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Abstract

Detecting repetitive “phases” in program execution is idlfor program understanding, runtime
optimization, and for reducing simulation/profiling wookld. The nature of the phases that may be
found, however, depend on the kinds of programs, as well hmgrams interact with the underlying
hardware. We present a technique to detect long term anabl@ilength repetitive program behaviour
by monitoring microarchitecture-level hardware eventsir @pproach results in high quality repetitive
phase detection; we propose quantitative methods of d@i@hjand show that our design accurately cal-
culates phases with a 92% “confidence” level. We furthedzd our design through an implementation
and analysis of phase-driven, runtime profiling, showingduction of about 50% of the profiling work-
load while still preserving 94% accuracy in the profilinguks. Our work confirms that it is practical to
detect high-level phases from lightweight hardware mainitp and to use such information to improve
runtime performance.

1 Introduction

Most programs are highly repetitive; a large portion of execution time is tipispent in just one or more
small code segments. Detecting, or even predicting repetitive, “phasdsékaviour can be important for
many reasons, including program understanding, identification of @machot spots,” runtime adaptation,
and so forth. Phases of course can have different properties;pimase analysis techniques concentrate on
finding short-term, fixed-length phases representing periods of staidgegon execution. This is appropriate
and reasonable for many programs, especially “regular” and scientifigpgtations, but not necessarily
appropriate for programs with more variable behaviour and/or more longgkase structure.

Understanding performance, including the nature of program phafsesurse requires understanding the
underlying execution system as well as the program code. Moderegsois are complicated, with many
internal components and designs; pipelines, multiple-level caches, Bt&s;h predictors, multiple cores,
etc. These features are very effective, but introduce a significanuat of complexity when trying to
determine why a program behaves the way it does. Previous work9lLBas shown that there exists a
tight, and often unintuitive relation between the hardware performancéhanarogram behaviour. Hard-
ware performance data is thus critical for developing a good undeimstpotiprogram performance. Re-
cently, and following the general maturation of hardware performancetoniory techniques in commer-
cial machine designs, hardware event data has begun to receive mibreage attention as a basis for
understanding program behaviour [30], detecting program phdsé&6,[11], and for employing adaptive
optimizations [8, 16, 22].

In this paper we present a technique to detect repetitive behaviour gnapnoexecution using hardware
data. Our work considers the important problem of finding long term phafseariable length, something
we show is usefully present in many programs. Our design is based atingrépatterns” representing
the variation in hardware event data collected from low-level hardwarfgrs. These patterns can then
be used to detect higher-level phase changes, and incorporatedphisticated table-based techniques to
help predict program behaviour and guide runtime adaptation.

To validate our results we develop suitable metrics, as well as a sample applid&dgropos€onfidence

and Possible Miss Rate (PMRijeasures to quantitatively evaluate the quality of phase detection. These
calculations give a basic understanding of the quality of phase dataraukleafirst such measures to be
formally described. We then use our phase detection results to contralritime profiling mechanism

in a Java Virtual Machine. Experimental data shows that our phase en@ly&ery accurate in objective
measures as well as potential usage: our online phase prediction allaiwsreduce about half of the



profiling workload with almost no degradation in profiling accuracy.

Specific contributions of this work include:

e We present a new phase detection technique for long-term, variabliglghgses. Our design is
based on hardware event data, combining a very lightweight phasessnalgchanism with an
essential understanding of how current performance is strongly tiemhplex hardware features.

e We describe a novel set of metrics to evaluate the quality of repetitive loemaletection. Quanti-
tative evaluation is important, and our metrics are the first proposed spégifir measuring the
success of long-term, repetitive program phase analysis.

e As an example application of our design we demonstrate how the cost of raditoimal runtime
program profiling can be reduced by about half with appropriate phésenation. Our optimized
profiling strategy is itself a concrete runtime optimization.

The remainder of this paper is organized as follows. In the next sectiaeseribe related work on phase
analysis, use of hardware data in program analysis, runtime profilingitears and table based prediction.
This is followed in Section 3 with a description of our basic phase analysigrde®ur evaluation metrics
are explained in detail in Section 4, with results and other experimental dadeted in Section 5. We
conclude and provide future work in Section 6.

2 Related Work

Most program phase detection techniques are based on comparingfétendiés in behaviour between
fixed-length intervals; program execution is divided into short intervatk @ofiling data is measured in
each. If the differences between two consecutive intervals is largerah@edefinedhresholda phase
transition point is declared. Hinett al. give a classification in [14] for this type of technique. Of course
there is considerable variance in the kind of data gathered and the waig dafaesented. Sherwoead

al., for instance, make use &asic Block Vector¢éBBVs) to detect phase changes [24]. Following a more
low level perspective, Dhodapkar and Smith useltistruction Working Seto detect phase transitions [9].
Other measurement targets includesditional branch count§], data reuse distanc3] and software
trace generation rat€3].

More recently the importance of detecting phases with variable length hastesidered. In [18] Laat al.
point out that fixed length solutions can become “out-of-sync” with the isittiperiod of the program. They
show that variable length intervals are necessary in some situations [i8guthors have also previously
given a motivation for detecting periodic, long-range repetitive phak®s ind classify phase detection
techniques based on the data source, fpomely software dat#o actual hardware dataOur technique here
is an instance of using actual hardware data to detect coarse, loyegnepetitive phases.

Detection techniques work in @activemanner; program behaviour changes are observed only after the
occurrence of the change. pkedictivemechanism is clearly more desirable for optimization purposes. Pre-
diction techniques can be roughly divided into two typststistical predictiorandtable-based predictian

Statistical predictors estimate future behaviour based on recent histoetcaviour [10]. Many statistical
predictors have been developed, including (among many othast)value Average(N) MostFrequent(N)
and theExponentially weighted moving average predictB'WMA(N)). Table-based predictorallow for
more arbitrary correlation of program activity and predicted behavidappings between events or states
and predictions of the future are stored in a table and dynamically updatstlarige behaviour changes are



identified. Pickett and Verbrugge, for instance, developeanoizatiorpredictor forreturn value prediction
by correlating function arguments with likely return values [21]. Sherwand Sair use a table-based
technique to to dd&rkun length encoding phase predictibased on patterns in low level branch data [25].
E. Duesterwalcet al. give a general study on predicting program behaviour [10], compatatistical
and table-based models operating on fixed size intervals. Their experimentiis show that table-based
predictors can cope with program behaviour variability better than statigtiedictors. Our prediction
technique is largely table-based as well; we use a mixed global/local histdigivaprediction results with

a confidence probability.

To predict events a lightweight profiling mechanism is crucial. Profiles eaoltained from program
instrumentation or from a sampling schemB@ynamq for example, uses instrumentation to guide code
transformations [3]. Commercial JVMs provide a basic instrumentation isetfarough Sun’'s JVMTI
specification, which also makes use of instrumentation [29]. In a samplirrgagp only a representative
subset of the execution events are considered. Many systems use &dsedrapproach to determine
sampling points. On some other systems, such as IBM Tokyo JIT compileaf2Bntel's ORP JVM [7], a
count-down scheme is used, triggering sampling afterethod (or other code segment) executions. Arnold
and Grove present an approach that combines the timer-based atdioaemschemes [2].

For our phase analysis we use the hardware counters in moderngmectsgather execution data. Hard-
ware counters provide a lightweight mechanism for gathering micro-actiité performance information
that is difficult or impossible to derive from software techniques alonas Bw level information can be
used for guiding higher level adaptive behaviour. Baetes.,for instance, use hardware profiling to detect
hot code regions and apply code optimizations efficiently [5]. Kistler andZdescribe th®beronsystem
that performs continuous program optimization [17]. They mention the lieéfising hardware counters
in addition to software based techniques as crucial components of thigingrsystem. Other works based
on hardware event information can be found in [13, 22, 30]. Harewaunters can be accessed through
many software libraries, such as PMAPI [15] and PAPI [6].

Pattern
Patterns . Control
Analysis >» )
Hardware Pattern Model Event Runtime
Hardware .
i Events Performance Creation Measurement
Monitor Extension Component

Hardware
Counters

Pattern Database

Figure 1: System structure for repetitive behaviour detection.

3 System Design

Our work is an extension to Jikes RVM [1], and Figure 1 shows an owergfahe design. Raw hardware
event datais read from hardware counters throughltlrdware performance monitgHHPM), a pre-existing
component in Jikes RVM. We augment the HPM witpattern creation extensiotnat generatepatterns
representing the hardware performance. This analyzes the hardatarbetween two consecutive sample
points, summarizing the “shape” or pattern of variation in low-level perfocea If we observe that the
same sequence of variation in events has been encountered before) agpetitive sequence will be con-
sidered. Created patterns are transferredpateern analysis modébr deeper analysis. The pattern analysis
model maintains pattern databaséo store the patterns received. The pattern analysis model makes the



ultimate decision on the identification of and response to phase changesipdortsour example opti-
mization our pattern analysis model then communicates withuhéme measurement componémtlikes
RVM, used to control the selective profiling mechanism that regulatediaedpe)compilation. Below we
describe the three main mechanisms in more detailP#itern Creation Mechanisnthe Pattern Analysis
and Predictionand theProfiling Control Mechanism.

3.1 Pattern creation

There are a wide variety of properties of hardware events that coulddzbto detect repetitive behaviour:
increasing or decreasing trends, range of variation, and distancgraitarity measures of various forms.

Obviously there are trade-offs in terms of complexity and data size (castjrgorovements to phase detec-
tion and prediction. In order to select appropriate properties and péttédding strategies we implemented
a variety of heuristics and evaluated them quantitatively using the metrickodedan Section 4. Here we

present our most successful and general approach; this desigmesizes low-level behaviour using (short)
bit-vectors that encode the overall pattern of variation. This is a “secadet” approach, considering varia-
tion in hardware event counts rather than absolute counts themselvedasithenit. Translating hardware
event data to bit-vector patterns involves first coarsening the (variatjataia into discrete “levels,” and

then building a corresponding bit-vector “shape” representation.

e “Levels”: A basic discretization is applied to (variations in) event densita tla coarsen the data
and help identify changes that indicate significant shifts in behavior. \Wepuate the density of
events over time for each sample. By comparing the density of the curmaptesavith that of the
previous sample, we obtain a variatibn The variationl/ is discretized to to a corresponding level,
Py . In our experiments we use 4 discrete levels.

e Pattern “shapes” are then determined by observing the direction of ehapgsitive or negative,
between consecutive samples. Complexity in shape construction is mainlg dsvéetermining
when a pattern begins or ends.

Each shape construction is represented by a(#3i; v), where Py, is a level associated with the
beginning of the shape, andis a bit-vector encoding the sign (positive, negative) of successive
changes in event density. Given data with lex?g, if there is no shape under construction a new
construction begins with an empty vectg@f?y,, [ ]). Otherwise, there must be a shape under con-
struction(Qw,v). If Qw = Py, or we have see@y > Py less tham times in a row, then shape
creation continues based on the current shape constrQignv): a bit indicating whethe?” > 0

or not is added to the end of

The following conditions terminate a shape construction:

1. Ifwe findQw < Py we consider the current shape building complete and begin construction
of (Py,[]). Increases in variation of event density are indicative of a significaange in
program behavior.

2. Ifwe findQw > Py, ntimes in a row the current shape has “died out.” In this case we also
consider the current shape building complete. In our experiments we &s&

3. Ifin (Qw,v) we find|v] has reached a predefined maximum length we also report the current
construction as complete. In our experiments we use a maximum of 10 bits.

A rough overview of the pattern creation algorithm is shown in Figure 2. rAfteained hardware data
D, we compute the variatiolf betweenD and the same datd)as;) for the previous intervall is then
mapped from a real value to an integer valte € {0,...,n}, representing the “level” of’. As shown
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in the formal description of this algorithm, we u§gy to represent the level of the pattern currently under
construction. Initially the value ayy is set to -1 to indicate no pattern is under constructio®if> Qw
then we are facing a larger, and hence more important variation than thbairiegan the current pattern
construction. The current pattern is thus terminated and and a new paitestruction associated with level
Py is begun. The value aPy is assigned td@)y and the shape code vector (denotedsaspeCodén
Figure 2) is blanked. Otherwisé(; < Q) and the current pattern building continues.

The actual pattern encoding is based on the relation betWge®y, and the sign of/. Two bits will be
appended to the curreBhapeCodeach time a pattern grow81 means a positive variation at lev@ly,

10 represents a negative variation at lef)g|-, and00 means either a positive or negative variation at a level
below@Qy . Binary 1s in our scheme thus indicate points of significant change. @atistr continues until
one of the pattern terminate conditions is met, at which point we report therptitédre pattern analysis
model. A concrete example of the creation of a pattern is shown in Figure 3.

Of course choice of primary data is also important; the above strategy capgtied to many different
hardware events. In our actual system we make use of the instructioa cass density as a good indicator
of code activity. Use of other events and combined events is part oEfutork.

<

Get hardware data D
V = Variation(D,D_last)

Pv=Lev(V)

+ Yes QQW?

Start a new pattern construction: No

Qw = Pv
ShapeCode=[ ]
|
Y
Compute shape bits S of V as:
case (Pv<Qw) : S =00

case (Pv==Qw) && (V >0) : S =01
case (Pv==Qw) && (V <0): S =10

v

ShapeCode += S;

Pattern End?

Yes

Report pattern to analysis model

Figure 2: A flow chart for pattern creation.
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Figure 3: Pattern creation example. (1) Acquire the raw hardware @t€a(culate the variation between
consecutive points. (3) Coarsen the variation into different levels; thegles inside each circle show
the direction (negative/positive) of variation. (4) The final pattern tawaaresults; the arrow on the y-
axis indicates that we obtain a level 2 pattern; the number above each tiogle the 2-bit code for each
variation. The four trailing zeros are omitted (the pattern has died out), arfthth pattern code is 010001.

3.2 Pattern analysis and prediction

Pattern analysis and prediction consumes patterns generated by theqgratiéion module. Here we further
examine the patterns to discover repetitive phases and generate predittiature program behaviour. All
created patterns are stored intpatern databaseThe recurrent pattern detection and prediction are based
on the information in the pattern database and the incoming pattern.

The recurrent detection is straightforward: if we find a newly createégipathat shares the same pattern
code as a pattern stored in the pattern database we declare it to havededur actual repetitive phase,
however, is not declared unless the current pattern also matches dietipreresults.

The prediction strategy we use is a variant of fixed-length, local/globaldtiistory, table-based prediction.
Unlike more direct table-based methods our predictions include an attachefiddence” value; this allows
us to track multiple prediction candidates and select the most likely.

Figure 4 gives an overview of our prediction scheme. For each patterikeep the three most popular
repetition “distances” from a former occurrence to a later one—the usere¢ candidates is based on
experimentally balancing predictor performance and accuracy. Predigitates are performed by heuris-
tically evaluating these distances for a given incoming pattern to find the mdgt likeable-length pattern
repetition. Ourtri-distance selection algorithrapdates the likely choices for an incoming patterby
tracking three repetition®;, i € {0, 1,2}:

e For eachD; we keep a repetition length;, measured by subtracting time stamps of occurrences,
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Figure 4: Overview of the prediction mechanism.

and a “hotness” valuél;.

e The differencel; between the current pattern occurrepcand the ending point of each &J; is
calculated.

o If the difference betweefl; and L; is smaller than a threshold, the hotnesdd; is increased.
Otherwise,H; is decreased.

o If the difference betweeff; and L, is larger tharil for all three D;, we replace theéD; associated
with the lowest hotness with a nel®;. The length,L; is based on the distance to the closest of the
current set ofD;, and hotnessl/;, is initialized to a constant value representing a low but positive
hotness in order to give the new pattern a chance to become established.

e We use theD; with the greatest hotness as the prediction regfjlfurther functions as a confidence
value for this prediction.

With the current prediction updated we then make a final prediction fromittelgset of pattern updates.
In this case we use two global prediction “channels” to limit the cost of dhgasmong all possible pat-
terns. Ourdual-channel selection algorithia similar to the tri-distance selection algorithm: if the current
prediction matches one or both of the prediction channels the channekhasniecreased by the predic-
tion confidence, and if it matches neither then the coldest channel is edpldde hottest channel then
determines the global prediction result.



3.3 Controlling the runtime profiling

For our application example we use the repetitive phase detection andioredisults to control the normal
runtime profiling mechanism of Jikes RVM used to guide its adaptive optimizatistersy When there is
no recurrent pattern the runtime measurement component takes profilggeds\When a recurrent pattern
is detected we compare it with the previous prediction. If it changes thecfimedresult we still keep
collecting profiles, but also save them into an extra, variable-length loéfrb If the predicted pattern is
the same as the last prediction we stop the profiling and instead “replay” ti@esain the local buffer.
Real program behaviour can of course drift from predicted bebawdweer time, and so to ensure profiling
accuracy we have a count-down, rechecking scheme to re-enableofiimg periodically irrespective of
prediction.

4 Evaluation Metrics

Evaluation of phase analysis and prediction is typically done through eitbeahinspection or through
impact on some external optimization. Here we provide two novel sets of melitesfirst evaluates the
quality of repetition detection, and the second measures the accuracydddad reduction of our profiling
consumer application.

4.1 Quality of repetition detection metrics

Although the repetitive behaviour of programs has been known for atiorgthere is a general lack of
a formal ways to quantitively evaluate it. This is especially true of long ternialiarlength program pe-
riodicity as we investigate here. We thus define two meti@mfidenceand Possible Miss Rate (PMR)
Confidencagives a measure of the similarity between repetitive periods identified bylgonitam, while
PMR measures the amount of execution which could have been identified aisivefrit which was not
done so by the phase detection algorithm. Both Confidence and PMR @& drashe same pair of fun-
damental metrics measuring the similarity between execution segments that maychtedlto the same
repetitive group, such as the instances (occurrences) of the sanra patte

Suppose we have a pattefhwhich hasN instances. The group of all the instancesg?ofan be represented
as an ordered sefj(P) = {P;|i = 1,2,..., N} Two basic metrics are then used to quantify sivailarity
andregularity of a setG(P).

e Similarity: We calculate th&earson correlatiorbetween each pair i&'(P) and use the average of
the results to represent the similarity of a group. We denote this valGg@s.

e Regularity: The time difference between start times for each pair of adjaBeptovides a basic
“distance” measure between pattern instances. The extent to which pasiamces are well clus-
tered shows regularity; we measure it usingmean<lustering algorithm [20] applied to the set of
all distance pairs. For each cluster we obtain the absolute value of theeddtebetween each item
and the centroid of the cluster. The sum of all these difference becomeasure of the regularity
of the pattern groug:(P), and we denote this value &%;p).

Combining the above calculations, we provide an overall evaluatiof( 8) as:

—1
Eapy = Capy * Dg(py



Given different repetition detections for the same pattéra higherE¢p) heuristically indicates better
results.

Our actual metrics can now be defined in terms of the above calculations.

e Confidencefor eachZ(P), we generate a sét(P)/ by removing thei" pattern instance af/(P).
If G(P)j has a better qualityX) thanG/(P), then we have less confidence on jHepattern instance
being a member of the group, and thus reduced confidence in the gratsgifigOtherwise, thg
instance makes the whole group better and improves confidence.

We thus give a confidence scdgenf(P;) of the j™ item of G(P) as:

1.0 Eapy > Egpys
Conf(Pj)) =\ Bowr)  otherwise
Eépyi

Confidence in the detection results of pattétndenoted ag’on f(P), is then the sum o€onf(P;)
forall j.

Our final Confidencén a complete detection result on all patternsP®, P2, ..., P™ appearing in
the result is the sum of confidence in each pattern weighted by the “sizieé ghattern:

> iz Conf(P™)

>im lG(Pm)]

Confidencebasically indicates the degree to which the pattern detection results rejpaesesst

a local maximum. High confidence indicates patterns are well-categorizéle, lav confidence
suggests some execution segments may be misclassified.

Confidence=

e Possible miss rate (PMR)fhe PMR evaluates how much of the execution was potentially mis-
identified as non-repetitive. We define it as follows:

Number of PMPI

PMR = Number of PMPH- Number of DPI

(1)

In formula 1 abovePMPI stands for “Possible Missed Pattern Instances”@Rtirepresents “De-
tected Pattern Instances”. Somewhat duaCtmfidencethe fundamental idea d*MRis to add
an execution segment as an instance of a pattern and check whethemtlgjeoneing is better or
worse.

Given a pattern detection res@ P), we treat all the execution segments that are not covered by
G(P) as potential elements &MPI. We then insert each such execution segmeénto G(P) and
build a new groug(P)*. Segmens is then included as a member@KMPI if Ecpy < Eg(pys-

4.2 Profiling metrics

The two metrics given in Section 4.1 evaluate our repetitive phase detectiommis ¢¢ distance from an
abstract ideal. Here we describe how we evaluate the success ofgpedstion when applied to a concrete
optimization.

Our example application is an improvement to the runtime profiling in Jikes RVM tasggpport its adap-
tive compiler [2]. This profiler samples execution periodically in order totifiefhot methods” and make
(re)compilation decisions; sampling rates heuristically trade off accuoagyéfiling cost. We provide two
metrics for evaluating the impact of phase prediction on profiling:

9



e Profiling rate: Profiling rateP. is defined as:

Number of Actual Profiling Points 100%
= >
Number of All Possible Profiling Points ’

T

An unmodified version of the runtime profiling mechanism ha3 af 100%. Based on phase pre-
dictions, we disable some profiling points; a lower valud’pfndicates a reduction in the profiling
workload.

e Coverage score (Cov)fhe Jikes RVM profiler makes use of the relative number of probe results in
each method. Our predicted results should thus produce the same intéfieded e

A method profiling resul? on methods\/;, i € {1,...,m} can be represented as:

R = {< M;,Perf >}
wherePerl is the percentage ratio of samples in metfiégto the total number of program samples.
Given a canonical sample resiNt= {< M;, Perl¥ >}. TheCovof R is calculated as:

CoMR) = i Min(Perf, PerY)
=1

To compare the accuracy of phase based profiling to the original prafdswudts we obtain a canon-
ical N by averaging multiple standard executions of the original profiling mechariisipractice

N is reasonably stable. Thgovfor a phase based profiling run compared with the aveGameof
each of our standard runs providesaturacy scorghat indicates how much a given phase based
profile varies from typical runs.

5 Experimental Analysis

Here we make use of the metrics developed in the previous section to expilgnevaluate our technique.
Following our experimental setting we first present our quality results,vieltbby our profiling workload
and accuracy measurements.

5.1 Setting and Benchmarks

Our implementation is based on JikesRVM 2.3.6 with an adaptive JIT compilertgegere measured
on an Athlon 1.4GHz workstation with 1GB memory (Debian Linux, 2.6.9 kernélg. report phase de-
tection results derived from L1 instruction cache miss events. Benchriranlksle the industry standard
SPEQvVM98 suite [26], and two larger examplespoT and PSEUDQJBB. SOOT is a Java optimization
framework which takes Java class files as input and applies optimizations bytéwde; in our experi-
ments, we rursooTon the class files faravac in SPECQvM98 with options “—app -O”. BEUDOJBB is a
variant of SPEGBB2000 [27] which executes a fixed humber of transactions in multiple waselso®ur
experiments run one to eight warehouses, 100 000 transactions in essfhowse. For SPBEEmM98 we
use the recommended (large) input size “-s 100”. For quality analysisultealcanonical sample profile
from 15 typical runs, while the phase driven profiling results are theageeof 5 runs. The threshold for
tri-distance selection is set to 10%.

10



5.2 Results

Columns 2 through 6 in Table 1 show the metric results, calculated using are affialysis on trace files
from our online implementation. The five data columns are the number of diffpedterns, the number of
occurrences of all pattern€onfidenceesultsPMRresults and®MRresults on the most important (major
level) patterns.

Bench. || Number of | Number of || Conf. | PMR PMR Profiling Accuracy Score (%)
Patterns Occur. (%) Major(%) Rate (%) | Phase Driven [ Simple 50%
compress 32 158 0.94 | 60.78 2.78 52.2 91.72 91.71
db 29 451 0.95 | 35.94 1.25 375 85.61 89.54
jack 29 352 0.94 | 22.65 0.05 46.0 95.55 68.56
javac 23 214 0.93 | 32.42 6.58 54.8 99.32 76.87
jess 25 182 0.88 | 48.71 5.88 47.3 91.92 79.12
mpegaudio 28 111 0.91 | 68.71 13.49 49.7 92.47 83.76
mtrt 27 78 0.85 | 27.58 0.10 77.7 97.15 83.00
raytrace 18 69 0.85 | 16.17 4.44 97.9 99.97 83.82
soot 49 11106 0.99 | 28.45 0.03 27.2 93.83 61.43
PseudoJbb 35 7093 0.98 | 37.80 0.01 30.0 94.71 64.84
Average — — 0.92 | 37.98 3.46 51.02 94.31 78.26

Table 1: Pattern detection evaluation and profiling workload reductiotts€8.ccur. for OccurrenceConf.
for Confidence)

On average we have a 92@onfidencahat the segments identified by our algorithm are actual repetitive
portions. Unfortunately we also have a comparatively high avePAgR,38%. This means we potentially
miss over a third of repetitive segments in the execution. Deeper investightiois $hat most of the missed
segments are likely instances of patterns at the lowest levels (0 and 1esasked in Section 3, pattern
creation at lower levels will be interrupted when a higher level changedsusrtered. It is not therefore
surprising that many possible repetitions of lower level patterns are idigreur algorithm; larger, more
significant changes are expected to be more important for capturing thetémprepetitive behavior of a
program, and our algorithm weights such patterns higher. In Table 1Pt&R“Major” column gives the
PMR value for only the upper range of variance (levels 2 and 3). Feethignals the data shows that we
only miss on average about 3.5% of possible repetitive periods.

Profiling workload reduction and accuracy results are shown in the les ttolumns of Table 1. On
average we reduce the profiling workload by about a half, althougtitsasry significantly by benchmark.
Profiling accuracy, however, is uniformly very high; on average weese a 94.3% accuracy, profiling at
51% of possible profiling points. For comparison purposes we show theay score for a simple profiling
reduction strategy that just omits every other probe, also a factor of @eeat reduction. On benchmarks
with small hot method sets, such @@MPRESsandDB, profiling results are not sensitive to profiling rate.
On more complicated benchmarks, suchask, sooTand FBSEUDOJBB our technique is significantly more
accurate, usually with less than a 50% profiling rate. These results arshalso in Figure 5.

6 Conclusions & Future Work

Understanding repetitive program behaviour and exploring phase®gngm execution is interesting for
researchers in runtime techniques, program simulation and static/runtime doonpifgor most purposes a
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Figure 5: Profiling workload reduction and accuracy results.

high quality phase detection is important, but this is difficult or expensiveqoisefrom pure software-level
designs. Comparable, quantitative ways of evaluating phase predictierals®a not been well explored.

In this paper, we present a new lightweight technique for determining eedicting repetitive phases in
program execution. Our approach builds on hardware event datajieg a close relation to actual runtime
performance. We evaluate the performance of our system using a seivef well-defined metrics that
indicate different, important aspects of quality in detected phases. To thleowmtility of this information,
we present an optimized, phase-driven runtime profiling mechanism as@esapplication; with phase
prediction significant reductions in profiling workload are possible whileestifuring high accuracy.

Of course repetitive phase information can be used in a wide rangeas atieer than selective profiling.
Our future work involves application of phase information to directly contrgltumtime recompilation de-

cisions, optimization strategy choices, adaptive system reconfiguratidrsedection of garbage collection
points.
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