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Abstract

The choice of lock objects in concurrent programs can affectboth performance and correctness, a
burden of complexity for programmers. Recently, various automated lock allocation and assignment
techniques have been proposed, each aiming primarily to minimize the number of conflicts between
critical sections. However, practical performance depends on a number of important factors, including
the nature of concurrent interaction, the accuracy of the program analyses used to support the lock
allocation, and the underlying machine hardware. We introducecomponent-based lock allocation, which
starts by analysing data dependences and automatically assigns lock objects with tunable granularity to
groupsof interfering critical sections. Our experimental results show that while a single global lock
is usually suboptimal, high accuracy in program analysis isnot always necessary to achieve generally
good performance. Our work provides empirical evidence as to sufficient strategies for efficient lock
allocation, and details the requirements of an adaptable implementation.

1 Introduction

Achieving good concurrency in a program involves selecting appropriate locks to guard individual critical
sections. Automatic techniques for lock allocation remove this complex concernfrom the programmer, and
can also be the basis of the implementation of transactional languages [14]. The problem of determining an
optimalset of locks to guard given code with critical sections has been considered, with theMinimum Lock
Assignment(MLA) optimization problem being NP-hard, andk-bounded lock assignment (KLA) being
NP-complete [10,14,26,31]. Heuristics are thus required for practical use.

We focus on improving the quality of lock allocations possiblewithout either optimal or heuristic MLA
solutions. Specifically, we allocate locks on a per-componentbasis, and find that for most benchmarks this
can achieve the same runtime performance as the original program with a manually specified lock allocation.
Integration with an MLA solver may be beneficial for cases where performance is sub-optimal; however,
many concurrent programs practically exhibit simplistic concurrent behaviour, so good solutions can be
achieved with straightforward program analyses.

Our design is essentiallytop-downin that we first conservatively identify interfering critical sections, then
use compiler analyses to refine the solution, and finally use heuristics to assign locks to interference graph
components. This contrasts with morebottom-upapproaches used by McCloskey [18], Hicks [14], and
Emmi [10], which associate locks with individual data, either manually or automatically, and then use a
subset of these locks to transform critical sections. The overall approach used by Sreedhar et al. has some
similarity [26] to ours, but does not perform the key intermediate refinementof allocating locks per graph
component rather than per critical section, instead moving immediately to MLA andKLA as later developed
by the same authors [31].

Our technique is highly flexible with respect to locking disciplines as well. We donot require explicit data
annotations, nested synchronization is permitted, we allocate dynamic locks if possible, and we allow for use
of condition variables. We do not requirelocksets, which acquire and release all locks at the beginning and
end of an outer critical section, nor do we requiretwo-phase locking, in which all locks are released before
others are acquired. Instead we use static analyses to detect when nested locking might lead to deadlock,
and default to a conservative solution that prevents cyclic dependences; related work is careful to construct
a total ordering, and either approach breaks one of Coffman’s four conditions necessary for deadlock [8].
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1.1 Contributions

We make the following specific contributions:

• A component-basedlock allocator for Java that assigns either static or dynamic locks to groups of
interfering critical sections. This depends on accurate construction of acritical section interference
graph using athread-based side effectanalysis, and contrasts with previous work that focuses on
assigning locks to individual critical sections. Additionally, our allocator is more flexible with respect
to the locking disciplines it supports than prior work.

• Synchronization elimination is a trivial consequence of our approach. A component containing an
isolated critical section that does not interfere with itself does not require synchronization, and our
data show that many such components exist.

• We provide useful enhancements tomay-happen-in-parallel(MHP) analysis for Java, which we use to
improve interference graphs by pruning false edges. MHP performance can be a concern, and we en-
sure fast results by using alock obliviousapproach, essentially ignoring the effect of locks. Although
this reduces information quality, ourstart-join analysisallows us to provide a coarse categorization
of thread behaviour to this simple MHP analysis that achieves sufficient accuracy to make good lock
allocation decisions.

• We provide experimental data for a wide range of Java benchmarks usingvarious permutations of
our analysis pipeline. We find that in many cases, our component-based allocator matches the perfor-
mance of the original program.

2 Related Work

We use Soot as a Java bytecode compiler framework [28], depending onthe built-in class hierarchy analysis
(CHA) [9], context-insensitive points-to analysis [15], and may-happen-in-parallel (MHP) analysis [16] as
a starting point. Naumovichet al. were the first to present an algorithm for computing MHP information for
concurrent Java programs [22], and the one provided by Soot is similar. Barik proposed a scalable alternative
to Naumovich’s analysis for Java [5], and Agarwalet al. later extended it to support X10 [2].

Our points-to analysis, while thread-insensitive, provides input to athread-context-sensitiveside effect anal-
ysis that models the heap using thread-local and shared partitions. A similar analysis for Java was developed
by Chang and Choi, and we build on that work by demonstrating a concrete application [7]. Our analyses
work towards determining interferences between critical sections, which might also benefit from an inter-
procedural thread-sensitive slicing analysis for Java [21]. We derive thread-sensitivity using athread-local
objects(TLO) analysis that detects when certain reads and writes inside critical sections are thread-local,
and find that this improves lock allocation considerably. This is particularly interesting when compared to
the work of S̆alcianu and Rinard who found that thread-local object information was ineffective for synchro-
nizationremoval[24], and Aldrichet al. who found it statically effective for multithreaded programs, but
not such that runtime performance was affected [3].

One problem closely related to lock allocation is static race detection, in which significant advances have
been achieved recently. Naiket al. detect races in Java programs using a staged analysis that refines the set
of memory access pairs potentially involved in a race until the number of false alarms is small [20]. Naik and
Aiken later defineconditional must not alias analysisas the problem of concluding whether two objects are
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aliased from the hypothesis that two other objects are not aliased [19]. Inthe context of static race detection,
this involves determining whether two guarded memory regions are aliased based on the knowledge that the
lock objects guarding them are not aliased. Pratikakiset al. detect races in C programs using aconsistent
correlation analysisthat determines which locks are held when a thread accesses a memory location ρ,
and whether there is some lockl that is always held for each access toρ [23]. Abadi et al. present a
type-based system for Java programs that depends on annotations to detect races [1]. They use a tool to
infer these annotations automatically, and then feed them to a fixed point computation that identifies and
removes the incorrect ones using their type-based race detector. Finally, a set of warnings is produced using
the correct annotations. Flanagan and Freund also demonstrate that a constraint-based analysis can be used
to insert synchronized operations and correct a program containing data races [11]. These techniques all
find memory accesses that are not properly synchronized, whereas the lock allocation problem examines
properly synchronized memory accesses and provides a less conservative solution. Our requirement that the
input program be correctly synchronizable is precisely defined by the Java Memory Model [17].

work language compiler analysis locking discipline allocation input results
pointer TLO MHP datanesting2-phaselocksetsdynamicCVs heuristicsMLA small large AOT runtime

[18] C some no no yes yes yes no yes yes no no yes yes yes yes
[14] C yes yes ≈ no yes yes yes no no yes no no no no no

[26,31] OpenMP yes no yes no no yes yes no yes yes yes yes no yes some
[10] C, Java yes no no no yes yes no yes no no yes yes yes yes no

current Java yes yes yes no yes no no yes yes yes no yes yes yes yes

Table 1: Related work on lock allocation.

Recently there has also been a fair amount of work directly related to lock allocation, and we compare the
significant differences in Table 1. McCloskeyet al. introducepessimistic atomic sectionsand provide a
tool to convert them automatically to more efficient lock-based code [18]. In addition to requiring user
identification of atomic sections, they also require annotations associating locks with all shared data. A
whole-program analysis detects the use of shared data inside atomic sections and a transformation ensures
that the right locks are acquired according to a global total ordering. Pessimistic atomic sections can be
nested, and the transformation algorithm is provably sound. One limitation is thata stricttwo-phase locking
discipline is required, such that for a given atomic section, once a lock is released, no more locks can
be acquired. In a related but significantly more radical technique, Vaziriet al. propose thatonly data be
synchronized, and prove that lock operations can be safely inserted ifthe annotations are correct [29].

Hicks et al. also convert atomic sections to pessimistic transactions [14], using the same compiler analysis
framework as for their static race detection tool [23]. An analysis ofcontinuation effectsupon thread creation
is roughly comparable to MHP analysis. Locks are associated with abstractmemory locations identified by
a pointer analysis, and the correct locks acquired and released at the beginning and end of atomic sections.
They make two improvements, first by eliminating synchronization on thread-local data, and second by
coalescing locks that are always acquired and released together. Thefirst improvement is comparable to
our thread-local objects(TLO) analysis. The second, lock coalescence, is a heuristic for minimizingthe
number of locks. They do not permit dynamic locks, whereas the annotations used by McCloskeyet al. do,
and they note that maintaining a global ordering with dynamic locks might requireruntime support. They
also require that all locks in a lockset be acquired and released only at the outer boundaries of composed
atomic sections.

Sreedhar, Zhanget al. propose a framework for dataflow and concurrency analysis of parallel programs,
and use it specifically to study the problem of assigning locks so as to maximize concurrency and mini-
mize serialization overhead [26, 31]. They compute aconcurrency relationthat is comparable to our MHP
analysis and use it for data flow problems, in particular pointer analysis andlock allocation. Like us, they
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depend on concurrency information to identify critical sections with intersecting read/write sets that are
actually independent. They construct a concurrency graph with either an interfering or a non-interfering
edge between two critical section vertices, and compute aminimum lock assignment(MLA) such that two
vertices connected by an interfering edge have at least one lock in common, and two vertices connected by
a non-interfering edge have no locks in common. We use a straightforwardtranslation of their concurrency
graph in which all edges indicate interference and non-interfering edges are removed. They also provide
a k-lock allocation(KLA) algorithm for bounding the number of locks in exchange for serialization over-
head, an obvious corrollary of k-colouring as used by register allocation. They formulate MLA and KLA
as integer linear programming(ILP) problems, and heuristic solutions for a range of randomly generated
inputs are then compared with optimal ones provided by an industrial ILP solver. Limitations include that
they disallow nested locking altogether, which impacts on the use of synchronized library code, and they
only allocate static locks. They also analyse OpenMP, and note that the interaction between aliasing and
concurrency is more complicated for Java programs. However, they do provide a useful extension of data
flow that considers the isolation semantics of critical sections, and describesupport for condition variables
and barriers in some detail, albeit for a structured subset of OpenMP. The work has practical importance
because OpenMPonly supports a single global lock, and despite a lack of good benchmarks enables a 2x
improvement in one function of UA in the NAS parallel benchmark suite.

Emmi et al. have also examined the problem of lock allocation [10]. They build directly onMcCloskey’s
work by eliminating the requirement for annotations protecting shared data, and in most cases can automat-
ically infer the same protections for his AOLServer benchmark. Like Zhanget al. they depend on ILP for
allocation, and clearly explain how to set up MLA and KLA for 0-1 ILP while accounting for various refine-
ments; importantly, they find that optimal solutions are tractable for AOLServer, a realistic benchmark. They
do consider dynamic locks in some detail, using anaccessed-before relationderived from temporal analysis
of critical sections to avoid deadlock, and favouring dynamic locks over static locks during allocation. They
also note that more precise compiler analysis is complementary to their work.

Finally, we see lock allocation in general as complementary to optimistic concurrency, an active field of
research [12, 13, 25, 30]. Our analysis could be used to reduce the overhead of optimistic concurrency by
providing information about interferences between critical or atomic sections to the runtime system.

3 Design

Our lock allocator accepts compiled Java programs consisting of.class files. Input programs must not use
volatiles, native code, orjava.util.concurrent for thread synchronization, and must contain critical
sections protecting all accesses to thread-shared state such that there exists some allocation of locks that
results in correct synchronization, as defined by the Java Memory Model [17]. Any original lock alloca-
tion is discarded, and the lock allocator chooses locks that guarantee a race-free, deadlock-free program.
This allows for newly written software to ignore lock allocation, and for legacy applications to benefit from
automatic correction of unsafe manual allocations. Additionally, both classesof program benefit from un-
necessary synchronization removal, and experimentally, legacy programs containing fine-grained manual
allocations provide a basis for evaluation of lock allocation strategies.

Any form of Object.wait(), Object.notify(), orObject.notifyAll() is safe, provided the input
program retries condition variables after waking up from a call towait(). After lock allocation, we redirect
these calls to the lock object protecting the immediately enclosing critical section. Additionally, calls to
notify() are replaced with calls tonotifyAll(), which guarantees that wakeup notifications reach their
intended thread without being unsafely intercepted by some other waiting thread. Uses ofwait() and
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notify() require deadlock considerations, as described in Section 3.6.

We represent programs with acritical section interference graphG = (V, E), where eachv ∈ V is a critical
section and eache ∈ E is aninterference. Interference edges between two critical sections indicate that they
might conflict at runtime, and a self-loop indicates that two or more threads compete for the same critical
section. Our initial approximation is a fully connected graph, which we refinethrough a series of compiler
analyses.

Figure 1: Analysis pipeline.

An overview of our analysis pipeline is given in Figure 1. Initially, the input program contains a set of
critical sections that we safely assume are protected by a singleton lock object; in the figure, these are
critical sections CS1, CS2, and CS3. Interference information is computedby a thread-based side effect
analysis(TBSE), which in turn employs athread-local objects analysis(TLO), both of which depend on
points-to information and a call graph. In the example, this reveals the CS1–CS2 and CS1–CS3 edges. False
edges in the resultant interference graph are pruned by amay-happen-in-parallel analysis(MHP); consider
the false CS1–CS3 edge in the example.

This yields a set oflocked componentswhich contain interfering critical sections, CS1–CS2 in the exam-
ple, andunlocked componentswhich are isolated critical sections without self-loops, CS3 in the example.
Component-based lock allocationproceeds to allocate a static or dynamic lock to each locked component,
locking only CS1–CS2 in the example and removing unnecessary synchronization from CS3. The result is
a correctly synchronized program that is less conservatively synchronized than the original.

3.1 Information Flow Analysis

Our lock allocator uses a flow-insensitive, context-sensitive, interproceduralinformation flow analysis(IFA)
as the basis of athread-local objects analysis(TLO) as described in Section 3.2. Given a pair of named
memory locations, IFA approximates whether the value stored in one location is derived from the value
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stored in the other location. For the purpose of detecting relevant thread interactions, this analysis considers
only explicit information flow resulting from direct assignment or arithmetic operations. As used by the
lock allocator, the current analysis is unsound because implicit information flow is not included, although a
refined version could provide sound behavior.

Given a method to analyse, IFA generates aninformation flow graphand aninformation flow summary. The
graph nodes represent all values manipulated by the method, namely parameters, locals, fields, statics, and
the return value. Each assignment statement generates an edge in the graph, as does each return statement.
The summary is derived from the graph by removing local variables and collapsing strongly connected com-
ponents. It thus approximates all publicly accessible values manipulated by the method, namely parameters,
fields, statics, and the return value. Of course, multiple values may be accessed by a singleGETFIELD
instruction; the mapping from values to nodes determines the precision of the analysis.

At callsites, summaries are retrieved and combined for all possible target methods. The combined summary
is merged with the current graph by connecting summary parameters to callsite arguments, the summary
return value to the callsite return value, and summarythis object and fields to the callsite receiver local.
If no summary exists for some target method, then a graph and summary are recursively constructed. If
a method is already under consideration by the interprocedural recursion when a summary is requested, a
simple conservative summary is used instead. Also, in order to ensure reasonable runtime at only a small
cost to precision, internal library calls always use a simple conservativesummary.

3.2 Thread-Local Objects Analysis

After initial points-to analysis and call graph construction, our lock allocator performs athread-local objects
analysis(TLO) that serves to improve the precision of a laterthread-based side effect analysis(TBSE), as
described in Section 3.3. TLO classifies all fields as eitherthread-localor thread-shared, where any field
whose value is possibly accessed by more than one thread at a time is considered thread-shared. It uses IFA
to propagate this information throughout the program, which includes everylocal variable. It can then be
safely assumed that reads from and writes to thread-local fields do not need to be synchronized between
threads.

TLO is called with a list of thread classes that have typeRunnable, each of which is analysed independently
to determine which fields may hold thread-shared values. Initially, any field accessed directly outside of the
Runnable via GETFIELD or PUTFIELD is classified as thread-shared, and all other fields are classified as
thread-local. Each method in theRunnable is classified as external if it is ever called from outside of the
class, otherwise internal. The parameters of each internal method are initiallyclassified as thread-local, and
the parameters of each external method are initially classified as thread-shared.

After this initial classification, IFA is used to generate the information flow summary for each method of the
Runnable. Whenever IFA indicates that a thread-shared value flows to a thread-local field, the classification
of that field is changed to thread-shared. This propagation continues until a fixed-point is reached.

Next, alocality contextcontaining the classification of each field and parameter is created for eachcallsite
in the methods of theRunnable, and IFA provides an information flow graph for each target method of
those callsites. The locality context of each callsite in each target is determinedfrom the information flow
graph for that target and the locality context of the caller. If a target hasalready been analysed, then the
locality context of the caller is merged with the existing locality contexts of its callsites. This interprocedural
propagation continues until a fixed point is reached.

Finally, when queried, TLO will report that a given value in a given methodis thread-local if it is thread-local
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in all Runnable classes that call the method. Otherwise it will report that it is thread-shared.

3.3 Thread-Based Side Effect Analysis

We extend the side effect analysis present in Soot 2.2.3 [15] to athread-based side effect analysis(TBSE),
computing a list of<field, object> pairs that may be read or written by individual critical sections.
These lists are used directly to create the interference graph. TBSE is based on points-to analysis, and
incorporates a thread-local objects analysis as described in Section 3.2,a critical section nesting model, and
side effect approximations for library methods.

By default, Soot computes the side effects of statements using a simple set of flow equations and the output
of its points-to analysis. TBSE analysis alters these equations to ignore side effects involving thread-local
objects. Additionally, TBSE significantly alters side effect calculations for method calls. For each method
call, instead of considering all transitively reachable methods and accounting for their side effects, our
modified analysis excludes internal library calls and static initializers. Our nesting model allows for inner
locks to be released independent of outer locks, and accordingly TBSEalso excludes the side effects of any
method called inside a critical section.

We exclude static initializers because they impact on the precision of our analysis. Although ignoring
static initializers as such is unsound, we could safely force them to execute before the code affected by our
transformations. Internal library calls are similarly excluded because deep library call chains also impact on
the precision of our analysis. Importantly, this excludes many static library fields. However, we do provide
a treatment of library interface calls that assumes all receiver fields will beread and written.

We construct an interference graph using the information provide by TBSE. A vertexv is created for ev-
ery critical section, and interference edgese are inserted between every pair of nodesvi andvj for which
(read(vi) ∩ write(vj)) ∪ (write(vi) ∩ read(vj)) ∪ (write(vi) ∩ write(vj)) 6= ∅. This union of inter-
sections contains all data dependences for any two critical sections, andwhen non-empty is stored for the
corresponding interference graph edge as itscontributing read/write set.

3.4 May-Happen-in-Parallel Analysis

After constructing the interference graph from thread-based side effect results, we use amay-happen-in-
parallel (MHP) analysis to prune false positive edges from the interference graph. Our implementation is a
context-insensitive and lock-oblivious adaptation of the analysis availablein Soot [16]. It first uses arun-
once, run-many analysisto categorize calls toThread.start() asrun-onceor run-many. It then uses a
start-join analysisto further categorize therun-manythreads asrun-one-at-a-timeor run-many-at-a-time.

Our MHP analysis islock-oblivousin that it ignoresMONITORENTER andMONITOREXIT, synchronized
INVOKE*, and calls to any form ofwait() andnotify(). This allows us to determine which critical
sections actually require locks to prevent parallel execution, and contributes to unnecessary synchronization
elimination. This reduces the MHP analysis problem to first identifying and categorizing threads, and then
for each thread determining the set of reachable methods.

The run-once, run-many analysis reads the call graph in conjunction withthe body of each method, and
marks each statement and the method itself as eitherrun-onceor run-many. Statements inside loops and
inside run-many methods are categorized as run-many. Methods with incomingedges from multiple callsites
and methods called from run-many statements are also categorized as run-many. These complementary
analyses alternate until a fixed point is reached.
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Next, calls toThread.start() are used to identify and categorize distinct thread classes. If the invocation
statement is run-once, then the corresponding thread class is run-once. If the statement is run-many but the
points-to analysis determines that a uniqueThread object reaches the call, then the corresponding thread
class is also run-once. Otherwise, the call creates a run-many thread class. These thread classes are actually
input to the TLO analysis described in Section 3.2.

In the case of run-many thread classes, astart-join analysissearches the method for a matching call to
Thread.join(). Next, local must-alias analysis is performed to ensure that any apparentmatch is guaran-
teed to join the same thread. Then a post-dominator analysis determines if the matchalways runs. If a match
is found, and the containing method is not reentrant and may not happen in parallel, then the corresponding
Thread.start() is labeledrun-one-at-a-time, otherwiserun-many-at-a-time.

The MHP analysis finally reports that any pair of methods that might be executed by two or more different
threads may happen in parallel. For this classification, each run-many-at-a-time thread class is treated as
two different threads, and all other thread classes as one. This information is used to prune edges between
critical sections in the interference graph whose containing methods may nothappen in parallel.

The above treatment is somewhat complicated, and differs from that of Li and Verbrugge [16] in several
ways. Their analysis creates a whole-program control flow graph in order to correctly analyse synchroniza-
tion and wait/notify statements and provide lock sensitivity. Our lock-oblivious analysis works more quickly
than their lock-sensitive implementation because it does not need to create thiswhole-program CFG. It also
works for a wider variety of programs: they require that every virtual method call can be statically resolved.
The primary limitation of our analysis is that it ignores threads implicitly started by theJVM and Java class
libraries.

3.5 Lock Allocation

Lock allocation begins after the interference graph has been pruned using MHP information. Identification
of locked and unlocked graph components is straightforward, and our allocator assigns locks to locked
components at three different granularities:

• Singleton: A single static lock shared by all components.

• Static: A different static lock for each locked component.

• Dynamic: A dynamically allocated set of lock objects for each locked component, reverting to static
allocation if necessary.

All three granularities replace any previously existing lock objects used bycritical sections, and guarantee
that every critical section is protected by an appropriate lock object. Synchronized methods are replaced with
unsynchronized wrappers around synchronized blocks, and calls towait() andnotify() are redirected
to the new lock object protecting the immediately enclosing critical section. We insert public static

Object fields to provide lock objects for the singleton and static granularities.

Singleton allocation is trivial: the interference graph is ignored, and the samestatic lock is assigned to every
critical section in the program, including those in unlocked components. The composition of our analysis
pipeline has no bearing on this naı̈ve allocation. For static allocation, each locked component is assigned a
different static lock.
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For dynamic allocation, the interference graph is also partitioned into locked components. Several tests
are performed on each component to determine if a dynamic lock can be used. First, if the union of the
contributing read/write sets for all interference edges in the component, asdefined in Section 3.3, contains
fields from different object types, then a dynamic lock cannot be used.

Next, a deeper analysis determines if all contributing read/write sets for each critical section can be protected
by a single dynamic lock. For each critical section, and for every path inside the section, every contributing
read/write must involve a single object accessible at its entry point. A local flow-sensitive must-alias analysis
is used to determine if all contributing reads/writes on a path involve the same object. The safety of this
analysis depends on our input requirement that all shared state be protected by some critical section, and our
guarantee of critical section isolation semantics. A localcommon predecessor alias analysisdetermines if
all objects accessed over all paths are reachable from a single object reference at the beginning of the section.
If these two conditions are met, then the object found for each critical section may be used as the lock, and
we classify this asdynamic allocation. Otherwise, a static lock is assigned to the entire component.

3.6 Deadlock Avoidance

The analyses discussed so far have focused on freedom from data races. However, another condition for
correct synchronization is absence of deadlock, and we ensure this by breaking cyclic lock acquisitions [8].
Our lock allocator abides by a policy of minimal perturbance to any problematic lock allocation when
ensuring a deadlock-free program. We allow an initial lock allocation to proceed without regard to deadlock,
detect possible cycles in the partial ordering implied by critical section nesting, and correct deadlock by
addingdeadlock avoidance edgesto the interference graph and reallocating the locks. This technique is
well suited to the current design of our allocator, and also to the use of finer allocations involving multiple
locks per critical section, which we intend to address in our future work.

Deadlock detection involves examining pairs of critical sections. If a pair is nested, then we assign a partial
ordering to their locks. This occurs regardless of whether the locks arestatic or dynamic. The ordering is
then compared to all previously identified partial orders, and if no violation isfound then detection proceeds
to the next pair.

When a violation is found, it indicates a source of potential deadlock. The order that it violates was stored
along with a list of nested critical sections that induced it. Adeadlock avoidance edgeis added between the
outer critical section of the failed partial order and the outer critical sections of the violated order. Then,
lock allocation is restarted using this new interference graph.

Deadlock avoidance edgesare treated like interference edges for static fields, and must be protectedby a
static lock. This static lock guarantees the absence of deadlock in the final allocation. These edges work for
both static and dynamic allocations.

Our deadlock detection algorithm handles typical nested locking deadlock;however, it does not handle
nested wait/notify deadlock. This situation can arise if a thread waits on one lock while holding others,
and the locks it holds prevent other threads from reaching the necessary call to notifyAll(). This type
of deadlock can be avoided by requiring that calls tonotifyAll() be reachable regardless of the locks
guarding a call towait(). This type of deadlock is no more difficult to detect than the type that we already
handle; however, at present, we do not detect it. In practice, none ofthe benchmarks we experimented with
exhibited this behavior.
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4 Experimental Results

In this section, we evaluate the effectiveness of several different configurations of our lock allocator by using
it to transform multithreaded benchmarks from five different sources. Table 2 lists the benchmarks and
their properties. We use benchmarks from version 2006-10-MR2 of DaCapo at the default input size [6],
and SPEC JVM98 at input size 100 [27]. Notably, we did not include most ofthe JavaGrande suite of
parallel benchmarks. Our tests revealed that this suite makes little use of critical sections, and heavy use of
volatile variables. This makes it ill-suited for benchmarking current lock allocators, but a good candidate
for exploring compiler assisted synchronization outside of critical sections.

name Critical Sections Description Source
TrafficSim 24 a car and driver pair navigate around a rotary Internal
RollerCoaster 6 7 passengers compete for seats Internal
PCMAB 2 25 producers and consumers connect via an aspectInternal
TestBench 3 3 threads increment a private and a shared counterInternal
BankBench 8 8 threads transfer funds between two accountsDoug Lea
JGFSyncBench 16 4 threads increment a counter Java Grande
mtrt 6 2 threads render a raytraced image SPECjvm98
lusearch 44 32 threads search a large index for 3500 words DaCapo
hsqldb 4 25 threads run transactions against a banking appDaCapo
xalan 4 8 threads perform XSL transforms DaCapo

Table 2: Benchmarks.

4.1 Lock Allocations

Table 3 shows the effect of different analysis pipeline configurations on interference graph construction
and lock allocation for each benchmark. Only dynamic allocation is shown foreach configuration because
the static allocation can be determined from it by simply replacing each dynamic lock with a static one.
The graph characteristics column shows how the interference graph evolves with the introduction of new
components into the pipeline. The|V | column is naturally constant for each benchmark, corresponding to
the number of critical sections in Table 2, and it indicates the size of the interference graph construction
problem. The|E| column is the number of edges in the final interference graph, and the|E|

|V | column is graph

density, which ranges from 0 to|V |2 and is a suitable measure of graph quality. The weight of any edge
e ∈ E is the number of fields involved in its contributing read/write set, and thereforethe weight summed
over all edges indicates the size of the lock allocation problem for dynamic locks.

Most of the benchmarks show reduced graph density as more detailed analyses are introduced, although
not necessarily at every stage. It is clear from the graph density and total edge weight metrics that the
introduction of MHP has the most profound effect on the interference graph. The graph components column
illustrates how improvements to the interference graph lead to improvements in lockallocation. Agraph
componentis either a connected set of vertices which will belocked, or an isolated vertex which will be left
unlocked. Our lock allocator assigns one lock, either static or dynamic, to each connected component. As
the graph density decreases, the total number of graph components increases, leading to a larger number of
non-overlapping locks, a larger number of eliminated locks, and the possibility for greater parallelism. A
lower graph density also contains fewer edges that could restrict the availability of dynamic locks.

Most the benchmarks have several isolated vertices in at least one analysis configuration. Each isolated
vertex represents a critical section that does not require a lock, either because it lies in dead code, interferes
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benchmark
analysis pipeline graph characteristics graph components

points-to TLO MHP |V | |E|
|E|

|V |

∑
weight(e) total

locked
unlocked

static dynamic

TrafficSim

CHA 24 101 4.20 128 7 3 1 3
SPK 24 95 3.95 107 9 3 1 5
SPK X 24 81 3.37 90 9 3 1 5
SPK X 24 38 1.58 44 9 3 0 6
SPK X X 24 32 1.33 38 10 3 1 6

RollerCoaster

CHA 6 16 2.66 27 2 1 1 0
SPK 6 16 2.66 27 2 1 1 0
SPK X 6 16 2.66 27 2 1 1 0
SPK X 6 14 2.33 22 2 1 1 0
SPK X X 6 14 2.33 22 2 1 1 0

PCMAB

CHA 2 4 2.00 5 1 1 0 0
SPK 2 4 2.00 5 1 1 0 0
SPK X 2 4 2.00 4 1 1 0 0
SPK X 2 4 2.00 5 1 1 0 0
SPK X X 2 4 2.00 4 1 1 0 0

TestBench

CHA 3 5 1.66 5 2 1 1 0
SPK 3 5 1.66 5 2 1 1 0
SPK X 3 4 1.33 4 2 1 0 1
SPK X 3 5 1.66 5 2 1 1 0
SPK X X 3 4 1.33 4 2 1 0 1

BankBench

CHA 8 29 3.62 29 3 1 1 1
SPK 8 20 2.50 20 4 1 1 2
SPK X 8 20 2.50 20 4 1 1 2
SPK X 8 20 2.50 20 4 1 1 2
SPK X X 8 20 2.50 20 4 1 1 2

JGFSyncBench

CHA 16 68 4.25 222 8 2 0 6
SPK 16 68 4.25 222 8 2 0 6
SPK X 16 68 4.25 222 8 2 0 6
SPK X 16 4 .25 4 15 1 0 14
SPK X X 16 4 .25 4 15 1 0 14

mtrt

CHA 6 16 2.66 95 3 1 0 2
SPK 6 10 1.66 62 4 2 0 2
SPK X 6 10 1.66 50 4 2 0 2
SPK X 6 1 .16 1 6 1 0 5
SPK X X 6 1 .16 1 6 1 0 5

lusearch

CHA 44 173 3.93 271 10 3 0 7
SPK 44 81 1.84 131 29 4 1 24
SPK X 44 80 1.81 123 29 3 1 25
SPK X 44 65 1.47 102 30 2 0 28
SPK X X 44 65 1.47 95 30 2 0 28

hsqldb

CHA 4 6 1.50 8 3 3 0 0
SPK 4 6 1.50 8 3 3 0 0
SPK X 4 6 1.50 8 3 3 0 0
SPK X 4 2 .50 2 4 2 0 2
SPK X X 4 2 .50 2 4 2 0 2

xalan

CHA 4 8 2.00 11 2 2 0 0
SPK 4 8 2.00 11 2 2 0 0
SPK X 4 8 2.00 11 2 2 0 0
SPK X 4 3 .75 4 3 1 0 2
SPK X X 4 3 .75 4 3 1 0 2

Table 3: Effect of analysis pipeline configuration on interference graph and lock allocation.
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Figure 2: Dual-core x8664 performance.

only with critical sections with which it cannot occur in parallel, or has no thread-visible side effects. In the
latter two cases, the removal of the critical section will reduce the locking overhead of the program. How-
ever, the effect of removing a single unneeded lock is generally expected to be small, due to optimizations
in most JVMs for uncontended locks [4].

4.2 Performance

Figure 2 shows the relative performance of each benchmark for each configuration on a dual-core x8664
AMD machine. These configurations match the ones used in Table 3, withcha (Class Hierarchy Analy-
sis [9]) orspk(Spark [15]) for points-to analysis,singleton, static, or dynamic lock allocation, and with or
withoutmhpandtlo analyses.

Seven out of ten benchmarks examined achieved performance within 5% ofthe original lock allocation.
For five of those, good performance was achieved without ever using adynamic lock, and for four, it was
done with nothing more than a context-insensitive points-to analysis. No benchmark exhibited more than
a 20% performance hit using the most naı̈ve static lock allocation, and clearly singleton lock allocation is
not generally a viable strategy. Furthermore, of the five external benchmarks, only Doug Lea’s banking
benchmark proved difficult to allocate locks for, still exhibiting reduced parallelism even with our best
allocation. This benchmark and several internal benchmarks may benefitfrom the increased parallelism
of using multiple locks per locked component. These results suggest that practical concurrency in popular
benchmark suites is not typically improved by sophisticated lock allocation strategies.

An interesting contrast arises when the performance results are compared to the interference graph charac-
teristics. Although Table 3 showed that there is often a large reduction in interference graph edges when
MHP analysis is added to the pipeline, for the majority of benchmarks, there is littleto no performance im-
provement from the addition of MHP. Consideration of this result reveals that the edges removed represent
pairs of critical sections that cannot execute in parallel, so the performance impact of having those critical
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Figure 3: 4-way i686 HT performance.

sections share or not share a lock is negligible. However, MHP does serve a valuable purpose in thinning
the interference graph, reducing the size of the lock allocation problem and allowing the key improvements
from other stages to take effect.

Figure 3 shows the same configurations run on a four-processor Inteli686 machine with hyperthreading, for
a total of 8 virtual cores. The poor scalability of using a singleton static lock isapparent on this machine for
the benchmarks that make heavy use of locks at runtime. This is particularly true of the traffic simulation,
which contains many non-interfering critical sections whose execution becomes serialized, and the roller
coaster, whose threads spend most of their time waiting for locks, and noneof it doing real work. Those
benchmarks that do perform significant real work experienced betterrelative performance on this platform.

These results clearly illustrate that the minimum analysis necessary to achieve good performance rises for
some benchmarks and falls for others when moving between hardware platforms, and that in general, coarse
allocation strategies are worth exploring in order to focus more sophisticatedoptimal solutions.

5 Conclusions and Future Work

A top-down, component-based approach to automatic lock allocation has the advantage of generating coarse
solutions rather than finely grained sets of locks associated with each critical section. Experimental data
shows that this approach corresponds rather well with the behaviour ofmost benchmarks. Aggressively op-
timal solutions as identified by others [10,31] are still important of course, and the high quality interference
graphs created by our allocator can be used as input. Nevertheless, thesimple concurrent behaviour of real
benchmarks allows for coarse solutions that focus on key aspects of concurrent interaction to be generally
effective in practice.

We have based our design on a consideration of how interference components are formed and what kinds
of analysis data would most help separate them. Deeper analysis of the structure and patterns found in
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interference graphs would help identify further program properties that may be of use in expanding the
scope of our lock allocation, and additional static analyses could be used torelax the restrictions on input
programs.

Finally, we assume that there exists a lock allocation for our input programs that will leave them correctly
synchronized. However, we are also interested in reusing our compilationinfrastructure to support static
race detection [1,19,20,23] and correction [11] when this is not the case.
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