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Abstract

Speculative multithreading (SpMT), or thread level spatiah (TLS), is a dynamic parallelisation
technique that uses out-of-order execution and memonreboff to achieve speedup. The complexity
of implementing software SpMT results in long developmeatd times, and the lack of reuse between
different software SpMT systems makes comparisons diffidal order to address these problems we
have created libspmt, a new language independent librarypieculative multithreading. It provides a
virtualization of speculative execution components thiatumavailable in commercial multiprocessors,
and enables method level speculation when fully integratdk have isolated a clean and minimal
library interface, and the corresponding implementat®highly modular. It can accommodate hosts
that implement garbage collection, exceptions, and neatdptive multithreading. We created libspmt
by refactoring a previous implementation of software SpMifJava, and by aiming for modularity have
exposed several new opportunities for optimization.

1 Introduction

libspmt is a new library designed to simplify the task of implementing speculative maditing in soft-
ware. Soeculative multithreading (SpMT), or thread level speculation (TLS), is an aggressive and opti-
mistic parallelization scheme that operates dynamically on non-parallel coday ptoposals focus on
hardware architecture implementations [3, 7, 33], but numerous sofapgmeaches have also been at-
tempted [4, 8, 20, 25, 28, 29].

The salient features of speculative multithreading systems include: 1pgdppmemory access buffering
or logging; 2) some mechanism to detect violations and either undo or preveafe operations; and 3) a
means to either commit the speculative execution in a manner that presdgieal grogram semantics,

or abort the execution safely. A basic parallelization strategy is requietulation, or out-of-order ex-
ecution, may occur at any or all of the basic block [3], loop [4, 8, 20,33, method [7, 28, 29, 37], or

lock [36] levels. Perhaps most importantly, the parallelization occurs at thadhevel as opposed to the
instruction level, and requires two or more CPUs, cores, or virtual dorepeedup. Although there exists
variance between the parallelization strategies, there is also considerabteoaoality.

SpMT in fact shares many features with other designs, most notably ¢teomsd programming [19], but
also rollback for debugging [11] and checkpointing [9, 34]. Tratieaal execution of atomic regions [5,
17, 18, 30, 31] is roughly equivalent to lock-based speculative muléthing [36], in which a thread may
enter and execute a critical section speculatively. The user model fieattonal programming and lock-
based speculation differs from that for speculative multithreading, \eenwén transactional programming
and lock-level speculation, the user creates threads and relies omtipderpruntime system, or hardware
to handle optimistic execution of critical sections or atomic regions. This cdstnath speculation over
sequential code, which does not require any source level chamgeaust address the additional challenge
of creating and managing new speculative threads.

We introduce libspmt as a modular and core component of an SpMT systartrdtts, simplifies, and
virtualizes the main features required for speculative multithreading angdediesigns. In particular, it
supports method level speculation, in which parents fork child continuagtom&thod invocations and join
them upon returning from the call. The specific motivation for this work is #egrto enable speculation in
IBM's production Java JIT compiler; previously we invested consideraffort in implementing software
SpMT correctly for Java [29], and we set out to modularize and reagedide base and design. Maintaining
a fully functional client alongside the development of libspmt helped driveynoéthe design decisions.

The general benefit is that we have now defined a relatively minimal and akerface to a specialized



virtual machine or runtime system that can be used to enable speculation ire a/avidty of hosts; we
also have a robust implementation of that interface, and a client that usesniglyna refactored version
of our initial Java bytecode interpreter system, SableSpMT [28]. Thasiloutions will reduce the com-
plexity of implementing and optimizing software speculative multithreading, faciliaigarisons between
approaches, and in our particular case allow us to pursue JIT-bpsedzations.

libspmt acts as a specialized architecture simulation or virtual machine prosgegulative execution
facilities that other compilers and virtual machines can target. It provideduahzation of previously
proposed hardware extensions, much as software transactional midmarigs provide a virtualization of
hardware transactional memory architecture extensions. It diffams thaditional simulations in that there

is no straightforward mapping of the design to a hardware circuit. Howévenables real hardware to
perform speculative execution, and as an experimental researalutsasignificantly faster than an actual
simulator [21]; our present and ivaly optimized interpreter-based client exhibits 5x slowdowns but up to
2x relative speedups [28]. Additionally, as hardware support stattedome available [16], libspmt can
serve as portable layer providing access to it.

libspmt is also designed as a separate system component, much like a rgiasbblge collector, malloc
implementation, or general purpose multithreading library, albeit with signtficamore complex usage
requirements. We have isolated only the language-independent logic ffoarteincrease system mod-
ularity, and to make that logic available through an API to compilers, intergreded virtual machines
for different languages. Of course, a completely independent lilisaajso ostensibly more testable and
maintainable.

libspmt can be used and extended in two different contexts. First, it carsdmkas a complete runtime
system for enabling speculation, specifically method level speculationisinetspect it can be extended in
the future to support other modes of speculation when fully integrated ingéo syistems. Second, it can be
used as a repository of modules for individual reuse and experimentétitinis respect it can be extended
by adding new modules and exchanging implementations, for example by atlingalue predictors or
replacing our dependence buffer with a highly-optimized software tctiosal memory library.

1.1 Contributions

We make the following specific contributions:

e The design of a modular library for speculative multithreading. libspmt pesvatvanced facilities
for software method level speculation in relatively arbitrary executioiremments.

e A clean and minimal interface design that provides a separation of tasksuvitegrading perfor-
mance.

e A modular library implementation that allows components to be reused or repladéterent con-
texts. We illustrate this modularity through an easy implementationvftaal single-threaded de-
bugging mode. This modularity also exposes new opportunities for optimization.

e Support for various complex host or client features, including galsatjection, exception handling,
and non-speculative multithreading.

e A newly refactored version of SableSpMT, a Java client that uses libspmbw serves as both an
API reference and functional testing program. Both SableSpMT andnfibape available under the
LGPL.



In the next section we present the interface to libspmt, providing details orsageu In Section 3 we
describe the library implementation, and in Section 4 our development prdgesgon 5 presents related
work on speculative multithreading, and we conclude and describe furtarkein Section 6.

2 Interface

We first present the interface to libspmt, as depicted and described ireHigWWe have tried to minimize
the libspmt interface, so as to increase flexibility in modifying bothhibs code that uses it and the library
code that implements it.

In the remainder of this section we define some necessary terminologysslis@requisites for using the
library, and then describe broad use of the library, the specifics kinfprand joining speculative tasks,
the details of support for speculative execution, and finally how the Apparts some optional features:
non-speculative multithreading, garbage collection, and exception hgndlin

2.1 Overview

host spmt.h libspmt runtime
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Figure 1: Interface to libspmt. A host is any client of libspmt, and may consist of source ¢adenpiled code, an
interpreter, or a JIT compiler. It communicates with thesfibt runtime using a set of calls and callbacks defined in
spnt . h. The hostis responsible for startup and shutdown of thémentand can optionally print statistics aggregated
over execution. At startup, libspmt creates helper thréadexecution of child tasks, and at shutdown will destroy
these threads. The host modifies its native threads to bepaneat threads that fork, stop, join, and abort child
tasks. The host must provide callbacks for creating andagsg host-specific child task environments, speculative
versions of non-speculative code, and a callback that alldwldren to execute this code. A child executing in the
host protects non-speculative main memory by using a loedwgion stack for automatics and a dependence buffer
in libspmt for heap and global data. Both children and parenter and exit methods in the host, and the operations
are mirrored in libspmt. The host is responsible for buffgrand committing local child stacks, whereas other thread
control operations are managed by the libspmt runtime.

In order to describe libspmt efficiently we need to define some terminologighwdiso corresponds to
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module names. Aost is the user or client of libspmt, so called because it literally “hosts” the virtudilize
SpMT logic, and because the relationship involves callbacks. The hostnmtegict with the library as a
result of compiler transformations, virtual machine extensions, or saade modification. The libspmt
runtime is a global singleton for an entire libspmt instance, through which all othgrribslata structures
are reachable. This is not to be confused with the host, which in the cas&idbial machine may also
be considered a runtime unto itself. tAread is bound to an actual OS-level thread that is scheduled by
the kernel. libspmt uses pthreads, and there is currently a requiremettteftiost to use pthreads as
well. However, if the host can provide the right callbacks, libspmt coultiyfaasily be modified to use a
generic and portable wrapper around OS threadparknt is a host thread that executes non-speculative
code. There is a one-to-one mapping between host threads and patentsld is a task that will be
executed speculatively. Under speculative method level parallelism, it@émtinaation, or the sequence
of instructions following a method call. Parent thredolk children by enqueuing child tasks on a global
libspmt priority queue. When a parent thread returns from a method caliempts tojoin a child task if

it forked one. Ahelper is a libspmt thread that dequeues child tasks from the priority queue andtege
them. There is a one-to-one mapping between libspmt threads and helgdpsr threads areot simply
prefetching assist threads, although they could actually be used f@uitpaise by executing child tasks and
ensuring that they never commit.

n n T2 T2 T2 T2
pre-invoke
fork fork fork
method body
join & join & join & join& i o
continuation commit ;! commit ;! abort delete : !
post-continuation unrelated
work:
L Ll L L \4
(@) (b) (c) (d) (e) (f)

Figure2: Thread contral. libspmt supports method level speculation, in which cleiidexecute method continuations.
(a) T1 is non-speculative and executes a pre-invoke sequerinstoictions, a method body, a method continuation,
and a post-continuation sequence of instructigb}sT1 forks a child task before executing the method body, emque
ing it on a priority queue. T2 is a helper or worker thread tiefueues and binds itself to the child task in order to
execute the method continuation speculatively. All readsfand writes to main memory are buffered, and unsafe
operations are prevented. T1 eventually returns to itscatron point and joins T2, signalling it to stop execution of
the child. T2 immediately proceeds to execution of otheelated work. T1 validates the child by comparing all of
its reads against main memory, and then commits the resdltiflying all of its writes and copying over child stack
frames. T1 jumps to execution of the post-continuatiorriregions. (c) Same as (b), except that validation fails and
T1 must abort the child, and then execute the continuatistnuations again(d) Same as (b), except that T2 stops
execution of the child without receiving a signal from T1.iSmay be due either to execution of an illegal instruction,
or to reaching some predefined limit on child length. After tommit, T1 must complete execution of the continu-
ation sequence that the child could n¢¢) Same as (d), except that validation fails, and T1 must ereifigt entire
continuation.(f) T1 returns to the method invocation point before T2 is abletgueue the child task, and so T1 joins
the child simply by deleting the task from the priority que@i@ is not involved in the process.



2.2 Prerequisites

The host must provide several resources in order to interfacetieffiycwith libspmt. These include an
optional compilation component, speculative versions of non-specutaiide, and a set of callbacks for
handling child tasks.

Compilation. SpMT implementations typically involve a compiler for either transformation or aisly
For purposes of transformation, libspmt is a high-level virtual targetfach a compiler can generate calls.
For analysis, specific results can be communicated as arguments to runtimd@ balis is no compiler in
libspmt, and indeed it has no concept of either intermediate or executal@sdds language independent;
all of the actual speculation takes place in the host environment.

As an example, Soot [35] is the compiler framework we use for SableSp¥éThave an ahead-of-time
analysis that detects statically whether or not a return value is actuallyroedq@6]. This is communicated
to SableSpMT via classfile attributes. These attributes are parsed, ameskvimformation for individual
return values is sent to libspmt. libspmt uses this information to determine whethet ceturn value
predictions should be made.

Speculative Code Generation. The host must provide speculative versions of non-speculative code
which libspmt can use to execute child tasks. The three scenarios foratjgagecode correspond to the
three primary usage scenarios: 1) in the case where the host is a virtciahmanterpreter, this involves
duplicating the code array, patching unsafe instructions with speculaigtons, and fixing up jumps; 2)
in the case where the host is a compiler and the code it generates, thedadst @n alternate version of
the binary code to be executed, and ensures that speculative codafelnswitch execution back to the
corresponding non-speculative code; 3) in the case where the haagtialy source code with calls to the
library API, the user manually ensures that the speculative code to bateseerforms the same function
as the original non-speculative code. In all three cases the speeutatie and non-speculative code can
actually overlap if protected with checks for speculative execution. Mewyé is generally more efficient
to create a duplicate and specialized mirror version of the non-specutatiesfor speculation.

Callbacks. Finally, the host must provide three callbacks that libspmt will use to cortiiilol operations:

e spnt _host chi |l d_(create| destroy) (): These functions create and destroy a host-specific thread
environment that will be used for speculative execution. This must inchuetaory for a call stack.
Once allocated and initialized, the memory is managed by libspmt, whichsgaits host chi | d_-
create() in one thread andpnt _host _chi | d_destroy() in another. The thread environment
returned must be hidden from the host. This means that it cannot be visiblegioage level reflec-
tion capabilities, and can neither trigger nor be traced by a garbage callégienerally cannot be
accessed in any way if non-speculative semantics are to be preserved.

e spnt _host chi | d_execut e(): This function executes a child task. A helper thread will call this
function after dequeueing and binding itself to some child task. The call takest thread envi-
ronment and predicted return value as arguments. The implementation mustdicse the non-
speculative state that was previously saved in the host child thread mmégm, as discussed in Sec-
tion 2.4. It then proceeds to make the state speculative and locate the twidedrspeculative code
for execution. Finally it sets the return value if the method continuation followsravoid method
call, and jumps directly to speculative execution of the child.

5



These operations are implemented as callbacks because they provide liagpadecoupled access to the
host environment and help to minimize the interface.

2.3 Runtime Usage

There are various ways to control the behaviour of the libspmt glob&hnen A call tospnt runti e _-
creat e() instantiates and returns a pointer to a singleton runtime object. Function poirde¢hen used
to register the mandatory callbacks. The host can also set varioustfirtahe options. These include a
single-threaded mode, verbose logging, the number of helper thregidarfi@ the ability to disable support
for individual aspects of speculation [29]. Once initialized, a cadldot _r unt i me_st ar t up() will create
the actual helper threads that wait for children to be enqueued.

A call to spnt runti me_shut down() joins all helper threads. If statistics gathering is enabdgualt _-
runti me_print () will printa summary of execution to standard error. Finadlyt _r unt i me_dest r oy()
will free all library memory. It is generally recommended that each of theséme functions be called once
per program execution, as creating and joining OS level pthreads aedtailp and freeing necessary run-
time memory are expensive operations; additionally, this prevents unaegdsstruction and recreation of
runtime profile information.

2.4 Thread Control

libspmt supports a wide range of options for hosts to control the speaiatacution model, as shown in
Figure 2. Speculatioprobes are used as the main speculation points at which child forking, stopping, and
joining occur.

Speculation Probes. A host usegprobesto communicate host-determined locations for speculation to
libspmt. These are tied to method invocations, and the host is required to iddetifyproperly, as they
are completely implementation and language dependent. There are threefkinolsey and they are best
described by considering a program callgraph.

The callgraph of a program is a directed bipartite graph between methods and callsitesdg&rfrem a
method to a callsite indicates that the callsiteostained within the body of the method. A method may
contain any number of callsites, but a callsite may only be contained within a siagled. An edge from

a callsite to a method indicates that the callsit@kes the method. A callsite may invoke any number of
methods, and a method may be invoked at any number of callsiteallgte probe captures a callsite and
all of the methods it invokes. #nethod probe captures a method and all of the callsites that invoke it. A
methodcall probe captures a callsite and one method that it invokes; equivalently, it cagtumethod and
one callsite that invokes it. These three probe types are illustrated in Figure 3

A host registers a probe by passing its host address to libspmt, and im reteives the handle of a newly
created libspmt probe object. The host then uses this handle to fork arnttifeaus, and libspmt uses the
object to collect data.

There are different tradeoffs for each kind of probe. In our @rpents, we found that there are always
more callsites in a program than methods, both statically and dynamically. Théstteaatreased memory
consumption and less sharing of data when callsite probes are use@ arbenore edges from callsites
to methods than either callsites or methods, but since most callsites are dynamicatynorphic [10],
there is usually not a large difference between a callsite probe and a mathadbe. An advantage of



02.f();
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Figure 3: Soeculation probetypes. ol. f () is a polymorphic callsite that may invoke either of thef () orB. f ()
methodso2. f () is a monomorphic callsite that invokes o8y f () . Shown are the three different probe types that
each capture the invoke frool. f () toB. f ().

callsites in an interpreter, where method invocations and returns are cimelgrexpensive, is that the
child can begin execution before the invoke and continue until after thenreliu the case of return value
prediction, a memoization predictor is most naturally associated with a method psoibean then benefit
from population by all invoking callsites. However, a context predict@oemited with a method probe
suffers from pollution if more than one callsite contributes to its value history.

Child Forking. When a parent thread in the host reaches a callsite, method, or methodaahiét
there is an associated probe, it attempts to fork a child:

child = spnt_parent _request_fork (parent, probe);
if (child !'= NULL)

{
host _child = spmt _child_get _host _child (child);
[+ save just enough thread state */

spm _parent _conplete_fork (parent, child);
}

It first requests that a fork be carried out, and libspmt returns a ridbkNhild object if the internal probe
profile suggests that forking will be beneficial. The host then retrievsss&specific child environment,
allocated previously by aspnt _host chi |l d_create() callback, and uses it to save the current thread
state. A final call to libspmt tells it to complete the fork by enqueueing the child task

Child Stopping. A child stopswhen it is finished speculative execution; this occurs before joining and
the subsequent abortion or committal. There are three events which trighéd stop: 1) attempting to
execute an unsafe instruction; 2) reaching a predefined limit on child leBy#h;request from a parent
thread. A child stops by saving the current state and returniagrto _host chi | d_execut e(), which in

turn returns control to libspmt.

Speculative code must force a child to stop before executing unsafadistrs. It must also ensure that
the child periodically and regularly calépnt _chi | d_st op_r equest ed() ; if the host periodically polls
for garbage collection this may be co-opted as an appropriate place foneok. This function will return
true after the child has reached a certain length, measured either by countiiber of calls to this function
or by using a processor timestamp. It will also return true if the parentdhraa calledpnt _parent _-
request _chi | d_st op() ; this happens when the parent anticipates reaching a join point in theutea, f
giving the child time to stop while the parent completes execution of its method.



Child Joining. Joining is the process of waiting for a child to stop, validating its results, amidnitiing
or aborting the speculative execution. When a parent thread in thegtests from a method or methodcall,
or returns to a callsite, and there is an associated probe, it attempts to join:a child

child = spnt_parent _request_join (parent, ret_val);
if (child !'= NULL)

{
host _child = spmt _child _get _host _child (child);
[+ load final child state =/

spnt _parent _conplete_join (parent, child);
}

It first requests that a join be carried out, and libspmt returns a nonkNtbild object if there is a child
attached to the calling stack frame, as discussed in Section 2.5, and if thdigaligiad commit process
internal to libspmt is successful. This call involves a busy wait if the child ri@sstopped. The host
then retrieves the host-specific child environment, and uses it to restofieahehild state and switch to
non-speculative execution.

2.5 Speculative Execution

Execution of speculative code must be safe, and hidden from naniggige threads in the host; most im-
portantly, it cannot affect the non-speculative execution semantigshwitlude the host threading model.
If speculative code encounters an unsafe operation, it must stopt@reanmediately and await joining,

as discussed in Section 2.4. There may be numerous safety and casasswes involved [29]. In the
remainder of this section we describe two essential components of spaz@aticution and how libspmt
supports them, namely dependence buffering and stack buffering.

Dependence Buffering. The libspmt dependence buffer module allows a speculative child to safely
execute past reads from and writes to main memory; a first approximatisideosmithese operations unsafe
and they force speculation to stop immediately. Each child has a buffer withuhl@mperationsspnt _-
buffer read (buffer, address, size) andspnt_buffer wite (buffer, address, val ue,

si ze) . The size argument allows the host to buffer 1, 8, 16, 32, or 64-biegalfll other buffer operations,
such as validation and committal, occur within libspmt at child join time.

As a particular implementation detail that our interface exposes, there apdwems with using the de-
pendence buffer if union types with heterogenous field sizes may bessttby speculative code. Strongly-
typed languages such as Java and C# do not permit such unions,aklytyged ones such as C and C++
do.

First, if a write occurs to a memory location already contained in the bufferttienvalue is simply up-
dated. This means that writes are not necessarily committed in the exacthagevere written. A call to
pr obl emone() followed by a commit will leavdeap. a with the valuedx00220033 instead 00Dx0000-
0033, as the first write will reserve a place in the commit queuééap. a, andheap. a will be committed
beforeheap. b. This could be fixed by numbering all writes and sorting the buffer beforemit.

Second, different buffer slots are used farap. a and heap. b[ 0] throughheap. b[ 3], even though
&heap. b[ 0] equals&heap. a, because value size is also used to detect collisions. A cal dbl em-
t wo() will thus return0x00000011 instead 00x00000022. Furthermore, since the read is not separately
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buffered, as the value is already contained in the write buffer, the rowffe successfully validate and
commit, hiding the read-after-write dependence violation.

uni on {
spmt_u32_t a;
spnmt _u8_t b[4];
} heap;

voi d probl emone (spnt_buffer t =*x) {
spmt _buffer_wite (x, &heap.a, 0x11l, SPMI_U32);
spnt _buffer_wite (x, &heap.b[2], 0x22, SPMI_U8);
spmt _buffer_wite (x, &heap.a, 0x33, SPMI_U32);

}

spnmt_u32 t problemtwo (spnt_buffer t *x) {
spmt _buffer_wite (x, &heap.a, 0x11l, SPMI_U32);
spmt _buffer_wite (x, &heap.b[0], 0x22, SPMI_UB);
return spm_buffer_read (x, &heap.a, SPMI_U32);

}

The current solution to these problems is to restrict hosts that allow for typies and overlapping memory
accesses to using only word-aligned buffer calls. The process isggmaldo that used by a hardware cache
when writing subwords. In order to write teeap. b[ 2] , the host must: 1) compute the addreshedp. -

b[ 2] 's word; 2) create a bitmask using a call¢pnt _buf f er read(), the offset ofheap. b[ 2] in the
word, and the size dfeap. b[ 2] ; 3) or together the bitmask with an appropriately shifted value for storage;
4) and then finally calspnt _buf f er .wri t e() with this computed value and the word-aligned address.

Stack Management. A general problem in speculative multithreading is that shared call stacks ma
require an expensive buffer call for each access of a local omaiio variable. The solution libspmt
provides is wholesale buffering of stack frames upon method entry ahdaed it allows for unrestricted
speculative modification of a local stack; accordingly, each child mustdvéded with a separate execution
stack. Upon forking, the current parent frame is copied to the child.r/éheew method is invoked, a new
stack frame is simply pushed. When returning to a method that the child did mé&inthe frame must be
copied from the parent; this is safe, because the parent is guarante@ddcchild before modifying any
stack frames pushed prior to the join point. The host is responsible faaek buffering and copying. This
provides room for compiler optimization, and obviates the need for librdly ttahandle what amounts to
anmencpy() .

The other significant complication of stack management is that of storinopyake information. libspmt
associates certain information with stack frames: a parent stack framensoatehild object if one was
forked in that frame, and a timer object for measuring invocation times. Italatains pointers to the
relevant source callsite and target method speculation probes. Intordatrimize changes necessary to host
data structures, libspmt maintains a mirror of the stack to manage this informatimesitso by requiring
notification from both parents and children when stack frames are erdaceexited. These mirror stacks
also allow the libspmt runtime to traverse stacks independently of the host.



2.6 Optional Host Features

The libspmt interface provides mechanisms to support complex host contpdaend in modern execu-
tion environments such as Java virtual machines. These include namatpecmultithreading, garbage
collection, and exception handling.

Multithreading. Unchecked, multithreaded hosts will compete with libspmt for CPU resouboesrd-
ingly, libspmt provides a flexible mechanism that gives priority to host tteeidds always better to execute
a non-speculative thread than a speculative one.

For each operating system thread that the host creates as part ofri egecution, a corresponding library
parent object must be created, even if speculation does not occuatathitbad.spnt _par ent _creat e()
returns a pointer to a parent object that the host can store in the hest ffanread environment. When the
host thread is terminatedpnt _par ent _destroy() is called.

Afterwards, any time a parent thread starts and stops execution, thealtlespnt _par ent start () and
spnt _par ent _st op() respectively. Reasons for starting include thread creation and wa&edpeasons
for stopping include thread destruction, sleeping, and blocking. This silbesruntime to ensure that the
sum of running host parent and libspmt helper threads never exteedasimber of available processors,
except if all threads are non-speculative.

Garbage Collection. Garbage collection is a feature of many modern languages, or at leasatpng
implementations, and is problematic in that it moves objects without updating dapanbuffers; without
special precautions, speculative object references are unsarfés&@. The host can quickly invalidate all
of the children attached to a parent thread by caliipgt _par ent _abort _al | _chi | dren() ; libspmt will
then use the parent stack mirror to find attached children and abort theutur& €xperiment could involve
updating child dependence buffers during GC, which may be worthwhitdlgations are frequent enough.

Exception Handling. Another common feature of modern languages is exception handling, which is
problematic in that it allows a method to return abruptly and to a location other tearatilsite at which

it was invoked. The consequence is that the parent thread might rguven to its join point. The support
mechanism for this in libspmt is similar to that for garbage collection: a giveenpdinread can abort any
child attached to its stack frame at any time simply by callipgt _par ent _abort _current child();
libspmt will then use the parent stack mirror to find the child attached to thentdraene and abort it.

3 Implementation

The implementation of libspmt includes many modules whose behaviour and fuaditiias largely inde-
pendent of the library interface. In this section we describe interestipects of the design, and where
applicable, how they have evolved from their previous implementation. Tiheheale isolated statistics
gathering, portable support for atomic operations and spinlocks, sinmiphitygueueing, a new design for
avirtual single-threaded mode, our refactored dependence buffering impldioantewly isolated value
predictors, and a completely new memory management system for specciliveasks.

An overview of the libspmt implementation is given in Figure 4. The runtime prevsyachronized access
to speculation probe tables, a memory manager, and a priority queue.t&btgsecontain the probes that are
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Figure 4: Implementation of libspmt. Shown are the dynamic relationships between the main datatstes in
libspmt.

used to fork and join child tasks. Each probe contains profiling informasamedl as a value predictor. The
predictor maintains a profile and contains a hybrid predictor, which in tunte@ts various sub-predictors.
Any sub-predictor may be used to replace the hybrid dynamically. Theitgrqpreue contains child tasks
enqueued by parents that await execution by a helper. The memory maoatgins a list of empty child
blocks and a list of full child blocks. These are exchanged with threeal-foll and empty child blocks
respectively.

The runtime also maintains lists of all parent and helper threads createsht Bhjects are bound to host
parent threads, and helper objects are bound to libspmt helper thieactsis associated with a common
thread object that manages thread-local child blocks. Children are tatbead freed by thread objects,
and each child points to the probe at which it was forked. A child containspardience buffer that is
implemented by a write sub-buffer layered over a read sub-buffer. &utth and parent objects contain
mirrors of the stacks associated with child and parent environments in the Hiosse mirrors represent
stacks abstractly using a list of frames. Each frame has pointers to s@lisite and target method probes,
a timer for online profiling of method execution times, and in the case of palgetts, a pointer to any
child forked in that frame. Profiles associated with the priority queue,ugiéan probes, predictors, and
thread objects allow for botpost mortem and online analysis. All memory is reachable from the runtime
object and freed appropriately upon shutdown.
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3.1 Statistics

libspmt is a complete speculative multithreading implementation capable of runniagcedi benchmarks.
It can be used to collect a wealth of valuable profiling information for botmerandpost mortem analysis
and optimization. Many of the analyses possible were previously tied up idavarspecific SableSpMT
implementation [28].

The priority queue object counts enqueue, dequeue, and deletéiopefar each priority. Threads gather
profiling information using stopwatch timer objects, providing breakdowrsott useful work and over-
head. Similarly, timers associated with stack frames measure child and pegeutien lengths, necessary
inputs to forking heuristics. Individual speculation probes aggregatie aver all executions of the probe;
these data are varied and can be used to calculate properties sucbudataEpesuccess rates and prediction
accuracies.

Additional statistics are gathered if libspmt is built withenabl e- st at s, which exposes thepnt _-
runtime_print () function that prints statistics tet der r after runtime shutdown. This function calls
the corresondingri nt () function on globally reachable objects, including the priority queue, pairgh
helper threads, and all probes in the speculation probe registries.

3.2 Spinlocks and Atomic Operations

For performance reasons, libspmt uses spinlocks instead of pthreaxesyutes is possible because there is
a one-to-one mapping between threads and processors. The ontyiexde this rule is when the number
of parent threads exceeds the number of processors, as disouSsation 2.6, in which case speculation is
inactivated anyway. There are two kinds of spinlock, a simple test-ataitelsset lock built directly on top
of CAS or LL/SC, and more complicated CLH queue locks [22], where #daelad spins on a separate cache
line. In our current system, both achieve comparable performanceapthmutexes and condition variables
are indeed necessary to make helper threads sleep and wake whemther ofi running non-speculative
threads changes, and also to control the single-threaded execution mode

A few platform specific atomic operations must be provided in order for ififisjp function. Atomic
compare-and-swap (CAS) or load-linked/store-conditional (LL/S@)maandatory for spinlock construc-
tion; atomic swap, increment, decrement, and fetch-and-increment carilto@bund them, failing native
support. Hardware memory barriers ensure correct asynchrepausunication between parent and helper
threads when stopping speculation, as discussed in Section 2.4. Finalbgesgor timestamp instruction
such as the x86dt sc instruction can be used for accurate profiling.

3.3 Priority Queueing

Priority queueing allows libspmt to provide some measure of filtering-basetlot@ver speculation by
assigning thread priorities. Priorities are computed by speculation preb@sdynamic execution profiles;
our eventual intention is to incorporate Whaley's recommendations [37harén thread enqueues a child
task on a global priority queue associated with the runtime vglpen _par ent _r equest _f or k() is called;
meanwhile, helper threads busy wait and compete to dequeue childrenlpek treead that succeeds in
dequeuing a child callspnt _host _chi | d_execut e() to perform speculation. We use a simple bounded-
height priority queue protected by a single spinlock; the queue itself is a simpleaf generic linked list
objects, one list per priority. This design is refactored from our previmplementation [29] and follows
Shavit’'s recommendations [32].
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3.4 Single Threaded Mode

We previously described a complex single-threaded mode as part ofasliron SableSpMT [28]. This

mode operated by saving the parent state at a fork point and switchingdaegbcution within the same

operating system thread. It provided critical support for systemgtghg by making race conditions be-
tween parents and children deterministic. Based on our refactoring taldisled avirtual single-threaded

speculation mode in libspmt, as shown in Figure 5. The re-engineered impl¢imeganuch simpler, en-

tirely hidden from the host, and the control flow is nearly identical to thaofial speculative execution.
As before, more than one parent can execute simultaneously.

Tl Tl
pre-speculation

fork T2
signal & wait

execute child

terminate

<

b signal & wait

execute parent
join
post-speculation

(a) (b)

Figure 5: Sngle-threaded modes. (a) The single-threaded mode as originally implementedainl€SpMT. A single
thread T1 executes both non-speculative and speculatde ¢b) Thevirtual single-threaded mode as implemented
in libspmt. The parent thread T1 blocks while the helperatr&2 executes the child.

A boolean runtime option is the only control available to a host. Instead of slserxgame parent thread
to execute the child, the parent will block until the child has completed execuliba rest of execution

remains unchanged, and in particular the priority queue is still used. The cdoedehave somewhat differ-
ent execution semantics now: instead of interleaving non-speculativepetdlative execution in a single
thread, either a given parent thread is executing, or one of its childieirig executed by a helper thread.

3.5 Dependence Buffering

The dependence buffer uses read and write sub-buffer hashtalblegse occurs directly to the write buffer,
whereas a read searches the write buffer, and then the read hofidhen main memory in order to load a
value. Validation checks all reads against main memory, and committal flushvested; these operations
are managed by libspmt parent objects at child join time.

The dependence buffer is now implemented as a simple wrapper aroupémaaddressing hashtable mod-
ule used for the read and write sub-buffers. The same table module iss@lddar the speculation probe

registries and hashtable-based predictors. Our previous deperudfer model operated equivalently [29],
but the implementation was complicated and difficult to modify. Instead of acceatiize parameter and

masking reads and writes appropriately, there was a macro-generasamhvfer each Java primitive type.

Additionally, the hashtable code itself was not usable by any other modules.
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3.6 Value Predictors

Value prediction is used by speculative systems to provide guessedides\af heap and static memory
locations, automatics, and return values. Importantly, return value pradadtmws speculative children to
progress beyond consumption of a return value without a violation. Afseloe predictors is used for
each speculation probe whose associated continuation consumes avafiternThe final predicted return
value is passed topnt _host chi | d_execut e(), and predictors are updated with actual return values at
speculation join points.

Each value predictor is now a separate and minimally sized module that opamaidsbit values, whereas
previously there was considerable shared state, specialization agedagianprimitive types, and a predictor-
specific hashtable implementation, all premature and even potentially harnifaizgiions. The net result
is that now predictors can be used independently of each other, enablkieg set of optimizations that
focus on reducing predictor overhead by adaptively disabling predietoruntime. The other advantages
of independent predictor modules are that: 1) unit testing is actually fep8)htds easier to reuse them in
different contexts, for example load value prediction; 3) it is now triviaéxperiment with new predictor
designs.

The set of available predictors is unchanged from our initial implementatign These include a last value
predictor that simply predicts the last value, a stride predictor that capuwesstant difference between
values, a two-delta stride predictor that functions like the stride predictarduates the stride it uses after
two identical strides in a row, a parameter stride predictor that capturesstaot difference between the
return value and one input parameter, a context predictor that hagjethdoa value history to lookup a
value in a hashtable, a memoization predictor that hashes together inponesutguto lookup a value in a
hashtable, and a hybrid predictor that selects the best sub-predietadhevast N values.

3.7 Memory Management

libspmt provides a custom memory management system for child tasks angebis dtey containmal | oc()
andfr ee() suffice for the majority of data structures, which are allocated infrequemitymore efficient
memory management is necessary for objects that are allocated andejpeatedly. This is generally not
a performance problem for hardware SpMT proposals, as they tendiagaahreads through architecture
extensions.

Our specific performance issue is a producer-consumer relationslegevaimy thread in the system can
allocate, any other thread can free, and each thread runs on ategpa@essor. We experimented with
various standaloneal | oc() replacements including Hoard [2] and TCMalloc [15], but there werersgv
problems. Both depend on libstdc++, a large software component thadiicge another dependency in
and of itself, lending to build complexity. We also found that successful datign depended on particular
kernel and system library versions, and we wanted libspmt to remain asigand portable as possible.
Finally, we could not find aral | oc() replacement that targeted our exact problem. However, once the
problem was well-defined, implementing a solution was comparatively easy.

Previously, SableSpMT maintained a free list of children per parentdhitis too expensive for a parent
thread to callmal | oc() every time it forks a child, an€ir ee() every time it joins one. However, this
meant that helper threads could not allocate or free children themselkiesd had two fairly significant
consequences. First, it ruled out nested speculation, which depandsldren forking and joining new
children independently of their parent. Second, helper threads coutdeamly be used for decoupled and
expensive finalization of child tasks after joining, as some parent mustestitipon an eventudlr ee() .
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Our solution is similar to that employed by Hoard. Hoard maintains per-procéesaps, and migrates
memory to and from a global heap as appropriate. However, threadagslaaprocessor must lock the
processor heap even in the absence of contention. We can simply emplbygael free lists, because there
is a one-to-one mapping between threads and processors. Furthdtoare is a general memory manager,
whereas our solution manages only a single child type.

9 (c) (f)

initialize execute ?

2 o G
C c~(9)
ATIND N TN
malloc enqueue dequeue free
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1) runtime

f‘(‘,//@% emipty full
0
empty ﬂf“
T1 10
|
0

Figure6: Producer-consumer memory management. Initially, parent P requests a new child from its thread Tit, Til

only has an empty block of children on its block ligh) T1 acquires a global runtime lock and exchanges the empty
block for a full one with 10 children(b) T1 then allocates a child from this block, reducing the nundfehildren in

the block to 9, and returning the child to the parent P, whietames B. (c) Pc initializes the child andd) enqueues it

on the priority queue Q, which becomeg ®hilst P: returns to its P form(e) At some later point, helper H associated
with thread T2 dequeues the child, the queue returning tar@ #nd H becoming H. (f) Hc now executes the child,
and(g) when finished frees it to T2, becoming H again. T2 initiallysteblock with 9 children, which becomes a
full block of 10 with the free from H. (h) T2 now acquires a global lock and returns this full block te thntime in
exchange for an empty one. Although this figure illustratesnory recycling, if the runtime is unable to provide a
recycled full block to any thread it will create a new one.

Figure 6 illustrates a dynamic instance of the producer-consumer memorgemaeat in libspmt. Migra-
tion between threads and the runtime occurs using blocks, which contaircenistant number of children,
the default being 10. The tradeoff between synchronization overdredheéxcess memory consumption can
be controlled by adjusting the block size.

When a thread tries to allocate a child, it checks for a non-empty block oregdlit. If it finds one, it
simply removes and returns a child without any synchronization. If it dogsimd one, it exchanges an
empty block for a full one with the runtime, using global synchronization. rUfseeing a child, if the
thread creates a full block, and the number of full blocks on the thresdiét exceeds some threshold, that
block is returned to the runtime in exchange for an empty one.

If the runtime is unable to satisfy a request for a full block, it cafpet chi | d_creat e() once for each
element in a block. After allocating a dependence buffer and stack ntiisiin turn will use thespnt _-
host chil d_create() callback to create host execution environments. Upon thread shutdoblockb
are returned to the runtime, and upon runtime shutdewnt chi | d_destroy() is called for each child
in each block, which in turn uses the correspondipgt _host _chi | d_destroy() callback.

For other frequently required types that are not involved in a produmesumer relationship, such as hashta-
bles that are freed and allocated upon expansion, simple global orrpadttiee lists suffice.
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4 Development

Development of any kind of independent library is a challenge in softeagineering, and the complexity
can easily result in a difficult development process. In order to aateleur efforts and build on previous
experience, we worked from our initial SableSpMT implementation, and dicsimaply discard it. We
followed numerous software design principles, as discussed in the resnaifithis section: refactoring,
modularity, client or host independence, portability at both hardwarepexhting system levels, unit testing
and test-driven development, regular and automated builds, and hgawjtaion of C compiler features.

Refactoring. The advice given irRefactoring [12], Test-Driven Development [1], and Code Complete
[24] was applied where possible. These are three well-known booldftinese engineering, and provide
recipes for developing and maintaining flexible code bases. At all timesglimendevelopment of libspmt
the focus was on keeping SableSpMT able to run the SPECjvm98 benchumitatk s

Language Independence. The library is independent of Java and language independent inajener
Previously, our implementation of SableSpMT was heavily tied to Java Natieddone (JNI) and VM types,
and included a fair amount of macro-based specialization. A language eathsdack and source programs
with relatively frequent function calls are required, due to the implementafigperulative method level
parallelism. However, individual modules such as the value predictorsigmehdence buffer can also be
reused and replaced independently without any need for SMLP.

Portability. libspmt does have several build dependencies. GNU Autoconf, Autgmakeand Libtool
are used as a highly portable build system. POSIX pthreads are used for reattitty. The source code
is ISO C90, although presently GCC is necessary in order to handle smalingsnaf inline assembly
for atomic operations, as well as 64-bitng | ong types, but neither of these things are a major barrier
to compilation with other compilers. It compiles with as many lint-like GCC warning flggbled as
reasonable.

Modularity. The library design is object-oriented and generally divided into moduletasses. Con-
tainment is used as an alternative to an inheritance scheme based on fpoatikens. There are no global
variables, only global constants. Functions are small and performapeads heavily on a good C inliner.
The use of the C preprocessor is avoided as much as possible. Theeesisract defined per. c file,
and thisst ruct is opaque, and accessible only through the correspondirfie t ypedef and functions
that operate on it. Each module has functions with private, library-widépablic visibility. The package
prefix isspmt , and this appears before all symbols except local variables, botigawnd public, so as to
simplify the process of exposing and hiding symbols.

Unit Testing. Each module is independently unit tested using the Check [23] unit testinpdvark.
Those modules written from scratch were developed using test-drivetogenent [1], and thus have com-
prehensive unit tests, whereas modules migrated from SableSpMTtae camprehensively tested. How-
ever, the presence of the framework makes debugging and futurertisgwasier, and allows for bug fixes
to be driven by regression tests.
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Compilation. libspmtis compiled independently of its hosts. This can permit the use of a mgresag
sive set of compiler optimization flags. For example, SableSpMT cannelydaé compiled with global

common subexpression elimination optimizations due to particular GCC limitations withate® the use

of labels as values, whereas libspmt can; thus code that was once tieGapl@SpMT can now be more
heavily optimized.

The build system also supports two broadly different compilation modesfirBhés the traditional method
for compiling C programs, where each module is compiled independently, an@llobject files are linked
together. The secont ncl ude’s all . c files into a giant source file, and compiles that to a single object file.
The advantages of the first mode are that it allows for proper unit testirfigrces modularity, and simplifies
debugging. The advantage of the second mode is that multiple translation nit¢erapiled at once,
enabling whole program optimization, similar to how theg pa XL C and- conbi ne - f whol e- pr ogr am
GCC flags operate.

./ conf i gur e options are also available for controlling other wide-sweeping changesseTinclude en-
abling debugging, assertions, statistics gathering, profiling, and ajge®mpiler optimization.

5 Related Work

Various software systems have been designed to support paralleitiere@nd include both speculative
and non-speculative approaches. The well-kn@ilk language is based on a sophisticated runtime en-
vironment for non-speculative, fine-grain parallelization with automatic lmadncing, and is guided by
explicit programmer specifications [13]. Thdava compiler and runtime system is a more recent and VM-
related example. zJava depends on symbolic access paths computedik tiorapo parallelize a program
dynamically, without using programmer directives [6]. Method calls areweel in separate child threads,
while the parent executes the method continuation until either a return valoessiroed or a heap data
dependence is encountered, at which point it blocks. A registry afingrthreads, methods, and heap re-
gions is maintained to enforce sequential execution semantics. In gerralpaculative implementations
such as these exchange the complexity of speculative execution desigrséased complexity in ensuring
correct memory access orderings.

Speculative parallelization designs were originally proposed in the carftBardware, but several software
approaches have also been attempted. Both hand-done proofsesfpt{20] and full implementations have
been demonstrated. Papadimitriou and Mowry, describe a software dpstibmead level speculation based
on a virtual memory page protection mechanism [25]. Conflicting memory sesdmtween threads are
caught and memory is synchronized using standard page trapping aad Iségndling. Other approaches
follow hardware designs in tracking individual memory access conflicke Idop-based speculative sys-
tem proposed by Cintra and Llanos exploits both compiler analysis and runttirggtéo identify shared
variables and handle individual dependence violations [8]. Softspecasnpiler and runtime system that
parallelizes loops in C programs witfride-predictable memory references [4]. A memory reference in
a loop is stride-predictable if it changes by a constant valustralle with each iteration. Softspec uses
compiler-inserted calls to a runtime system that dynamically splits loops into paha#elds with multiple
iterations each. An undo log is maintained for rollback, and barrier spnchation is used to join the loop
threads.

Hybrid software and hardware designs have of course also beestigated, and in fact most hardware
proposals include significant software support in the form of a compndrrantime system [7, 33]; a
general purpose compiler for SpMT hardware architectures haseemproposed [3]. Our library design
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is based on an understanding of the features common to these designbyithes ;meed for a generic
interface, and of course our own experience in software SpMT impleti@n{as, 29].

Garzararet al. proposed a taxonomy for state buffering mechanisms in thread levellapecyl4]. Ac-
cording to that taxonomy libspmt supports Eager Architectural Main Menteagér AMM), as speculative
threads write variables to a dependence buffer and not directly to main meandrthe buffer is committed
immediately at join time along with the child stack. It also supports multiple tasks and muéEens
of variables per processor (MultiT&MV): per-processor helper ttiselaegin execution of child tasks as
soon as both a helper and child are available, and each child has its oamdéege buffer. This design is
recommended as the most effective in terms of benefits gained for the camyplarmplementation.

Techniques developed for thread level speculation are employed inaathtxts as well. Eugster demon-
strated a debugging environment for concurrent programs based esdantial idea @bllback [11]. Saving
state and rolling back execution allows different scheduling choices toh&dered in debugging or ex-
haustively considered in testing. Persistent designs also require bagiam state checkpointing to restore
the system to a previous, interrupted execution [9, 34]. Concepts sudtilzack and checkpointing are of
course important in fault-tolerant schemes, allowing correctness to beeensy saving state and replay-
ing an execution if failure is detected. This also provides the basic mechémisransactional execution,
which can be used to give Jasadelets ACID properties [30].

Actual transactional approaches are of course quite closely rel&@gdTéchniques fosoftware transac-
tional memory [31] require efficient enforcement of atomicity, and thus many of the sanohanésms as
thread level speculation, including isolation of code execution and gesadety enforcement. Optimistic
designs further share a need for dynamic conflict management, bgffeaitdation, and other runtime com-
ponents typical of speculative multithreading designs [36]. Transattimnguage implementations such
as Herlihyet al.’s Dynamic Software Transactional Memory [18], Harris and Fraser’s lightweight transac-
tions [17], and most recently Atomos [5] all rely on the ability to safely execatie and restore or repair
state invisibly to the user. As with other speculative multithreading designspitbsanages considerable
extra complexity in order to provide facilities suitable for automatic parallelisafieimgle-threaded code,
with no requirement for programmer interaction. Supporting transactisealidon in a speculative multi-
threading environment is certainly feasible, however, and represeotetial application of our work.

6 Conclusions & Future Work

Both virtual and non-virtual execution environments are expected toiexplberlying performance-enhancing
features. However, supporting advanced hardware and opergfitegrsfeatures is not trivial, and complex
enhancements like speculative multithreading generally require a tight ahly-sgecialized integration

of the runtime system and speculative components. As a complex optimizatiofeet geparation is not
possible, but a more maintainable approach is clearly desirable if multiple clienexpected to use the
same speculative system.

Our libspmt library for method level speculation is a modular approach to thefukhread level specula-
tion. libspmt is designed as a well-defined set of modular components thadgsa reasonably minimal
interface to its unique runtime system for managing thread level speculatish oHclient services that in-
teract closely with the speculative system are cleanly separated, and@lmiatively arbitrary execution
designs to support SpMT. We have paid careful attention to good desigrems, which include both rec-
ommended software engineering practices and the requirement thatamg stodularity does not degrade
performance. Our reference SableSpMT client that is an extensiodafaainterpreter demonstrates both
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the feasibility and the efficiency of our design.

The newly available modularity in libspmt will allow further work to progress inesal areas indepen-
dently. Improving fork heuristics is important [37], as is adaptive valesljotion [28]; previous profiling
indicated that these will help to address a significant percentage ofeacih our combined SableSpMT-
libspmt system. More involved improvements to libspmt consist of allowing spi@ithreads to spawn
speculative children themselves, that is, supporting in-order nestedlapen, extending and reusing our
value predictors to support efficient prediction of arbitrary load valaed investigating speculative locking
and support for transactional language systems. Our immediate workuseihon integrating libspmt into
IBM’s production Java JIT compiler. JIT code generation is more compbaxititerpreter code, but permits
many useful internal optimizations, among them relatively easy code spati@iizOur experience in this
work is expected to guide the integration of libspmt into other language emvaots.

We would like to thank the members of the University of Toronto Compiler antlifecture Reading Group
and our colleague Michael Batchelder at McGill University for their prelimjrfaedback on this material.
This research was funded by an IBM CAS fellowship and the Naturah8eiand Engineering Research
Council of Canada.
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