McGill University
School of Computer Science
Sable Research Group

Component-Based Lock Allocation

Sable Technical Report No. 2007-3

Richard L. Halpert Christopher J. F. Pickett Clark Verbrugge

{r hal pe, cpi cke, cl unp}@abl e. ncgill.ca

May 17th, 2007

www.sable.mcgill. ca

Abstract

The choice of lock objects in concurrent programs can affetih performance and correctness, a
burden of complexity for programmers. Recently, varioutomated lock allocation and assignment
techniques have been proposed, each aiming primarily témiza the number of conflicts between
critical sections. However, practical performance depeyrda number of important factors, including
the nature of concurrent interaction, the accuracy of tloggam analyses used to support the lock
allocation, and the underlying machine hardware. We intcedomponent-based lock allocatiomhich
starts by analysing data dependences and automaticaifynadsck objects with tunable granularity to
groupsof interfering critical sections. Our experimental residhow that while a single global lock
is usually suboptimal, high accuracy in program analysisoisalways necessary to achieve generally
good performance. Our work provides empirical evidenceoasufficient strategies for efficient lock
allocation, and details the requirements of an adaptahéementation.

1 Introduction

Achieving good concurrency in a program involves selecting appriepidaks to guard individual critical
sections. Automatic techniques for lock allocation remove this complex cofroenrthe programmer, and
can also be the basis of the implementation of transactional languages lip4prdblem of determining an
optimalset of locks to guard given code with critical sections has been coesideith theMinimum Lock
Assignmen{MLA) optimization problem being NP-hard, aridbounded lock assignment (KLA) being
NP-complete [10, 14, 26, 31]. Heuristics are thus required for practiza

We focus on improving the quality of lock allocations possibfighout either optimal or heuristic MLA
solutions. Specifically, we allocate locks on a pemponenbasis, and find that for most benchmarks this
can achieve the same runtime performance as the original program with aligapecified lock allocation.
Integration with an MLA solver may be beneficial for cases where padioce is sub-optimal; however,
many concurrent programs practically exhibit simplistic concurrent bebigvso good solutions can be
achieved with straightforward program analyses.

Our design is essentiallpp-downin that we first conservatively identify interfering critical sections, then
use compiler analyses to refine the solution, and finally use heuristics to &sskg to interference graph
components. This contrasts with mdrettom-upapproaches used by McCloskey [18], Hicks [14], and
Emmi [10], which associate locks with individual data, either manually or auioally, and then use a
subset of these locks to transform critical sections. The overall apbrased by Sreedhar et al. has some
similarity [26] to ours, but does not perform the key intermediate refinemwfeaiocating locks per graph
component rather than per critical section, instead moving immediately to MLXKBAds later developed
by the same authors [31].

Our technique is highly flexible with respect to locking disciplines as well. Waataequire explicit data
annotations, nested synchronization is permitted, we allocate dynamic lodssibfe, and we allow for use

of condition variables. We do not requiecksetswhich acquire and release all locks at the beginning and
end of an outer critical section, nor do we requim®-phase lockingin which all locks are released before
others are acquired. Instead we use static analyses to detect whahloekiteg might lead to deadlock,
and default to a conservative solution that prevents cyclic depenstemtated work is careful to construct

a total ordering, and either approach breaks one of Coffman’s fmditons necessary for deadlock [8].

1.1 Contributions

We make the following specific contributions:

e A component-baselbck allocator for Java that assigns either static or dynamic locks to grdups o
interfering critical sections. This depends on accurate constructiorcitieal section interference
graph using athread-based side effeanalysis, and contrasts with previous work that focuses on
assigning locks to individual critical sections. Additionally, our allocator isarflexible with respect
to the locking disciplines it supports than prior work.

e Synchronization elimination is a trivial consequence of our approachomponent containing an
isolated critical section that does not interfere with itself does not requirehsonization, and our
data show that many such components exist.

¢ We provide useful enhancementsiay-happen-in-parall§MHP) analysis for Java, which we use to
improve interference graphs by pruning false edges. MHP perforenzarcbe a concern, and we en-
sure fast results by usingl@ck obliviousapproach, essentially ignoring the effect of locks. Although
this reduces information quality, ogtart-join analysisallows us to provide a coarse categorization
of thread behaviour to this simple MHP analysis that achieves sufficientamcto make good lock
allocation decisions.

e We provide experimental data for a wide range of Java benchmarks weiioyis permutations of
our analysis pipeline. We find that in many cases, our component-baseataflmatches the perfor-
mance of the original program.

2 Related Work

We use Soot as a Java bytecode compiler framework [28], dependihg built-in class hierarchy analysis
(CHA) [9], context-insensitive points-to analysis [15], and may-hapipeparallel (MHP) analysis [16] as

a starting point. Naumovicét al. were the first to present an algorithm for computing MHP information for
concurrent Java programs [22], and the one provided by Soot is siBédk proposed a scalable alternative
to Naumovich’s analysis for Java [5], and Agareakl. later extended it to support X10 [2].

Our points-to analysis, while thread-insensitive, provides inputhoesad-context-sensitide effect anal-
ysis that models the heap using thread-local and shared patrtitions. A sindlgsia for Java was developed
by Chang and Choi, and we build on that work by demonstrating a congplieation [7]. Our analyses
work towards determining interferences between critical sections, whicht migh benefit from an inter-
procedural thread-sensitive slicing analysis for Java [21]. Weveléhread-sensitivity using thread-local
objects(TLO) analysis that detects when certain reads and writes inside criticiidise are thread-local,
and find that this improves lock allocation considerably. This is particularlygatimg when compared to
the work of Qlcianu and Rinard who found that thread-local object information wdfettve for synchro-
nizationremoval[24], and Aldrichet al. who found it statically effective for multithreaded programs, but
not such that runtime performance was affected [3].

One problem closely related to lock allocation is static race detection, in whinHisimnt advances have
been achieved recently. Nadk al. detect races in Java programs using a staged analysis that refinets the se
of memory access pairs potentially involved in a race until the number of flalgasis small [20]. Naik and
Aiken later defineconditional must not alias analys#s the problem of concluding whether two objects are

aliased from the hypothesis that two other objects are not aliased [118f tontext of static race detection,
this involves determining whether two guarded memory regions are aliased tiashe knowledge that the
lock objects guarding them are not aliased. Pratikakial. detect races in C programs usinga@nsistent
correlation analysighat determines which locks are held when a thread accesses a memorynlpgatio
and whether there is some lo¢khat is always held for each accesspt¢23]. Abadi et al. present a
type-based system for Java programs that depends on annotatioriedbrdees [1]. They use a tool to
infer these annotations automatically, and then feed them to a fixed point tatioputhat identifies and
removes the incorrect ones using their type-based race detector. Farsdlyof warnings is produced using
the correct annotations. Flanagan and Freund also demonstrate thaticd-based analysis can be used
to insert synchronized operations and correct a program contaiaitagraces [11]. These techniques all
find memory accesses that are not properly synchronized, wherdscthallocation problem examines
properly synchronized memory accesses and provides a less ahaesolution. Our requirement that the
input program be correctly synchronizable is precisely defined byabe Memory Model [17].

work |languagé compiler analysis locking discipline allocation input results
pointen TLO|MHP |datg nesting 2-phase¢locksetsdynamig CVs|heuristicsMLA [small large AOT |runtime
[18] C some| no | no |yes| yes yes no yes |yes no no | yes|yes|yes| yes
[14] C yes |yes| = | no| yes yes yes no no yes no | no | no | no no
[26,31]|OpenMRB yes | no | yes| no| no yes yes no |yes| yes yes | yes| no | yes| some
[10] | C,Java| yes | no| no | ho| yes yes no yes | no no yes | yes | yes| yes| no
currenf Java | yes |yes|yes|no| yes no no yes |yes| yes no | yes|yes|yes| yes

Table 1: Related work on lock allocation.

Recently there has also been a fair amount of work directly related to lodatibo, and we compare the
significant differences in Table 1. McCloskey al. introducepessimistic atomic sectiorsd provide a
tool to convert them automatically to more efficient lock-based code [18Jaddition to requiring user
identification of atomic sections, they also require annotations associating Wtk all shared data. A
whole-program analysis detects the use of shared data inside atomic sectiba transformation ensures
that the right locks are acquired according to a global total orderingsiféstic atomic sections can be
nested, and the transformation algorithm is provably sound. One limitation ia statttwo-phase locking
discipline is required, such that for a given atomic section, once a lockéased, no more locks can
be acquired. In a related but significantly more radical technique, Metzal. propose thabnly data be
synchronized, and prove that lock operations can be safely insettedlahnotations are correct [29].

Hicks et al. also convert atomic sections to pessimistic transactions [14], using the sampéezanalysis
framework as for their static race detection tool [23]. An analystoatinuation effectapon thread creation
is roughly comparable to MHP analysis. Locks are associated with abstemcory locations identified by
a pointer analysis, and the correct locks acquired and released agimaing and end of atomic sections.
They make two improvements, first by eliminating synchronization on thread-ttata, and second by
coalescing locks that are always acquired and released togethefirsthimprovement is comparable to
our thread-local object4TLO) analysis. The second, lock coalescence, is a heuristic for minimikig
number of locks. They do not permit dynamic locks, whereas the annatatsmd by McCloskegt al. do,
and they note that maintaining a global ordering with dynamic locks might reguitane support. They
also require that all locks in a lockset be acquired and released onlg authr boundaries of composed
atomic sections.

Sreedhar, Zhangt al. propose a framework for dataflow and concurrency analysis oflelpaograms,

and use it specifically to study the problem of assigning locks so as to maximimeircency and mini-
mize serialization overhead [26, 31]. They comput®acurrency relatiorthat is comparable to our MHP
analysis and use it for data flow problems, in particular pointer analysitoakdhllocation. Like us, they

3

depend on concurrency information to identify critical sections with intéirsgecead/write sets that are
actually independent. They construct a concurrency graph with eitharterfering or a non-interfering
edge between two critical section vertices, and computénamum lock assignme(ILA) such that two
vertices connected by an interfering edge have at least one lock in corambiwo vertices connected by
a non-interfering edge have no locks in common. We use a straightfotreaislation of their concurrency
graph in which all edges indicate interference and non-interferingsedigeremoved. They also provide
a k-lock allocation(KLA) algorithm for bounding the number of locks in exchange for sergion over-
head, an obvious corrollary of k-colouring as used by register allatafibhey formulate MLA and KLA
asinteger linear programmingILP) problems, and heuristic solutions for a range of randomly gercerate
inputs are then compared with optimal ones provided by an industrial ILRrsdlimitations include that
they disallow nested locking altogether, which impacts on the use of syrizadolibrary code, and they
only allocate static locks. They also analyse OpenMP, and note that thectiaerbetween aliasing and
concurrency is more complicated for Java programs. However, theyodadp a useful extension of data
flow that considers the isolation semantics of critical sections, and descyiip®rt for condition variables
and barriers in some detail, albeit for a structured subset of OpenMPwWlk has practical importance
because OpenMBnly supports a single global lock, and despite a lack of good benchmarkiesrea2x
improvement in one function of UA in the NAS parallel benchmark suite.

Emmi et al. have also examined the problem of lock allocation [10]. They build directlilo@loskey’s
work by eliminating the requirement for annotations protecting shared datan anost cases can automat-
ically infer the same protections for his AOLServer benchmark. Like Zlerad. they depend on ILP for
allocation, and clearly explain how to set up MLA and KLA for 0-1 ILP whiteaunting for various refine-
ments; importantly, they find that optimal solutions are tractable for AOLSgavenlistic benchmark. They
do consider dynamic locks in some detail, usingaacessed-before relatiaterived from temporal analysis
of critical sections to avoid deadlock, and favouring dynamic locks aegicdocks during allocation. They
also note that more precise compiler analysis is complementary to their work.

Finally, we see lock allocation in general as complementary to optimistic comcyrran active field of
research [12, 13, 25, 30]. Our analysis could be used to reduceséhnieead of optimistic concurrency by
providing information about interferences between critical or atomic sectathe runtime system.

3 Design

Our lock allocator accepts compiled Java programs consistinglafss files. Input programs must not use
volatiles, native code, grava. uti | . concurrent for thread synchronization, and must contain critical
sections protecting all accesses to thread-shared state such thatxiberes@me allocation of locks that
results in correct synchronization, as defined by the Java Memory INlbdle Any original lock alloca-
tion is discarded, and the lock allocator chooses locks that guarantee-&ee, deadlock-free program.
This allows for newly written software to ignore lock allocation, and for lgggaplications to benefit from
automatic correction of unsafe manual allocations. Additionally, both cladgg®gram benefit from un-
necessary synchronization removal, and experimentally, legacy pnegrantaining fine-grained manual
allocations provide a basis for evaluation of lock allocation strategies.

Any form of Obj ect . wai t (), Obj ect. notify(),orCoject.notifyAll () issafe, provided the input
program retries condition variables after waking up from a cadktiot () . After lock allocation, we redirect
these calls to the lock object protecting the immediately enclosing critical sectidditidnally, calls to
notify() arereplaced with calls toot i f yAl | (), which guarantees that wakeup notifications reach their
intended thread without being unsafely intercepted by some other waitingdthtdses ofaai t () and

4

noti fy() require deadlock considerations, as described in Section 3.6.

We represent programs witttatical section interference grapfy = (V, E'), where eachr € V' is a critical
section and each € F is aninterference Interference edges between two critical sections indicate that they
might conflict at runtime, and a self-loop indicates that two or more threaupete for the same critical
section. Our initial approximation is a fully connected graph, which we refirmugh a series of compiler
analyses.

Interference Identification
Thread-Local Objects
Thread-Based Side Effects

CS1——Cs2

CS3

Interference Pruning
May Happen in Parallel

CS1——CSs2

CS3

l Component-Based Lock Allocation

CS1——Cs2

CS3
Figure 1: Analysis pipeline.

An overview of our analysis pipeline is given in Figure 1. Initially, the inpuagram contains a set of
critical sections that we safely assume are protected by a singleton loadt;objehe figure, these are
critical sections CS1, CS2, and CS3. Interference information is compytedhread-based side effect
analysis(TBSE), which in turn employs thread-local objects analysi@LO), both of which depend on
points-to information and a call graph. In the example, this reveals the CRla CS1-CS3 edges. False
edges in the resultant interference graph are prunedigyahappen-in-parallel analys{#IHP); consider
the false CS1-CS3 edge in the example.

This yields a set ofocked componentshich contain interfering critical sections, CS1-CS2 in the exam-
ple, andunlocked componentshich are isolated critical sections without self-loops, CS3 in the example.
Component-based lock allocatipmoceeds to allocate a static or dynamic lock to each locked component,
locking only CS1-CS2 in the example and removing unnecessary sytdiion from CS3. The result is

a correctly synchronized program that is less conservatively sgniz@ed than the original.

3.1 Information Flow Analysis
Our lock allocator uses a flow-insensitive, context-sensitive, integga@linformation flow analysi¢lFA)

as the basis of thread-local objects analysi@f'LO) as described in Section 3.2. Given a pair of named
memory locations, IFA approximates whether the value stored in one locati@rived from the value

5

stored in the other location. For the purpose of detecting relevant thremddtions, this analysis considers
only explicit information flow resulting from direct assignment or arithmeticrapens. As used by the
lock allocator, the current analysis is unsound because implicit informatianisglnot included, although a
refined version could provide sound behavior.

Given a method to analyse, IFA generatesdormation flow grapfand annformation flow summaryThe
graph nodes represent all values manipulated by the method, namely pamaroeals, fields, statics, and
the return value. Each assignment statement generates an edge in theagrdpes each return statement.
The summary is derived from the graph by removing local variables dtapsing strongly connected com-
ponents. It thus approximates all publicly accessible values manipulated byetthod, namely parameters,
fields, statics, and the return value. Of course, multiple values may besadckg a singlesETFI ELD
instruction; the mapping from values to nodes determines the precision afdhesis.

At callsites, summaries are retrieved and combined for all possible targetaseffioe combined summary
is merged with the current graph by connecting summary parameters to caljgiteemts, the summary
return value to the callsite return value, and summadrys object and fields to the callsite receiver local.
If no summary exists for some target method, then a graph and summarycarsively constructed. If
a method is already under consideration by the interprocedural recwrsien a summary is requested, a
simple conservative summary is used instead. Also, in order to ensuonaddes runtime at only a small
cost to precision, internal library calls always use a simple consenstivenary.

3.2 Thread-Local Objects Analysis

After initial points-to analysis and call graph construction, our lock allagag¢oforms ahread-local objects
analysis(TLO) that serves to improve the precision of a lateead-based side effect analy$iEBSE), as
described in Section 3.3. TLO classifies all fields as eithexad-localor thread-sharedwhere any field
whose value is possibly accessed by more than one thread at a time is cech#iidead-shared. It uses IFA
to propagate this information throughout the program, which includes éveay variable. It can then be
safely assumed that reads from and writes to thread-local fields dceredtto be synchronized between
threads.

TLO is called with a list of thread classes that have tgpenabl e, each of which is analysed independently

to determine which fields may hold thread-shared values. Initially, any fieleksaed directly outside of the
Runnabl e via GETFI ELD or PUTFI ELD is classified as thread-shared, and all other fields are classified as
thread-local. Each method in tiRennabl e is classified as external if it is ever called from outside of the
class, otherwise internal. The parameters of each internal method are imigaiyfied as thread-local, and
the parameters of each external method are initially classified as threadisha

After this initial classification, IFA is used to generate the information flow sumritareach method of the
Runnabl e. Whenever IFA indicates that a thread-shared value flows to a threatfilgd, the classification
of that field is changed to thread-shared. This propagation contintiéa ired-point is reached.

Next, alocality contextcontaining the classification of each field and parameter is created focabsite

in the methods of th&unnabl e, and IFA provides an information flow graph for each target method of
those callsites. The locality context of each callsite in each target is deterfnimedhe information flow
graph for that target and the locality context of the caller. If a targetal@sdy been analysed, then the
locality context of the caller is merged with the existing locality contexts of its callsTieis interprocedural
propagation continues until a fixed point is reached.

Finally, when queried, TLO will report that a given value in a given meikadread-local if it is thread-local

in all Runnabl e classes that call the method. Otherwise it will report that it is thread-dhare

3.3 Thread-Based Side Effect Analysis

We extend the side effect analysis present in Soot 2.2.3 [15tticead-based side effect analy§iEBSE),
computing a list of<fi el d, obj ect > pairs that may be read or written by individual critical sections.
These lists are used directly to create the interference graph. TBSEed baspoints-to analysis, and
incorporates a thread-local objects analysis as described in Secti@ncBit&;al section nesting model, and
side effect approximations for library methods.

By default, Soot computes the side effects of statements using a simple &8t efjlations and the output
of its points-to analysis. TBSE analysis alters these equations to ignoreffgicis évolving thread-local
objects. Additionally, TBSE significantly alters side effect calculations fathae calls. For each method
call, instead of considering all transitively reachable methods and atigubor their side effects, our
modified analysis excludes internal library calls and static initializers. Ouingesiodel allows for inner
locks to be released independent of outer locks, and accordingly @aBBEXxcludes the side effects of any
method called inside a critical section.

We exclude static initializers because they impact on the precision of ours@alglthough ignoring
static initializers as such is unsound, we could safely force them to exeefaestthe code affected by our
transformations. Internal library calls are similarly excluded becaugeldeary call chains also impact on
the precision of our analysis. Importantly, this excludes many static librddgfielowever, we do provide
a treatment of library interface calls that assumes all receiver fields widdand written.

We construct an interference graph using the information provide byETBSvertexv is created for ev-
ery critical section, and interference edgeare inserted between every pair of nodgesndv; for which
(read(v;) N write(v;)) U (Write(v;) N read(vy)) U (Write(v;) N Write(v;)) # 0. This union of inter-
sections contains all data dependences for any two critical sectionsyrerdnon-empty is stored for the
corresponding interference graph edge asatstributing read/write set

3.4 May-Happen-in-Parallel Analysis

After constructing the interference graph from thread-based sidetetsults, we use may-happen-in-
parallel (MHP) analysis to prune false positive edges from the interferengdg@ur implementation is a
context-insensitive and lock-oblivious adaptation of the analysis availal3eot [16]. It first uses aun-
once, run-many analysi® categorize calls tohr ead. st art () asrun-onceor run-many It then uses a
start-join analysigo further categorize thein-manythreads asun-one-at-a-timer run-many-at-a-time

Our MHP analysis idock-oblivousin that it ignoresMONI TORENTER and MONI TOREXI T, synchronized

I NVOKE*, and calls to any form ofai t () andnotify(). This allows us to determine which critical
sections actually require locks to prevent parallel execution, and cotgsilio unnecessary synchronization
elimination. This reduces the MHP analysis problem to first identifying andjocg#ng threads, and then
for each thread determining the set of reachable methods.

The run-once, run-many analysis reads the call graph in conjunctiontiétbody of each method, and
marks each statement and the method itself as eithepnceor run-many Statements inside loops and
inside run-many methods are categorized as run-many. Methods with incedgreg from multiple callsites
and methods called from run-many statements are also categorized asnyn-fieese complementary
analyses alternate until a fixed point is reached.

Next, calls toThr ead. st art () are used to identify and categorize distinct thread classes. If the invocatio
statement is run-once, then the corresponding thread class is runkotheestatement is run-many but the
points-to analysis determines that a uniqie ead object reaches the call, then the corresponding thread
class is also run-once. Otherwise, the call creates a run-many thread Theese thread classes are actually
input to the TLO analysis described in Section 3.2.

In the case of run-many thread classestart-join analysissearches the method for a matching call to
Thr ead. j oi n() . Next, local must-alias analysis is performed to ensure that any appaagctt is guaran-
teed to join the same thread. Then a post-dominator analysis determines if thaimatghruns. If a match

is found, and the containing method is not reentrant and may not happarsitep then the corresponding
Thread. start () is labeledrun-one-at-a-timgotherwiserun-many-at-a-time

The MHP analysis finally reports that any pair of methods that might be ety two or more different
threads may happen in parallel. For this classification, each run-mantirag-dhread class is treated as
two different threads, and all other thread classes as one. This irtfomigused to prune edges between
critical sections in the interference graph whose containing methods magamoén in parallel.

The above treatment is somewhat complicated, and differs from that afd_Marbrugge [16] in several
ways. Their analysis creates a whole-program control flow graphdier@o correctly analyse synchroniza-
tion and wait/notify statements and provide lock sensitivity. Our lock-oblivioadyesis works more quickly
than their lock-sensitive implementation because it does not need to creatddthésprogram CFG. It also
works for a wider variety of programs: they require that every virtuahwoe call can be statically resolved.
The primary limitation of our analysis is that it ignores threads implicitly started by\#hé and Java class
libraries.

3.5 Lock Allocation

Lock allocation begins after the interference graph has been pruimegiM$IP information. Identification
of locked and unlocked graph components is straightforward, andllmsator assigns locks to locked
components at three different granularities:

e Singleton: A single static lock shared by all components.
e Static: A different static lock for each locked component.

e Dynamic: A dynamically allocated set of lock objects for each locked componeverting to static
allocation if necessary.

All three granularities replace any previously existing lock objects usettitbgal sections, and guarantee
that every critical section is protected by an appropriate lock object.Hsgnized methods are replaced with
unsynchronized wrappers around synchronized blocks, and calts tq) andnotify() are redirected
to the new lock object protecting the immediately enclosing critical section. Wetimslel i ¢ static
(bj ect fields to provide lock objects for the singleton and static granularities.

Singleton allocation is trivial: the interference graph is ignored, and the statielock is assigned to every
critical section in the program, including those in unlocked components. dim@asition of our analysis
pipeline has no bearing on thisiua allocation. For static allocation, each locked component is assigned a
different static lock.

For dynamic allocation, the interference graph is also partitioned into lockegha@nents. Several tests
are performed on each component to determine if a dynamic lock can be Esed if the union of the
contributing read/write sets for all interference edges in the componedéfiagd in Section 3.3, contains
fields from different object types, then a dynamic lock cannot be used.

Next, a deeper analysis determines if all contributing read/write sets forceiéical section can be protected
by a single dynamic lock. For each critical section, and for every pathdrikg section, every contributing
read/write must involve a single object accessible at its entry point. A loealdtmsitive must-alias analysis
is used to determine if all contributing reads/writes on a path involve the samet.objge safety of this
analysis depends on our input requirement that all shared state betpddtg some critical section, and our
guarantee of critical section isolation semantics. A la@mahmon predecessor alias analydestermines if
all objects accessed over all paths are reachable from a single @jgretce at the beginning of the section.
If these two conditions are met, then the object found for each critical sett&y be used as the lock, and
we classify this aslynamic allocation Otherwise, a static lock is assigned to the entire component.

3.6 Deadlock Avoidance

The analyses discussed so far have focused on freedom fromadata rHowever, another condition for
correct synchronization is absence of deadlock, and we ensurey/thiedking cyclic lock acquisitions [8].
Our lock allocator abides by a policy of minimal perturbance to any problematic dtlocation when
ensuring a deadlock-free program. We allow an initial lock allocation togadevithout regard to deadlock,
detect possible cycles in the partial ordering implied by critical section nestimd) correct deadlock by
addingdeadlock avoidance edgés the interference graph and reallocating the locks. This technique is
well suited to the current design of our allocator, and also to the use ofdiiloeations involving multiple
locks per critical section, which we intend to address in our future work.

Deadlock detection involves examining pairs of critical sections. If a paessad, then we assign a partial
ordering to their locks. This occurs regardless of whether the lockstatie or dynamic. The ordering is
then compared to all previously identified partial orders, and if no violatifwuisd then detection proceeds
to the next pair.

When a violation is found, it indicates a source of potential deadlock. Tder ¢that it violates was stored
along with a list of nested critical sections that induced ideadlock avoidance edgeadded between the
outer critical section of the failed partial order and the outer critical sextidrihe violated order. Then,
lock allocation is restarted using this new interference graph.

Deadlock avoidance edgese treated like interference edges for static fields, and must be protscted
static lock. This static lock guarantees the absence of deadlock in thellocaitemn. These edges work for
both static and dynamic allocations.

Our deadlock detection algorithm handles typical nested locking deadtmrkever, it does not handle
nested wait/notify deadlock. This situation can arise if a thread waits on okenboite holding others,
and the locks it holds prevent other threads from reaching the negesdbio noti f yAl | (). This type

of deadlock can be avoided by requiring that callstoi f yAl | () be reachable regardless of the locks
guarding a call tavai t () . This type of deadlock is no more difficult to detect than the type that wedblrea
handle; however, at present, we do not detect it. In practice, nathe dlenchmarks we experimented with
exhibited this behavior.

4 Experimental Results

In this section, we evaluate the effectiveness of several differeiigroations of our lock allocator by using
it to transform multithreaded benchmarks from five different sourcexbleT2 lists the benchmarks and
their properties. We use benchmarks from version 2006-10-MR2 Gfapa at the default input size [6],
and SPEC JVM98 at input size 100 [27]. Notably, we did not include mosheflavaGrande suite of
parallel benchmarks. Our tests revealed that this suite makes little use ofl sétitians, and heavy use of
volatile variables. This makes it ill-suited for benchmarking current lock attars, but a good candidate
for exploring compiler assisted synchronization outside of critical sections

name Critical Sectiong Description Source
TrafficSim 24 a car and driver pair navigate around a rotary Internal
RollerCoaster 6 7 passengers compete for seats Internal
PCMAB 2 25 producers and consumers connect via an aspebtternal
TestBench 3 3 threads increment a private and a shared countdnternal
BankBench 8 8 threads transfer funds between two accountsDoug Lea
JGFSyncBench 16 4 threads increment a counter Java Grande
mtrt 6 2 threads render a raytraced image SPECjvm98
lusearch 44 32 threads search a large index for 3500 words DaCapo
hsqldb 4 25 threads run transactions against a banking fap@aCapo
xalan 4 8 threads perform XSL transforms DaCapo

Table 2: Benchmarks.

4.1 Lock Allocations

Table 3 shows the effect of different analysis pipeline configurationsterference graph construction
and lock allocation for each benchmark. Only dynamic allocation is showeach configuration because
the static allocation can be determined from it by simply replacing each dynankiavitit a static one.
The graph characteristics column shows how the interference grapfeswoith the introduction of new
components into the pipeline. THE| column is naturally constant for each benchmark, corresponding to
the number of critical sections in Table 2, and it indicates the size of the irdade graph construction
problem. The E| column is the number of edges in the final interference graph, ar*%h:@lumn is graph

density, which ranges from 0 ¢/|? and is a suitable measure of graph quality. The weight of any edge
e € F is the number of fields involved in its contributing read/write set, and theréferaveight summed
over all edges indicates the size of the lock allocation problem for dynaniis.loc

Most of the benchmarks show reduced graph density as more detailgdeanare introduced, although
not necessarily at every stage. It is clear from the graph density aaldetdge weight metrics that the
introduction of MHP has the most profound effect on the interferenaplgrThe graph components column
illustrates how improvements to the interference graph lead to improvements iallocktion. Agraph
componenis either a connected set of vertices which willlbeked or an isolated vertex which will be left
unlocked Our lock allocator assigns one lock, either static or dynamic, to each catheomponent. As
the graph density decreases, the total number of graph componentsegrkeading to a larger number of
non-overlapping locks, a larger number of eliminated locks, and the ldgditr greater parallelism. A
lower graph density also contains fewer edges that could restrict tiatalty of dynamic locks.

Most the benchmarks have several isolated vertices in at least oneiamaypfiguration. Each isolated
vertex represents a critical section that does not require a lock, egtbaube it lies in dead code, interferes

10

analysis pipeline

graph characteristics

graph components

benchmark points-to| TLO | MHP || |V| | |E| :5; Zweigh(e) total statilco\cgir?amic unlocked
CHA 24 1101 4.20 128 7 3 1 3
SPK 24 | 95| 3.95 107 9 3 1 5
TrafficSim SPK X 24 | 81 | 3.37 90 9 3 1 5
SPK X 24 | 38 | 1.58 44 9 3 0 6
SPK X X 24 | 32 11.33 38 10 3 1 6
CHA 6 | 16 | 2.66 27 2 1 1 0
SPK 6 | 16 | 2.66 27 2 1 1 0
RollerCoaster SPK X 6 | 16 | 2.66 27 2 1 1 0
SPK X 6 | 14 | 2.33 22 2 1 1 0
SPK X X 6 | 14 | 2.33 22 2 1 1 0
CHA 2 4 |2.00 5 1 1 0 0
SPK 2 4 |2.00 5 1 1 0 0
PCMAB SPK X 2 4 |2.00 4 1 1 0 0
SPK X 2 4 |2.00 5 1 1 0 0
SPK X X 2 4 |2.00 4 1 1 0 0
CHA 3 5 | 1.66 5 2 1 1 0
SPK 3 5 | 1.66 5 2 1 1 0
TestBench SPK X 3 4 |1.33 4 2 1 0 1
SPK X 3 5 |1.66 5 2 1 1 0
SPK X X 3 4 |1.33 4 2 1 0 1
CHA 8 | 29 | 3.62 29 3 1 1 1
SPK 8 | 20 | 2.50 20 4 1 1 2
BankBench SPK X 8 | 20 | 2.50 20 4 1 1 2
SPK X 8 | 20 | 2.50 20 4 1 1 2
SPK X X 8 | 20 | 2.50 20 4 1 1 2
CHA 16 | 68 | 4.25 222 8 2 0 6
SPK 16 | 68 | 4.25 222 8 2 0 6
JGFSyncBenchl SPK X 16 | 68 | 4.25 222 8 2 0 6
SPK X 16| 4 | .25 4 15 1 0 14
SPK X X 16| 4 | .25 4 15 1 0 14
CHA 6 | 16 | 2.66 95 3 1 0 2
SPK 6 | 10 | 1.66 62 4 2 0 2
mtrt SPK X 6 | 10 | 1.66 50 4 2 0 2
SPK X 6 1] .16 1 6 1 0 5
SPK X X 6 1] .16 1 6 1 0 5
CHA 44 1173 3.93 271 10 3 0 7
SPK 44 | 81 | 1.84 131 29 4 1 24
lusearch SPK X 44 |1 80 | 1.81 123 29 3 1 25
SPK X 44 | 65 | 1.47 102 30 2 0 28
SPK X X 44 | 65 | 1.47 95 30 2 0 28
CHA 4 6 |1.50 8 3 3 0 0
SPK 4 6 |1.50 8 3 3 0 0
hsqgldb SPK X 4 | 6 |150 8 3 3 0 0
SPK X 4 2 | .50 2 4 2 0 2
SPK X X 4 2 | .50 2 4 2 0 2
CHA 4 8 |2.00 11 2 2 0 0
SPK 4 8 |2.00 11 2 2 0 0
xalan SPK X 4 | 8 |2.00 11 2 2 0 0
SPK X 4 3 | .75 4 3 1 0 2
SPK X X 4 3 | .75 4 3 1 0 2

Table 3: Effect of analysis pipeline configuration on interferencagd and lock allocation.

11

singleton
cha-sta

spk-sta
spk-tlo-sta
spk-mhp-sta
spk-tlo-mhp-sta
spk-tlo-mhp-dyn

BIRRR000

relative execution time

traffic ~ coaster pcmab test bank jofsync mtrt lusearch hsqgldb xalan

Figure 2: Dual-core x8664 performance.

only with critical sections with which it cannot occur in parallel, or has noatireisible side effects. In the
latter two cases, the removal of the critical section will reduce the lockintheegl of the program. How-
ever, the effect of removing a single unneeded lock is generally expertee small, due to optimizations
in most JVMs for uncontended locks [4].

4.2 Performance

Figure 2 shows the relative performance of each benchmark for esdigeration on a dual-core x864
AMD machine. These configurations match the ones used in Table 3chétfClass Hierarchy Analy-
sis [9]) orspk(Spark [15]) for points-to analysisjngleton stdtic, or dynamic lock allocation, and with or
withoutmhpandtlo analyses.

Seven out of ten benchmarks examined achieved performance within H96 ofiginal lock allocation.
For five of those, good performance was achieved without ever usitygamic lock, and for four, it was
done with nothing more than a context-insensitive points-to analysis. Ndbemk exhibited more than
a 20% performance hit using the mositvestatic lock allocation, and clearly singleton lock allocation is
not generally a viable strategy. Furthermore, of the five external lpeaidds, only Doug Lea’s banking
benchmark proved difficult to allocate locks for, still exhibiting reducedajpelism even with our best
allocation. This benchmark and several internal benchmarks may b#oefithe increased parallelism
of using multiple locks per locked component. These results suggest #wdicpi concurrency in popular
benchmark suites is not typically improved by sophisticated lock allocation giteate

An interesting contrast arises when the performance results are cainpahe interference graph charac-
teristics. Although Table 3 showed that there is often a large reduction ifdieréace graph edges when
MHP analysis is added to the pipeline, for the majority of benchmarks, there igdittle performance im-
provement from the addition of MHP. Consideration of this result revealsttie edges removed represent
pairs of critical sections that cannot execute in parallel, so the perfagrierpact of having those critical

12

singleton
cha-sta
spk-sta
spk-tlo-sta
spk-mhp-sta
- spk-tlo-mhp-sta
spk-tlo-mhp-dyn

BIRRR000

relative execution time
]

] U T

traffic ~ coaster pcmab test bank jofsync mtrt lusearch hsqgldb xalan

Figure 3: 4-way i686 HT performance.

sections share or not share a lock is negligible. However, MHP does geraluable purpose in thinning
the interference graph, reducing the size of the lock allocation problenaliowing the key improvements
from other stages to take effect.

Figure 3 shows the same configurations run on a four-processoig@éinachine with hyperthreading, for
a total of 8 virtual cores. The poor scalability of using a singleton static loagsrent on this machine for
the benchmarks that make heavy use of locks at runtime. This is particulzelptithe traffic simulation,
which contains many non-interfering critical sections whose executioonbes serialized, and the roller
coaster, whose threads spend most of their time waiting for locks, andafanéoing real work. Those
benchmarks that do perform significant real work experienced retaive performance on this platform.

These results clearly illustrate that the minimum analysis necessary to achim¥@erformance rises for
some benchmarks and falls for others when moving between hardwa@pistand that in general, coarse
allocation strategies are worth exploring in order to focus more sophistioptedal solutions.

5 Conclusions and Future Work

A top-down, component-based approach to automatic lock allocation hadvitietage of generating coarse
solutions rather than finely grained sets of locks associated with eachlcséicizon. Experimental data

shows that this approach corresponds rather well with the behaviowosifbenchmarks. Aggressively op-
timal solutions as identified by others [10, 31] are still important of course flae high quality interference

graphs created by our allocator can be used as input. Neverthelessnpgie concurrent behaviour of real
benchmarks allows for coarse solutions that focus on key aspectsiciircent interaction to be generally
effective in practice.

We have based our design on a consideration of how interference cemgaare formed and what kinds
of analysis data would most help separate them. Deeper analysis of thiirgtrand patterns found in

13

interference graphs would help identify further program propertiesrizy be of use in expanding the
scope of our lock allocation, and additional static analyses could be usethxathe restrictions on input
programs.

Finally, we assume that there exists a lock allocation for our input prograahsvith leave them correctly
synchronized. However, we are also interested in reusing our compilafi@structure to support static
race detection [1,19, 20, 23] and correction [11] when this is not the.ca

Acknowledgements

This research was funded by the Natural Sciences and Engineerseguiek Council of Canada, le Fonds
Quékecois de la Recherche sur la Nature et les Technologies, and the IBMt@dCentre for Advanced
Studies.

References

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locki@tatic race detection for Java.
TOPLAS: ACM Transactions on Programming Languages and Sys2&(2):207—-255, Mar. 2006.

[2] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar. Mapgpen-in-parallel analysis of X10
programs. InPPoPP’07: Proceedings of the 12th ACM SIGPLAN Symposium on Pléscgnd
Practice of Parallel Programmingpages 183-193, Mar. 2007.

[3] J. Aldrich, E. G. Sirer, C. Chambers, and S. J. Eggers. Compsaleesynchronization elimination for
Java.Science of Computer Programmimty (2-3):91-120, May 2003.

[4] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin lockgatherweight synchronization for
Java. InPLDI'98: Proceedings of the ACM SIGPLAN 1998 Conference on raroghing Language
Design and Implementatippages 258—-268, June 1998.

[5] R. Barik. Efficient computation of may-happen-in-parallel informationconcurrent Java programs.
In LCPC’05: Proceedings of the 18th International Workshop on Laggsaand Compilers for Par-
allel Computing volume 4339 ofLNCS: Lecture Notes in Computer Scienpages 152-169, Oct.
2005.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. Klaley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Juitdplee, J. Eliot, B. Moss,
A. Phansalkar, D. Stefandyi T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analySBORSLA'06: Proceedings of the 21st
Annual ACM SIGPLAN Conference on Object-Oriented Programminge®@gs Languages, and Ap-
plications pages 169-190, Oct. 2006.

[7] B.-M. Chang and J.-D. Choi. Thread-sensitive points-to analysimfdtithreaded Java programs. In
ISCIS’04: Proceedings of the 19th International Symposium on Ctenpad Information Sciences
volume 3280 oLNCS: Lecture Notes in Computer Sciengages 945-954, Oct. 2004.

[8] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlo¢kSUR: ACM Computing Surveys
3(2):67-78, June 1971.

14

[9] J. Dean, D. Grove, and C. Chambers. Optimization of object-orientegrams using static class
hierarchy analysis. lECOOP’95: Proceedings of the 9th European Conference on Objden(ad
Programming volume 952 oLLNCS: Lecture Notes in Computer Sciengages 77-101, Aug. 1995.

[10] M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock allocatioRQRL'07: Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Progriag Languagesages
291-296, Jan. 2007.

[11] C. Flanagan and S. N. Freund. Automatic synchronization correctio SCOOL'05: Proceedings
of the OOPSLA 2005 Workshop on Synchronization and Concurrer@bject-Oriented Languages
Oct. 2005.

[12] B. Goetz. Optimistic thread concurrency: Breaking the scale baféehnical Report AWP-011-010,
Azul Systems, Inc., Mountain View, CA, USA, Jan. 2006.

[13] T. Harris and K. Fraser. Language support for lightweightdeations. IMOOPSLA'03: Proceedings
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Proipigy Systems, Languages,
and Applicationspages 388—402, Oct. 2003.

[14] M. Hicks, J. S. Foster, and P. Pratikakis. Lock inference fomitcsections. INTRANSACT’06:
Proceedings of the 1st ACM SIGPLAN Workshop on Languages, i@ospand Hardware Support
for Transactional ComputingJune 2006.

[15] O. Lhotak. Spark: A flexible points-to analysis framework for Java. Mastegsith School of Com-
puter Science, McGill University, Morgéal, Qebec, Canada, Feb. 2003.

[16] L. Li and C. Verbrugge. A practical MHP information analysis famcurrent Java programs. In
LCPC’04: Proceedings of the 17th International Workshop on Laggsand Compilers for Parallel
Computing volume 3602 of.NCS: Lecture Notes in Computer Sciengages 194-208, Sept. 2004.

[17] J. Manson, W. Pugh, and S. V. Adve. The Java memory mod&ORL’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lajegupages 378-391, Jan.
2005.

[18] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolockern8yronization inference for atomic
sections. IPPOPL'06: Proceedings of the 33rd ACM SIGPLAN-SIGACT SymposiuPRrinciples of
Programming Languagepages 346—358, Jan. 2006.

[19] M. Naik and A. Aiken. Conditional must not aliasing for static race diéb@. In POPL'07: Pro-
ceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium origteimof Programming Lan-
guagespages 327-338, 2007.

[20] M. Naik, A. Aiken, and J. Whaley. Effective static race detectianifava. InPLDI'06: Proceedings of
the 2006 ACM SIGPLAN Conference on Programming Language Deaigjitngplementationpages
308-319, June 2006.

[21] M. G. Nanda and S. Ramesh. Interprocedural slicing of multithit@degrams with applications to
Java. TOPLAS: ACM Transactions on Programming Languages and Sys2&(t3:1088—1144, Nov.
2006.

15

[22] G. Naumovich, G. S. Avrunin, and L. A. Clarke. An efficient algfmm for computing MHP infor-
mation for concurrent Java programs. BSEC/FSE’99: Proceedings of the 7th European Software
Engineering Conference held jointly with the 7th ACM SIGSOFT Internatioy@lp®sium on Foun-
dations of Software Engineeringages 338—354, Sept. 1999.

[23] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Contextisemsorrelation analysis for race de-
tection. InPLDI'06: Proceedings of the 2006 ACM SIGPLAN Conference onRarogning Language
Design and Implementatippages 320-331, June 2006.

[24] A. Salcianu and M. Rinard. Pointer and escape analysis for multithreadethpieg InPPoPP’01:
Proceedings of the 8th ACM SIGPLAN Symposium on Principles and ReaaiidParallel Program-
ming pages 12-23, June 2001.

[25] N. Shavit and D. Touitou. Software transactional memory.P@DC’'95: Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Compufiages 204—-213, Aug. 1995.

[26] V. C. Sreedhar, Y. Zhang, and G. R. Gao. A new frameworlkafmalysis and optimization of shared
memory parallel programs. Technical Report CAPSL-TM-063, CompAstehitecture and Parellel
Systems Laboratory, University of Delaware, Newark, Delaware, I8y 2005.

[27] Standard Performance Evaluation Corporation. SPEC JVM Clieng@8hmark suite, June 1998.
http://ww. spec. org/jvnB8/.

[28] R. Vallee-Rai. Soot: A Java bytecode optimization framework. Master’s thedisgBof Computer
Science, McGill University, Mon&al, Qebec, Canada, July 2000.

[29] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization coaistts with data in an object-oriented
language. IlPOPL'06: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposiufrinciples
of Programming Languagepages 334—-345, Jan. 2006.

[30] A. Welc, A. L. Hosking, and S. Jagannathan. Transparentlgneiting transactions with locking
for Java synchronization. IECOOP’06: Proceedings of the 20th European Conference on Object-
Oriented Programmingvolume 4067 oLNCS: Lecture Notes in Computer Scienpages 148-173,
July 2006.

[31] Y. Zhang, V. C. Sreedhar, W. Zhu, V. Sarkar, and G. R. Gamtimized lock assignment and allocation
for productivity: A method for exploiting concurrency among critical sewdio Technical Report
CAPSL-TM-065, Computer Architecture and Parellel Systems Laboratémyersity of Delaware,
Newark, Delaware, USA, Apr. 2006.

16

