (e.g., [25] uses SPEC size 1, which mostly consists of startup
and test harness activity) or have simulated only a limited subset of VM behaviour [71].

3. Our framework is designed to simplify research investigation of this problem.We have implemented
our system in a Java interpreter for simplicity of investigation and ease of modification. We use
SableVM, a non-trivial, standards-compliant, highly portable and open source research virtual ma-
chine [20]. As well as true speculative multithreaded execution we also include a “single-threaded”
mode that safely mimics the behaviour of the speculative system without the complexity of actually
producing concurrent threads. This deterministic mode allows for easy debugging and experimenta-
tion on SpMT strategies, as well as analyses of program properties and reaction to speculative opera-
tions.

4. We give a complete, experimental breakdown of overhead costs involved in our speculative system.
This data provides a good indication of how to further improve speculative designs for JVMs, as well
as where to direct future optimisation strategies for achieving an industrial strength SpMT implemen-
tation at the VM level.

1.2 Roadmap

In the next section we give basic background on both speculative multithreading and the virtual machine
environment we used in our study. Section 3 describes our complete implementation design, and Section 4
provides details on basic design optimisations that help make our approach feasible. In Section 5 we give
experimental results on our implementation, including a breakdown and analysis of the various forms of
overhead, and how it relates to our design choices. Section 6 describesrelated work in the area, and finally
we give directions for future work and conclude in Sections 7 and 8 respectively.

2

2 Background

In speculative multithreading, a sequential region of code is split into two or more threads so that it may
execute on multiple processors. Only the first thread, which executes the sequentially earliest code, is
guaranteed to be correct, and is termed thenon-speculativeor parent thread. All other threads execute with
the potential of computing incorrect values, and are termedspeculativeor child threads. Speculative threads
are required to execute in a completely safe state that cannot affect overall program correctness, and may be
aborted as soon as a violation is detected. Speculative threads may themselves create child threads, which
will in turn be speculative.

To ensure correctness, all writes by a speculative thread get written to athread-specific cache called a
dependence buffer, and so cannot affect main memory. Similarly, all reads by a speculative thread are
loaded into the dependence buffer. When execution in the non-speculative parent thread reaches the point
where the child thread was forked, the child receives a signal to stop speculation and begin the join process.
The buffered reads of the speculative thread are verified to not havechanged with respect main memory, and
if so the buffered writes arecommitted to main memory. If there was adependence violationsuch that a
value read by the speculative thread was later written by the non-speculative thread, the speculative thread
aborts and the code is re-executed. Figure 1 depicts the general speculative multithreading execution model.

Figure 1: General speculative multithreading execution model.(a) Under a non-speculative execution model, thread
T1 executes sequentially, with regionR1 precedingR2, and all reads and writes access main memory directly. (b)
ThreadT1 has been partitioned into two threads, withR1 executing inT1 andR2 executing inT2. T1 is the non-
speculative parent thread whereasT2 is the speculative child thread. All ofT2’s reads and writes pass through a
dependence buffer. WhenT2 attempts to read a value for the first time, it fetches the value from main memory (or
from a value predictor) before storing it into the dependence buffer. WhenT1 is finished,T2’s results, stored in the
dependence buffer, are checked againstT1’s results, stored in main memory, and if there exist no violations, thenT2
commits its results to main memory. At this point, executionresumes non-speculatively at the end ofR2. If there exist
violations, thenT2’s results are discarded and execution resumes non-speculatively at the beginning ofR2.

The basic speculative execution model requires a dependence buffer, violation testing, thread abortion, and
thread committal, but makes no demands as to how programs are partitioned into threads. Specifically, two
issues that must be addressed when preparing sequential code for speculative execution are where to fork
new speculative threads, and where to verify the speculative executionand commit the results to memory if
correct. There are various strategies that have evolved with respect tothread creation and termination, and
these can be categorized into four broad categories: loop-level, method-level, lock-level, and arbitrary.

In loop-level speculation (Figure 2), speculative execution of future loop iterations are started at the begin-
ning of the current loop iteration in the parent thread. Granularity of the speculation can be controlled by
forking speculative threads more than one iteration ahead of the parent thread, effectively unrolling the loop.

3

Figure 2: Loop-level Speculation execution model.(a) Under a sequential, non-speculative execution model, thread
T1 executes loop iterationsi, i + 1, andi + 2 in order. (b) In loop-level speculationT1, at the beginning of iteration
i, forks a new speculative threadT2 to begin iterationi + 1 on a separate processor, which in turn forksT3, and so on
until there are no more processors available. When threadT1, which is non-speculative, completes, all speculations in
T2 are validated and committed to memory if there are no violations. Otherwise,T2 andT3 are both invalidated, and
T2 restarts execution non-speculatively at the beginning ofi + 1, immediately forkingi + 2 in a new threadT4. This
process continues until all loop iterations have completed, at which point speculation terminates in all child threads
(who are executing loop iterations outside loop bounds) andthe program enters a non-speculative, non-loop region.

Many programs have complicated control structures that may not always respond well to loop-based par-
allelization. Speculative Method-Level Parallelism (SMLP) focuses on method invocations as speculation
points, with the non-speculative thread entering the method and the speculative thread starting from the
method return point. Speculative threads are committed when the non-speculative thread returns from the
call at which point, if there are no violations, execution continues from wherever the speculative thread has
reached. Under this model only the youngest thread may fork a new speculative thread. Figure 3 depicts the
general SMLP execution model.

Lock-level speculation, or speculative locking, allows for threads to enter and exit critical sections specu-
latively, and can be used to extract further parallelism from explicitly multithreaded programs and permit
coarse-grained locking strategies. Arbitrary speculation subsumes loop-, method-, and lock-level strate-
gies: speculation may occur at any point. This is of course maximally flexible, and can offer good rewards
with sufficient analysis information [3]. It is however also complex to implement,and requires maximal
preprocessing or runtime analysis overhead.

We have elected to use SMLP as the main design paradigm in SableSpMT. SMLPis expected to better
accommodate Java’s invocation dense program structure, as well as ourintended domain of irregular, non-
numeric applications, while still being a potentially feasible dynamic implementation.

2.1 VM Environment

Our implementation is integrated into the free / open source Java Virtual Machine, SableVM [20]. This is
a complete implementation of the Java specifications that is available for severalGNU/Linux distributions,
and is to designed to be useful for experimentation and investigation of virtual machine characteristics,

4

Figure 3: Speculative Method-Level Parallelism execution model.(a) Under a sequential, non-speculative execution
model, threadT1 encounters a call to methodfoo(), and executes the method body before returning to the next
statement after the call. (b) Under SMLP, the same threadT1 now forks a new speculative threadT2 to continue past
the return point when it encounters the call tofoo(). Whenfoo() returns, all flow dependences betweenT1 and
T2 are checked, and if there are no violations,T2 commits its results to memory.

highly portable to new architectures, and efficient, small, and robust enough for use by end users. SableVM
has several optimized modes of interpretation, but at the time of our efforts did not contain a Just-in-Time
(JIT) compiler. This simplifies the implementation complexity for experimental research in SpMT designs,
although as we discuss in Section 7, research in a JIT context would also be useful.

Execution in SableVM is through a basic (or optimized) interpreter loop. InputJava bytecode is firstpre-
pared, or converted to an internal code array and accompanying internal structures. Executing code interacts
with the usual runtime services, including a semi-space copying garbage collector, native thread support,
class loading, exception handling, etc. The complete language and Java API is supported and SableVM is
capable or running Eclipse [26] and other large, complex Java programs.

3 Java SpMT Design

In the following subsections we describe the main VM structures that are affected by SpMT and how our
modifications address speculative requirements and ensure safety. Thisbasic design also includes consider-
ation of distinguishing features of the Java language in Section 3.7, and a description of our single-threaded
analysis mode in Section 3.8.

The core design includes a variety of modifications to SableVM’s internal structures. Most of these changes
would be required in any VM environment, if at a somewhat more abstract level; our intention is to provide
a description generic but precise enough to enable direct translation of these ideas into other Java runtimes.

5

Figure 4: The SableSpMT speculative multithreading execution environment.SableVM prepares methods at runtime
from dynamically loaded classes, which are read in from Java.class files. Soot is used to transform and attach attributes
to these classes in an ahead-of-time step, although this could also occur at runtime. Method preparation is enhanced
to support speculative multithreading, and the SpMT engineuses specially prepared method bodies to split single-
threaded tasks across multiple processors on an SMP machine.

3.1 Execution Environment

An overview of the SableSpMT execution environment is given in Figure 4.The SableVM switch interpreter
has been modified to use specially prepared speculative versions of Java methods, which are dynamic code
arrays prepared alongside normal non-speculative versions. Methods are defined in Java .class files, and part
of the extra information required for speculation may be encoded in these files, although there is no funda-
mental need for an ahead-of-time analysis in our design. The speculation engine forks threads at runtime,
and these execute Java in an out-of-order fashion using the speculative versions of methods. Speculative
threads run on separate processors, and there are a maximum ofs = p − n speculative threads running at
once, wherep is the number of processors andn is the number of non-sleeping non-speculative Java threads.

Any common SMP machine with a POSIX environment available is sufficient for speculative multithreading
with SableSpMT. SableVM ports exist for 13 different architectures, and ports of the SpMT engine to these
architectures should be relatively straightforward; SableSpMT currently runs on SMPx86 andx86 64
architectures. Since the implementation is completely POSIX-compliant and written inANSI C, most of the
porting complexity derives from defining the right atomic operations in assembly language.

3.2 Method Preparation

There are numerous steps involved in preparing a method for speculativeexecution. We implement an
additional pass over the code array after normal Java methods have been prepared in SableVM, and augment
several of the other passes. SableVM uses word-sized (32-bit or 64-bit) versions of the 8-bit Java instructions
for the sake of efficiency [19], and so we can add as many additional instructions as necessary. Additional
instructions are not actually required, but they do reduce execution overhead and simplify the design.

It is worth noting that in preparation of the speculative method code array the majority of Java’s 200 odd
instructions can be used verbatim, and only those that have the potential to violate program correctness need
special attention.

6

3.2.1 Fork and Join Instructions

The first critical step is the insertion of newSPMT FORK andSPMT JOIN instructions into the code array. In
speculative method-level parallelism we want to fork threads at method callsites and join them upon return
from the method, and we need some way to instruct the VM to do this. This functionality could also be
triggered by theINVOKE<X> and<X>RETURN instructions, but the use of specific speculative instructions
provides a clean conceptual break, and can be more easily extended to support other speculation strategies.

Code is processed ahead of time for simplicity in this effort. Following a technique also employed by
JikesRVM [27] to obtain new functionality from Java instructions, we insertcalls to dummy static void
Spmt.fork() andSpmt.join() methods around every single normal JavaINVOKE<X> instruction
using the Soot [70] compiler analysis framework as a bytecode instrumentation tool. These empty meth-
ods have zero side effects, add minimal space overhead, and can be trivially inlined in the case of non-
speculative execution. SableSpMT, however, is engineered to recognize and replace them with the appro-
priateSPMT FORK andSPMT JOIN instructions during method preparation.

Note that this approach, although simplistic, is relatively inexpensive and provides the flexibility to use
ahead-of-time analyses to determine good fork points: fork and join instructions can simply be omitted
around undesirable fork points. Further use of compiler analysis information is part of our future work.

3.2.2 Modified Bytecode Instructions

TheSPMT FORK andSPMT JOIN methods surrounding everyINVOKE<X> are present in both the non-
speculative and speculative versions of method bodies. Many other Java instructions require special spec-
ulative versions, and these are listed in Table 1. Through insertion of these replacement instructions into a
separate code array, speculative execution becomes almost completely invisible to normal Java threads, with
the necessary exception of fork and join instructions. Branch instructions with trivial fixups are not shown.

Reads from and writes to main memory require buffering, and so the<X>A(LOAD|STORE) and(GET|-
PUT)(FIELD|STATIC) instructions are modified to read and write their data using calls to a variable
dependence buffer, as described in Section 3.5. Note that the buffer only cares about the addresses and
widths of the data it holds in memory and not their location or functionality, and sowe can use the same
code to buffer reading from and writing to arrays on the heap, object instances on the heap, and class statics
in class loader memory.

Numerous instructions may throw exceptions, and if this occurs, we stop speculation immediately. These
include the(I|L)(DIV|REM) instructions that throwArithmeticException’s upon attempting in-
teger division by zero, and many others that throwNullPointerException’s, ArrayIndexOut-
OfBoundsException’s, andClassCastException’s. Full details on the exceptions that each Java
bytecode instructions may throw are given in the JVM Specification [37]. Inaddition to these implicit
instruction-specific exceptions, user or class library code may throw an explicit exception through use of
theATHROW instruction, and again here we stop speculation immediately. It is important to notethatstop-
ping speculation does not necessarily implyaborting a speculative child and thereby failing the join
process. There is actually somewhat more subtlety to Java exceptions and SpMT than simple termination of
speculative thread execution, and they are discussed further in Section3.7.3.

TheINSTANCEOF instruction requires computing type assignability between a pre-specified class and an
object reference on the stack, and is built on the assumption that the reference in question is actually an
object instance. This can normally be asserted before execution by a Java bytecode verifier, but we are

7

instruction reads writes locks unlocks allocates throws enters loads forces

global global object object object exception native code classes stop

GETFIELD always sometimes first time sometimes

GETSTATIC always first time first time

<X>ALOAD always sometimes sometimes

PUTFIELD always sometimes first time sometimes

PUTSTATIC always first time first time

<X>ASTORE always sometimes sometimes

(I|L)(DIV|REM) sometimes sometimes

ARRAYLENGTH sometimes sometimes

CHECKCAST sometimes first time sometimes

ATHROW always always

INSTANCEOF first time sometimes

RET sometimes

MONITORENTER always always always sometimes always

MONITOREXIT always always always sometimes always

INVOKE<X> sometimessometimessometimes sometimessometimesfirst time sometimes

<X>RETURN sometimessometimes sometimes sometimessometimesfirst time sometimes

NEW always always sometimes first time sometimes

NEWARRAY always always sometimes sometimes

ANEWARRAY always always sometimes first time sometimes

MULTIANEWARRAY always always sometimes first time sometimes

LDC STRING first time first time

Table 1: Java instructions modified to support speculation.Each instruction is marked according to its behaviours
that require special attention during speculative execution. These behaviours are marked “always”, “sometimes”, or
“first time” according to whether or not their execution is conditional within the instruction. “Forces stop” indicatesif
the instruction may force termination of a speculative thread, but does not have a strict correlation with abortion and
failure of the speculative sequence. Not shown are branch instructions; these are trivially fixed to support jumping to
the right pc.

executing this code unsafely and out of order, and so there is nothing dictating that a valid reference will
always be on the stack; this means that we may need to stop execution if the reference is invalid. Detecting
whether an object reference is valid requires either a magic word in the object header or a bitmap defining
the positions of objects on the heap; we currently use a magic word but will move to a bitmap-based solution
in the future, as this kind of information may be useful for other VM research as well, memory management
in particular.

TheJSR (jump to subroutine) instruction is always safe to execute because the target address is hardcoded
into the code array, but the return address used by its partnerRET is read from a local variable. In speculative
execution we always assume the worst, and therefore must check the validity of the target address, because
we cannot make assertions about bytecode verifiability. Furthermore, even if the address does turn out to be
valid, it may be the case that theJSR was reached non-speculatively but speculation started before theRET
was encountered, and thus the return address in the local might point to thewrong code array; in this case
we simply look at the starting positions of the two arrays to determine where the destination address lies and
then fix it up if necessary. We actually need a modifiedRET instruction in thenon-speculativecode array as
well, in the event that speculation stops inside a subroutine and subsequently gets committed, which would
lead to non-speculative code having a speculative return address in one of its local variables.

The INVOKE<X> and<X>RETURN instructions may lock and unlock object monitors, andMONITOR-

8

(ENTER|EXIT) will always lock or unlock object monitors. We never allow this to occur speculatively,
and so the speculative execution engine needs to be protected from any code that would normally permit
synchronization operations. In addition, we mark these instructions in Table1 as reading from and writing
to global variables, as lockwords are stored in the header of object instances on the Java heap. Although this
information about heap access is not particularly useful in the absence of speculative locking, we present it
for the sake of completeness. Further details on synchronization are given in Section 3.7.4.

TheINVOKE<X> instructions are also modified to ensure that speculative threads will neverenter an un-
prepared method and start SableVM’s lazy method preparation process.Furthermore, for polymorphic
callsites, i.e. theINVOKE(VIRTUAL|INTERFACE) instructions, we check that the receiver is a valid ob-
ject instance and that the speculative target found through its virtual tablepointer has the right net effect on
the stack and that the type of its containing class is assignable to the receiver’s type. Although we could use
strcmp() or some hashing tricks to verify target signatures, entering the wrong method occurs so rarely
that it does not justify the extra overhead. It is worth noting that our experience shows speculative codewill
invariably enter the wrong method and on occasion get trapped inside infiniteloops, even for the simplest of
benchmarks such ascheck, and so a limit on the number of speculative instructions executed per threadis
needed to prevent this, as described in Section 3.8.

<X>RETURN instructions, in addition to the synchronization check, require two things: 1)buffering of the
non-speculative stack frame from the parent thread (more on stacks and our lazy stack buffering strategy in
Section 3.4), and 2) verifying that the caller method is not in the middle of apreparation sequence, a special
type of instruction sequence used in SableVM to prepare and replace instructions that have slow and fast
versions [19].

Returns must also be monitored to ensure the speculative thread does not leave bytecode execution entirely.
A return in SableVM can also lead to thread death, VM death, or a return to native code, all of which
are unsafe for speculative execution. These situations are trapped and force speculation to end. Similarly,
invokes are monitored to ensure native code is not entered.

Finally, we consider the object allocation instructions,(MULTI)(A)NEW(ARRAY). Barring conditions
that would lead to an exception being thrown or triggering garbage collection,there is nothing particular
to speculative multithreading that prohibits object allocation on the global heap. We discuss allocation and
garbage collection in greater detail in Section 3.7.2. Note that theLDC STRING specialisation of theLDC
instruction allocates a constant object upon being reached for the first time, later having the address of this
object patched directly into the code array, and so we always stop and allow the first execution to occur
non-speculatively.

To the best of our knowledge Table 1 is comprehensive, and documents all pitfalls that are inherent in
attempting to execute Java bytecode speculatively. We welcome any clarifications on corner cases or our
attention being drawn to omissions that we have made; so far, these modifications have been enough to
support speculative execution of all benchmarks we have tried and areconsistent with our understanding of
the JVM Specification [37].

3.2.3 Parallel Instruction Code Arrays

As discussed, the goal of this extensive instruction substitution is to prepare a parallel code array for each
method that speculative threads can use without breaking sequential execution semantics.

This code array structure is shown in Figure 5. The only instructions that get special SpMT versions are
those discussed in Section 3.2.2.SPMT FORK andSPMT JOIN instructions are present inbotharrays, and

9

Figure 5: Parallel code arrays.(a) non-speculative code array prepared for method bar(); (b) speculative version of
the same code array with modified instructions.

enable both non-speculative and speculative threads to create and join children. In the following sections,
we examine the use of these two code arrays in speculative method level parallelism.

3.3 Forking Speculative Threads

When a non-speculative parent thread reaches anSPMT FORK instruction, it will attempt to fork a new
speculative child thread. The first step is to decide whether or not the current fork point is suitable for
starting speculative children. Rather than simply make an on/off binary decision, we also attempted to
build a good heuristic that assigns fork priorities depending on several pieces of dynamic and static data,
including:

1. A static upper bound on the size of code reached through the method, which can be obtained from a
callgraph if there are no intraprocedural or interprocedural backward branches over the transitive clo-
sure of the method call. We implemented such an analysis in Soot [70] using the Jimple intermediate
representation of bytecode and the callgraph derived from the points-toanalysis provided by Spark
[34].

2. Dynamic upper and lower bounds on transitive method size, and more importantly an average size.
This information is kept on either a per-target or per-callsite basis.

3. A history of speculation successes and failures per-callsite, kept over either the entire execution of the
application to date or over the lastN speculative forks.

4. A history of the lengths of speculative sequences per-callsite, again kept since application startup or
over the lastN forks. We might also be interested in a static analysis to avoid sequences thatare
guaranteed to have a short maximum length due to an unavoidable instruction that forces speculation
to stop, such as aMONITORENTER or anATHROW within 10 instructions of the fork point.

5. The number of times a speculative child was forked but joined again by theparent before actually
executing any instructions; this represents 100% wasted fork/join overhead.

10

6. The number of times a speculative child was forced to stop prematurely because it encountered another
speculative child that had been forked at this callsite; this represents extra fork/join overhead inherent
in a scheme with fork points that are too frequent.

When the decision to fork a child has been made, several steps must be taken. Primarily these involve
memory allocation, and an SpMT-specific memory manager is most helpful in reducing overhead here. An
enumeration of all steps required follows:

1. The thread environment of the parent is copied over to the child, although only those variables in this
structure which can be touched speculatively need to be safe.

2. The current parent stack frame is copied to the child; details of our stack buffering strategy are given
in Section 3.4.

3. A dependence buffer is initialized, this will act to protect main memory from speculative execution
and allow for child verification at join time. Dependence buffering is described in Section 3.5.

4. The height of the Java operand stack upon return from the non-speculative invoke is computed; this is
a constant for any given callsite and it is not necessary to parse method signatures on each invoke.

5. (optional) A return value may be predicted for non-void methods. This is not strictly required for
speculation, as any random value can be used. Thus we describe our return value prediction as an
optimisation in Section 4.1.

Then, depending on the execution model, we either skip over the invoke and switch immediately to the
speculative code array (single-threaded simulation, Section 3.8.1) or enqueue the child on a global priority
queue and proceed with non-speculative execution (true speculative multithreading, Section 3.8.2. It is
better if the enqueuing takes place as soon as possible, to reduce the time lostto speculative forking in the
non-speculative parent thread, and in our current system only step 1above is completed by the parent.

3.4 Speculation and the Java Stack

During execution of a Java method, the VM will interpret bytecode instructions and use them to modify
the Javaoperandstack; Java bytecode provides the basis for a stack machine at runtime. Atthe same time,
each method gets its own frame on the Javacall stack. In SableVM, the operand stacks and call stacks are
interleaved; the arguments to a callee method at the callsite in the caller frame become the callee’s parameter
local variables when its frame is pushed.

Speculatively, we need to buffer all stack accesses, to protect the parent non-speculative thread in the event
of failure. The simplest way to do this is to copy the entire parent stack over tothe child. A lazy strategy is
more efficient, however, and we instead copy stack frames from the parent only as the child exits them. We
now present a moderately complex example of a parent thread with two speculative children to illustrate the
details and safety mechanisms of our stack buffering strategy.

In Figure 6 a non-speculative parent thread and its two speculative children are shown. Each thread moves
up and down the Java call stack as it enters and exits methods. Speculativeexecution proceeds as follows.
The parent thread pushes framesf1 throughf4 on the stack. Just before the callsite that will pushf5, it
decides to fork a child. After forking the parent executes methods at levels f5 and f6. The child gets the
caller frame copied over and continues execution past the invoke. It exitsf4 and so needs to copy overf3

11

Figure 6: Call stack buffering. f1throughf6 are stack frames corresponding to Java methods. A speculative child is
forked atf4 in the parent, and in turn a second-generation grandchild thread is forked atf5 in the child.

from the parent. This is always safe, because the parent will join the childat f4 before either returning tof3
in the event of a failure, or jumping ahead to the child’s current position in theevent of success.

Sometime inf3, the child encounters another invoke and moves back up to thef4 level. This may be a
completely different method from that in which the child was forked. No buffering is needed, as this is new
speculative execution without immediate dependence on prior computation. Similarly, when the child enters
f5, it does not copy the frame over from the parent. Inf5, before enteringf6, the child decides to fork itsown
child; this is the grandchild of the original non-speculative parent. Before the child return fromf6 to f5, the
grandchild exits several methods and ends up down atf2. Again it is safe to copyf4 andf3 from the child as
the child will stop when it gets tof5, where it sees the grandchild has been forked.

Furthermore, it is safe for the grandchild to bufferf2 from theparent: the parent can only return tof2 if
it aborts the initial child forked inf4, and this will lead recursively to the abortion of the grandchild (see
Section 3.6 on joining); otherwise, it will commit the child, copy over all stack frames entered speculative
and jump ahead, not returning belowf5 before joining the grandchild. By ensuring that a given thread never
leaves a stack frame without joining its child, we can promise that speculative frames copied from ancestors
will never be corrupted.

A novel concept in this design is that it allows for multipleimmediatechildren in a parent non-speculative
thread: at each method entered we allow a child to be forked, and as we associate children with stack frames,
this means that there can be one child per frame on the stack. This exposes significantly more parallelism
than a model in which each thread is restricted to a single immediate descendant. Multiple immediate
children per thread arenotshown in Figure 6, but the result of the extension is a tree of children rather than
a chain.

3.5 Dependence Buffering

Common to all speculative multithreading proposals is a mechanism for buffering potentially unsafe memory
reads and writes in speculative threads. We already buffer stack frames and modification of local variables
as described in the previous section, and so now we need only worry about accesses to main memory. In

12

Figure 7: Dependence buffering.Read and write buffers are allocated in a layered structure and allow for speculative
threads to communicate with main memory. The dashed line indicates that the read buffer is searched during specu-
lative heap/static loads only if the value has not already been written into the write buffer by a speculative heap/static
store.

Java, main memory consists of data on the garbage-collected heap and static variables.

Each speculative thread gets its own dependence buffer. This is initializedat fork time, so that when a thread
starts up, all of the buffer entries are empty. Furthermore, by setting an “uninitialized” flag, we can defer
the real initialization until the buffer is actually used, thus eliminating overhead inthe event that it remains
unused. We can still further break down overhead costs by having per-type buffers internally, one for each
of the 8 Java primitive types and a 9th for object references.

Each per-type buffer in turn consists of two sub-buffer layers, a read buffer and a write buffer. These
are implemented as hashtables with a backing array acting as a linked list; the nearest equivalent in the
Java Collections Framework isjava.util.LinkedHashMap. The hashtable uses direct addressing
and provides fast entry lookup, and the backing list allows for fast iteration through non-NULL elements.
Value addresses are the keys in these buffers, and values themselves are stored as mappings to these keys.
Dependence buffers are typically implemented as fixed-size table structures in hardware SpMT designs, and
we have followed the same conventions here.

A model of a dependence buffer is pictured in Figure 7. When the speculative SPMT (GET(STATIC|-
FIELD)|<X>ALOAD) load instructions are executed, first the write buffer is searched, and ifit does not
contain the address of the desired value then the read buffer is searched. If the value address is still not found,
the value at that address is loaded from main memory. When the speculativeSPMT (PUT(STATIC|-
FIELD)|<X>ASTORE) instructions are executed, the write buffer is searched, and if no entry isfound a
new mapping is created. The default buffer size is 128 entries per primitivetype, and we find this is more
than sufficient, with overflow occurring rarely. It is likely that some small memory savings can be achieved
here; however, this is not a pressing concern, and we can afford to be much more liberal with memory in a
software implementation of SpMT.

3.6 Joining Speculative Threads

Upon reaching some termination condition, a speculative thread will stop execution and leave its entire state
ready for joining by a parent thread. This termination condition may be: A) some pre-defined speculative
sequence length limit being reached; B) a parent thread signalling the child tostop when it reaches the
SPMT JOIN instruction; C) the parent signalling the child to stop when it reaches the top ofthe VM ex-
ception handler loop in that stack frame (refer to Section 3.7.3); or D) the child reaching an instruction that

13

presents speculatively impermissable behaviour as discussed in Section 3.2.2.

The join process is straightforward. The parent thread returns from amethod call and finds a speculative
child on the stack. Either way the parent will ensure that the child has stopped execution before proceeding.
If in the VM exception handler loop, the child is simply aborted and its memory is freed to a free list;
execution continues non-speculatively until the exception is either caughtor leads to VM death. Otherwise,
the child may be successfully joined, and the following validation process takes place:

1. If the method returned a value, that value is checked for safety against the value used by the speculative
thread. This value may have been predicted, or it may have been random. If unsafe, the child is
aborted.

2. The child is checked for having seen the same number of garbage collections as the parent (refer to
Section 3.7.2 for more about GC). If fewer, the child is aborted.

3. The status of dependence buffers is checked, and if overflown orotherwise corrupted, the child is
aborted.

4. All values in the read dependence buffer are compared with the value at the same address in main
memory; if violations occur, the child is once again aborted.

At this time, if the child has not been aborted, all values in the write buffer areflushed to main memory, the
buffered stack frames entered by the child are copied to the parent, and non-speculative execution resumes
at thepc and operandstack size where the child left off. If aborted, the child’s memory is freed and
execution continues non-speculatively at the first instruction past theSPMT JOIN.

3.7 Intricacies of the Java Language

Several traps await the unsuspecting implementor when trying to enhance a JVM to support speculative
multithreading. We assert that it is necessary for an SpMT implementation in Java to consider these features
in order for it to be considered fully general.

The features to be covered in the next four sections are native methods,garbage collection, exceptions, and
synchronization. The common patterns that will emerge from them are that:

1. They are unsafe to execute speculatively in our current model. However, this does not entirely pre-
clude future work to support them.

2. Theyare able to execute in a parent non-speculative thread that has speculativechildren running
concurrently.

3. They formspeculation barriersacross which speculation cannot occur.

4. They do not necessarily force abortion ofall speculative children when they occur, and their impact
can be minimized.

14

3.7.1 Native Methods

The Java specification has provisions for native methods, which are methods not implemented in Java and
executed as bytecode but implemented in a platform-specific language like C that gets compiled to machine
code, and interacts with Java through a native interface such as the JavaNative Interface (JNI) [36] or directly
as part of the VM internals. Native code can thus be found as part of theclass libraries, the JVM itself, or
user code. Native methods are fundamental to Java execution, but in general are nicely hidden away from
your typical programmer. For example, all thread management, timing, and I/O operations require native
methods, as the functions they require are simply outside the scope of Java bytecode, but programmers are
provided with pure Java wrappers around them.

In speculative execution, we need explicit control over the code being executed, and since this is not available
for native methods they form a hard speculation barrier. However, we must still be able to execute native
code non-speculatively, and it is safe to do so while speculative threadsare alive. In terms of our model,
we can fork and join children at callsites that have native targets, and morebroadly we can do so at any call
over which the transitive closure contains a native method.

As an example of where speculation is still useful for timing-dependent execution, consider mp3 playback.
It should be possible to structure the application such that all I/O occurs in order and at the right time, but
that decoding and processing of the mp3 can occur speculatively, suchthat the playback buffer suffers fewer
underruns for a given computation load. Depending on the application, thismight be achievable without any
transformations.

3.7.2 Garbage Collection

All objects in Java are allocated on the garbage-collected Java heap. Thisis one of the main attractions of the
language, and as such, any proposal to extend it should consider this feature; indeed, many Java programs
will simply run out of memory without GC.

SableVM uses a simple copying collector [19], and so object referencesget invalidated upon every collec-
tion. This means that a speculative thread started before GC will be invalidated after GC. However, since
the threads are speculative, they must be invisible to the rest of the VM, andin particular cannot be traced
during collection. All reads from and writes to the heap are buffered, and so having a speculative thread
attempt to access the heap during GC is completely safe. Our solution to the problem of invalidating threads
is to keep a count of the number of collections that any given non-speculative thread has seen. When a child
is forked, this count is copied over. Upon returning to the fork point andjoining the child, if the number of
collections seen in the parent is greater than the count in the child, we forceits failure.

The default copying collector in SableVM is invoked relatively infrequently, and we find that GC is respon-
sible for a negligible amount of speculative invalidations. Other garbage collection strategies are assuredly
more difficult to negotiate with, and it is likely the case that pinning of speculatively accessed objects is
required to handle them properly. Needless to say, exploration of these ideas is outside the scope of this
paper, but it would be entirely possible to pursue them within our framework.

As for object allocation, weare able to allocate objects speculatively, as discussed in Section 3.2.2. Specu-
lative threads compete with non-speculative threads to acquire the global mutex protecting the heap, and any
allocated objects are reachable starting only from the stack of the speculative thread. If allocation would trig-
ger either GC or anOutOfMemoryError, we stop speculation immediately (and thus slightly modified
routines for speculative object allocation are required). When a speculative thread gets joined and commit-

15

ted, child stack frames are copied to the parent and allocated objects becomereachable non-speculatively.
If on the other hand a child with speculatively allocated objects is invalidated, then the objects become
completely unreachable and will be collected in the next collection.

The disadvantage of allocating objects speculatively is that more collector activity than normal will be
necessary, as aborted children will pollute the heap with unreachable objects. However, we did not observe
a large increase in GC counts when speculation was enabled, and furthermore providing this facility greatly
extends the maximum length of speculative sequences, as objects are allocated often in many Java programs.
Another advantage is that technically we do not need to buffer reads from and writes to speculative objects,
but this is an optimisation not implemented at this time.

3.7.3 Exceptions

Java allows for bytecode instructions to throw exceptions, either implicitly as shown in Table 1 or explicitly
through use of theATHROW instruction.

Speculatively, we stop immediately upon encountering an exception. The rationale for this design decision
is three-fold. First, exceptions are rarely encountered in normal execution – exception-heavy applications
like jack throw an exception for less than 1% of all method calls [51]. Second, although it would be possible,
writing a speculative exception handler is a somewhat tricky process and not the best use of our resources at
this time. Third, and perhaps most importantly, exceptions that would occur speculatively are likely to be the
result of incorrect computation and have a high correlation with sequencefailure, meaning that attempting
to process the exception speculatively would result in even more wasted cycles.

Non-speculatively, if an exception is thrown, caught, and handled within the same method without being
rethrown, then there is no need to abort speculative children, and this process is completely invisible to
them. However, exceptions may be thrown out of methods, and this leads to stack unwinding in the search
for an appropriate handler, eventually ending in VM death if none are found. If in the process of popping
stack frames we encounter a speculative child, we must signal that child to stop and force its immediate
failure, to prevent memory leaks and unwanted computation. However, we do not need to invalidate all
children on the stack in the event of an exception, only those that are encountered during stack unwinding.

Java compilers likejikes andjavac compile idioms such astry {} catch () {} andtry {}
catch () {} finally {} in the Java language to use exception handlers withJSR andRET instruc-
tions [37]. The safety of these instructions with respect to speculative execution is discussed in Section
3.2.2. It is worth noting that other bytecode compilers are permitted to exploit them for other purposes, and
our considerations about them with respect to speculative safety are not limited to exception handling.

There is a hidden complication with exception handlers and forking speculative children. One of the prop-
erties we would like to guarantee is that no stack frame ever has more than onespeculative child, and this
is checked with an assertion in our implementation of theSPMT FORK instruction. If theINVOKE<X>
following a fork were to throw an exception non-speculatively, we might endup in a bytecode exception
handler with a speculative child on the stack. This would not be a problem if there were no callsites within
the handler, but in fact frequently exception handlers do call methods, toreport errors or otherwise act
on the thrown exception object, and thus we also encounter fork and join instructions within the handlers
themselves!

To avoid reaching a fork with a child on the stack, it is imperative that the framehave its child aborted at
the top of theVM exception handler loop, i.e. before looking up and jumping to any particular bytecode
exception handler pc. This technique also solves a problem withfinally blocks: if an exception is

16

thrown within atry block and uncaught in the current frame, control will pass to thefinally block
before proceeding to thecatch block [37]. Fortunately, the VM exception handler loop must still be
entered before jumping to thefinally block, and thus any children can easily be aborted.

3.7.4 Synchronization

The last feature of the Java language that requires treatment is the ability to synchronize threads and protect
shared data using per-object monitors. In bytecode this can be accomplished in two ways, either explic-
itly through theMONITORENTER andMONITOREXIT instructions, or implicitly through a synchronized
method entry or exit. As noted in Section 3.2.2, these operations cannot be executed speculatively.

Speculative locking, in which child threadsareallowed to acquire and release monitors, has been previously
explored by several groups [42, 43, 58, 55], and is discussed in greater detail in Section 6. It would be most
interesting to evaluate these methods within our current system, and is a line of research we intend to pursue
in the near future. In particular, the structured locking rules of the JVM specification ensure that the state
of an object lock will be identical before and after synchronized method invocation on that object, which
should simplify analysis and afford certain optimisations.

As for non-speculative locking and unlocking while speculative childrenare alive, it is safe, just as garbage
collection, exception handling, and native method calls are safe. Perhapsthe most interesting thing to note
is that we can safely start speculative threads inside a critical section andjoin them before exiting the critical
section. Thus code which is traditionally thought of as a parallelism bottleneckcan be parallelised, in turn
encouraging coarse-grained locking, which is desirable from a software engineering perspective for its easier
programmability.

3.8 Execution Modes

Now that we have described in detail all the steps and data structures required for speculation in Java byte-
code, we present two execution models. We developed our design hand-in-hand with our implementation;
many of the previously described techniques were non-obvious, and wealternated between finding flaws in
implementation that we had not previously considered and refining our design.

There were a couple of key factors that allowed us to progress this far.First was the clean and compliant
implementation of the JVM Specification that is SableVM. At the expense of some speed optimisations,
it is written in a way that is very easy to extend, and we did not suffer major research bottlenecks trying
to understand the structure of the VM. Second was the use of a single-threadedsimulationof speculative
multithreading to work out the problems in our design (Section 3.8.1. This mode saved us from having
to debug concurrency issues at the same time as general speculative safety issues, and also allowed for
relatively easy experimentation on uniprocessors.

3.8.1 Single-threaded Simulation

In the single-threaded simulation mode, we interleave non-speculative and speculative execution of Java
in a single thread. This is accomplished through state saving and restoration,and transitions between the
non-speculative and speculative parallel code arrays.

The complete execution of a speculative child is shown in Figure 8. All of the important steps have been
previously examined, and so for the most part this is review. The steps themselves are listed in point form

17

Figure 8: Single-threaded simulation mode.Java execution transitions to speculative execution at fork points, contin-
ues past the invoke until a termination condition is reached, jumps back to non-speculative execution to complete the
body of the invoke, and attempts to the join the child when thejoin point is reached.

in the figure, and so here we simply draw attention to the features of the simulation.

When anSPMT FORK instruction is reached, we prepare the speculative starting state and switchto the
execution of that state. So that we can return to callsite to execute theINVOKE<X> non-speculatively,
we save the non-speculativepc and operandstack size, set the child state as the current environment,
switch code arrays, and begin speculative execution immediately past the callsite.

After some speculative instructions, which may or may not involve the dependence buffer (in the figure,
both a speculative heap read and a speculative heap write are shown),we reach some termination condition,
be it a pre-defined sequence length limit or an instruction we cannot execute speculatively (in the figure,
we reach anSPMT MONITOREXIT and stop because exiting a critical section speculatively is currently
unsupported).

At this termination condition, we now save thespeculativepc andstack size, restore the parent non-
speculativepc and stack size in the ordinary code array, and go back to execute the body of the
INVOKE<X> non-speculatively. Upon return, we encounter the forked child on the stack, and begin the
validation and committal process. If speculation succeeded, we jump ahead towhere the child left off, at the
equivalent position in the non-speculative code array, and otherwise abort the child and re-execute its body
non-speculatively. In the event of a successful join in the figure, the next instruction to be executed would
be a non-speculativeMONITOREXIT.

Moving development from simulation mode to the true multithreading mode describedin the next section
was relatively straightforward. We hope this simpler mode will improve the development speed of and
effort required for future implementation variations as well. Speculative coverage data obtained using this

18

Figure 9: Multithreaded mode.Non-speculative parent threads enqueue children on anO(1) priority queue. Specula-
tive helper threads remove children from the queue, and theninitialize and execute them, leaving them on the parent
stack to be joined. If a parent thread reaches a child that it enqueued before that child has been started, it dequeues it
and continues non-speculatively without attempting the speculative child join procedure.

simulation mode is presented in Section 5.3.

3.8.2 Multithreaded Mode

Multithreaded execution occurs much the same as in the single-threaded simulation, and we focus on the
specifics of our threading implementation.

At a fork point, as mentioned in Section 3.3, a minimal amount of work is done non-speculatively to reduce
the overhead of thread startup. As soon as the parent environment is copied to a child, we enqueue the child
on anO(1) priority queue, using a scoring heuristic with the components described in Section 3.3. This is
a global priority queue that must be locked using an atomic operation beforemodification, however as we
shall see in Section 5.1 it is likely not the most efficient implementation or design.

As shown in Figure 9, there is a pool of SpMT helper threads. These arePOSIXpthreads, and currently
there is one executing for every free CPU in the system. Other thread–CPUmappings are possible, indicated
by the crossed lines in the figure, and determining the best mapping for a particular situation is a good
direction to take in future work. These threads are waiting for speculativechildren to be enqueued, and
as soon as one becomes available it will get picked up by a free helper andinitialized, and then bytecode
interpretation will begin. In the figure, childC1 is picked up by helper threadS1 and the same speculative
as shown for the single-threaded simulation is executed, albett in a separatethread on a separate processor.

Meanwhile, the parent thread reaches addttional fork points higher up on the call stack, and enqueues child

19

C2 andC3. For whatever reason, these do not get picked up by helper threadsS2 andS3 (assume for the
sake of argument thatS2 andS3 are busy wtth other children not pictured), and so the parent thread reaches
them again before they have been started. This leads toC3 andC2 being dequeued, in that order, rather
than stopped, validated, and etther commttted or aborted by the parent. Upon returning to the fork/join point
of C1, the parent findsS1 has left it on the stack already stopped at anSPMT MONITOREXIT, and so the
usual validation procedure takes place. If successful, the parent jumps ahead, and if not, the parent simply
continues.

4 Optimisations

Given a basic SMLP implementation as described in which speculative threadsare forked at every method
call, there is ample room for optimisation. In this section we discuss what we consider to be two of the most
important techniques for improving SMLP performance: return value prediction and efficient enqueuing
algorithms.

4.1 Return Value Prediction

One of the key optimisations that exists for SMLP is return value prediction (RVP). All non-void Java
methods return values, and in a naı̈ve speculation strategy, random values are pushed onto the operand stack
at fork points to adjust the stack height correctly, and speculation is aborted if these values turn out to be
incorrect.

Hu et al. previously showed that the SPEC JVM98 benchmarks benefit significantlyfrom RVP in a simula-
tion of 8-processor SMLP hardware [25]. Without any RVP, they wereable to achieve an average speedup
of 1.52 over the benchmark suite, with their best hybrid predictor a speedup of 1.92, and with perfect RVP a
speedup of 2.76. On this basis we concluded that accurate return value prediction was highly desirable, and
set out to achieve the highest prediction rates possible and to explore the relationship between table-based
predictor memory requirements and predictor accuracy [51].

We implemented several well-known predictors from the literature in SableVM,including fixed-space last
value and stride predictors, and a table-based context predictor. A lastvalue predictor simply predicts the
last value seen at a given callsite, and a stride predictor applies the difference (stride) between the last two
returned values to the last return value to predict the next value. An order-k context predictor keeps a history
of return values over the lastk calls, and using hashtables to associate predictions with value histories; we
implemented a standard order-5 context predictor. Performance of table-based prediction strategies naturally
depends on table-size, up to a certain point, and at the performance limit of existing prediction strategies
using per-callsite hashtable, we were able to achieve an average accuracy of 72% over SPEC JVM98.

We also introduced a new memoization-based predictor that uses method arguments as inputs to a hash
function to predict values. This complemented existing prediction strategies nicely, and when included in a
hybrid increased the average prediction rate over SPEC JVM98 from 72% to 81%. Models of context and
memoization predictors are shown in Figure 10; they are functionally quite similar, the difference being that
the context predictor gets its inputs from a history of return values, whereas the memoization predictor gets
its inputs from method arguments.

After implementation of these return value predictors in SableVM, we looked to acouple of ahead-of-time
compiler analyses for improved return value prediction in Soot [50], with theaim of increasing accuracy
and reducing memory costs. The first is a slicing-basedparameter dependenceanalysis that finds method

20

Figure 10: Context and memoization predictor models. r1throughr5 are the most through least recent return values,
andp1 throughpN are method parameters.

parameters upon which the return value does not depend, and allows forreduction of inputs to the memoiza-
tion predictor hash function. At runtime, this analysis finds 10% of all non-void calls return a return value
that is not fully dependent on method arguments. The second is areturn value useanalysis that tracks the
use of return values after a method call and determines if they are unconsumed, in which case the value does
not need to be at all accurate, or if they are consumed but used only inside a boolean or branch expression,
in which case accuracy constraints are relaxed. This analysis allows foran average 17% of return values at
runtime to be substituted with partially or completely inaccurate predictions.

We now employ the best hybrid prediction strategy from our RVP implementation [51], and furthermore
use classfile attributes to exploit the results of our compiler analyses [50] in SableSpMT. The impact of our
return value prediction optimisations is examined in Section 5.3.

4.2 Efficient Speculation Decisions

As our experimental data on speculation overhead show (refer to Section5.1), a good choice of fork points
and efficient enqueing algorithms are critical to the success of SMLP and SpMT in general.

In Section 3.3, several relevant pieces of static and dynamic data associated with methods, callsites, and
speculative sequences are described. The current per-callsite heuristic we use to assign priorities between 0
and 10 to threads for placement on the shared priority queue described inSection 3.8.2 is:

score = average_sequence_length * success_rate

total_spmt_instructions total_spmt_commits
= ----------------------- * -------------------

callsite_fork_count callsite_fork_count

priority = (score > 1000) ? 10 : (score / 1000)

We find that this algorithm gives decent priority distributions, if somewhat biased towards lower priorities.

21

We also experimented with disabling speculation at callsites if 1) failure rates are too high; 2) average specu-
lative sequence lengths are too short; or 3) if the callsite is reached often by another speculative child forked
higher up on the stack. In all cases, we found that disabling speculation for short sequences had a strong
correlation with increased speed, but we also found that the number of instructions executed speculatively
dropped significantly. Thus we are hesitant to report data on the effectof disabling speculation, as it is
unclear if the increase in performance is due primarily to reduced fork/join overhead, or to eliminating short
and failing sequences. A full study that aims to reduce the overhead of speculative execution in our system
without sacrificing parallelism is needed; here we aim to provide a complete design and initial baseline
implemention.

Another component of time-efficient speculation is the actual enqueuing algorithm and associated data struc-
tures. Although our priority queue providesO(1) enqueue, dequeue, andremove max operations, it is
globally synchronized and a sure source of speculation overhead. Greiner and Blelloch provide an in-depth
analysis of queuing algorithms and an implementation strategy for speculative futures in an abstract func-
tional language running on an abstract machine [21, 22]. Their results are probably not directly transferrable,
as their model evaluates function arguments speculatively as opposed to ours which executes speculative
continuations past method invocations. Nevertheless, the ideas and proofs given for time-efficient queuing
algorithms and data structures in speculative execution are relevant to this work, and deserve consideration
in future optimisation research.

On the other hand, Shavitet al. consider scalable priority queues in [61], finding that for queues with
a bounded number of priorities running on systems with a small number of processors that our design is
efficient, except that we should consider both synchronizing per-priority and using CLH [39] or MCS [45]
queue locks instead of test-and-test-and-set spinlocks.

5 Experimental Analysis

In the following subsections we present data gathered over SPEC JVM98[63] at size 100, using true spec-
ulative multithreading on a 4-way SMP machine, with the exception of some resultson speculative thread
sizes obtained using our single-threaded simulation for purposes of comparison.

We do not obtain speedup over sequential execution in our present implementation. Current running speeds
over the SPEC benchmarks are within one order of magnitude of the unmodified SableVM switch interpreter
engine (up to 10 times slower). As discussed in Section 4.2, optimisations both withrespect to the choice
of fork points and the queuing algorithms employed are expected to improve performance, but this is a
significant research effort in its own right and outside the scope of the current work.

Nevertheless, as we examine speculation overhead, speculative threadsizes, and the percentage of bytecode
instructions that can be executed in parallel, we shall see that there is roomfor optimism regarding the
ultimate performance and moreover the current value of our design and implementation.

5.1 Speculation Overhead

In Figure 11, the parent thread is depicted as suffering overhead when forking, enqueuing, joining, and
validating a child thread. Similarly, the child suffers overhead when it starts up and when it reaches some
stopping condition, as outlined in Section 3.6. We instrumented our SableSpMT engine using therdtsc
instruction in order to profile execution times, and present overhead breakdowns for both non-speculative
parent and speculative helper threads in Tables 2 and 3.

22

Figure 11: Speculation overhead.Both non-speculative parent and speculative child threadssuffer wasted cycles due
to overhead at fork at join points.

executioncomp db jack javac jess mpeg mtrt rt

bytecode 39% 24% 29% 30% 21% 59% 49% 58%

fork 6% 15% 13% 13% 11% 5% 3% 4%

enqueue 4% 10% 10% 9% 7% 3% 2% 2%

other 2% 5% 3% 4% 4% 2% 1% 2%

join 53% 59% 57% 56% 67% 34% 47% 36%

predupdate 7% 13% 12% 11% 12% 6% 7% 7%

dequeue 5% 5% 5% 4% 5% 2% 2% 2%

wait 15% 14% 11% 11% 19% 8% 26% 11%

predcheck 4% 4% 4% 5% 7% 3% 2% 3%

buffer check 4% 6% 6% 5% 5% 3% 1% 2%

child pass 5% 5% 7% 6% 6% 3% 2% 3%

child fail <1%<1% <1% <1% <1% <1% <1%<1%

cleanup <1%<1% <1% <1% <1% <1% <1%<1%

other 11% 10% 10% 12% 11% 7% 5% 6%

Table 2: Non-speculative thread overhead breakdown.The three main categories of execution times are normal
bytecode and native method execution, time spent forking speculative children, and time spent joining speculative
children. enqueue is incorporated into fork time, and the categories belowjoin make up total join time. The
other categories account for execution cycles that we did not instrument directly, and partially include the cost of
instrumentation overhead itself.

The striking result in Table 2 is that the parent spends so much of its time forking and joining speculative
threads that its opportunities for making progress through normal Java bytecode execution are reduced by
up to 5-fold. We see that joining threads is significantly more expensive thanforking threads, and that
within the join process, predictor updates and waiting for the speculative child to halt execution are the most

23

executioncomp db jack javac jess mpeg mtrt rt

child wait 86% 82% 78% 78% 78% 55% 53% 71%

child init 3% 4% 4% 4% 4% 2% 5% 4%

child run 9% 12% 16% 16% 17% 41% 40% 24%

child cleanup <1%<1% <1% <1% <1% <1% <1%<1%

bytecode 58% 50% 65% 64% 57% 83% 51% 56%

fork 35% 40% 28% 29% 36% 13% 41% 36%

predquery 33% 38% 25% 26% 33% 11% 38% 33%

other 2% 2% 3% 3% 3% 2% 3% 3%

join 2% 2% 2% 2% 2% 1% 2% 2%

Table 3: Speculative thread overhead breakdown.Helper SpMT threads execute in a loop, waiting to remove children
from the priority queue, initializing them, running them, and cleaning them up after thread termination. The running
process itself (child run) is divided into bytecode execution, the end of the fork process which involves making
a return value prediction, and coming to a halt such that joining the parent non-speculative thread is possible. The
other sub-category underfork accounts for the parts of thefork process, once the child is actually executing
bytecode, that were not instrumented directly.

costly sub-categories. Other overhead sub-categories are not insignificant, and in general, optimisations
to any of them will improve performance. We did not measure the speed of normal bytecode execution
vs. speculative bytecode execution, although it will be instructive to look at the additional overhead on the
SPMT <X> instructions in Table 1.

The easiest way to eliminate overhead and bring non-speculative bytecode execution times much closer to
100% and thus overall running speed much closer to normal, is to disable speculation at fork points with
histories of short and/or unsuccessful speculation attempts. However,whilst we acknowledge that this tech-
nique is probably necessary to achieve speedup in any finalized system, itpresents two immediate problems.
First, it reduces the amount of parallelism in the system as fewer speculative threads are forked and joined;
thus, the limit on potential speedup and processor scalability obtainable through the implementation is re-
duced. Second, it sidesteps the problem of addressing overhead issues and designing efficient speculation
algorithms to eliminate them.

In future studies, we will first attempt to reduce overhead as much as possible using aggressive optimisation
techniques, whilst still enqueuing children at every fork point, and whenwe are confident that a performance
limit has been reached, we will begin to disable speculation. At this time it is likely that compiler analyses
to suggest good fork points and also reorganize code such that its structure is more amenable to SMLP can
be exploited.

In Table 3, we observe several notable points about the execution of speculative children. First, the SpMT
helper threads spend the majority of their time waiting to dequeue children from the priority queue and run
them. The implication is that the priority queue is empty most of the time. In the experiments done in this
section, we do not allow for speculative children to fork speculative children, and it is fairly intuitive that
this is a contributor to the queue being empty. We do allow for multipleimmediatechildren on the stack, as
described at the end of Section 3.4, and in future work will analyse the effect that forking several generations
of children has on both non-speculative and speculative overhead.

We also note that when the helper threadsare running speculative children, they spend a majority of their
time executing Java bytecode; in fact, proportionally more time is spent in Java bytecode speculatively

24

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 s

pe
cu

la
tiv

e
th

re
ad

s

Speculative thread size in Java bytecode instructions

Passed Threads
Failed Threads

Figure 12: Speculative sequence lengths in single-threaded simulation mode.

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 s

pe
cu

la
tiv

e
th

re
ad

s

Speculative thread size in Java bytecode instructions

Passed Threads
Failed Threads

Figure 13: Speculative sequence lengths in multithreaded mode on a 4-way SMP machine.

than non-speculatively. Outside of bytecode execution, we see that predictor lookup is expensive, most
likely because of synchronization on dynamically-expanding hashtables.We will address this category of
overhead when we revisit our return value prediction work in the contextof a true speculative multithreading
environment; the implementation employed here was developed primarily to achievehigh accuracies in the
single-threaded simulation mode [51] (although in Section 5.3 it is shown that theexisting return value
prediction framework still helps to expose additional parallelism in the multithreaded execution mode).

25

5.2 Speculative Thread Sizes

In Figures 12 and 13, we see speculative thread sizes taken as an average over all of SPEC JVM98, for both
single-threaded simulation and true speculative multithreading modes. Failed threads can be considered as
wasted cycles, and are thus shown as negative percentages in the graph. As we move from the simulation to
a multiprocessor, the speculative thread sizes decrease rather dramatically, jumping from 30% of all threads
having a length of 0–10 bytecode instructions to nearly 80%.

The explanation for this shift is two-fold. First, in the simulation, speculative threads execute until they
reach either 1000 instructions or an unpassable speculative instruction such asMONITOREXIT. In the mul-
tithreaded mode, however, as soon as a parent returns from a call andfinds a child on the stack, it will signal
it and await its termination. Thus the question is one of load balancing, and these data indicate that the
parent is likely to enter a short leaf method after forking a child. Compiler transformations such as inlining
that increase method granularity should in general allow children to executemore instructions before being
joined; indeed, one of the contributors to speedup that Huet al. identified in their SMLP experiments was
the presence of an inlining JIT compiler [25]. Alternatively, we could opt not to fork children if the parent
is known either statically or dynamically to be entering a short method.

Second, speculative execution overhead is non-existant in the single-threaded simulation, whilst during true
multithreaded execution children suffer delays that impede the progress they make before being joined by
their parent. As we eliminate the overhead identified in Section 5.1, we expect the average speculative child
thread size to grow.

Thread lengths are usually small in hardware SpMT designs and simulations,particularly for non-numeric
programs; in [28] SPECINT2000 benchmarks result in thread sizes up to43 machine instructions, a signif-
icant improvement over previous work. Our Java bytecode thread lengths can be much larger, not uncom-
monly 100s and sometimes 1000s of bytecodes; of course this does not directly map to improved perfor-
mance, and the relation between Java bytecodes and machine instructions is not trivial, but it can be seen
as an indication that improvements in parallelism are possible through higher level approaches. One of the
reasons that speculative threads actually succeed at such long lengthsis that we have information about
language features that is not available at the hardware level, and which can be used to avoid entering into
unsafe speculative situations (refer to Section 3.2.2 for a detailed analysisof Java bytecode and its effect on
speculative safety).

5.3 Speculative Coverage

Finally we look at speculativecoverage, or the amount of parallelism in terms of bytecode instructions that
our implementation is able to uncover in multiprocessor systems. In Figures 14 and 15, we examine the
effect that introducing additional CPUs into our system has on uncovering parallelism in the SPEC JVM98
benchmarks, and the benefits of return value prediction. In these experiments, there is one helper SpMT
thread mapped to each additional CPU after the first, which executes non-speculative Java code.

We find that introducing more CPUs increases parallelism, and that in our current system, in which specu-
lative threads areonly forked by the parent non-speculative thread, the processor scalingis best as we move
from zero to one to two speculative CPUs; adding a third CPU, whilst still beneficial, does not have as
great an impact. We also find that return value prediction plays an important role in speculative method-
level parallelism, corroborating the result previously obtained by Huet al. in their analysis of the SPEC
benchmarks in trace-based Java SMLP. In the absence of RVP, we achieve an average bytecode instruction
parallelism of 19%, and with the introduction of RVP into the system this increases to 33%.

26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

by
te

co
de

 in
st

ru
ct

io
ns

 e
xe

cu
te

d
sp

ec
ul

at
iv

el
y

in
 p

ar
al

le
l (

%
)

number of processors

compress
db

jack
javac
jess

mpegaudio
mtrt

raytrace

Figure 14: Speculative coverage without RVP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

by
te

co
de

 in
st

ru
ct

io
ns

 e
xe

cu
te

d
sp

ec
ul

at
iv

el
y

in
 p

ar
al

le
l (

%
)

number of processors

compress
db

jack
javac
jess

mpegaudio
mtrt

raytrace

Figure 15: Speculative coverage with RVP

Finally, it would appear from the graphs that the SPEC JVM98 benchmarkscan be broken into two classes.
Somewhat predictably,raytrace andmtrt exhibit the highest degrees of parallelism, as these programs
are known to be embarrassingly parallel; nevertheless, it is interesting thatwe can obtain this extra paral-
lelism out ofraytrace without actually using any concurrent transformations of the code. In thefuture,
we plan to study a set of concurrent algorithms and determine just how closeSMLP is able to bring a se-
quential program to its hand-parallelized equivalent.jack andjess are in the same class asmtrt and
raytrace, exhibiting relatively high degrees of parallelism both with and without RVP. Interestingly, with
respect to the second class of benchmarks which exhibit lower degreesof parallelism, adding RVP to the
system allows for separation ofdb andjavac from mpegaudio andcompress. Again this supports
that accurate return value prediction can significantly impact performancein an SMLP system, and can often
change the observed behaviour of a program.

27

6 Related Work

In a general senses, automatic approaches to parallelism have been sought for many years [5]. These have
been most successful when analysing loop-based, highly-structuredscientific applications, typically C or
Fortran based [12, 23], though Java experiments have been done as well [1]. Various efforts have looked
at analysis methods to improve applicability and performance of such approaches and more abstract mea-
surements have been done in this context [44, 54, 62], but designs andresults for arbitrary, irregular, OO
programs remain less common.

Speculative multithreading approaches have been developed primarily in thecontext of novel hardware
environments. A number of general purpose speculative architecturessuch as the Multiscalar architec-
ture [18], the SuperThreaded architecture [69], Trace processors [56], MAJC [68], and several other designs
[64, 17, 32] have been proposed, and simulation studies have generallyshown quite good potential speedups.
Steffan et al. give a recent implementation and good overview of the state ofthe art in [65]. An abstract,
general formula for speculative efficiency is defined by Greiner and Blelloch [21, 22].

From the speculative hardware level, an executing Java Virtual Machinedoes not exhibit distinguished
performance in comparison with other applications [71]. As an interpreted language, however, Java can
provide higher level abstractions and information than generic machine code, and the performance of spe-
cialized hardware and software for speculative Java execution has thus been of interest. Chen and Olukotun
pioneered work on method level speculation for Java, showing reasonable speedups on a simulated specula-
tive architecture [9]. This work has been extended to incorporate hardware analysis modules that cooperate
with the VM to improve runtime performance [11], and has culminated in an overall design that achieves
excellent speedups in simulated executions of a variety of benchmarks [10]. Hu et al. used Java traces
applied to simulated hardware as part of a study of the impact of return valueprediction [25].

Whether applied to Java or not, hardware designs necessarily require the expensive step of hardware con-
struction. Still, there have been fewer studies purely at the software level.“SoftSpec” is a software specula-
tion environment: loops with identifiable strides are speculatively parallelized at runtime [4]. Kazi and Lilja
analysed a software form of the SuperThreaded architecture [30], and more general software designs have
been evaluated on C [57] and Fortran benchmarks [13] with respect to loop-level speculation. Prahbu and
Olukotun have advocated manual, C source transformations and analysesto help thread level speculation
map to SpMT hardware [53].

Only very limited studies on language-level speculation for Java have beendone previously. Yoshizoeet
al. give results from a partially hand-done loop-level speculation strategy implemented in a rudimentary
(e.g., no GC) prototype VM [72]. They show good speedup for simple situations, but lack of heap analysis
limits their results. Kazi and Lilja provided the first convincing evidence that language level speculation
can be very effective in Java using manual source transformations [29]. Although source level (versus VM-
level) transformations mitigate the features of SpMT that can be supported, these studies show that special
hardware is not a requirement of SpMT, and also that there are no inherent problems with the Java language,
platform, or programming model. Using data from Java programs translated to Cand executed on simulated
hardware, Warg and Stenström argue that Java-based SpMT has inherently high overhead costs which can
only be addressed through hardware support [71]. Data from our experiments, however, indicates that there
is sufficient potential parallelism to offset quite large overheads.

28

6.1 Value Prediction

We have made extensive use of return value prediction to improve our speculative system. Value prediction
itself is a well-known technique for allowing speculative execution of various forms to proceed beyond
normal execution limits, and a wide variety of prediction strategies have been defined and analyzed. These
extend from relatively simple last value predictors [38] to more complex differential context (DFCM) value
predictors [59, 6], hybrid predictors [8, 25, 51], and even machine-learning based perceptron predictors [67,
60]. Most value predictors are designed with hardware implementation constraints in mind, though again
software techniques have been examined; Liet al., for example, develop a software prediction scheme based
on profiling and inserting recovery code following a cost-driven model [35]. Value prediction in SpMT has
been explored by several groups [25, 14, 9, 48, 49, 71]. The utility of return value prediction for method
level speculation in Java was shown by Hu et al. [25], with further prediction accuracy investigated by the
authors [51], and many optimizations to value prediction accuracy and costhave been considered [7, 16, 50].
The return value prediction approach here is based on the design in [51]and [50].

6.2 SpMT Optimizations

A naive implementation of software or VM-based SpMT can result in relatively high overhead costs, and so
optimization of the different operations involved is critical, both in terms of research exploration, and with
respect to practical usage as a research tool. As well as return value prediction we have employed a number
of optimization techniques specific to our implementation, discussed in Section 4. Other optimizations exist,
however, that have shown good promise in more general situations.

Selecting appropriate speculation sites is of course a crucial aspect of speculative performance, and several
static techniques based on ahead-of-time compiler transformations for SpMTarchitectures have been sug-
gested. Bhowmik and Franklin describe a general compiler support framework including both loop-based
and non-loop-based thread partitioning [3]. Johnsonet al. transform and solve the partitioning problem
using a weighted, min-cut cost model [28]. Dynamic thread partitioning strategies reduce preprocessing
needs and have been described for several simulated architectures [15, 41]. Unfortunately, being aimed at
SpMT hardware the threads extracted from these approaches are too low-level and fine grained (e.g. 11-43
machine instructions in SPEC-INT 2000 benchmarks in [28]) to apply directlyin our environment.

Specific compiler optimizations have also been developed. Zhaiet al. define and evaluate instruction
scheduling optimizations based on the length of thecritical forwarding path, or time between a definition
and a dependent use of the same variable [73]. This can be quite effective at reducing stalls when variable
dependencies between threads are enforced through synchronization. A flow analysis described in [31] de-
pends on a compiler to label memory references asidempotentif they need not be tracked in speculative
storage and can instead access main memory directly. This reduces the overhead in terms of space and time
of buffering the reads and writes of a speculative thread. Ooiet al. develop further optimizations to reducing
buffer costs given hardware buffering constraints [47]. In SMLP no locals are visible from other threads,
and so can easily be designated idempotent without implementing an analysis. InJava this means that val-
ues on a thread’s stack need not be tracked in the speculative storage.The VM environment, however, is
well suited to incorporating compiler optimizations and analyses, and use of such information is part of our
future work.

Lock synchronization poses another potential problem for speculativeexecution; lock changes affect the
program globally, and conservatively may require the speculative thread stop if not carefully tracked. How-
ever, locking itself can be quite amenable to speculation, and optimizations are indeed possible. Martı́nez

29

and Torrellas show how Speculative Locking can reduce the impact of contention on coarse-grained lock-
ing structures [42, 43]; this has been extended to allowpost-factolock acquisition ordering through the
Speculative Lock Reordering strategy of Rundberg and Stenström [58]. Rajwar and Goodman define a
microarchitecture-based speculative lock acquisition system [55]. In our current implementation synchro-
nization causes speculative threads to stop speculating, and so inclusion of a speculative approach to locking
would be quite useful.

7 Future Work

Our SableSpMT design is an initial, prototype implementation. We have achieved quite reasonable perfor-
mance levels in this context, and are able to handle a fairly complete range of input programs. Nevertheless,
there are a number of restrictions that could be lifted, as well as enhancements and optimizations that could
be applied to improve performance and applicability.

Although we handle the complete Java language, to ensure safety our speculative threads must stop specu-
lating at synchronization points. The impact of these reductions in speculation is not large in our (mostly
sequential) benchmark suite, but to better accommodate lock intensive programs some form of speculative
locking [42, 58] would be quite useful. An implementation within our framework would allow for detailed
analysis of the interaction with other optimizations to speculative behaviour.

Experimentation in our system is simplified through use of a highly-portable, research virtual machine,
SableVM. We would also like to port our work to a JIT compiler environment, such as Jikes [27], or very
recently a branch of SableVM itself [2]. Although the presence of a JIT complicates a research SpMT
implementation, JITs have a significant impact on performance, and the improved performance of natively
executing code in a VM may expose more relative overhead in the SpMT implementation. Unrelated JIT
optimizations, such as inlining, may also change the character of speculativeexecution, and costs of RVP.
Of course a JIT also implies new optimization opportunities, including specialized, native speculative code,
and techniques based on the presence of dynamic program analysis information.

Many SpMT hardware studies make use of (static) compiler analysis information [3, 10]. Part of our return
value prediction design also allows for the optional use of static analysis information through the Java class-
file attribute mechanism [52]. There are, of course, many other compiler analyses that may help different
aspects of speculative operation. Information on expected relative length of speculative threads, critical for-
warding path information [73], return value predictability, method purity [66], and so on can be computed
offline, and applied at runtime. Dynamic information tends to be more precise, but the use of static analy-
ses has the advantage of minimal extra runtime overhead. A larger-scale use of ahead-of-time information
would be to optimize for a specific VM startup sequence. Startup code in a JVMcan account for a significant
fraction of execution time for smaller Java programs, and the use of a built-in,optimized sequence of SpMT
operations could improve the common startup path.

Our existing optimizations could also be further tuned, and increased in scope. General load value predic-
tors [8], for example, could be used to predict heap values, and thus improve speculation depth. Software
overhead for load prediction is potentially quite high, and so this would have tobe combined with profiling
or static information to select prediction sites judiciously. Our current environment provides an excellent
base for such experimentation.

We have designed and used a single-threaded mode for both debugging and research purposes. This mode
has been instrumental in experimentally validating the functionality and correctness of the implementation,
and it has also been useful in determining the potential limits of speculative coverage. We would like to

30

extend this mode to other speculative approaches, and use it as a tool to experimentally determine upper
bounds on speculative behaviour. This information would be useful in quickly evaluating properties of
different speculative strategies for Java, or even specific Java workloads.

Finally, we have not yet given full consideration to the impact of the new Java memory model [40] on our
optimizations. The use of strongly ordering instructions during queuing andthread joins act as a memory
barrier before and after each speculative execution. This limits thread inconsistency, but write buffering and
a hierarchy of speculative threads implies that a detailed consideration is required. We hope to investigate
and enforce JMM compliance in future versions.

8 Conclusions

Efficient automatic parallelization is a difficult goal. There have been successes for scientific applications,
but in the context of object-oriented languages and programs based on irregular data structures traditional
static, loop-based techniques are less effective. Thread level speculation has shown considerable promise
for being able to extract some parallelism from such applications. Significantfurther research is required,
however, in order to optimally exploit SpMT for use in higher level environments and on commodity multi-
processors.

We have examined the use of thread level speculation within a Java virtual machine by implementing a
complete, robust design for speculative method level parallelism. Our approach includes optimized designs
for thread communication, memory management, and a high quality return value prediction system. We are
able to handle the entire Java language, including exceptions, garbage collection, native methods, finaliza-
tion, and already multithreaded inputs. This implementation runs at reasonable speeds, and is thus both a
practical tool for larger scale investigations of various forms, and a good indication that SpMT is feasible at
the VM level.

We have gathered and analysed data on speculative performance for anumber of relatively large, real-world
benchmarks. We are thus able to provide non-trivial results on SpMT performance and overhead costs in
the VM context. This data shows where overhead costs are concentrated, and provides important indicators
for the direction of future optimization and implementation research.

This work is research level, and experimental; we do not claim to have solved all performance issues related
to SpMT in a VM environment. There is certainly room for improvement in our final performance figures.
However, we have demonstrated that an implementation is feasible, and provided important data and analysis
information. We hope our work here, both in future optimization directions andin providing a practical
vehicle for experimentation, inspires further research in this area.

9 Acknowledgements

We would like to thank Etienne Gagnon for his help in SableVM development, andin particular for sug-
gesting the single-threaded simulation mode. This research was funded by IBM, Le Fonds Qúeb́ecois de la
Recherche sur la Nature et les Technologies and the Natural Sciences and Engineering Research Council of
Canada. C. Pickett was additionally supported by a Richard H. Tomlinson Master’s in Science Fellowship
and an NSERC PGS A award.

31

References

[1] P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira. Automatic loop transformations and paral-
lelization for Java. InICS ’00: Proceedings of the 14th international conference on Supercomputing,
pages 1–10. ACM Press, 2000.

[2] D. Bélanger. SableJIT: a retargetable just-in-time compiler. Master’s thesis, McGill University,
Montréal, Canada, February 2005.

[3] A. Bhowmik and M. Franklin. A general compiler framework for speculative multithreading. In
Proceedings of the 14th ACM Symposium on Parallel Algorithms and Architectures (SPAA ’02), Aug.
2002.

[4] D. Bruening, S. Devabhaktuni, and S. Amarasinghe. Softspec: Software-based speculative parallelism.
In 3rd ACM Workshop on Feedback-Directed and Dynamic Optimization (FDDO-3), December 2000.

[5] M. Burke, R. Cytron, J. Ferrante, W. Hsieh, V. Sarkar, and D. Shields. Automatic discovery of
parallelism: a tool and an experiment (extended abstract). InPPEALS ’88: Proceedings of the
ACM/SIGPLAN conference on Parallel programming: experience with applications, languages and
systems, pages 77–84. ACM Press, 1988.

[6] M. Burtscher. An improved index function for (D)FCM predictors.Computer Architecture News,
30(3):19–24, June 2002.

[7] M. Burtscher, A. Diwan, and M. Hauswirth. Static load classification for improving the value pre-
dictability of data-cache misses. InProceedings of the ACM SIGPLAN 2002 Conference on Program-
ming language design and implementation, pages 222–233. ACM Press, 2002.

[8] M. Burtscher and B. G. Zorn. Hybrid load-value predictors.IEEE Transactions on Computers,
51(7):759–774, July 2002.

[9] M. K. Chen and K. Olukotun. Exploiting method-level parallelism in single-threaded Java programs.
In Proceedings of the 1998 International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), Oct. 1998.

[10] M. K. Chen and K. Olukotun. The Jrpm system for dynamically parallelizing Java programs. In
Proceedings of the 30th annual International Symposium on Computer Architecture (ISCA), pages
434–446. ACM Press, June 2003.

[11] M. K. Chen and K. Olukotun. TEST: A tracer for extracting speculative threads. InSymposium on
Code Generation and Optimization (CGO ’03), Mar. 2003.

[12] J.-H. Chow, L. E. Lyon, and V. Sarkar. Automatic parallelization forsymmetric shared-memory mul-
tiprocessors. InCASCON ’96: Proceedings of the 1996 conference of the Centre for Advanced Studies
on Collaborative research, page 5. IBM Press, 1996.

[13] M. Cintra and D. R. Llanos. Toward efficient and robust software speculative parallelization on mul-
tiprocessors. InProceedings of the 9th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 13–24. ACM Press, June 2003.

32

[14] M. Cintra and J. Torrellas. Eliminating squashes through learning cross-thread violations in specu-
lative parallelization for multiprocessors. InEighth International Symposium on High-Performance
Computer Architecture (HPCA ’02), Feb. 2002.

[15] L. Codrescu and D. S. Wills. On dynamic speculative thread partitioning and the MEM-slicing algo-
rithm. Journal of Universal Computer Science, 6(10):908–927, 2000.

[16] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai. A cost-driven compilation framework
for speculative parallelization of sequential programs. InProceedings of the ACM SIGPLAN 2004
conference on Programming language design and implementation, pages 71–81. ACM Press, 2004.

[17] R. Figueiredo and J. Fortes. Hardware support for extracting coarse-grain speculative parallelism in
distributed shared-memory multiprocessors, 2001.

[18] M. Franklin. The Multiscalar Architecture. PhD thesis, University of Wisconsin–Madison, 1993.

[19] E. M. Gagnon. A Portable Research Framework for the Execution of Java Bytecode. PhD thesis,
McGill University, Montŕeal, Qúebec, Dec. 2002.

[20] E. M. Gagnon. SableVM.http://www.sablevm.org/, 2004.

[21] J. Greiner and G. E. Blelloch. A provably time-efficient parallel implementation of full speculation. In
Proceedings of the 23rd ACM Symposium on Principles of Programming Languages, pages 309–321,
Jan. 1996.

[22] J. Greiner and G. E. Blelloch. A provably time-efficient parallel implementation of full speculation.
ACM Transactions on Programming Languages and Systems, 21(2):240–285, 1999.

[23] E. Gutíerrez, O. Plata, and E. L. Zapata. A compiler method for the parallel execution of irregular re-
ductions in scalable shared memory multiprocessors. InICS ’00: Proceedings of the 14th international
conference on Supercomputing, pages 78–87. ACM Press, 2000.

[24] M. Hachman. Intel to redefine performance at IDF.http://www.extremetech.com/
article2/0,1558,1641930,00.asp, September 2004.

[25] S. Hu, R. Bhargava, and L. K. John. The role of return value prediction in exploiting speculative
method-level parallelism.Journal of Instruction-Level Parallelism, 5:1–21, Nov. 2003.

[26] O. T. International. Eclipse platform technical overview.http://www.eclipse.org/
whitepapers/eclipse-overview.pdf, February 2003.

[27] Jikes Research Virtual Machine. http://www-124.ibm.com/developerworks/oss/
jikesrvm/index.shtml.

[28] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-cut program decomposition for thread-
level speculation. InPLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on Programming
language design and implementation, pages 59–70. ACM Press, 2004.

[29] I. H. Kazi and D. J. Lilja. JavaSpMT: A speculative thread pipelining parallelization model for Java
programs. InProceedings of the 14th International Parallel and Distributed Processing Symposium
(IPDPS), pages 559–564. IEEE, May 2000.

33

[30] I. H. Kazi and D. J. Lilja. Coarse-grained thread pipelining: A speculative parallel execution model for
shared-memory multiprocessors.IEEE Transactions on Parallel and Distributed Systems, 12(9):952–
966, 2001.

[31] S. W. Kim, C. Ooi, R. Eigenmann, B. Falsafi, and T. N. Vijaykumar. Reference idempotency analysis:
a framework for optimizing speculative execution. InACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’01), volume 36, pages 2–11, June 2001.

[32] S. W. Kim, C.-L. Ooi, I. Park, R. Eigenmann, B. Falsafi, and T. N. Vijaykumar. Multiplex: Unifying
conventional and speculative thread-level parallelism on a chip multiprocessor, 2001.

[33] D. Lea. Thejava.util.concurrent synchronizer framework. InPODC Workshop on Con-
currency and Synchronization in Java Programs, pages 1–9, St. John’s, Newfoundland, Canada, July
2004.

[34] O. Lhotak. Spark: A flexible points-to analysis framework for Java. Master’s thesis, McGill University,
Montréal, Qúebec, Dec. 2002.

[35] X.-F. Li, Z.-H. Du, Q. Zhao, , and T.-F. Ngai. Software value prediction for speculative parallel
threaded computations. InThe First Value-Prediction Workshop, pages 18–25, San Diego, CA, jun
2003.

[36] S. Liang.The Java Native Interface. Programmer’s Guide and Specification. Addison-Wesley, Read-
ing, Massachusetts, 1st edition, June 1999.

[37] T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Sun Microsystems, 2nd edition,
1999.

[38] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and loadvalue prediction. InProceed-
ings of the seventh international conference on Architectural support for programming languages and
operating systems, pages 138–147. ACM Press, 1996.

[39] P. S. Magnusson, A. Landin, and E. Hagersten. Queue locks oncache coherent multiprocessors.
In Proceedings of the 8th International Symposium on Parallel Processing, pages 165–171. IEEE
Computer Society, Jan. 1994.

[40] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. InPOPL ’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT sysposium on Principles of programming languages, pages 378–391. ACM
Press, 2005.

[41] P. Marcuello and A. Gonzalez. Thread-spawning schemes for speculative multithreading. InProceed-
ings of the 8th International Symposium on High-Performance Computer Architecture (HPCA), pages
55–64, Feb. 2002.

[42] J. F. Mart́ınez and J. Torrellas. Speculative locks for concurrent execution ofcritical sections in shared-
memory multiprocessors. InWorkshop on Memory Performance Issues (WMPI), at the International
Symposium on Computer Architecture (ISCA ’01), Gothenburg, Sweden, June 2001.

[43] J. F. Mart́ınez and J. Torrellas. Speculative synchronization: Applying thread-level speculation to
explicitly parallel applications. InInternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’02), pages 18–29, San Jose, CA, Oct. 2002.

34

[44] K. S. McKinley. Evaluating automatic parallelization for efficient execution on shared-memory mul-
tiprocessors. InICS ’94: Proceedings of the 8th international conference on Supercomputing, pages
54–63. ACM Press, 1994.

[45] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-memory
multiprocessors.ACM Transactions on Computer Systems (TOCS), 9(1):21–65, Feb. 1991.

[46] N. Mukherjee and J. R. Gurd. A comparative analysis of four parallelisation schemes. InICS ’99:
Proceedings of the 13th international conference on Supercomputing, pages 278–285. ACM Press,
1999.

[47] C. Ooi, S. W. Kim, I. Park, R. Eigenmann, B. Falsafi, and T. N. Vijaykumar. Multiplex: unifying
conventional and speculative thread-level parallelism on a chip multiprocessor. InInternational Con-
ference on Supercomputing, pages 368–380, 2001.

[48] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam, and K.Olukotun. Software and hardware
for exploiting speculative parallelism with a multiprocessor. Technical Report CSL-TR-97-715.

[49] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of speculative thread-level parallelism. InPro-
ceedings of the 1999 International Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE, Oct. 1999.

[50] C. J. F. Pickett and C. Verbrugge. Compiler analyses for improvedreturn value prediction. Technical
Report SABLE-TR-2004-6, Sable Research Group, McGill University, Oct. 2004.

[51] C. J. F. Pickett and C. Verbrugge. Return value prediction in a Java virtual machine. InSecond Value-
Prediction and Value-Based Optimization Workshop, pages 40–47, Boston, MA, October 2004.

[52] P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Verbrugge. A framework for optimizing java
using attributes. InCompiler Construction, 10th International Conference (CC 2001), pages 334–554,
2001.

[53] M. K. Prabhu and K. Olukotun. Using thread-level speculation to simplify manual parallelization.
In PPoPP ’03: Proceedings of the ninth ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 1–12. ACM Press, 2003.

[54] W. Pugh and D. Wonnacott. Static analysis of upper and lower bounds on dependences and parallelism.
ACM Transactions on Programming Languages Systems, 16(4):1248–1278, 1994.

[55] R. Rajwar and J. Goodman. Speculative lock elision: Enabling highly concurrent multithreaded exe-
cution, 2001.

[56] E. Rotenberg.Trace Processors: Exploiting Hierarchy and Speculation. PhD thesis, University of
Wisconsin–Madison, 1999.

[57] P. Rundberg and P. Stenström. An all-software thread-level data dependence speculation system for
multiprocessors.Journal of Instruction-Level Parallelism, 3:1–28, Oct. 2001.

[58] P. Rundberg and P. Stenström. Reordered speculative execution of critical sections. InProceedings of
the International Conference on Parallel Processing (ICPP ’02) (submitted), Feb. 2002.

[59] Y. Sazeides and J. E. Smith. The predictability of data values. InProceedings of the 30th International
Symposium on Microarchitecture (MICRO), pages 248–258, Dec. 1997.

35

[60] J. Seng and G. Hamerly. Exploring perceptron-based register value prediction. InSecond Value-
Prediction and Value-Based Optimization Workshop, pages 10–16, Boston, MA, October 2004.

[61] N. Shavit and A. Zemach. Scalable concurrent priority queue algorithms. In Proceedings of the
eighteenth annual ACM symposium on Principles of distributed computing (PODC ’99), pages 113–
122. ACM Press, 1999.

[62] B. So, S. Moon, and M. W. Hall. Measuring the effectiveness of automatic parallelization in SUIF. In
ICS ’98: Proceedings of the 12th international conference on Supercomputing, pages 212–219. ACM
Press, 1998.

[63] The SPEC JVM Client98 benchmark suite.http://www.spec.org/jvm98/jvm98/.

[64] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to thread-level speculation.
In ISCA, pages 1–24, 2000.

[65] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. The stampede approach to thread-level
speculation.ACM Transactions on Computer Systems, 2005. to appear.

[66] A. Sălcianu and M. Rinard. A combined pointer and purity analysis for java programs. Technical
Report MIT-CSAIL-TR-949, Massachusetts Institute of Technology,May 2004.

[67] A. Thomas and D. Kaeli. Value prediction with perceptrons. InSecond Value-Prediction and Value-
Based Optimization Workshop, pages 3–9, Boston, MA, October 2004.

[68] M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and S. S. Tse. The MAJC architecture: A
synthesis of parallelism and scalability.IEEE Micro, 20(6):12–25, 2000.

[69] J.-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P.-C. Yew. The superthreaded processor architecture.
IEEE Transactions on Computers, 48(9):881–902, 1999.

[70] R. Vallée-Rai. Soot: A Java bytecode optimization framework. Master’s thesis, McGill University,
Montréal, Qúebec, July 2000.

[71] F. Warg and P. Stenström. Limits on speculative module-level parallelism in imperative and object-
oriented programs on CMP platforms. InProceedings of the 2001 International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 221–230. IEEE, Sept. 2001.

[72] K. Yoshizoe, T. Matsumoto, and K. Hiraki. Speculative parallel execution on JVM. InFirst UK
Workshop on Java for High Performance Network Computing, 1998.

[73] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compiler optimization of scalar value com-
munication. InASPLOS X, San Jose, CA, USA, Oct. 2002.

[74] G. Zhang, P. Unnikrishnan, and J. Ren. Experiments with auto-parallelizing SPEC2000FP bench-
marks. InLCPC ’04: The 17th International Workshop on Languages and Compilers for Parallel
Computing, 2004.

36

