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Abstract

Speculative multithreading (SpMT), or thread level speculation (TLS), is a dynamic parallelisation
technique that uses out-of-order execution and memory buffering to achieve speedup. The complexity
of implementing software SpMT results in long development lead times, and the lack of reuse between
different software SpMT systems makes comparisons difficult. In order to address these problems we
have created libspmt, a new language independent library for speculative multithreading. It provides a
virtualization of speculative execution components that are unavailable in commercial multiprocessors,
and enables method level speculation when fully integrated. We have isolated a clean and minimal
library interface, and the corresponding implementation is highly modular. It can accommodate hosts
that implement garbage collection, exceptions, and non-speculative multithreading. We created libspmt
by refactoring a previous implementation of software SpMT for Java, and by aiming for modularity have
exposed several new opportunities for optimization.

1 Introduction

libspmt is a new library designed to simplify the task of implementing speculative multithreading in soft-
ware. Speculative multithreading (SpMT), or thread level speculation (TLS), is an aggressive and opti-
mistic parallelization scheme that operates dynamically on non-parallel code. Many proposals focus on
hardware architecture implementations [3, 7, 33], but numerous softwareapproaches have also been at-
tempted [4, 8, 20, 25, 28, 29].

The salient features of speculative multithreading systems include: 1) support for memory access buffering
or logging; 2) some mechanism to detect violations and either undo or prevent unsafe operations; and 3) a
means to either commit the speculative execution in a manner that preserves original program semantics,
or abort the execution safely. A basic parallelization strategy is required:speculation, or out-of-order ex-
ecution, may occur at any or all of the basic block [3], loop [4, 8, 20, 25, 33], method [7, 28, 29, 37], or
lock [36] levels. Perhaps most importantly, the parallelization occurs at the thread level as opposed to the
instruction level, and requires two or more CPUs, cores, or virtual coresfor speedup. Although there exists
variance between the parallelization strategies, there is also considerable commonality.

SpMT in fact shares many features with other designs, most notably transactional programming [19], but
also rollback for debugging [11] and checkpointing [9, 34]. Transactional execution of atomic regions [5,
17, 18, 30, 31] is roughly equivalent to lock-based speculative multithreading [36], in which a thread may
enter and execute a critical section speculatively. The user model for transactional programming and lock-
based speculation differs from that for speculative multithreading, however. In transactional programming
and lock-level speculation, the user creates threads and relies on the compiler, runtime system, or hardware
to handle optimistic execution of critical sections or atomic regions. This contrasts with speculation over
sequential code, which does not require any source level changes,but must address the additional challenge
of creating and managing new speculative threads.

We introduce libspmt as a modular and core component of an SpMT system. Itextracts, simplifies, and
virtualizes the main features required for speculative multithreading and related designs. In particular, it
supports method level speculation, in which parents fork child continuationsat method invocations and join
them upon returning from the call. The specific motivation for this work is the need to enable speculation in
IBM’s production Java JIT compiler; previously we invested considerable effort in implementing software
SpMT correctly for Java [29], and we set out to modularize and reuse that code base and design. Maintaining
a fully functional client alongside the development of libspmt helped drive many of the design decisions.

The general benefit is that we have now defined a relatively minimal and clean interface to a specialized
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virtual machine or runtime system that can be used to enable speculation in a wide variety of hosts; we
also have a robust implementation of that interface, and a client that uses it, namely a refactored version
of our initial Java bytecode interpreter system, SableSpMT [28]. These contributions will reduce the com-
plexity of implementing and optimizing software speculative multithreading, facilitate comparisons between
approaches, and in our particular case allow us to pursue JIT-based optimizations.

libspmt acts as a specialized architecture simulation or virtual machine providingspeculative execution
facilities that other compilers and virtual machines can target. It provides a virtualization of previously
proposed hardware extensions, much as software transactional memorylibraries provide a virtualization of
hardware transactional memory architecture extensions. It differs from traditional simulations in that there
is no straightforward mapping of the design to a hardware circuit. However, it enables real hardware to
perform speculative execution, and as an experimental research toolruns significantly faster than an actual
simulator [21]; our present and naı̈vely optimized interpreter-based client exhibits 5x slowdowns but up to
2x relative speedups [28]. Additionally, as hardware support starts tobecome available [16], libspmt can
serve as portable layer providing access to it.

libspmt is also designed as a separate system component, much like a reusablegarbage collector, malloc
implementation, or general purpose multithreading library, albeit with significantly more complex usage
requirements. We have isolated only the language-independent logic in an effort to increase system mod-
ularity, and to make that logic available through an API to compilers, interpreters, and virtual machines
for different languages. Of course, a completely independent libraryis also ostensibly more testable and
maintainable.

libspmt can be used and extended in two different contexts. First, it can beused as a complete runtime
system for enabling speculation, specifically method level speculation. In this respect it can be extended in
the future to support other modes of speculation when fully integrated into other systems. Second, it can be
used as a repository of modules for individual reuse and experimentation. In this respect it can be extended
by adding new modules and exchanging implementations, for example by addingnew value predictors or
replacing our dependence buffer with a highly-optimized software transactional memory library.

1.1 Contributions

We make the following specific contributions:

• The design of a modular library for speculative multithreading. libspmt provides advanced facilities
for software method level speculation in relatively arbitrary execution environments.

• A clean and minimal interface design that provides a separation of tasks without degrading perfor-
mance.

• A modular library implementation that allows components to be reused or replacedin different con-
texts. We illustrate this modularity through an easy implementation of avirtual single-threaded de-
bugging mode. This modularity also exposes new opportunities for optimization.

• Support for various complex host or client features, including garbage collection, exception handling,
and non-speculative multithreading.

• A newly refactored version of SableSpMT, a Java client that uses libspmt. It now serves as both an
API reference and functional testing program. Both SableSpMT and libspmt are available under the
LGPL.
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In the next section we present the interface to libspmt, providing details on its usage. In Section 3 we
describe the library implementation, and in Section 4 our development process. Section 5 presents related
work on speculative multithreading, and we conclude and describe futurework in Section 6.

2 Interface

We first present the interface to libspmt, as depicted and described in Figure 1. We have tried to minimize
the libspmt interface, so as to increase flexibility in modifying both thehost code that uses it and the library
code that implements it.

In the remainder of this section we define some necessary terminology, discuss prerequisites for using the
library, and then describe broad use of the library, the specifics of forking and joining speculative tasks,
the details of support for speculative execution, and finally how the API supports some optional features:
non-speculative multithreading, garbage collection, and exception handling.

2.1 Overview

Figure 1: Interface to libspmt. A host is any client of libspmt, and may consist of source code, compiled code, an
interpreter, or a JIT compiler. It communicates with the libspmt runtime using a set of calls and callbacks defined in
spmt.h. The host is responsible for startup and shutdown of the runtime, and can optionally print statistics aggregated
over execution. At startup, libspmt creates helper threadsfor execution of child tasks, and at shutdown will destroy
these threads. The host modifies its native threads to becomeparent threads that fork, stop, join, and abort child
tasks. The host must provide callbacks for creating and destroying host-specific child task environments, speculative
versions of non-speculative code, and a callback that allows children to execute this code. A child executing in the
host protects non-speculative main memory by using a local execution stack for automatics and a dependence buffer
in libspmt for heap and global data. Both children and parents enter and exit methods in the host, and the operations
are mirrored in libspmt. The host is responsible for buffering and committing local child stacks, whereas other thread
control operations are managed by the libspmt runtime.

In order to describe libspmt efficiently we need to define some terminology, which also corresponds to
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module names. Ahost is the user or client of libspmt, so called because it literally “hosts” the virtualized
SpMT logic, and because the relationship involves callbacks. The host mayinteract with the library as a
result of compiler transformations, virtual machine extensions, or sourcecode modification. The libspmt
runtime is a global singleton for an entire libspmt instance, through which all other libspmt data structures
are reachable. This is not to be confused with the host, which in the case ofa virtual machine may also
be considered a runtime unto itself. Athread is bound to an actual OS-level thread that is scheduled by
the kernel. libspmt uses pthreads, and there is currently a requirement for the host to use pthreads as
well. However, if the host can provide the right callbacks, libspmt could fairly easily be modified to use a
generic and portable wrapper around OS threads. Aparent is a host thread that executes non-speculative
code. There is a one-to-one mapping between host threads and parents. A child is a task that will be
executed speculatively. Under speculative method level parallelism, it is a continuation, or the sequence
of instructions following a method call. Parent threadsfork children by enqueuing child tasks on a global
libspmt priority queue. When a parent thread returns from a method call, it attempts tojoin a child task if
it forked one. Ahelper is a libspmt thread that dequeues child tasks from the priority queue and executes
them. There is a one-to-one mapping between libspmt threads and helpers. Helper threads arenot simply
prefetching assist threads, although they could actually be used for thatpurpose by executing child tasks and
ensuring that they never commit.

Figure 2: Thread control. libspmt supports method level speculation, in which children execute method continuations.
(a) T1 is non-speculative and executes a pre-invoke sequence ofinstructions, a method body, a method continuation,
and a post-continuation sequence of instructions.(b) T1 forks a child task before executing the method body, enqueu-
ing it on a priority queue. T2 is a helper or worker thread thatdequeues and binds itself to the child task in order to
execute the method continuation speculatively. All reads from and writes to main memory are buffered, and unsafe
operations are prevented. T1 eventually returns to its invocation point and joins T2, signalling it to stop execution of
the child. T2 immediately proceeds to execution of other unrelated work. T1 validates the child by comparing all of
its reads against main memory, and then commits the result byflushing all of its writes and copying over child stack
frames. T1 jumps to execution of the post-continuation instructions.(c) Same as (b), except that validation fails and
T1 must abort the child, and then execute the continuation instructions again.(d) Same as (b), except that T2 stops
execution of the child without receiving a signal from T1. This may be due either to execution of an illegal instruction,
or to reaching some predefined limit on child length. After the commit, T1 must complete execution of the continu-
ation sequence that the child could not.(e) Same as (d), except that validation fails, and T1 must execute the entire
continuation.(f) T1 returns to the method invocation point before T2 is able todequeue the child task, and so T1 joins
the child simply by deleting the task from the priority queue. T2 is not involved in the process.
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2.2 Prerequisites

The host must provide several resources in order to interface effectively with libspmt. These include an
optional compilation component, speculative versions of non-speculativecode, and a set of callbacks for
handling child tasks.

Compilation. SpMT implementations typically involve a compiler for either transformation or analysis.
For purposes of transformation, libspmt is a high-level virtual target forwhich a compiler can generate calls.
For analysis, specific results can be communicated as arguments to runtime calls. There is no compiler in
libspmt, and indeed it has no concept of either intermediate or executable code as it is language independent;
all of the actual speculation takes place in the host environment.

As an example, Soot [35] is the compiler framework we use for SableSpMT.We have an ahead-of-time
analysis that detects statically whether or not a return value is actually consumed [26]. This is communicated
to SableSpMT via classfile attributes. These attributes are parsed, and liveness information for individual
return values is sent to libspmt. libspmt uses this information to determine whether or not return value
predictions should be made.

Speculative Code Generation. The host must provide speculative versions of non-speculative code
which libspmt can use to execute child tasks. The three scenarios for generating code correspond to the
three primary usage scenarios: 1) in the case where the host is a virtual machine interpreter, this involves
duplicating the code array, patching unsafe instructions with speculative versions, and fixing up jumps; 2)
in the case where the host is a compiler and the code it generates, the host creates an alternate version of
the binary code to be executed, and ensures that speculative code cansafely switch execution back to the
corresponding non-speculative code; 3) in the case where the host isactually source code with calls to the
library API, the user manually ensures that the speculative code to be executed performs the same function
as the original non-speculative code. In all three cases the speculative code and non-speculative code can
actually overlap if protected with checks for speculative execution. However, it is generally more efficient
to create a duplicate and specialized mirror version of the non-speculativecode for speculation.

Callbacks. Finally, the host must provide three callbacks that libspmt will use to control child operations:

• spmt host child (create|destroy)(): These functions create and destroy a host-specific thread
environment that will be used for speculative execution. This must includememory for a call stack.
Once allocated and initialized, the memory is managed by libspmt, which callsspmt host child -

create() in one thread andspmt host child destroy() in another. The thread environment
returned must be hidden from the host. This means that it cannot be visible tolanguage level reflec-
tion capabilities, and can neither trigger nor be traced by a garbage collector; it generally cannot be
accessed in any way if non-speculative semantics are to be preserved.

• spmt host child execute(): This function executes a child task. A helper thread will call this
function after dequeueing and binding itself to some child task. The call takesa host thread envi-
ronment and predicted return value as arguments. The implementation must first restore the non-
speculative state that was previously saved in the host child thread environment, as discussed in Sec-
tion 2.4. It then proceeds to make the state speculative and locate the host-provided speculative code
for execution. Finally it sets the return value if the method continuation follows anon-void method
call, and jumps directly to speculative execution of the child.
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These operations are implemented as callbacks because they provide libspmtwith decoupled access to the
host environment and help to minimize the interface.

2.3 Runtime Usage

There are various ways to control the behaviour of the libspmt global runtime. A call tospmt runtime -

create() instantiates and returns a pointer to a singleton runtime object. Function pointers are then used
to register the mandatory callbacks. The host can also set various final runtime options. These include a
single-threaded mode, verbose logging, the number of helper threads [28], and the ability to disable support
for individual aspects of speculation [29]. Once initialized, a call tospmt runtime startup() will create
the actual helper threads that wait for children to be enqueued.

A call to spmt runtime shutdown() joins all helper threads. If statistics gathering is enabled,spmt -

runtime print()will print a summary of execution to standard error. Finally,spmt runtime destroy()

will free all library memory. It is generally recommended that each of these runtime functions be called once
per program execution, as creating and joining OS level pthreads and allocating and freeing necessary run-
time memory are expensive operations; additionally, this prevents unnecessary destruction and recreation of
runtime profile information.

2.4 Thread Control

libspmt supports a wide range of options for hosts to control the speculative execution model, as shown in
Figure 2. Speculationprobes are used as the main speculation points at which child forking, stopping, and
joining occur.

Speculation Probes. A host usesprobes to communicate host-determined locations for speculation to
libspmt. These are tied to method invocations, and the host is required to identifythem properly, as they
are completely implementation and language dependent. There are three kinds of probe, and they are best
described by considering a program callgraph.

The callgraph of a program is a directed bipartite graph between methods and callsites. An edge from a
method to a callsite indicates that the callsite iscontained within the body of the method. A method may
contain any number of callsites, but a callsite may only be contained within a singlemethod. An edge from
a callsite to a method indicates that the callsiteinvokes the method. A callsite may invoke any number of
methods, and a method may be invoked at any number of callsites. Acallsite probe captures a callsite and
all of the methods it invokes. Amethod probe captures a method and all of the callsites that invoke it. A
methodcall probe captures a callsite and one method that it invokes; equivalently, it capturesa method and
one callsite that invokes it. These three probe types are illustrated in Figure 3.

A host registers a probe by passing its host address to libspmt, and in return receives the handle of a newly
created libspmt probe object. The host then uses this handle to fork and jointhreads, and libspmt uses the
object to collect data.

There are different tradeoffs for each kind of probe. In our experiments, we found that there are always
more callsites in a program than methods, both statically and dynamically. This leads to increased memory
consumption and less sharing of data when callsite probes are used. There are more edges from callsites
to methods than either callsites or methods, but since most callsites are dynamicallymonomorphic [10],
there is usually not a large difference between a callsite probe and a methodcall probe. An advantage of
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Figure 3: Speculation probe types. o1.f() is a polymorphic callsite that may invoke either of theA.f() orB.f()
methods.o2.f() is a monomorphic callsite that invokes onlyB.f(). Shown are the three different probe types that
each capture the invoke fromo1.f() to B.f().

callsites in an interpreter, where method invocations and returns are comparatively expensive, is that the
child can begin execution before the invoke and continue until after the return. In the case of return value
prediction, a memoization predictor is most naturally associated with a method probe, as it can then benefit
from population by all invoking callsites. However, a context predictor associated with a method probe
suffers from pollution if more than one callsite contributes to its value history.

Child Forking. When a parent thread in the host reaches a callsite, method, or methodcall for which
there is an associated probe, it attempts to fork a child:

child = spmt_parent_request_fork (parent, probe);
if (child != NULL)
{

host_child = spmt_child_get_host_child (child);
/* save just enough thread state */
...
spmt_parent_complete_fork (parent, child);

}

It first requests that a fork be carried out, and libspmt returns a non-NULL child object if the internal probe
profile suggests that forking will be beneficial. The host then retrieves ahost-specific child environment,
allocated previously by anspmt host child create() callback, and uses it to save the current thread
state. A final call to libspmt tells it to complete the fork by enqueueing the child task.

Child Stopping. A child stops when it is finished speculative execution; this occurs before joining and
the subsequent abortion or committal. There are three events which trigger achild stop: 1) attempting to
execute an unsafe instruction; 2) reaching a predefined limit on child length;3) a request from a parent
thread. A child stops by saving the current state and returning tospmt host child execute(), which in
turn returns control to libspmt.

Speculative code must force a child to stop before executing unsafe instructions. It must also ensure that
the child periodically and regularly callsspmt child stop requested(); if the host periodically polls
for garbage collection this may be co-opted as an appropriate place for thecheck. This function will return
true after the child has reached a certain length, measured either by counting number of calls to this function
or by using a processor timestamp. It will also return true if the parent thread has calledspmt parent -

request child stop(); this happens when the parent anticipates reaching a join point in the near future,
giving the child time to stop while the parent completes execution of its method.
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Child Joining. Joining is the process of waiting for a child to stop, validating its results, and committing
or aborting the speculative execution. When a parent thread in the host returns from a method or methodcall,
or returns to a callsite, and there is an associated probe, it attempts to join a child:

child = spmt_parent_request_join (parent, ret_val);
if (child != NULL)
{

host_child = spmt_child_get_host_child (child);
/* load final child state */
...
spmt_parent_complete_join (parent, child);

}

It first requests that a join be carried out, and libspmt returns a non-NULL child object if there is a child
attached to the calling stack frame, as discussed in Section 2.5, and if the validation and commit process
internal to libspmt is successful. This call involves a busy wait if the child hasnot stopped. The host
then retrieves the host-specific child environment, and uses it to restore thefinal child state and switch to
non-speculative execution.

2.5 Speculative Execution

Execution of speculative code must be safe, and hidden from non-speculative threads in the host; most im-
portantly, it cannot affect the non-speculative execution semantics, which include the host threading model.
If speculative code encounters an unsafe operation, it must stop execution immediately and await joining,
as discussed in Section 2.4. There may be numerous safety and correctness issues involved [29]. In the
remainder of this section we describe two essential components of speculative execution and how libspmt
supports them, namely dependence buffering and stack buffering.

Dependence Buffering. The libspmt dependence buffer module allows a speculative child to safely
execute past reads from and writes to main memory; a first approximation considers these operations unsafe
and they force speculation to stop immediately. Each child has a buffer with two public operations,spmt -

buffer read (buffer, address, size) andspmt buffer write (buffer, address, value,

size). The size argument allows the host to buffer 1, 8, 16, 32, or 64-bit values. All other buffer operations,
such as validation and committal, occur within libspmt at child join time.

As a particular implementation detail that our interface exposes, there are twoproblems with using the de-
pendence buffer if union types with heterogenous field sizes may be accessed by speculative code. Strongly-
typed languages such as Java and C# do not permit such unions, but weakly-typed ones such as C and C++
do.

First, if a write occurs to a memory location already contained in the buffer thenthat value is simply up-
dated. This means that writes are not necessarily committed in the exact orderthey were written. A call to
problem one() followed by a commit will leaveheap.a with the value0x00220033 instead of0x0000-
0033, as the first write will reserve a place in the commit queue forheap.a, andheap.a will be committed
beforeheap.b. This could be fixed by numbering all writes and sorting the buffer beforecommit.

Second, different buffer slots are used forheap.a and heap.b[0] throughheap.b[3], even though
&heap.b[0] equals&heap.a, because value size is also used to detect collisions. A call toproblem -

two() will thus return0x00000011 instead of0x00000022. Furthermore, since the read is not separately
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buffered, as the value is already contained in the write buffer, the buffer will successfully validate and
commit, hiding the read-after-write dependence violation.

union {
spmt_u32_t a;
spmt_u8_t b[4];

} heap;

void problem_one (spmt_buffer_t *x) {
spmt_buffer_write (x, &heap.a, 0x11, SPMT_U32);
spmt_buffer_write (x, &heap.b[2], 0x22, SPMT_U8);
spmt_buffer_write (x, &heap.a, 0x33, SPMT_U32);

}

spmt_u32_t problem_two (spmt_buffer_t *x) {
spmt_buffer_write (x, &heap.a, 0x11, SPMT_U32);
spmt_buffer_write (x, &heap.b[0], 0x22, SPMT_U8);
return spmt_buffer_read (x, &heap.a, SPMT_U32);

}

The current solution to these problems is to restrict hosts that allow for uniontypes and overlapping memory
accesses to using only word-aligned buffer calls. The process is analogous to that used by a hardware cache
when writing subwords. In order to write toheap.b[2], the host must: 1) compute the address ofheap.-

b[2]’s word; 2) create a bitmask using a call tospmt buffer read(), the offset ofheap.b[2] in the
word, and the size ofheap.b[2]; 3) or together the bitmask with an appropriately shifted value for storage;
4) and then finally callspmt buffer write() with this computed value and the word-aligned address.

Stack Management. A general problem in speculative multithreading is that shared call stacks may
require an expensive buffer call for each access of a local or automatic variable. The solution libspmt
provides is wholesale buffering of stack frames upon method entry and exit, and it allows for unrestricted
speculative modification of a local stack; accordingly, each child must be provided with a separate execution
stack. Upon forking, the current parent frame is copied to the child. When a new method is invoked, a new
stack frame is simply pushed. When returning to a method that the child did not invoke, the frame must be
copied from the parent; this is safe, because the parent is guaranteed tojoin a child before modifying any
stack frames pushed prior to the join point. The host is responsible for all stack buffering and copying. This
provides room for compiler optimization, and obviates the need for library calls to handle what amounts to
amemcpy().

The other significant complication of stack management is that of storing per-invoke information. libspmt
associates certain information with stack frames: a parent stack frame contains a child object if one was
forked in that frame, and a timer object for measuring invocation times. It alsocontains pointers to the
relevant source callsite and target method speculation probes. In orderto minimize changes necessary to host
data structures, libspmt maintains a mirror of the stack to manage this information; itdoes so by requiring
notification from both parents and children when stack frames are enteredand exited. These mirror stacks
also allow the libspmt runtime to traverse stacks independently of the host.
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2.6 Optional Host Features

The libspmt interface provides mechanisms to support complex host components found in modern execu-
tion environments such as Java virtual machines. These include non-speculative multithreading, garbage
collection, and exception handling.

Multithreading. Unchecked, multithreaded hosts will compete with libspmt for CPU resources.Accord-
ingly, libspmt provides a flexible mechanism that gives priority to host threads: it is always better to execute
a non-speculative thread than a speculative one.

For each operating system thread that the host creates as part of its normal execution, a corresponding library
parent object must be created, even if speculation does not occur on that thread.spmt parent create()

returns a pointer to a parent object that the host can store in the host parent thread environment. When the
host thread is terminated,spmt parent destroy() is called.

Afterwards, any time a parent thread starts and stops execution, the hostcallsspmt parent start() and
spmt parent stop() respectively. Reasons for starting include thread creation and wakeup, and reasons
for stopping include thread destruction, sleeping, and blocking. This allows the runtime to ensure that the
sum of running host parent and libspmt helper threads never exceedsthe number of available processors,
except if all threads are non-speculative.

Garbage Collection. Garbage collection is a feature of many modern languages, or at least language
implementations, and is problematic in that it moves objects without updating dependence buffers; without
special precautions, speculative object references are unsafe after GC. The host can quickly invalidate all
of the children attached to a parent thread by callingspmt parent abort all children(); libspmt will
then use the parent stack mirror to find attached children and abort them. A future experiment could involve
updating child dependence buffers during GC, which may be worthwhile if collections are frequent enough.

Exception Handling. Another common feature of modern languages is exception handling, which is
problematic in that it allows a method to return abruptly and to a location other than the callsite at which
it was invoked. The consequence is that the parent thread might never return to its join point. The support
mechanism for this in libspmt is similar to that for garbage collection: a given parent thread can abort any
child attached to its stack frame at any time simply by callingspmt parent abort current child();
libspmt will then use the parent stack mirror to find the child attached to the current frame and abort it.

3 Implementation

The implementation of libspmt includes many modules whose behaviour and functionality is largely inde-
pendent of the library interface. In this section we describe interesting aspects of the design, and where
applicable, how they have evolved from their previous implementation. Theseinclude isolated statistics
gathering, portable support for atomic operations and spinlocks, simple priority queueing, a new design for
a virtual single-threaded mode, our refactored dependence buffering implementation, newly isolated value
predictors, and a completely new memory management system for speculativechild tasks.

An overview of the libspmt implementation is given in Figure 4. The runtime provides synchronized access
to speculation probe tables, a memory manager, and a priority queue. Probetables contain the probes that are
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Figure 4: Implementation of libspmt. Shown are the dynamic relationships between the main data structures in
libspmt.

used to fork and join child tasks. Each probe contains profiling information as well as a value predictor. The
predictor maintains a profile and contains a hybrid predictor, which in turn contains various sub-predictors.
Any sub-predictor may be used to replace the hybrid dynamically. The priority queue contains child tasks
enqueued by parents that await execution by a helper. The memory manager contains a list of empty child
blocks and a list of full child blocks. These are exchanged with thread-local full and empty child blocks
respectively.

The runtime also maintains lists of all parent and helper threads created. Parent objects are bound to host
parent threads, and helper objects are bound to libspmt helper threads.Each is associated with a common
thread object that manages thread-local child blocks. Children are allocated and freed by thread objects,
and each child points to the probe at which it was forked. A child contains a dependence buffer that is
implemented by a write sub-buffer layered over a read sub-buffer. Bothchild and parent objects contain
mirrors of the stacks associated with child and parent environments in the host. These mirrors represent
stacks abstractly using a list of frames. Each frame has pointers to sourcecallsite and target method probes,
a timer for online profiling of method execution times, and in the case of parent objects, a pointer to any
child forked in that frame. Profiles associated with the priority queue, speculation probes, predictors, and
thread objects allow for bothpost mortem and online analysis. All memory is reachable from the runtime
object and freed appropriately upon shutdown.
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3.1 Statistics

libspmt is a complete speculative multithreading implementation capable of running advanced benchmarks.
It can be used to collect a wealth of valuable profiling information for both online andpost mortem analysis
and optimization. Many of the analyses possible were previously tied up in ourJava-specific SableSpMT
implementation [28].

The priority queue object counts enqueue, dequeue, and delete operations for each priority. Threads gather
profiling information using stopwatch timer objects, providing breakdowns ofboth useful work and over-
head. Similarly, timers associated with stack frames measure child and parent execution lengths, necessary
inputs to forking heuristics. Individual speculation probes aggregate data over all executions of the probe;
these data are varied and can be used to calculate properties such as speculation success rates and prediction
accuracies.

Additional statistics are gathered if libspmt is built with--enable-stats, which exposes thespmt -

runtime print() function that prints statistics tostderr after runtime shutdown. This function calls
the corresondingprint() function on globally reachable objects, including the priority queue, parent and
helper threads, and all probes in the speculation probe registries.

3.2 Spinlocks and Atomic Operations

For performance reasons, libspmt uses spinlocks instead of pthread mutexes; this is possible because there is
a one-to-one mapping between threads and processors. The only exception to this rule is when the number
of parent threads exceeds the number of processors, as discussedin Section 2.6, in which case speculation is
inactivated anyway. There are two kinds of spinlock, a simple test-and-test-and-set lock built directly on top
of CAS or LL/SC, and more complicated CLH queue locks [22], where eachthread spins on a separate cache
line. In our current system, both achieve comparable performance. pthread mutexes and condition variables
are indeed necessary to make helper threads sleep and wake when the number of running non-speculative
threads changes, and also to control the single-threaded execution mode.

A few platform specific atomic operations must be provided in order for libspmt to function. Atomic
compare-and-swap (CAS) or load-linked/store-conditional (LL/SC) are mandatory for spinlock construc-
tion; atomic swap, increment, decrement, and fetch-and-increment can be built around them, failing native
support. Hardware memory barriers ensure correct asynchronouscommunication between parent and helper
threads when stopping speculation, as discussed in Section 2.4. Finally, a processor timestamp instruction
such as the x86rdtsc instruction can be used for accurate profiling.

3.3 Priority Queueing

Priority queueing allows libspmt to provide some measure of filtering-based control over speculation by
assigning thread priorities. Priorities are computed by speculation probes using dynamic execution profiles;
our eventual intention is to incorporate Whaley’s recommendations [37]. A parent thread enqueues a child
task on a global priority queue associated with the runtime whenspmt parent request fork() is called;
meanwhile, helper threads busy wait and compete to dequeue children. A helper thread that succeeds in
dequeuing a child callsspmt host child execute() to perform speculation. We use a simple bounded-
height priority queue protected by a single spinlock; the queue itself is a simple array of generic linked list
objects, one list per priority. This design is refactored from our previous implementation [29] and follows
Shavit’s recommendations [32].
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3.4 Single Threaded Mode

We previously described a complex single-threaded mode as part of our work on SableSpMT [28]. This
mode operated by saving the parent state at a fork point and switching to child execution within the same
operating system thread. It provided critical support for system debugging by making race conditions be-
tween parents and children deterministic. Based on our refactoring, we established avirtual single-threaded
speculation mode in libspmt, as shown in Figure 5. The re-engineered implementation is much simpler, en-
tirely hidden from the host, and the control flow is nearly identical to that of normal speculative execution.
As before, more than one parent can execute simultaneously.

Figure 5: Single-threaded modes. (a) The single-threaded mode as originally implemented in SableSpMT. A single
thread T1 executes both non-speculative and speculative code. (b) Thevirtual single-threaded mode as implemented
in libspmt. The parent thread T1 blocks while the helper thread T2 executes the child.

A boolean runtime option is the only control available to a host. Instead of usingthe same parent thread
to execute the child, the parent will block until the child has completed execution. The rest of execution
remains unchanged, and in particular the priority queue is still used. The modedoes have somewhat differ-
ent execution semantics now: instead of interleaving non-speculative andspeculative execution in a single
thread, either a given parent thread is executing, or one of its children isbeing executed by a helper thread.

3.5 Dependence Buffering

The dependence buffer uses read and write sub-buffer hashtables; a write occurs directly to the write buffer,
whereas a read searches the write buffer, and then the read buffer,and then main memory in order to load a
value. Validation checks all reads against main memory, and committal flushes allwrites; these operations
are managed by libspmt parent objects at child join time.

The dependence buffer is now implemented as a simple wrapper around an open addressing hashtable mod-
ule used for the read and write sub-buffers. The same table module is also used for the speculation probe
registries and hashtable-based predictors. Our previous dependence buffer model operated equivalently [29],
but the implementation was complicated and difficult to modify. Instead of accepting a size parameter and
masking reads and writes appropriately, there was a macro-generated version for each Java primitive type.
Additionally, the hashtable code itself was not usable by any other modules.
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3.6 Value Predictors

Value prediction is used by speculative systems to provide guesses for values of heap and static memory
locations, automatics, and return values. Importantly, return value prediction allows speculative children to
progress beyond consumption of a return value without a violation. A set of value predictors is used for
each speculation probe whose associated continuation consumes a returnvalue. The final predicted return
value is passed tospmt host child execute(), and predictors are updated with actual return values at
speculation join points.

Each value predictor is now a separate and minimally sized module that operateson 64-bit values, whereas
previously there was considerable shared state, specialization according Java primitive types, and a predictor-
specific hashtable implementation, all premature and even potentially harmful optimizations. The net result
is that now predictors can be used independently of each other, enablinga key set of optimizations that
focus on reducing predictor overhead by adaptively disabling predictors at runtime. The other advantages
of independent predictor modules are that: 1) unit testing is actually feasible; 2) it is easier to reuse them in
different contexts, for example load value prediction; 3) it is now trivial toexperiment with new predictor
designs.

The set of available predictors is unchanged from our initial implementation [27]. These include a last value
predictor that simply predicts the last value, a stride predictor that capturesa constant difference between
values, a two-delta stride predictor that functions like the stride predictor but updates the stride it uses after
two identical strides in a row, a parameter stride predictor that captures a constant difference between the
return value and one input parameter, a context predictor that hashes together a value history to lookup a
value in a hashtable, a memoization predictor that hashes together input arguments to lookup a value in a
hashtable, and a hybrid predictor that selects the best sub-predictor over the last N values.

3.7 Memory Management

libspmt provides a custom memory management system for child tasks and the objects they contain.malloc()
andfree() suffice for the majority of data structures, which are allocated infrequently, but more efficient
memory management is necessary for objects that are allocated and freed repeatedly. This is generally not
a performance problem for hardware SpMT proposals, as they tend to manage threads through architecture
extensions.

Our specific performance issue is a producer-consumer relationship where any thread in the system can
allocate, any other thread can free, and each thread runs on a separate processor. We experimented with
various standalonemalloc() replacements including Hoard [2] and TCMalloc [15], but there were several
problems. Both depend on libstdc++, a large software component that introduces another dependency in
and of itself, lending to build complexity. We also found that successful compilation depended on particular
kernel and system library versions, and we wanted libspmt to remain as generic and portable as possible.
Finally, we could not find amalloc() replacement that targeted our exact problem. However, once the
problem was well-defined, implementing a solution was comparatively easy.

Previously, SableSpMT maintained a free list of children per parent thread; it is too expensive for a parent
thread to callmalloc() every time it forks a child, andfree() every time it joins one. However, this
meant that helper threads could not allocate or free children themselves, which had two fairly significant
consequences. First, it ruled out nested speculation, which depends on children forking and joining new
children independently of their parent. Second, helper threads could not cleanly be used for decoupled and
expensive finalization of child tasks after joining, as some parent must still perform an eventualfree().
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Our solution is similar to that employed by Hoard. Hoard maintains per-processor heaps, and migrates
memory to and from a global heap as appropriate. However, threads sharing a processor must lock the
processor heap even in the absence of contention. We can simply employ per-thread free lists, because there
is a one-to-one mapping between threads and processors. Furthermore, Hoard is a general memory manager,
whereas our solution manages only a single child type.

Figure 6: Producer-consumer memory management. Initially, parent P requests a new child from its thread T1, but T1
only has an empty block of children on its block list.(a) T1 acquires a global runtime lock and exchanges the empty
block for a full one with 10 children.(b) T1 then allocates a child from this block, reducing the number of children in
the block to 9, and returning the child to the parent P, which becomes PC. (c) PC initializes the child and(d) enqueues it
on the priority queue Q, which becomes QC whilst PC returns to its P form.(e) At some later point, helper H associated
with thread T2 dequeues the child, the queue returning to Q form and H becoming HC. (f) HC now executes the child,
and(g) when finished frees it to T2, becoming H again. T2 initially has a block with 9 children, which becomes a
full block of 10 with the free from HC. (h) T2 now acquires a global lock and returns this full block to the runtime in
exchange for an empty one. Although this figure illustrates memory recycling, if the runtime is unable to provide a
recycled full block to any thread it will create a new one.

Figure 6 illustrates a dynamic instance of the producer-consumer memory management in libspmt. Migra-
tion between threads and the runtime occurs using blocks, which contain someconstant number of children,
the default being 10. The tradeoff between synchronization overheadand excess memory consumption can
be controlled by adjusting the block size.

When a thread tries to allocate a child, it checks for a non-empty block on its free list. If it finds one, it
simply removes and returns a child without any synchronization. If it does not find one, it exchanges an
empty block for a full one with the runtime, using global synchronization. Upon freeing a child, if the
thread creates a full block, and the number of full blocks on the thread free list exceeds some threshold, that
block is returned to the runtime in exchange for an empty one.

If the runtime is unable to satisfy a request for a full block, it callsspmt child create() once for each
element in a block. After allocating a dependence buffer and stack mirror,this in turn will use thespmt -

host child create() callback to create host execution environments. Upon thread shutdown allblocks
are returned to the runtime, and upon runtime shutdown,spmt child destroy() is called for each child
in each block, which in turn uses the correspondingspmt host child destroy() callback.

For other frequently required types that are not involved in a producer-consumer relationship, such as hashta-
bles that are freed and allocated upon expansion, simple global or per-thread free lists suffice.
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4 Development

Development of any kind of independent library is a challenge in softwareengineering, and the complexity
can easily result in a difficult development process. In order to accelerate our efforts and build on previous
experience, we worked from our initial SableSpMT implementation, and did not simply discard it. We
followed numerous software design principles, as discussed in the remainder of this section: refactoring,
modularity, client or host independence, portability at both hardware andoperating system levels, unit testing
and test-driven development, regular and automated builds, and heavy exploitation of C compiler features.

Refactoring. The advice given inRefactoring [12], Test-Driven Development [1], andCode Complete
[24] was applied where possible. These are three well-known books in software engineering, and provide
recipes for developing and maintaining flexible code bases. At all times during the development of libspmt
the focus was on keeping SableSpMT able to run the SPECjvm98 benchmark suite.

Language Independence. The library is independent of Java and language independent in general.
Previously, our implementation of SableSpMT was heavily tied to Java Native Interface (JNI) and VM types,
and included a fair amount of macro-based specialization. A language with acall stack and source programs
with relatively frequent function calls are required, due to the implementation of speculative method level
parallelism. However, individual modules such as the value predictors anddependence buffer can also be
reused and replaced independently without any need for SMLP.

Portability. libspmt does have several build dependencies. GNU Autoconf, Automake, m4, and Libtool
are used as a highly portable build system. POSIX pthreads are used for multithreading. The source code
is ISO C90, although presently GCC is necessary in order to handle small amounts of inline assembly
for atomic operations, as well as 64-bitlong long types, but neither of these things are a major barrier
to compilation with other compilers. It compiles with as many lint-like GCC warning flagsenabled as
reasonable.

Modularity. The library design is object-oriented and generally divided into modules or classes. Con-
tainment is used as an alternative to an inheritance scheme based on functionpointers. There are no global
variables, only global constants. Functions are small and performance depends heavily on a good C inliner.
The use of the C preprocessor is avoided as much as possible. There is onestruct defined per.c file,
and thisstruct is opaque, and accessible only through the corresponding.h file typedef and functions
that operate on it. Each module has functions with private, library-wide, and public visibility. The package
prefix isspmt, and this appears before all symbols except local variables, both private and public, so as to
simplify the process of exposing and hiding symbols.

Unit Testing. Each module is independently unit tested using the Check [23] unit testing framework.
Those modules written from scratch were developed using test-driven development [1], and thus have com-
prehensive unit tests, whereas modules migrated from SableSpMT are not as comprehensively tested. How-
ever, the presence of the framework makes debugging and future test writing easier, and allows for bug fixes
to be driven by regression tests.
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Compilation. libspmt is compiled independently of its hosts. This can permit the use of a more aggres-
sive set of compiler optimization flags. For example, SableSpMT cannot safely be compiled with global
common subexpression elimination optimizations due to particular GCC limitations with respect to the use
of labels as values, whereas libspmt can; thus code that was once tied up inSableSpMT can now be more
heavily optimized.

The build system also supports two broadly different compilation modes. Thefirst is the traditional method
for compiling C programs, where each module is compiled independently, and then all object files are linked
together. The second#include’s all .c files into a giant source file, and compiles that to a single object file.
The advantages of the first mode are that it allows for proper unit testing,enforces modularity, and simplifies
debugging. The advantage of the second mode is that multiple translation units are compiled at once,
enabling whole program optimization, similar to how the-qipa XL C and-combine -fwhole-program

GCC flags operate.

./configure options are also available for controlling other wide-sweeping changes. These include en-
abling debugging, assertions, statistics gathering, profiling, and aggressive compiler optimization.

5 Related Work

Various software systems have been designed to support parallel execution, and include both speculative
and non-speculative approaches. The well-knownCilk language is based on a sophisticated runtime en-
vironment for non-speculative, fine-grain parallelization with automatic loadbalancing, and is guided by
explicit programmer specifications [13]. ThezJava compiler and runtime system is a more recent and VM-
related example. zJava depends on symbolic access paths computed at compile time to parallelize a program
dynamically, without using programmer directives [6]. Method calls are executed in separate child threads,
while the parent executes the method continuation until either a return value is consumed or a heap data
dependence is encountered, at which point it blocks. A registry of running threads, methods, and heap re-
gions is maintained to enforce sequential execution semantics. In general, non-speculative implementations
such as these exchange the complexity of speculative execution designs for increased complexity in ensuring
correct memory access orderings.

Speculative parallelization designs were originally proposed in the contextof hardware, but several software
approaches have also been attempted. Both hand-done proofs-of-concept [20] and full implementations have
been demonstrated. Papadimitriou and Mowry, describe a software systemfor thread level speculation based
on a virtual memory page protection mechanism [25]. Conflicting memory accesses between threads are
caught and memory is synchronized using standard page trapping and signal handling. Other approaches
follow hardware designs in tracking individual memory access conflicts. The loop-based speculative sys-
tem proposed by Cintra and Llanos exploits both compiler analysis and runtime testing to identify shared
variables and handle individual dependence violations [8]. Softspec isa compiler and runtime system that
parallelizes loops in C programs withstride-predictable memory references [4]. A memory reference in
a loop is stride-predictable if it changes by a constant value orstride with each iteration. Softspec uses
compiler-inserted calls to a runtime system that dynamically splits loops into parallelthreads with multiple
iterations each. An undo log is maintained for rollback, and barrier synchronization is used to join the loop
threads.

Hybrid software and hardware designs have of course also been investigated, and in fact most hardware
proposals include significant software support in the form of a compiler and runtime system [7, 33]; a
general purpose compiler for SpMT hardware architectures has evenbeen proposed [3]. Our library design
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is based on an understanding of the features common to these designs, the obvious need for a generic
interface, and of course our own experience in software SpMT implementation [28, 29].

Garzaranet al. proposed a taxonomy for state buffering mechanisms in thread level speculation [14]. Ac-
cording to that taxonomy libspmt supports Eager Architectural Main Memory (Eager AMM), as speculative
threads write variables to a dependence buffer and not directly to main memory, and the buffer is committed
immediately at join time along with the child stack. It also supports multiple tasks and multipleversions
of variables per processor (MultiT&MV): per-processor helper threads begin execution of child tasks as
soon as both a helper and child are available, and each child has its own dependence buffer. This design is
recommended as the most effective in terms of benefits gained for the complexity of implementation.

Techniques developed for thread level speculation are employed in othercontexts as well. Eugster demon-
strated a debugging environment for concurrent programs based on the essential idea ofrollback [11]. Saving
state and rolling back execution allows different scheduling choices to be considered in debugging or ex-
haustively considered in testing. Persistent designs also require basic program state checkpointing to restore
the system to a previous, interrupted execution [9, 34]. Concepts such as rollback and checkpointing are of
course important in fault-tolerant schemes, allowing correctness to be ensured by saving state and replay-
ing an execution if failure is detected. This also provides the basic mechanismfor transactional execution,
which can be used to give Javacodelets ACID properties [30].

Actual transactional approaches are of course quite closely related [19]. Techniques forsoftware transac-
tional memory [31] require efficient enforcement of atomicity, and thus many of the same mechanisms as
thread level speculation, including isolation of code execution and general safety enforcement. Optimistic
designs further share a need for dynamic conflict management, buffering, validation, and other runtime com-
ponents typical of speculative multithreading designs [36]. Transactional language implementations such
as Herlihyet al.’s Dynamic Software Transactional Memory [18], Harris and Fraser’s lightweight transac-
tions [17], and most recently Atomos [5] all rely on the ability to safely executecode and restore or repair
state invisibly to the user. As with other speculative multithreading designs, libspmt manages considerable
extra complexity in order to provide facilities suitable for automatic parallelisation of single-threaded code,
with no requirement for programmer interaction. Supporting transactional execution in a speculative multi-
threading environment is certainly feasible, however, and represents apotential application of our work.

6 Conclusions & Future Work

Both virtual and non-virtual execution environments are expected to exploit underlying performance-enhancing
features. However, supporting advanced hardware and operating system features is not trivial, and complex
enhancements like speculative multithreading generally require a tight and highly-specialized integration
of the runtime system and speculative components. As a complex optimization a perfect separation is not
possible, but a more maintainable approach is clearly desirable if multiple clients are expected to use the
same speculative system.

Our libspmt library for method level speculation is a modular approach to the use of thread level specula-
tion. libspmt is designed as a well-defined set of modular components that provides a reasonably minimal
interface to its unique runtime system for managing thread level speculation. Host or client services that in-
teract closely with the speculative system are cleanly separated, and allowfor relatively arbitrary execution
designs to support SpMT. We have paid careful attention to good design concerns, which include both rec-
ommended software engineering practices and the requirement that our strong modularity does not degrade
performance. Our reference SableSpMT client that is an extension of aJava interpreter demonstrates both
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the feasibility and the efficiency of our design.

The newly available modularity in libspmt will allow further work to progress in several areas indepen-
dently. Improving fork heuristics is important [37], as is adaptive value prediction [28]; previous profiling
indicated that these will help to address a significant percentage of overhead in our combined SableSpMT–
libspmt system. More involved improvements to libspmt consist of allowing speculative threads to spawn
speculative children themselves, that is, supporting in-order nested speculation, extending and reusing our
value predictors to support efficient prediction of arbitrary load values, and investigating speculative locking
and support for transactional language systems. Our immediate work is focused on integrating libspmt into
IBM’s production Java JIT compiler. JIT code generation is more complex than interpreter code, but permits
many useful internal optimizations, among them relatively easy code specialization. Our experience in this
work is expected to guide the integration of libspmt into other language environments.

We would like to thank the members of the University of Toronto Compiler and Architecture Reading Group
and our colleague Michael Batchelder at McGill University for their preliminary feedback on this material.
This research was funded by an IBM CAS fellowship and the Natural Science and Engineering Research
Council of Canada.
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