
McGill University

School of Computer Science

Sable Research Group

Using hardware data to detect repetitive program behavior

Sable Technical Report No. 2007-2

Dayong Gu and Clark Verbrugge
{dgu1, clump}@cs.mcgill.ca

March 14, 2007

w w w . s a b l e . m c g i l l . c a



Abstract

Detecting repetitive “phases” in program execution is helpful for program understanding, runtime
optimization, and for reducing simulation/profiling workload. The nature of the phases that may be
found, however, depend on the kinds of programs, as well how programs interact with the underlying
hardware. We present a technique to detect long term and variable length repetitive program behaviour
by monitoring microarchitecture-level hardware events. Our approach results in high quality repetitive
phase detection; we propose quantitative methods of evaluation, and show that our design accurately cal-
culates phases with a 92% “confidence” level. We further validate our design through an implementation
and analysis of phase-driven, runtime profiling, showing a reduction of about 50% of the profiling work-
load while still preserving 94% accuracy in the profiling results. Our work confirms that it is practical to
detect high-level phases from lightweight hardware monitoring, and to use such information to improve
runtime performance.

1 Introduction

Most programs are highly repetitive; a large portion of execution time is typically spent in just one or more
small code segments. Detecting, or even predicting repetitive, “phase-like” behaviour can be important for
many reasons, including program understanding, identification of execution “hot spots,” runtime adaptation,
and so forth. Phases of course can have different properties; mostphase analysis techniques concentrate on
finding short-term, fixed-length phases representing periods of stable program execution. This is appropriate
and reasonable for many programs, especially “regular” and scientific computations, but not necessarily
appropriate for programs with more variable behaviour and/or more long-term phase structure.

Understanding performance, including the nature of program phases,of course requires understanding the
underlying execution system as well as the program code. Modern processors are complicated, with many
internal components and designs; pipelines, multiple-level caches, TLBs,branch predictors, multiple cores,
etc. These features are very effective, but introduce a significant amount of complexity when trying to
determine why a program behaves the way it does. Previous work [13, 19] has shown that there exists a
tight, and often unintuitive relation between the hardware performance andthe program behaviour. Hard-
ware performance data is thus critical for developing a good understanding of program performance. Re-
cently, and following the general maturation of hardware performance monitoring techniques in commer-
cial machine designs, hardware event data has begun to receive more and more attention as a basis for
understanding program behaviour [30], detecting program phases [4, 10, 11], and for employing adaptive
optimizations [8,16,22].

In this paper we present a technique to detect repetitive behaviour in program execution using hardware
data. Our work considers the important problem of finding long term phases of variable length, something
we show is usefully present in many programs. Our design is based on creating “patterns” representing
the variation in hardware event data collected from low-level hardware profilers. These patterns can then
be used to detect higher-level phase changes, and incorporated into sophisticated table-based techniques to
help predict program behaviour and guide runtime adaptation.

To validate our results we develop suitable metrics, as well as a sample application. We proposeConfidence
andPossible Miss Rate (PMR)measures to quantitatively evaluate the quality of phase detection. These
calculations give a basic understanding of the quality of phase data, and are the first such measures to be
formally described. We then use our phase detection results to control the runtime profiling mechanism
in a Java Virtual Machine. Experimental data shows that our phase analysis is very accurate in objective
measures as well as potential usage: our online phase prediction allows usto reduce about half of the

1



profiling workload with almost no degradation in profiling accuracy.

Specific contributions of this work include:

• We present a new phase detection technique for long-term, variable-length phases. Our design is
based on hardware event data, combining a very lightweight phase analysis mechanism with an
essential understanding of how current performance is strongly tied to complex hardware features.

• We describe a novel set of metrics to evaluate the quality of repetitive behaviour detection. Quanti-
tative evaluation is important, and our metrics are the first proposed specifically for measuring the
success of long-term, repetitive program phase analysis.

• As an example application of our design we demonstrate how the cost of more traditional runtime
program profiling can be reduced by about half with appropriate phaseinformation. Our optimized
profiling strategy is itself a concrete runtime optimization.

The remainder of this paper is organized as follows. In the next section wedescribe related work on phase
analysis, use of hardware data in program analysis, runtime profiling techniques and table based prediction.
This is followed in Section 3 with a description of our basic phase analysis design. Our evaluation metrics
are explained in detail in Section 4, with results and other experimental data reported in Section 5. We
conclude and provide future work in Section 6.

2 Related Work

Most program phase detection techniques are based on comparing the differences in behaviour between
fixed-length intervals; program execution is divided into short intervals and profiling data is measured in
each. If the differences between two consecutive intervals is larger than a predefinedthresholda phase
transition point is declared. Hindet al. give a classification in [14] for this type of technique. Of course
there is considerable variance in the kind of data gathered and the way datais represented. Sherwoodet
al., for instance, make use ofBasic Block Vectors(BBVs) to detect phase changes [24]. Following a more
low level perspective, Dhodapkar and Smith use theInstruction Working Setto detect phase transitions [9].
Other measurement targets includesconditional branch counts[4], data reuse distance[23] andsoftware
trace generation rate[3].

More recently the importance of detecting phases with variable length has been considered. In [18] Lauet al.
point out that fixed length solutions can become “out-of-sync” with the intrinsic period of the program. They
show that variable length intervals are necessary in some situations [18]. The authors have also previously
given a motivation for detecting periodic, long-range repetitive phases [12], and classify phase detection
techniques based on the data source, frompurely software datato actual hardware data. Our technique here
is an instance of using actual hardware data to detect coarse, long-range repetitive phases.

Detection techniques work in areactivemanner; program behaviour changes are observed only after the
occurrence of the change. Apredictivemechanism is clearly more desirable for optimization purposes. Pre-
diction techniques can be roughly divided into two types:statistical predictionandtable-based prediction.

Statistical predictors estimate future behaviour based on recent historicalbehaviour [10]. Many statistical
predictors have been developed, including (among many others)Last value, Average(N), MostFrequent(N)
and theExponentially weighted moving average predictor(EWMA(N)). Table-based predictorsallow for
more arbitrary correlation of program activity and predicted behaviour.Mappings between events or states
and predictions of the future are stored in a table and dynamically updated when large behaviour changes are

2



identified. Pickett and Verbrugge, for instance, develop amemoizationpredictor forreturn value prediction
by correlating function arguments with likely return values [21]. Sherwoodand Sair use a table-based
technique to to doRun length encoding phase predictionbased on patterns in low level branch data [25].
E. Duesterwaldet al. give a general study on predicting program behaviour [10], comparingstatistical
and table-based models operating on fixed size intervals. Their experimental results show that table-based
predictors can cope with program behaviour variability better than statisticalpredictors. Our prediction
technique is largely table-based as well; we use a mixed global/local history and give prediction results with
a confidence probability.

To predict events a lightweight profiling mechanism is crucial. Profiles can be obtained from program
instrumentation or from a sampling scheme.Dynamo, for example, uses instrumentation to guide code
transformations [3]. Commercial JVMs provide a basic instrumentation interface through Sun’s JVMTI
specification, which also makes use of instrumentation [29]. In a sampling approach, only a representative
subset of the execution events are considered. Many systems use a timer-based approach to determine
sampling points. On some other systems, such as IBM Tokyo JIT compiler [28]and Intel’s ORP JVM [7], a
count-down scheme is used, triggering sampling aftern method (or other code segment) executions. Arnold
and Grove present an approach that combines the timer-based and count-down schemes [2].

For our phase analysis we use the hardware counters in modern processors to gather execution data. Hard-
ware counters provide a lightweight mechanism for gathering micro-architectural performance information
that is difficult or impossible to derive from software techniques alone. This low level information can be
used for guiding higher level adaptive behaviour. Barneset al.,for instance, use hardware profiling to detect
hot code regions and apply code optimizations efficiently [5]. Kistler and Franz describe theOberonsystem
that performs continuous program optimization [17]. They mention the benefits of using hardware counters
in addition to software based techniques as crucial components of their profiling system. Other works based
on hardware event information can be found in [13, 22, 30]. Hardware counters can be accessed through
many software libraries, such as PMAPI [15] and PAPI [6].

Hardware
Counters

Pattern 
Analysis 

Model

Pattern Database

Runtime 
Measurement
Component

Hardware
Performance

Monitor

Pattern 
Creation

Extension

Control
Event

Patterns

Hardware
Events

Figure 1: System structure for repetitive behaviour detection.

3 System Design

Our work is an extension to Jikes RVM [1], and Figure 1 shows an overview of the design. Raw hardware
event data is read from hardware counters through theHardware performance monitor(HPM), a pre-existing
component in Jikes RVM. We augment the HPM with apattern creation extensionthat generatespatterns
representing the hardware performance. This analyzes the hardwaredata between two consecutive sample
points, summarizing the “shape” or pattern of variation in low-level performance. If we observe that the
same sequence of variation in events has been encountered before, a (new) repetitive sequence will be con-
sidered. Created patterns are transferred to apattern analysis modelfor deeper analysis. The pattern analysis
model maintains apattern databaseto store the patterns received. The pattern analysis model makes the

3



ultimate decision on the identification of and response to phase changes. To support our example opti-
mization our pattern analysis model then communicates with theruntime measurement componentin Jikes
RVM, used to control the selective profiling mechanism that regulates adaptive (re)compilation. Below we
describe the three main mechanisms in more detail: thePattern Creation Mechanism,thePattern Analysis
and Prediction,and theProfiling Control Mechanism.

3.1 Pattern creation

There are a wide variety of properties of hardware events that could beused to detect repetitive behaviour:
increasing or decreasing trends, range of variation, and distance andsimilarity measures of various forms.
Obviously there are trade-offs in terms of complexity and data size (cost) and improvements to phase detec-
tion and prediction. In order to select appropriate properties and patternbuilding strategies we implemented
a variety of heuristics and evaluated them quantitatively using the metrics developed in Section 4. Here we
present our most successful and general approach; this design summarizes low-level behaviour using (short)
bit-vectors that encode the overall pattern of variation. This is a “secondorder” approach, considering varia-
tion in hardware event counts rather than absolute counts themselves as thebasic unit. Translating hardware
event data to bit-vector patterns involves first coarsening the (variation in) data into discrete “levels,” and
then building a corresponding bit-vector “shape” representation.

• “Levels”: A basic discretization is applied to (variations in) event density data to coarsen the data
and help identify changes that indicate significant shifts in behavior. We compute the density of
events over time for each sample. By comparing the density of the current sample with that of the
previous sample, we obtain a variationV . The variationV is discretized to to a corresponding level,
PV . In our experiments we use 4 discrete levels.

• Pattern “shapes” are then determined by observing the direction of changes, positive or negative,
between consecutive samples. Complexity in shape construction is mainly driven by determining
when a pattern begins or ends.

Each shape construction is represented by a pair(PV , v), wherePV is a level associated with the
beginning of the shape, andv is a bit-vector encoding the sign (positive, negative) of successive
changes in event density. Given data with levelPV , if there is no shape under construction a new
construction begins with an empty vector:(PV , [ ]). Otherwise, there must be a shape under con-
struction(QW , v). If QW = PV , or we have seenQW > PV less thann times in a row, then shape
creation continues based on the current shape construction(QW , v): a bit indicating whetherV > 0
or not is added to the end ofv.

The following conditions terminate a shape construction:

1. If we findQW < PV we consider the current shape building complete and begin construction
of (PV , [ ]). Increases in variation of event density are indicative of a significant change in
program behavior.

2. If we findQW > PV , n times in a row the current shape has “died out.” In this case we also
consider the current shape building complete. In our experiments we usen = 2.

3. If in (QW , v) we find|v| has reached a predefined maximum length we also report the current
construction as complete. In our experiments we use a maximum of 10 bits.

A rough overview of the pattern creation algorithm is shown in Figure 2. After obtained hardware data
D, we compute the variationV betweenD and the same data (Dlast) for the previous interval.V is then
mapped from a real value to an integer valuePV ∈ {0, . . . , n}, representing the “level” ofV . As shown

4



in the formal description of this algorithm, we useQW to represent the level of the pattern currently under
construction. Initially the value ofQW is set to -1 to indicate no pattern is under construction. IfPV > QW

then we are facing a larger, and hence more important variation than the onethat began the current pattern
construction. The current pattern is thus terminated and and a new pattern construction associated with level
PV is begun. The value ofPV is assigned toQW and the shape code vector (denoted asShapeCodein
Figure 2) is blanked. Otherwise (PV ≤ QW ) and the current pattern building continues.

The actual pattern encoding is based on the relation betweenPV , QW and the sign ofV . Two bits will be
appended to the currentShapeCodeeach time a pattern grows:01 means a positive variation at levelQW ,
10 represents a negative variation at levelQW , and00 means either a positive or negative variation at a level
belowQW . Binary 1s in our scheme thus indicate points of significant change. Construction continues until
one of the pattern terminate conditions is met, at which point we report the pattern to the pattern analysis
model. A concrete example of the creation of a pattern is shown in Figure 3.

Of course choice of primary data is also important; the above strategy can beapplied to many different
hardware events. In our actual system we make use of the instruction cache miss density as a good indicator
of code activity. Use of other events and combined events is part of future work.

Get hardware data D
V = Variation(D,D_last)

Pv=Lev(V)

Pv > Qw?
Yes

Start a new pattern construction: 
Qw := Pv

ShapeCode=[ ]

Compute  shape bits S of V as:
case (Pv < Qw)                  : S =00
case (Pv==Qw) && (V >0) : S =01
case (Pv==Qw) && (V < 0): S =10

ShapeCode += S;

Pattern End?

Report pattern to analysis model

No

No

Yes

Figure 2: A flow chart for pattern creation.

5



 1  2  3  4  5  6

Hardware data (1) -1

-0.5

 0

 0.5

 1

 1  2  3  4  5  6

Variation (2)

 

 

 

 

 2  3  4  5  6

Lv0

Lv1

Lv2

Lv3

Level (3)  

 

 

 

 2  3  4  5  6

Lv0

Lv1

Lv2

Lv3
01 00 01 00 00

Pattern (4)

Figure 3: Pattern creation example. (1) Acquire the raw hardware data. (2) Calculate the variation between
consecutive points. (3) Coarsen the variation into different levels; the triangles inside each circle show
the direction (negative/positive) of variation. (4) The final pattern creation results; the arrow on the y-
axis indicates that we obtain a level 2 pattern; the number above each circle shows the 2-bit code for each
variation. The four trailing zeros are omitted (the pattern has died out), and the final pattern code is 010001.

3.2 Pattern analysis and prediction

Pattern analysis and prediction consumes patterns generated by the patterncreation module. Here we further
examine the patterns to discover repetitive phases and generate predictions of future program behaviour. All
created patterns are stored into apattern database.The recurrent pattern detection and prediction are based
on the information in the pattern database and the incoming pattern.

The recurrent detection is straightforward: if we find a newly created pattern that shares the same pattern
code as a pattern stored in the pattern database we declare it to have recurred. An actual repetitive phase,
however, is not declared unless the current pattern also matches the prediction results.

The prediction strategy we use is a variant of fixed-length, local/global mixed history, table-based prediction.
Unlike more direct table-based methods our predictions include an attached “confidence” value; this allows
us to track multiple prediction candidates and select the most likely.

Figure 4 gives an overview of our prediction scheme. For each pattern,we keep the three most popular
repetition “distances” from a former occurrence to a later one—the use ofthree candidates is based on
experimentally balancing predictor performance and accuracy. Prediction updates are performed by heuris-
tically evaluating these distances for a given incoming pattern to find the most likely, variable-length pattern
repetition. Ourtri-distance selection algorithmupdates the likely choices for an incoming patternp by
tracking three repetitionsDi, i ∈ {0, 1, 2}:

• For eachDi we keep a repetition lengthLi, measured by subtracting time stamps of occurrences,

6



...

Tri-distance  Selection Algorithm

Dual-channel Selection Algorithm

Channel I Channel II

Comparison

Prediction Result

...

Figure 4: Overview of the prediction mechanism.

and a “hotness” valueHi.

• The differenceTi between the current pattern occurrencep and the ending point of each ofDi is
calculated.

• If the difference betweenTi and Li is smaller than a thresholdT , the hotnessHi is increased.
Otherwise,Hi is decreased.

• If the difference betweenTi andLi is larger thanT for all threeDi, we replace theDj associated
with the lowest hotness with a newDj . The length,Lj is based on the distance to the closest of the
current set ofDi, and hotness,Hj , is initialized to a constant value representing a low but positive
hotness in order to give the new pattern a chance to become established.

• We use theDi with the greatest hotness as the prediction result;Hi further functions as a confidence
value for this prediction.

With the current prediction updated we then make a final prediction from the global set of pattern updates.
In this case we use two global prediction “channels” to limit the cost of choosing among all possible pat-
terns. Ourdual-channel selection algorithmis similar to the tri-distance selection algorithm: if the current
prediction matches one or both of the prediction channels the channel hotness is increased by the predic-
tion confidence, and if it matches neither then the coldest channel is replaced. The hottest channel then
determines the global prediction result.

7



3.3 Controlling the runtime profiling

For our application example we use the repetitive phase detection and prediction results to control the normal
runtime profiling mechanism of Jikes RVM used to guide its adaptive optimization system. When there is
no recurrent pattern the runtime measurement component takes profiles asusual. When a recurrent pattern
is detected we compare it with the previous prediction. If it changes the prediction result we still keep
collecting profiles, but also save them into an extra, variable-length local buffer. If the predicted pattern is
the same as the last prediction we stop the profiling and instead “replay” the samples in the local buffer.
Real program behaviour can of course drift from predicted behaviour over time, and so to ensure profiling
accuracy we have a count-down, rechecking scheme to re-enable the profiling periodically irrespective of
prediction.

4 Evaluation Metrics

Evaluation of phase analysis and prediction is typically done through either visual inspection or through
impact on some external optimization. Here we provide two novel sets of metrics. The first evaluates the
quality of repetition detection, and the second measures the accuracy and workload reduction of our profiling
consumer application.

4.1 Quality of repetition detection metrics

Although the repetitive behaviour of programs has been known for a longtime there is a general lack of
a formal ways to quantitively evaluate it. This is especially true of long term, variable-length program pe-
riodicity as we investigate here. We thus define two metrics,ConfidenceandPossible Miss Rate (PMR).
Confidencegives a measure of the similarity between repetitive periods identified by our algorithm, while
PMR measures the amount of execution which could have been identified as repetitive but which was not
done so by the phase detection algorithm. Both Confidence and PMR are based on the same pair of fun-
damental metrics measuring the similarity between execution segments that may be allocated to the same
repetitive group, such as the instances (occurrences) of the same pattern.

Suppose we have a patternP which hasN instances. The group of all the instances ofP can be represented
as an ordered set,G(P ) = {Pi|i = 1, 2, ..., N} Two basic metrics are then used to quantify thesimilarity
andregularityof a setG(P ).

• Similarity: We calculate thePearson correlationbetween each pair inG(P ) and use the average of
the results to represent the similarity of a group. We denote this value asCG(P ).

• Regularity: The time difference between start times for each pair of adjacentPi provides a basic
“distance” measure between pattern instances. The extent to which patterninstances are well clus-
tered shows regularity; we measure it using ak-meansclustering algorithm [20] applied to the set of
all distance pairs. For each cluster we obtain the absolute value of the difference between each item
and the centroid of the cluster. The sum of all these difference becomes ameasure of the regularity
of the pattern groupG(P ), and we denote this value asDG(P ).

Combining the above calculations, we provide an overall evaluation ofG(P ) as:

EG(P ) = CG(P ) ∗ D−1
G(P )

8



Given different repetition detections for the same patternP a higherEG(P ) heuristically indicates better
results.

Our actual metrics can now be defined in terms of the above calculations.

• Confidence:For eachG(P ), we generate a set̂G(P )j by removing thejth pattern instance ofG(P ).
If Ĝ(P )j has a better quality (E) thanG(P ), then we have less confidence on thejth pattern instance
being a member of the group, and thus reduced confidence in the groupingitself. Otherwise, thejth

instance makes the whole group better and improves confidence.

We thus give a confidence scoreConf(Pj) of thejth item ofG(P ) as:

Conf(Pj) =







1.0 EG(P ) > E
Ĝ(P )j

EG(P )

E
Ĝ(P )j

Otherwise

Confidence in the detection results of patternP , denoted asConf(P ), is then the sum ofConf(Pj)
for all j.

Our finalConfidencein a complete detection result on allm patternsP 1, P 2, ..., Pm appearing in
the result is the sum of confidence in each pattern weighted by the “size” ofthe pattern:

Confidence=

∑m
i=1 Conf(Pm)

∑m
i=1 |G(Pm)|

Confidencebasically indicates the degree to which the pattern detection results represent at least
a local maximum. High confidence indicates patterns are well-categorized, while low confidence
suggests some execution segments may be misclassified.

• Possible miss rate (PMR):The PMR evaluates how much of the execution was potentially mis-
identified as non-repetitive. We define it as follows:

PMR=
Number of PMPI

Number of PMPI+ Number of DPI
(1)

In formula 1 above,PMPI stands for “Possible Missed Pattern Instances” andDPI represents “De-
tected Pattern Instances”. Somewhat dual toConfidence,the fundamental idea ofPMR is to add
an execution segment as an instance of a pattern and check whether this new grouping is better or
worse.

Given a pattern detection resultG(P ), we treat all the execution segments that are not covered by
G(P ) as potential elements ofPMPI. We then insert each such execution segments into G(P ) and
build a new group̌G(P )s. Segments is then included as a member ofPMPI if EG(P ) < EǦ(P )s .

4.2 Profiling metrics

The two metrics given in Section 4.1 evaluate our repetitive phase detection in terms of distance from an
abstract ideal. Here we describe how we evaluate the success of phaseprediction when applied to a concrete
optimization.

Our example application is an improvement to the runtime profiling in Jikes RVM usedto support its adap-
tive compiler [2]. This profiler samples execution periodically in order to identify “hot methods” and make
(re)compilation decisions; sampling rates heuristically trade off accuracy for profiling cost. We provide two
metrics for evaluating the impact of phase prediction on profiling:

9



• Profiling rate: Profiling ratePr is defined as:

Pr =
Number of Actual Profiling Points

Number of All Possible Profiling Points
∗ 100%

An unmodified version of the runtime profiling mechanism has aPr of 100%. Based on phase pre-
dictions, we disable some profiling points; a lower value ofPr indicates a reduction in the profiling
workload.

• Coverage score (Cov):The Jikes RVM profiler makes use of the relative number of probe results in
each method. Our predicted results should thus produce the same intended effect.

A method profiling resultR on methodsMi, i ∈ {1, . . . , m} can be represented as:
R = {< Mi, PerRi >}

wherePerNi is the percentage ratio of samples in methodMi to the total number of program samples.
Given a canonical sample resultN = {< Mi, PerNi >}. TheCovof R is calculated as:

Cov(R) =
m

∑

i=1

Min(PerRi , PerNi )

To compare the accuracy of phase based profiling to the original profilingresults we obtain a canon-
ical N by averaging multiple standard executions of the original profiling mechanism.In practice
N is reasonably stable. TheCov for a phase based profiling run compared with the averageCovof
each of our standard runs provides anaccuracy scorethat indicates how much a given phase based
profile varies from typical runs.

5 Experimental Analysis

Here we make use of the metrics developed in the previous section to experimentally evaluate our technique.
Following our experimental setting we first present our quality results, followed by our profiling workload
and accuracy measurements.

5.1 Setting and Benchmarks

Our implementation is based on JikesRVM 2.3.6 with an adaptive JIT compiler; results were measured
on an Athlon 1.4GHz workstation with 1GB memory (Debian Linux, 2.6.9 kernel).We report phase de-
tection results derived from L1 instruction cache miss events. Benchmarksinclude the industry standard
SPECJVM98 suite [26], and two larger examples,SOOT and PSEUDOJBB. SOOT is a Java optimization
framework which takes Java class files as input and applies optimizations to thebytecode; in our experi-
ments, we runSOOTon the class files forJAVAC in SPECJVM98 with options “–app -O”. PSEUDOJBB is a
variant of SPECJBB2000 [27] which executes a fixed number of transactions in multiple warehouses. Our
experiments run one to eight warehouses, 100 000 transactions in each warehouse. For SPECJVM98 we
use the recommended (large) input size “-s 100”. For quality analysis we built a canonical sample profile
from 15 typical runs, while the phase driven profiling results are the average of 5 runs. The thresholdT for
tri-distance selection is set to 10%.

10



5.2 Results

Columns 2 through 6 in Table 1 show the metric results, calculated using an offline analysis on trace files
from our online implementation. The five data columns are the number of different patterns, the number of
occurrences of all patterns,Confidenceresults,PMRresults andPMRresults on the most important (major
level) patterns.

Bench. Number of Number of Conf. PMR PMR Profiling Accuracy Score (%)
Patterns Occur. (%) Major(%) Rate (%) Phase Driven Simple 50%

compress 32 158 0.94 60.78 2.78 52.2 91.72 91.71
db 29 451 0.95 35.94 1.25 37.5 85.61 89.54

jack 29 352 0.94 22.65 0.05 46.0 95.55 68.56
javac 23 214 0.93 32.42 6.58 54.8 99.32 76.87

jess 25 182 0.88 48.71 5.88 47.3 91.92 79.12
mpegaudio 28 111 0.91 68.71 13.49 49.7 92.47 83.76

mtrt 27 78 0.85 27.58 0.10 77.7 97.15 83.00
raytrace 18 69 0.85 16.17 4.44 97.9 99.97 83.82

soot 49 11106 0.99 28.45 0.03 27.2 93.83 61.43
PseudoJbb 35 7093 0.98 37.80 0.01 30.0 94.71 64.84

Average — — 0.92 37.98 3.46 51.02 94.31 78.26

Table 1: Pattern detection evaluation and profiling workload reduction results( Occur. for Occurrence,Conf.
for Confidence )

On average we have a 92%Confidencethat the segments identified by our algorithm are actual repetitive
portions. Unfortunately we also have a comparatively high averagePMR,38%. This means we potentially
miss over a third of repetitive segments in the execution. Deeper investigation shows that most of the missed
segments are likely instances of patterns at the lowest levels (0 and 1). As described in Section 3, pattern
creation at lower levels will be interrupted when a higher level change is encountered. It is not therefore
surprising that many possible repetitions of lower level patterns are ignored by our algorithm; larger, more
significant changes are expected to be more important for capturing the important repetitive behavior of a
program, and our algorithm weights such patterns higher. In Table 1, the “PMR Major” column gives the
PMR value for only the upper range of variance (levels 2 and 3). For these signals the data shows that we
only miss on average about 3.5% of possible repetitive periods.

Profiling workload reduction and accuracy results are shown in the last three columns of Table 1. On
average we reduce the profiling workload by about a half, although results vary significantly by benchmark.
Profiling accuracy, however, is uniformly very high; on average we achieve a 94.3% accuracy, profiling at
51% of possible profiling points. For comparison purposes we show the accuracy score for a simple profiling
reduction strategy that just omits every other probe, also a factor of 2 workload reduction. On benchmarks
with small hot method sets, such asCOMPRESSandDB, profiling results are not sensitive to profiling rate.
On more complicated benchmarks, such asJACK, SOOTand PSEUDOJBB our technique is significantly more
accurate, usually with less than a 50% profiling rate. These results are alsoshown in Figure 5.

6 Conclusions & Future Work

Understanding repetitive program behaviour and exploring phases in program execution is interesting for
researchers in runtime techniques, program simulation and static/runtime compilation. For most purposes a

11



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

co
m

p. db

ja
ck

ja
va

c

je
ss

m
pe

g.

m
tr

t rt

so
ot

pJ
bb

A
vg

P
er

ce
nt

ag
e 

(%
)

Profiling Rate Accuracy Score Simple 50%

Figure 5: Profiling workload reduction and accuracy results.

high quality phase detection is important, but this is difficult or expensive to acquire from pure software-level
designs. Comparable, quantitative ways of evaluating phase prediction have also not been well explored.

In this paper, we present a new lightweight technique for determining and predicting repetitive phases in
program execution. Our approach builds on hardware event data, ensuring a close relation to actual runtime
performance. We evaluate the performance of our system using a novelset of well-defined metrics that
indicate different, important aspects of quality in detected phases. To showthe utility of this information,
we present an optimized, phase-driven runtime profiling mechanism as a sample application; with phase
prediction significant reductions in profiling workload are possible while stillensuring high accuracy.

Of course repetitive phase information can be used in a wide range of areas other than selective profiling.
Our future work involves application of phase information to directly controlling runtime recompilation de-
cisions, optimization strategy choices, adaptive system reconfiguration, and selection of garbage collection
points.

References

[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd,
and M. Mergen. Implementing Jalapeño in Java. InOOPSLA ’99: Proceedings of the 14th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, pages 314–324, Oct. 1999.

[2] M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directed optimization of Java. InOOPSLA ’02: Pro-
ceedings of the 17th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 111–129, New York, NY, USA, 2002. ACM Press.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimization system. InPLDI ’00:
Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and implementation,
pages 1–12, New York, NY, USA, 2000. ACM Press.

[4] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu,and S. Dwarkadas. Memory hierarchy reconfiguration
for energy and performance in general purpose architectures. In MICRO 33:the 33rd Annual Intl. Sym. on
Microarchitecture, pages 245–257, Dec. 2000.

12



[5] R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. mei W. Hwu.Vacuum packing: extracting hardware-
detected program phases for post-link optimization. InMICRO 35: Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture, pages 233–244, Los Alamitos, CA, USA, 2002. IEEE Computer
Society Press.

[6] S. Brown, J. Dongarra, N. Garner, K. London, and P. Mucci.PAPI. http://icl.cs.utk.edu/papi.

[7] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth. The open runtime platform: a flexible high-
performance managed runtime environment: Research articles.Concurr. Comput. : Pract. Exper., 17(5-6):617–
637, 2005.

[8] A. Dhodapkar and J. Smith. Dynamic microarchitecture adaptation via co-designed virtual machines, 2002.

[9] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration hardware via dynamic working set analysis. In
ISCA ’02: Proceedings of the 29th annual international symposium on Computer architecture, pages 233–244.
IEEE Computer Society, 2002.

[10] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and predicting program behavior and its variabil-
ity. In PACT ’03: Proceedings of the 12th International Conferenceon Parallel Architectures and Compilation
Techniques, page 220. IEEE Computer Society, Sep. 2003.

[11] A. Georges, D. Buytaert, L. Eeckhout, and K. D. Bosschere. Method-level phase behavior in Java workloads.
In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN Conference on Object-oriented programming,
systems, languages, and applications, pages 270–287, Oct. 2004.

[12] D. Gu and C. Verbrugge. A survey of phase analysis: Techniques, evaluation and applications. Technical Report
SABLE-TR-2006-1, Sable Research Group, McGill University, March 2006.

[13] D. Gu, C. Verbrugge, and E. Gagnon. Relative factors in performance analysis of Java virtual machines. InVEE
’06: Proceedings of the 1st ACM/USENIX international conference on Virtual execution environments, New
York, NY, USA, June 2006. ACM Press.

[14] M. J. Hind, V. T. Rajan, and P. F. Sweeney. Phase shift detection: A problem classification. Technical Report
IBM Research Report RC-22887, IBM T. J. Watson, August 2003.

[15] IBM. Pmapi.http://www.alphaworks.ibm.com/tech/pmapi.

[16] D. A. Jiménez. Code placement for improving dynamic branch prediction accuracy. InPLDI ’05: Proceedings
of the 2005 ACM SIGPLAN conference on Programming language design and implementation, pages 107–116,
New York, NY, USA, 2005. ACM Press.

[17] T. Kistler and M. Franz. Continuous program optimization: A case study.ACM Trans. Program. Lang. Syst.,
25(4):500–548, 2003.

[18] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation for variable length intervals to find
hierarchical phase behavior. In2005 IEEE International Symposium on Performance Analysisof Systems and
Software (ISPASS’05), March 2005.

[19] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong correlation between code signatures
and performance. InISPASS ’05: Proceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software, page 220. IEEE Computer Society, March 2005.

[20] J. McQueen. Some methods for classification and analysis of multivariate observations. In L. M. LeCam and
N. Neyman, editors,the fifth Berkeley symposium on mathematical statistics andprobability, volume 1, pages
281–297, 1967.

[21] C. J. F. Pickett and C. Verbrugge. Return value prediction in a Java virtual machine. InProceedings of the 2nd
Value-Prediction and Value-Based Optimization Workshop (VPW2), pages 40–47, Oct. 2004.

[22] R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong, and W.-F. Wong. Compiler orchestrated prefetching via
speculation and predication. InASPLOS-XI: Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems, pages 189–198, Oct. 2004.

13



[23] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. SIGPLAN Not., 39(11):165–176, 2004.

[24] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find periodic behavior and sim-
ulation points in applications. InPACT ’01: Proceedings of the 2001 International Conferenceon Parallel
Architectures and Compilation Techniques, pages 3–14, Washington, DC, USA, 2001. IEEE Computer Society.

[25] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. InISCA ’03: Proceedings of the 30th annual
international symposium on Computer architecture, pages 336–349, 2003.

[26] Standard Performance Evaluation Corporation. SPECjvm98 benchmarks.http://www.spec.org/osg/
jvm98.

[27] Standard Performance Evaluation Corporation. SPECjbb2000. http://www.spec.org/osg/jbb2000,
2000.

[28] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A dynamic optimization framework for
a Java just-in-time compiler. InOOPSLA ’01: Proceedings of the 16th ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications, pages 180–195, New York, NY, USA, 2001. ACM
Press.

[29] Sun Microsystems, Inc. The Java Virtual Machine Tools Interface.http://java.sun.com/j2se/1.5.
0/docs/guide/jvmti/.

[30] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove, and M. Hind. Using hardware per-
formance monitors to understand the behavior of Java applications. InVM’04:Proceedings of the 3rd Virtual
Machine Research and Technology Symposium, May 2004.

14


