McGill University
School of Computer Science
Sable Research Group

Phase-based adaptive recompilation in a JVM

Sable Technical Report No. 2007-4

Dayong Gu and Clark Verbrugge
{dgul, clunmp}@s.ntgill.ca

May 25, 2007

www.sable.mcgill. ca

Abstract

Modern JIT compilers often employ multi-level recompitatistrategies as a means of ensuring the
most used code is also the most highly optimized, balancptgnization costs and expected future
performance. Accurate selection of code to compile and t#veptimization to apply is thus important
to performance. In this paper we investigate the effect dfrggroved recompilation strategy for a Java
virtual machine. Our design makes use of a lightweight, level profiling mechanism to detect high-
level, variable length phases in program execution. Prereahien used to guide adaptive recompilation
choices, improving performance. We develop both an offinglémentation based on trace data and a
self-contained online version. Our offline study shows aerage speedup of 8.5% and up to 21%, and
our online system achieves an average speedup of 4.5%, &%4o\We subject our results to extensive
analysis and show that our design achieves good overathqpeaice with high consistency despite the
existence of many complex and interacting factors in suckrironment.

1 Introduction

Many of today’s Java Virtual Machines (JVMs) [36] empldynamic recompilatiotechniques as a means
of improving performance in Java programs. At runtime the dynamic Jusirie-{JIT) compiler locates
a “hot set” of important code regions and applies different optimizatiocalanising the overhead costs of
optimized (re)compilation with expected gains in runtime performance.

Building a high-performance, adaptive recompilation strategy in a JVMmesjmaking resource-constrained
choices as to which methods to optimize, what set or level of optimization to amulywhen the optimized
compilation should be done. Heuristically, the earlier the method is compiled to jifsrfal” optimization
level the better. Naively assuming optimal means more optimizations, the potentsaicdh improvements
is illustrated schematically in Figure 1. The upper left image shows a typical cheiktwry, compiled ini-
tially at a low level, and progressively recompiled to higher optimization levetsteBprediction of future
behaviour allows a method to move more quickly between these steps (ugggroigo skip intermediate
steps (lower left). The area under the curve (rectangle) summarizeartttaht” of optimized method exe-
cution. On the bottom right a method is compiled to its highest optimization level immedidtislyoughly
represents an upper limit for the potential performance gains, at leashasy simple models of method
execution and optimization impact.

One of the key factors involved in finding ideal recompilation choices favengmethod is metholifetime.
Method lifetime is an estimate of how much future execution will be spent in a givghod based on current
and past behaviour; techniques for estimating method lifetime are critical in gnakline recompilation
decisions. A straightforward solution used in the JikesRVM [1, 2, 4] tilapecompilation component is to
assume that the relative proportion of total execution time that will be spengivea method is the same
as its existing proportion: the ratio of future lifetime to past lifetime for every nettb@ssumed to be0.
This is a generally effective heuristic, but as an extremely simple preditfoture method execution time
it is not necessarily the best general choice for all programs or abiallin a program’s execution.

Our work aims at investigating and improving the prediction of future methoduéieectimes in order to
improve adaptive optimization decisions. To achieve better predictions wiedlava program execution
into coarse phases; different phases imply different recompilationgiteateand by detecting or predicting
phase changes we can appropriately alter recompilation behaviour. ffgenpen offline analysis of the
practical “head space” available to such an optimization that dependpast enortenanalysis of program
traces, allowing the method recompilation system to perform as in the bottonofigigure 1. We also
develop aronline analysis that is more practical and dynamically gathers and analyzesipfaseation.

Opt. Level
Opt. Level
N

0
0 2 4 6 8 10 12 14 16 0 2 4 6 8 1012 14 16 18 20

Samples Samples

O B S v

Opt. Level
Opt. Level
N

0 <1(.(;11.1¢1;;11.;:§
0 2 4 6 8 1012 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Samples Samples

Figure 1: Sources of optimization due to improved recompilation decisions gorea method. In each

case ther-axis is samples (normalized time), and #@xis is optimization level. More time at higher
optimization heuristically means better performance, and so the area untiecwaae roughly represents
how well a method is optimized. Left to right on the top row are base recompilagbaviour and the

result of more aggressive recompilation. The lower row shows theteftéskipping some intermediate
recompilation steps (left), and of making an initial “ideal” choice, skipping daérimediate recompilation

(right). Note that even in the latter case at least 1 sample is required to idinatifypot method.

To keep our online system lightweight, we base our phase analysis ondrardounter information avail-
able in most modern processors, recovering high-level phase datddvwalevel event data. Based on our
JikesRVM implementations we observe an average of 8.5% and up to 21%isg@evement in our bench-
mark suite using the offline approach, and an average of 4.5% and updsd&edup in our benchmarks
using our online system, including all runtime overhead.

Although these results demonstrate significant potential, changes to thmidyreeompilation system in-
troduce feedback in the sense that different compilation times and chaceslpfuture recompilation
decisions. There are also many potential parameters of our designiffeneind kinds of benchmarks can
respond quite differently to adaptive recompilation—programs with small, roe@tbod execution sets and
long execution times can be well-optimized without an adaptive recompilationgstratdile programs
with larger working sets and more variable behaviour should performrheitte adaptive recompilation.
We consider a number of confounding factors and include a detailedigmtsn of the source and extent
of improvement in our benchmarks, including potential variability due to chaficecompilation algorithm.
Our results show that our phase-based optimization provides greatditbémterms of performance, sta-
bility, and consistency than current designs or simpler optimizations.

Contributions of this work include:

e We demonstrate a lightweight system for obtaining high-level, variable lengthcaarse grained
phase information for Java programs. Other phase analyses coteemntfanding fixed length and/or
fine-grain periods of stability.

e We give the results of an offline study of the head space for optimization setketion of hot-method
recompilation points based on our phase information. In the case of rdpgaafiowed “warm up”
executions our study represents an effective optimization by itself.

e We present a new dynamic, phase-based hot-method recompilation str@agymplementation
incorporates online data gathering and phase analysis to dynamically aptilzaty improve recom-
pilation choices and thus overall program performance.

e We provide non-trivial experimental data, comparative results, andeteanalysis to show our de-
sign achieves significant and general improvement. Potential variationtjfic&tion of influences,
and consideration of the precise source of improvements and degradatgoimportant for optimiza-
tions to complex runtime services in modern virtual machines.

The remainder of this paper is organized as follows. In Section 2 we diseleged work on hot method
set identification, profiling techniques, phase detection/prediction, amiivhee counters. Our main data
gathering system and phase prediction systems are described in Se@mhd Bespectively. Performance
results and analytical measurements are reported in Section 5, and Squtisidés detailed data analysis
and discussion. Finally, we conclude and provide directions for futork i Section 7.

2 Related Work

JIT compiling and optimizing all the code of a program can easily introducenfamuch overhead, both
in time and resources. JVM JIT compilers thus typically attempt to identify a smaiteelt on which to
concentrate optimization effort. This kind of adaptive optimization allows stipated optimizations to be
applied selectively, and has been widely explored in the community [4, B1Mtist of this work focuses
on methods as a basic compilation unit, but other choices are possible; Wioalgstance, presents an
approach to determining important intra-method code regions from dynaofiteptata [54]. In all these
efforts recompilation overhead is reduced by avoiding compiling and optimiaiely used code, based on
either the assumption that “future = past,” or by using simple counter-tsa$eanes to determine relative
execution frequency. Our work here augments these approachesadsntrating on the specific problem of
providing additional predictive information to the adaptive engine of a JVbMdler to improve optimization
decisions, rather than providing the concrete adaptive optimization frark éself.

One of the crucial technical challenges for adaptive optimizations is to maticarate profiling data with
as low an overhead as possible. Profiles can be obtained from pragsémmmentation or from a sam-
pling scheme. Instrumentation techniques are widely used in adaptive optimizhiianserting instru-
mentation into a program, we can gather accurate profiles at a fine gignufar example, Dynamo [7]
uses instrumentation to guide code transformations. Instrumentation techaigualso useful in program
understanding; Daikon [22] is a system for dynamic detection of likely iawés in a program through
instrumentation. Even commercial JVMs provide a basic instrumentation irgetiecugh Sun’s JVMTI
specification [51]. Unfortunately, instrumented profilers can also b fagavyweight, producing large

runtime overheads [14, 15]. This has inspired work on reducing instrtatien overhead, such as that by
Kumaret al. in their INS-opsystem that optimizes (reduces) instrumentation points [33].

Alternatively, runtime profiles can be gathered by sampling. In a samplingdbesproach, only a repre-
sentative subset of the execution events are considered, and thiseeély geduce costs. Systems such as
JikesRVM [2, 4], use a timer-based approach to determine sampling poimtsor@e other systems, such as
IBM’s Tokyo JIT compiler [50] and Intel's ORP JVM [17], a count-dowoheme is used. An optimization
candidate is chosen when the correspondimgnterreaches a pre-defined value. Arnold and Grove present
an approach that combines the timer-based and count-down schen@adéyl on the original timer-based
scheme in JikesRVM, a stride counter is set to control a series of ndiggouns burst count-down sampling
actions.

A sampling-based strategy allows the system to reduce the profiling odewittareductions in profiling
accuracy as a tradeoff. Many technigues have been developeditenaafiling overhead while maintaining
profiling accuracy at a reasonable level. For instance, Zheaa{ [55], for instance, develop an adaptive
“bursting” approach to reduce the overhead while preserving acgurBhe key idea of this work is to
perform detailed and heavy profiling, but only at selective points.

Phase work can be generally considered with respect to pledsetionand/or phaserediction. Detection
techniques work in a reactive manner; program behaviour changeasbaerved only after the occurrence
of the change. Apredictivemechanism is clearly more desirable for optimization purposes. Prediction
techniques can be roughly divided into two typstatistical predictiorandtable-based predictian

Statistical predictors estimate future behaviour based on recent histogtcaviour [21]. Many statistical
predictors have been developed, includiagt valug average(N) most frequent(Nand theexponentially
weighted moving averagd&WMA(N)) predictors. Statistical predictors have been widely used imopa-
tions based offreturn) value prediction13, 24, 39, 41]. Hiet al. present gparameter stridgoredictor that
predicts return values as a constant offset from one parameterT@8f-basegredictors allow for more
arbitrary correlation of program activity and predicted behaviour. pitegs between events or states and
predictions of the future are stored in a table and dynamically updated wigenddehaviour changes are
identified. Pickett and Verbrugge develomamoizatiompredictor forreturn value predictiorthat correlates
function arguments with likely return values [41]. Sherwood and Sair tiable-based technique to to per-
form run length encoding phase predictibased on patterns in low level branch data [46]. Duesterefald
al. give a general study on predicting program behaviour [21], comgatatistical and table-based models
operating on fixed size intervals. Their experimental results show thatlabkd predictors can cope with
program behaviour variability better than statistical predictors. Our gieditechnique is largely table-
based as well; we use a mixed global/local history and give prediction regtlita confidence probability.

Phase information can be used to locate stable or repetitive periods atiexeat runtime, and has been in-
corporated into various adaptive optimizations and designs for dynamensysconfiguration [8,16,19, 29,
44]. Nagpurkaet al. present a flexible scheme to reduce network-based profiling oveblaesad on repet-
itive phase information gathered from remote programs [38]. Tteise trackeis implemented using the
SimpleScalar hardware simulator [12]. Data for phase analysis may inajéxeegathered through offline
analysis of program traces, or through online techniques. Nagpetrkampresent an online phase detection
algorithm that detects stable, flat periods in program execution as ysefsies [37], and further provide a
set of accuracy scoring metrics to measure the stability and length of theedepdmses. Phases based on
various statistics are of course also possible, and many different daturesents have been considered
for phase analysis work. Dhodapletral. make a comparison between several detection techniques based
onbasic block vectors, instruction working setsdconditional branch count®0]. Phase data is also often
employed for high level program understanding [23, 49].

Most phase analysis techniques are based on fixed-length intervalsg aindetect stable periods of pro-
gram execution [8, 27, 45]. For programs with complex control flowhsagcJava and other object-oriented
programs, at the levels of granularity useful for optimization there may teen@l flat and stable phases,
even if there is obvious periodicity. For such situations the majority of tecksiand associated quality
metrics are not sufficient to capture or accurately present prograsephBasic problems with phase gran-
ularity are starting to be considered; Latial. point out the intrinsic problem of fixed interval designs
being “out of synchronization” with the actual periodicity of the executamg graphically show that it is
necessary to study variable length intervals [34]. Here we use actaaVéie data to detect coarse, variable
length, recurrent phases in a program and use it to give usefuleatitvibe adaptive engine of a JVM.

To actually gather hardware data we make use of the specialized hangevészemance counters available
in modern processors. Hardware counters can provide important anichitectural performance informa-
tion that is difficult or impossible to derive from software techniques aldivese data allows the program
behaviour to be more directly understood from the viewpoint of the uniderlyardware platform, and al-
though low level, this information can be used for guiding higher level adabihaviour. Barnest al.
use hardware profiling to detect hot code regions and apply code opgiomnz&fficiently [9]. Schneider
and Gross present a runtime compiler framework using instruction levehiaton provided by hardware
counters to detect hot spots and bottlenecks [43]. Their work proagéstform to study the relation be-
tween dynamic compiler decisions and hardware specific properties. Kiatldfranz describe tt@beron
system that performs continuous program optimization [32]. They destirébenefits of using hardware
counters in addition to software based techniques as crucial comporightsrqrofiling system. Other
works based on hardware event information can be found in [3, 26242Many software applications and
libraries are available to access these counters, including VTune NM&JPP[30], PCL [10] and PAPI [11].
In this work, we use the PAPI library.

3 Basic System

e memeesmeessssssssasemsssssssessssssssemem————
E Hardware H . o -
= Pert Hardware pattern Analysis Model Program phase | Recompilation | Recompilation N Recompilation
i er ormance PT— y: advice 7| Analytic Model | decisions ”1 Subsystem
= Monitor H
Hardware
Hot method . i
Counters Profiling samples Adaptive Recompilation System
adiceks \ = " = msssssscscsscsssscsccssscsssscscscsnsesencanaal

Runtime Measurement
Component

Pattern DB

Figure 2: The cooperation among hardware performance monitor, pattalysis model and adaptive opti-
mization components.

Our system design is based on an extension to the current recompilattemsysJikesRVM. Figure 2
shows the overall structure and components of our base system, anil imbegrates with JikesRVM.
Raw hardware event data is obtained throughhhelware performance monitdiHPM), a pre-existing
component in JikesRVM. The pattern analysis model detects “patterns” ihdttevare data. Through
comparison with previous patterns stored in ffagtern databasethe pattern analysis model detects the
current phase of an executing program. Phase information is then uggeetadvice on the program
phase to the adaptive recompilation engine, and also to control the behakibe runtime measurement
component. By taking phase advice into account, the adaptive recompilatioreds able to make better

adaptive recompilation decisions, as we show in our experimental dataw Bedgrovide more detailed
descriptions of the core components of our implementation design and eneinbn

3.1 Hardware performance data

Hardware performance data is acquired by reading hardware-sgesiformance counters. Fundamentally,
the hardware counters in modern processors are a set of regissdues Vh these registers can represent a
variety of hardware events, such as machine cycles, instruction anddatacache misses, TLB misses,
and branch predictor hits/misses. Counter data reflects the performfahecunderlying hardware directly
and collecting it imposes little overhead.

Critically, although hardware counter data is low level it can be related to lbigh aspects of program
behaviour. Latet al. show there is a strong relation between hardware performance andigodéures or
instruction working sets [35]. Our implementation mainly samples the “L1 instruciiche miss” event, an
event known to correlate well with method execution behaviour [26]. TRBldomponent of JikesRVM is
used to gather our raw hardware event data. To ensure a lightwegjghdmir system samples events only
at each process context switch point; in a typical benchmark this precieseral thousand sample points
per benchmark run.

3.2 Hardware event pattern construction

To detect coarse grained and variable length phases the input harelveant data is inspected for patterns.
Our pattern analysis modeliscovers simple patterns by observing how event density changesiraeer
and looking for distinct sequences of change. There are many paramessible in such a design, and here
we provide an overview of an approach optimized for accuracy, gétyeand simplicity; precise details of
the pattern construction process and parameter justification are availakikchmical report [25].

Our technique operates by summarizing low-level behaviour with shorebibys that encode the overall
pattern of variation. We use of a “second order” approach that cerssi@driation in hardware event counts
rather than absolute counts themselves as the basic unit to focus the tecbnigetecting changes in
behaviour, heuristically important for identifying phases. The actualrigigo for translating hardware
event data to bit-vector patterns involves first coarsening the (variafiaata into discretéevels and then
building a corresponding bit-vectshaperepresentation.

e Levels A basic discretization is applied to variations in event density data to codrsestata and
help identify changes that indicate significant shifts in behavior. We contpatdensity of events
over time for each sample. By comparing the density of the current sample attbftthe previous
sample, we obtain a variatidi. This variationV’ is discretized to to a corresponding lev&l;. In
our experiments we use 4 discrete levels.

e Shapes We determineshapesby observing the direction of changes, positive or negative, between
consecutive samples. Complexity in shape construction is mainly driven teyndaing when a
pattern begins or ends.

Each shape construction is represented by a(#gitv), wherePy, is a level associated with the be-
ginning of the shape, andis a bit-vector encoding the sign (positive, negative) of successaeges

in event density. Given data with lev&},, if there is no shape under construction a new construction
begins with an empty vectofPy, |]). Otherwise, there must be a shape under construgfien, v).

If Qw = Py, or we have see@y, > Py less tham times in a row, then shape construction contin-
ues based on the current shape constructips, v): a bit indicating whethel” > 0 or not is added
to the end of.

The following conditions terminate a shape construction:

1. Ifwefind@Qy < Py we consider the current shape building complete and begin construction of
(Py,[]). Increases in variation of event density are indicative of a signifidzamge in program
behavior.

2. Ifwe find Qyw > Py, ntimes in a row the current shape has “died out”. In this case we also
consider the current shape building complete. In our experiments wefband n = 2 is
sufficient for good performance.

3. Ifin (Qw,v) we find|v| has reached a predefined maximum length we also report the current
construction as complete. In our experiments we use a maximum of 10 bits ateaftraf
storage cost and expressiveness in patterns.

A

Get hardware data D
V = Variation(D,D_last)
Pv=Lev(V)

Yes Pv > Qw?

Start a new pattern construction: No
Qw = Pv
ShapeCode=[]
I

Y
Compute shape bits S of V as:
case (Pv < Qw) : S =00
case (Pv==Qw) && (V >0) : S =01
case (Pv==Qw) && (V < 0): S =10

v

| ShapeCode +=S; |

Yes

| Report pattern to analysis model |

Figure 3: A flow chart for pattern construction.

A overview of the pattern construction algorithm is shown in Figure 3. Afiéaiming hardware dat®, we
compute the variatio¥ betweenD and the same datd)asy) for the previous intervall is then mapped
from a real value to an integer valug, € {0,...,n}, representing the level df. As mentioned in the
formal description of this algorithn@)yy to represents the level of the pattern currently under construction.
Initially the value ofQyy is set to -1 to indicate no pattern is under constructio?if> Qy then we are
facing a larger and hence more important variation than the one that begeumrtbnt pattern construction.
The current pattern is thus terminated and a new pattern constructiornedsdatith level P, begins. The
value of Py is assigned t@)yy and the shape code vector (denotehapeCodén Figure 3) is blanked.
Otherwise Py < Qyw) and the current pattern building continues.

The actual pattern encoding is based on the relation betWwege®y;; and the sign of/. Two bits will be
appended to the curreBhapeCodeach time a pattern grow81 means a positive variation at lev@ly,

10 represents a negative variation at le§)g|-, and00 means either a positive or negative variation at a level
below@y . Binary 1s in our scheme thus indicate points of significant change. @atistr continues until

7

one of the pattern termination conditions is met, at which point we report thep#itéhe pattern analysis
model. A concrete example of the construction of a pattern is shown in Figure 4

Hardware data| Variation @)

1 2 3 4 5 6 1 2 3 4 5 6

Lv3 L3 101 00 01 00 00
Lv2 <A> <A> Lv2 > <A> <A>
Lvl <y> Lvl <Y>
LvO Level <V> <A> 3) LvO Pattern <V> <A> (4)

2 3 4 5 6 2 3 4 5 6

Figure 4: Pattern construction example. (1) Acquire the raw hardwaee ¢3d) Calculate the variation
between consecutive points. (3) Coarsen the variation into differeglstethe triangles inside each circle
show the direction (negative/positive) of variation. (4) The final patbemstruction results; the arrow on
the y-axis indicates that we obtain a level 2 pattern; the number above ieadlehsbows the 2-bit code for
each variation. The four trailing zeros are omitted (the pattern has diedamatthe final pattern code is
010001.

The same pattern construction strategy can be applied to any hardwatecevater, and in general any
scalar event data. In our actual system we make use of the instructiba nass density as a hardware
event, found useful by others and confirmed effective in our owegxgents. Section 6 discusses this issue
further, but a more thorough investigation of different events andtemnbinations is left for future work.

3.3 Pattern analysis and prediction

Pattern analysis and prediction consumes created hardware patterasvéiirther examine the patterns
to discover repetitive phases and generate predictions of futuregpndaghaviour. All created patterns are
stored in gpattern databaseThe recurrent pattern detection and prediction are based on the infonnratio
the pattern database and the incoming pattern.

The recurrent detection is straightforward: if we find a newly creatégathat shares the same pattern
code as a pattern stored in the pattern database we declare it to havedegur actually repetitive phase,
however, is not declared unless the current pattern also matches distipreresults.

The prediction strategy we use is a variant of fixed-length, local/globaldilstory, table-based prediction.
Unlike more direct table-based methods our predictions include an attacbefidence” value; this allows
us to track multiple prediction candidates and select the most likely.

—e *~——e —e
*~—e *~—e ~—e

A
Tri-distance Selection Algorithm

v

Dual-channel Selection Algorithm

I
v v

Channel | Channel 11

< Prediction Result >

Figure 5: Overview of the prediction mechanism.

Figure 5 gives an overview of our prediction scheme. For each patterikeep the three most popular
repetition “distances” from a former occurrence to a later one; ourgrpats showed that three candidates
provided a good balance of performance and accuracy. Predictaatagoare performed by heuristically
evaluating these distances for a given incoming pattern to find the most likeigble length pattern repe-
tition. Ourtri-distance selection algorithmpdates the likely choices for an incoming pattgty tracking
three repetition®;, i € {0,1,2}:

e For eachD; we keep a repetition length;, measured by subtracting time stamps of occurrences, and
a “hotness” valud;.

e The differenceTl; between the current pattern occurrenpcand the ending point of each @¥; is
calculated.

e If the difference betweef; andL; is smaller than a thresholf, the hotnesgd; is increased. Other-
wise, H; is decreased.

o Ifthe difference betweet; andL; is larger thari” for all threeD;, we replace thé; associated with
the lowest hotness with a nely;. The lengthZ ; is based on the distance to the closest of the current
set of D;, and hotnes$/}, is initialized to a constant value representing a low but positive hotness in
order to give the new pattern a chance to become established.

e We use theD; with the greatest hotness as the prediction regijliurther functions as a confidence
value for this prediction.

With the current prediction updated we then make a final prediction fromltielgset of pattern updates.
In this case we use two global prediction “channels” to limit the cost of dhgaamong all possible pat-
terns. Ourdual-channel selection algorithis similar to the tri-distance selection algorithm: if the current
prediction matches one or both of the prediction channels the channekhasn@creased by the predic-
tion confidence, and if it matches neither then the coldest channel is edpldde hottest channel then
determines the global prediction result.

3.4 Adaptive recompilation system in JikesRVM

The adaptive recompilation system [4] of JikesRVM involves three mainystdass. Aruntime measure-
ment componens responsible for gathering method samples.afalytic modeleads this data and makes
the decision on whether to recompile a method and the appropriate optimizatibnTleeerecompilation
plan is fed to theecompilation subsystemhich carries out the actual recompilation.

The crucial point is the decision-making strategy of the analytic model. Thaestsebetween different
optimization levels, based on an estimate of the potential benefit of each leveda&h optimization level

i (0 <i < N),JikesRVM gives an estimate of the execution spggaf a methodn. The value ofV can

be different for different platforms; in our systeiV, = 3. A recompilation decision is then made based on
the following computations:

e T,,: The time of the program already spentin It is computed as
T, = SampleNumber TPS

TPSstands for “time per sample,” a constant value in JikesRVM.

e T;: The expected time ofn at levels, if it is not recompiled. In the original implementation, the
system assumes:
T, =T, 1)

e (;: The cost of recompiling methad at levelj, for: < j < N.

e T): The expected time the program will spendiinin the future, if it is recompiled at levet

T]:TIZ*S—Q
SH

The analytic model chooses the leyeghat minimizes the value af'; + 7T}, the compile time overhead and
expected future time im. If C; + T < T;, thenm will be recompiled to levej.

4 Phase Analysis

Improvements to the prediction model used by the adaptive recompilation drayiereghe potential to im-
prove performance, executing highly optimized code more often andat@egethe overhead of successive
recompilations. We investigate the improvement from two perspectives. heasfian offline technique
based on trace data; this mainly serves to give a sense of the maximal beatefbuld be reached given
optimal information. The second is a purely online implementation, that useswdevel profiling and
dynamic phase systems to improve predictions.

4.1 Offline trace-driven mechanism
Recompiling a hot method to an ideal optimization level at the earliest point imgrogxecution will in

general maximize the benefit of executing optimized code, as well as elimimtterfpotential compilation
overhead from the method. For a recompilation mechanism based on runtimpéngadata, knowledge

10

of the final optimization level of a method at the time when the first sample of it iste@resents ideal
results with minimal profiling overhead. Optimality is bounded by the accurathyeaéstimation, including
heuristic choices that balance optimization costs and benefits. Here we implamefiline trace-driven
optimization technique to discover the approximate improvement head spatien&bghoices are made in
the sense of maximizing the heuristic benefit.

Implementation of the offline mechanisr@ffline) is straightforward. A set of traces from training runs
is gathered, analyzed, averaged, and used in a subsequent i@pllagprogram to select an appropriate
optimization level for each recompiled method. Use of multiple runs accommodates vairations in
performance; sources of noise in recompilation data is discussed morafSiction 6.

Implementation details include that:

e First, training data is gathered; a Java program is exec\Mtéthes to produce trace filég (1 < i <
N).

e Each tracél; is composed of a set of paits M, L; >. M is a particular method, ang; is the last
and highest optimization level @l in T;.

e Asummary trac€s is constructed, composed of paitsM, Ly >, whereLs = Max (L1, Lo, ..., Ly)
for a given)M.

e In the tested rung; is loaded at the beginning of execution. Each time a method sahfpdetaken,
if we can find a recordk M, L > for it in Ty, we recompileM to level L, directly, and mark the
recompilation as a final decision. No further compilation will be appliedi/to

e It is possible that speed gains due to better adaptive recompilation allows admathrecompiled
in any training run to be added to the hot set in an actual run. If we cdimuba record forM in
Ts, M is treated per JikesRVM's original recompilation strategy. Note that in ope®@xents such
cases are rare and involved infrequently executed methods; the imphés divergence in hot set
identification is reasonably expected to be small.

Performance results from the offline strategy are given in Section 5.1so®r® benchmarks the benefit
obtained is quite significant, confirming both the potential available to a morel#exilline optimization,
and the value of our offline design as an optimization unto itself.

4.2 Online mechanism

The success of an online recompilation system depends on the acctiraeyhodlifetimes or the future
time spent in a method, as well as other recompilation cost and benefit estitdatksestimating future
method execution time results in missed optimization opportunities, while overestimaisthe risk of be-
ing overly aggressive in compilation, wasting time on unnecessary recompdatial/or high optimization
levels. This is particularly true early and late in program executions, vduete execution variability is high
and the expectation of continued behaviour is lower. This can also odwm programs make major phase
changes, shifting into markedly different modes of execution. The kefroeir online mechanism is thus a
system that detects coarse grained and variable length program phaseses this information to control
the relative aggression of the recompilation subsystem in JikesRVM. Ba#ing improved recompilation
choices improve overall program performance.

11

The existence of basic startup, core execution, and shutdown phaseglaknown. Our phase identifi-
cation is based on identifyingge but further allows programs t@juvenate as a means of allowing for
the identification of multiple major execution phases. These phases imply dishitetns of control for
recompilation, and are classified as follows:

e Newborn: At startup a Java program tends to spend time on a set of methogdertlorm initialization
actions, and these are often not executed after basic setup is complete c@visidering whether past
behaviour is a good predictor of future behaviour we can heuristicglig@xhat the future execution
time of a given method will be less than the pdaiture < Past

e Young: After a period of time, the program comes into the main application aekeode and will
spend a comparatively long time on the same set of methods. Methods exatdihisgtage are likely
to be executed even more in the futuFerture > Past

e Mature: After the program works within its kernel code for a while, wesider the program to
be mature In this case, we assume the runtime profiling subsystem has gathereghesaaples
to support the recompilation engine in determining suitable optimization levels. thereriginal
estimate that future and past performance will be similar is most Valitlre =~ Past

e Rejuvenated: Experience with coarse grained phase analysis ofrdgvams shows some programs
will have distinct, kernel-based phases, and at runtime will have more tiehai method set. When
a program enters a new hot set it thus transitions to the young phase @uaia saejuvenatedas
such, however, we have a slightly more cautious estimate as to the futunachetef the new hot
set: Future > Past

| Phase | HW EventBehaviour [Recompilation |

Newborn || No recurrence of patterns| Less aggressive
Young || Recurrence of patterns More aggressive

Mature || Less new patterns Moderately
More old patterns aggressive
Rejuvenated| More new patterns More aggressive

Invalidation of old patterns

Table 1: Program phase, hardware patterns, and recompilation dggress

The second column of Table 1 describes how program phases aigtically determined from the underly-
ing hardware event data. Changes in how lower-level patterns aréiieléin the data suggest correspond-
ing changes in the program code, and thus phase or age. At proguanps wide variety of “execute-once”
startup code is executed, and few recurring low-level patterns anel f@uyoung program will start to show
significant recurrences of new patterns as it begins to execute itsl ke The mature phase is de-
tected by noticing the balance tipping from discovery of new patterns torewe of old patterns, and the
rejuvenated phase by a subsequent loss of old patterns and introchfatien ones.

Understanding program phase allows for heuristic control of the relatjgression of the recompilation
engine. In cases where the future performance is not equal to thihpa&stpected execution time should be
appropriately scaled. The third column in Table 1 gives a summary of howfées the behaviour of the
recompilation engine. A newborn program is less likely to repeat its behaénd recompilation should
be more conservative. A young program enters into its kernel; the ndevisdikely to be executed much

12

more than it has been in the past, and recompilation becomes aggressihe. execution enters a mature
phase aggression is decreased; in such a relatively stable envirainmeatompilation engine is expected
to have sufficient past data for making good decisions. A program ttiatsea new significant kernel of
execution requires again ramping up the aggressiveness of recompilation

The aggressiorof the adaptive recompilation engine is controlled by using a scaling parameber esti-
mation of future execution times. We introduce a varidhtereEstimatorand change the definition @f;
in Formula 1 to:

T; = T, * futureEstimator 2

Figure 6 shows a high level overview of the complete online algorithm. Eaawhaae patterrPAT has

a field occNumwhich remembers the number of occurrences. If the adaptive recompitatidel finds

a recurringPAT, such that,PAT.occNumis more than one, the estimated “age” of a progrémg.age

is increased. WheRrog.ageis larger than a thresholgoungThreshthe program has left the newborn
phase and become young. From then on, each time ther&dskgpatternPAT such that the occurrence
number is less than a threshaithture Threshthe value ofutureEstimatoiis increased; otherwise its value
is decreased. A larger value aiftureEstimatordrives the adaptive recompilation model to make more
aggressive recompilation decisions, assuming methods will run for longerctirrently estimated. Fixed
upper and lower bounds protect tliture Estimatowvalue from diverging in cases of extended bursts of fresh
or mature patterns. Based on earlier experiments we firniteEstimatorto the rang€0.9, 5.0].

Get a pattern PAT

Decrease
futureEstimator

Increase
futureEstimator

futureEstimator <
MinValue?

futureEstimator >
MaxValue?

futureEstimator := futureEstimator :=
MaxValue MinValue

Figure 6: An overview of the algorithm used in the computation offttiere Estimator

13

5 Experimental Results

Experimentally we evaluated the performance of both our offline and ordiné@ns. Our implementations
are built upon JikesRVM 2.3.6 with an adaptive compiler, and runs on an th#®GHz workstation with
1GB memory, under Debian Linux with a 2.6.9 kernel.

Benchmarks used in this work include the industry standard SREE@8 suite [47], and two larger exam-
ples,sooT[53] and FBSEUDQJBB (PJBB). SOOT is a Java optimization framework which takes Java class
files as input and applies optimizations to the bytecode. In our experimentanseoTon the class file of
benchmarkiavac in SPEQvVM98 with the- - app - Ooptions, which performs all available optimizations
on application classes.SRUDOJBB is a variant of SPE@B2000 [48] which executes a fixed number of
transactions in multiple warehouses. In these experiments it executes ffimmo @ight warehouses with
100 000 transactions in each warehouse. For SR®G8 we use the S100 input size.

For performance evaluation we measured our benchmarks quantitatsialy a baseline (original), and

using our offline and online strategies. Overall execution time for the onipeach includes all overhead
for phase analysis and low-level profiling. In the case of the offlineaaah the overall execution time

includes the overhead of processing the recompilation trace. Full resutiarfbenchmarks in absolute and
relative terms are shown in Table 2.

Benchmark Original Offline Online Benchmark Characteristics

Time(s) Time(s) [Improvement (%) || Time(s) [Improvement (%) Patterns[Optimized methods|
compress 15.75 15.55 1.3 15.73 0.1 157.9 17.6
db 37.97 37.22 2.0 37.72 0.6 450.5 25.3
jack 22.59 20.08 11.2 19.78 125 343.5 90.0
javac 11.78 10.72 9.4 11.10 5.7 193.9 36.9
jess 18.11 14.25 21.3 14.87 17.9 204.5 50.0
mpegaudio 20.24 17.81 12.1 19.79 2.3 103.6 58.9
mtrt 15.14 14.29 6.4 15.42 -1.8 58.8 36.4
raytrace 14.35 13.30 7.3 14.21 0.8 63.9 35.3
soot 303.12 278.45 8.1 291.28 3.9 2542.3 408.2
PseudoJbb|| 753.95 705.90 6.4 735.62 2.5 7832.8 331.8

[memge| - | - | 85 | - [a5 | - | : |

Table 2: Execution results, number of patterns created in the online veasidmumber of methods opti-
mized for SPEGvM98, sooTand PSEUDOJIBB. Values are the arithmetic average of the middle 11 out of
15 runs.

To gain greater insight into the source of improvement, and inspired by tuitidm as to potential perfor-
mance gains in introductory Figure 1, we also developed more abstralgtj@daneasures that summarize
the amountof optimized code executed. Our abstract measures of optimization qualishana in Fig-
ure 7 and Figure 8. For space reasons we cannot show all sudts iesietail, so the analytical results are
selected to be representative of the different kinds of observedioeina

To measure the relative proportion of code executed at different optionizavels we developedraethod-
level speedMLS) metric that can be applied to individual methods in individual prograecetions. MLS
is computed as the sum of the time, measured in samples, spent at diffetierizaion levels, weighted
by the proportion of time at each optimization level. Each partial sum for an ogtiioiz level in this
calculation is scaled by an estimate of optimization quality, namelyppeedof the code under the given
optimization level; JikesRVM provides fixed estimates for these latter valuesiré=igyshows the results
for a measurement of MLS for the three methods with the largest MLS valuesinordered from top to
bottom. Thez-axis in these graphs is time, measured in samples, whilg-thés is the estimated speed for

14

Method: getNextTokenFromStream

5
4.5 oot T TS T T ARSI LTI N
, :
4 1
1
- 35 |
(7}
§oap
g 250
©
£ 2 ot
0 1
W15 fo
|
1
Original
0.5 Offline - - -
Onling s
O L
0 50 100 150 200 250 300
Number of Samples
Method: RunTimeNfaState.Move
5
4.5 S S S
1 i
4 1
1
s 35 ;
2 |
o 3 i
m 1
B 25 :
©
£ 2 :
‘&,‘ 1
w 15]
|
1
Original
0.5 Offline - - -
Onling s
0 L
0 20 40 60 80 100 120
Number of Samples
Method: resolvedNewScalar
8
7 e
! H
X H
6 1
3 |
2 5 1
0
T 4 '
© 1
E 1
"5 3 1
u 1
2 i
1 I Original
Offline -
Onling s
0 L L
0 50 100 150 200 250 300 350 400 450 500

Number of Samples

Figure 7: DynamidMethod Level Speadeasurements over time for each of our baseline, offline and online
recompilation approaches. Each graph is a distinct method faax.

different optimization levels in JikesRVM. An upward step in the graph spwads to a recompilation at a
higher optimization level. The size of the area under each curve givesiarage of how MLS changes under
different recompilation strategies—greater area means greater ugaazed code, and hence heuristically
improved performance.

In Figure 8 we show a summary of the same basic property, but summarigetheentire execution and all

15

methods. To simplify calculations, method contributions are weighted here/ matibal number of runtime
samples, but by static method size. This provides a more approximate pictiebanfiour, akin to a static
versus dynamic analysis, but also demonstrates the effect is robustfacéhef different and less precise
forms of evaluation. In these figures theaxis is normalized execution time, and th@xis is “weighted
optimized methods”, a sum of weighted method size of all sampled methods, vddwreveighted sum
is again scaled by the appropriate optimizatspeedfactor provided by JikesRVM. The interpretation of
these graphs is similar to that used for Figure 7; a higher curve meansatieengore methods optimized
to a higher level and the execution speed should be faster, with the ateenaath approximating relative
amount and quality of optimized code executed.

5.1 Offline mechanism

The results of our offline mechanism in absolute terms as well as relative venpemt over the original
version are given in the third and fourth columns of Table 2. The offlinsiee does achieve significant
improvements on some benchmarks. @#ss it improves execution time by 21.3%. QRACK, JAVAC
andMPEGAUDIO, the improvements are also quite large. On average, the offline versies 8&%o of the
execution time, although the effect is not uniform; for some benchmarkbk,ascomMPRESSandDB, there
is little to no improvement at all. We will discuss these benchmark-specific mhravin more detail in
Section 6.

In the weighted optimized methods graphs, the curves for our offline impletiengae shown as dashed
lines. Corresponding with the faster execution speeds, these cuevasathe highest ones in these graphs.
Interestingly, in most of the benchmarks, there is only one major upwanad. tde the graph fosoor,
however, there are two such increasing phases. This shows the egistfigorograms with multiple major
phases that can require large and relatively abrupt changes in idihtiienethod sets.

5.2 Online mechanism

The execution time results for the online mechanism are shown in the fifth afdcsiximns of Table 2.
For benchmarks where the offline version shows a large improvementntime @ersion also performs
well. We obtain up to nearly 18% improvement figss quite close to the 21% improvement found for
JEssoffline. On average the online version achieves a 4.5% improvement, &B&utof the possible
performance improvement demonstrated in the offline version. For thechimemks that responded most
positively to the offline version, the improvement online is on average 9.6%1% of the offline result.

In the weighted optimized methods graphs, the curves for the online versi@mewn as dotted lines, and
typically lie between the curves for the offline and original implementations. drgthph forsooT (the
bottom graph in Figure 8), the online curve reflects the multiple phases that@e clearly seen in the
offline curve; our online system correctly identifies the rejuvenatedepleaswe discuss in more detail in
Section 6.1.

Further details on performance can be seen in the behaviour of spedifiodseas shown farack in Fig-

ure 7. As with the weighted optimized method results, the offline version hasdhtegt area and provides
higher optimization earlier, with the online implementation lying between the offline&guhal versions.
Note the bottom graphrésolvedNewScalashows the offline implementation optimizing the method later
than both the original and online versions. This is a result of resourcageament in the recompilation
system, prioritizing requests for relatively fast lower levels of optimizaticar ovore expensive requests for
longer, highly optimized compilations.

16

40000

jack

35000

30000

Original
Offline - - -

Onling s

25000

20000
15000

10000

5000

20000

10

20

30

40

50

60 70

80

90

100

18000 r
16000 -

14000

Original

Offline -
Online -

12000

10000

8000

6000

4000
2000

10

20

30

40

50

mpegaudio

60 70

80

90

100

60000

50000

40000

Original
Offline - - -

Onling wwwees

30000

20000

10000

250000

200000

150000

100000

50000

0

200000

180000 r
160000 r

140000
120000
100000
80000
60000
40000
20000
0

Figure 8: Weighted optimized methodgiCK, JESS MPEGAUDIO, PSEUDQJBB andsoOOT. In each of these
graphs ther-axis is normalized time and theaxis is the “weighted method sum,” a heuristic measurement

10

20

30

40

50

60 70

PseudoJbb

80

90

Original
Offline - - -

Online =

Original

Offline - - -
onling s

0 10

20

30

40

50

60 70

of the amount of optimized execution as described in Section 5.

17

80

90

100

5.3 Variance and overhead

Figure 9 shows 99% confidence intervals for our original, offline, amthe data measurements. Our
evaluation is experimentally quite stable and deterministic, with confidencesdmgthe three variations
generally showing good separation. Note that the intervalsAok are among the largest and have clear
overlap; thex 1% performance gain fosAck online as opposed to offline could be attributed to data
variance and/or the intrinsic imprecision of simple optimization benefit/cost estinveéediscuss accuracy
and noise concerns in depth in the following section.

12

0.6

0.4

Normalized execution time

0.2

comp db jack javac jess mpeg mtrt rt soot PJbb Avg

Original ——1 Online =72 Offline &7

Figure 9: Normalized execution time of SPE®98, sooTand FBSEUDQIBB with 99% confidence interval
errorbars for each of our three test scenarios: original, online ilivtko

Overhead in profiling systems is always a major design concern. In saveamake use of hardware coun-
ters that are sampled at every process context switch; at a few tenshin@aycles per read and only on
the order of thousands of context switches over a program’s lifetime thisitpee is extremely cheap. Pat-
tern construction and phase analysis provide the bulk of our actudieagrand to measure total overhead
costs we compared the original, baseline JikesRVM with an implementation ofntine aechnique that
computes phases as normal but does not actually change the adagivpilation settingsfgtureEstima-
tor). Figure 10 shows the computed relative overhead. On average tleete38% slowdown across these
benchmarks due to our data gathering and phase analysis system. Tdler@ys room for improvement,
but this relatively small cost is in most cases greatly exceeded by thethandfdemonstrates the practical
low overhead of our technique; again, speedup and other experindetadhcludes all overhead.

6 Discussion

Initial recompilation choices affect later recompilation choices, and therenany potential parameters
and choices in our, or any, recompilation design. A good understandlipgtential variation and relative
performance gain is therefore important to making good, general selectfioacompilation strategies.

We have chosen algorithmic parameters to include resource requirengotse(ef tri-selection and dual-
channel approaches), and performed extensive initial experimentatibnumerical validation of the pa-
rameter space to justify our main approach; this numerical evaluation isksan [25]. Here we discuss
various factors that can influence our performance, and presenva#ating the general stability and ef-
fectiveness of our design. We first consider different benchmhakacteristics that are important in our

18

2.5

15

Overhead(%)

comp db jack javac jess mpeg mtrt rt soot pjbb Avg

Figure 10: Relative overhead in the online system compared with the origDe¢érhead comes from
sources such as hardware monitoring, pattern construction, phasetiore and building control events for
the recompilation component.

approach. This is followed by a detailed comparison of our design with sth@ale optimizations to the
recompilation system, again showing the practicality of our work and the gigngood quality of the
result.

6.1 Benchmark characteristics

Benchmarks in our study demonstrate a wide range of responses totonizagon. Several benchmark-
specific factors can be seen to influence whether and where perfoemalh be realized using our tech-
nigues. Benchmark length, the stability of the hot set, as well as more ¢eassitivity of the program to
our profiling and optimization systems can all affect the relative success.

Benchmark execution time

In our benchmark suite, the SPE@98 benchmarks finish in a comparatively short time wkiteoTand
Pseubales execute for an order of magnitude or so longer, and also recompile mamrymathods than
other benchmarks, as seen in the last column of Table 2. Longer runriggams have an advantage in
that recompilation has more data to work with as there are more sample poirtteerfore, any reduction
in speed due to less optimal recompilation choices can be amortized over apenige and often a larger
hot set. For shorter programs our mechanism helps the VM locate thethobee quickly; the reduction
in overhead obtained by promoting methods more quickly to their final optimizatiehikalso a greater
benefit. This factor can be seen in the results for the longer and shorneing programs.sooT and
PseubodeB show an average improvement of 7.3% and 3.2% using offline and onlihesasaespectively,
while the other, shorter benchmarks improve on average of 8.9% and 4.8%.

Hot set stability

We observe that many programs contain a single hot set of methods thatdsordess stable over the
course of execution. Some benchmarks, however, do have largectistatution phases, and show a clear

19

hot set variation. 80T in our benchmarks demonstrates this quite clearly; in Figure 8sdteer curve of
the offline version obviously has multiple stages. Each large incline caméspo a major change in the
hot set.

Using our offline implementation with perfect knowledge of the future, wedsggact the hot set variation
or rejuvenatedphase correctly and quickly, resulting in relatively steep slopes upwatbdeanew hot set
is optimized. The original implementation, on the other hand, has no appaiesitiaty to this change
in program behaviour and shows a gradually increasing curve with viowbbursts of optimization. Our
online implementation achieves an intermediate level between these two. It haeetesensitivity to the
hot set variation and goes through a couple of smaller steps at approyith&asame points in time, rising
more quickly to the level of the offline analysis.

An unfortunate side effect of our optimization for detecting rejuvenatiomagations in the hot set is a cer-
tain overzealousness of optimization toward the end of execution. The anlines ofJACK, MPEGAUDIO
andsooTin Figure 8 tend to rise above even that of the offline curve by the endemiu¢ion, indicating
that optimized recompilation may be being overused, recompiling and optimizing dsetihat will only
be used in the final fraction of program execution. We experimented witltifgieg a termination phase,
but termination tends to look like any other phase change (rejuvenation) witbuorent pattern analysis
and data. Solutions based on incorporating extra, high level informatadmnasiknowledge of termination-
specific methods may be more profitable. In practice, these sub-optimal datirsons at termination time
do not have an overly large impact, and so we leave reducing this “tail'lgaroto future work.

Appropriateness of data source

It is interesting that low level events can expose high level behavioan #r complex, object-oriented
programs with non-trivial control flow. We have successfully used tbache miss rate as a base event,
but this does impact not only what can be measured but also how it candsirad, and of course other
choices and event combinations are possible.

Although a good choice in general, for some benchmarks I-cache migsroaides somewhat reduced in-
formation. RAYTRACE andMPEGAUDIO, for instance, have a relatively small instruction working set. Thus
we observe only slight changes in I-cache performance, and aseca@elm from the 2nd-last column in
Table 2 our pattern creator finds significantly fewer patterns in thess.c@bés provides less information
to the recompilation engine, and thus recompilation choices are not much batten the original version:
RAYTRACE andMPEGAUDIO show marginally positive improvements, whierRT shows a 2% reduction.
The fact that performance even in this situation is close to the original arsigmificantly degraded is evi-
dence of the low overhead of our implementation design in general, and sbagad hardware monitoring
specifically.

Other benchmarks have instruction working sets large enough to prempncgcant misses as different code
paths are exercised, allowing our online solution to identify patterns eadiig. p€rformance difference
resulting from the improved information is evident in benchmarks sucta@s, JESS andJAVAC. Some
benchmarks, however, exhibit cache performance changes, ladttiad hot method set remains quite small.
If a small set of methods are called frequently, asfomPRESSandDB, the original adaptive recompilation
engine has the chance to gather enough samples to recompile a methodlyeajainidy. In these cases,
the potential improvement available by reducing the delay of recompilation is sitedlmarginal benefit
achieved by our offline solution can be mainly attributed to reductions in optimizatierhead due to
skipping redundant intermediate recompilations for some methods.

20

Programs can also exhildiias with respect to different hardware events. We previously showednfo
stance, that some programs likessandJAck are highly “instruction cache sensitive”, meaning that from a
processor-level point of view the instruction cache performance lmg&impact on the execution time of
the program [26]. On the other harmi and especiallcomMPRESSsare highly data cache biased. There is
obviously limited room to improve performance from the code side if data usagi@ dominating impact.
In these cases even the offline version only obtains a small improvemenkpéé ¢hat programs with large
memory requirements and hence garbage collection overhead, heaand/® forth will also respond less
well to our design, as in general programs that are dominated by otherthaa code execution speed will
receive reduced benefits from adaptive code optimization techniques.

The above discussion suggests that monitoring different or multiple hegdevents may be a route to
further optimization. We have explored a few hybrid forms of pattern-bwgldiased on combinations of
I-cache miss rate, D-cache miss rate, branch instruction counts, amdl fw@diction miss rates. So far,
these designs have not shown useful improvement above that of saed ba a simple I-cache miss rate;
further exploring this space is, however, potentially fruitful future work

6.2 Stability and comparison with simple approaches

Understanding which benchmarks can work well is important, but diffexéamg them online may be non-
trivial, and a good recompilation system should perform reasonably weflarange of benchmarks. For
our adaptive system to be useful it is also important to know that the adgmieffective. Both our online
and offline strategies generally increase the aggression of recompilbbaes, and we must consider that
similar effects could be achieved by simply making the the JikesRVM estimator rggressive without
adaptation.

Testing the effects of trivial, constant increases in recompiler aggrepsavides a baseline that shows
both the variability of performance of different recompilation strategiesimidmparison with our online
approach, the actual impact of adapting to program phases. We esduatal versions of JikesRVM with

no hardware monitoring or phase analysis, but incorporating our stialecstimate formula in Formula 2
with futureEstimatoiset to different fixed, constant factors to increase recompiler agjgrestable 3 shows

the normalized overall execution time for our benchmarks when the future stireate of methods is
increased by values between &.&and 3.0<; this represents the range of average increase in aggression
used by our online system for benchmarks in our suite (Table 3, last row)

[futureEstimator][compress| db [jack [javac | jess | mpegaudio | mtrt | raytrace [soot [PseudoJbb]
1.5x 0.997 0.991 | 0.987 | 0.970 | 0.924 0.960 1.017 0.983 0.966 0.991
2.0x 0.970 1.008 | 1.041 | 0.955| 0.879 0.924 1.039 1.010 0.950 0.978

2.5x 1.018 1.022 | 1.063 | 0.975 | 0.856 0.925 1.127 1.057 0.945 0.969
3.0x 1.018 1.025 | 1.080 | 0.991 | 0.852 0.948 1.151 1.053 0.969 0.975
online 0.999 0.993 | 0.876 | 0.942 | 0.821 0.978 1.018 0.990 0.961 0.976

[onlineaverage 3.06 | 1.98 | 2.16 | 2.40 | 2.34 | 244 | 222 | 199 | 1.35 | 1.09 |

Table 3: Fixed setting ofutureEstimatorversus the online version. The “online average” row shows the
averagdutureEstimatowvalue used in the online version, weighted proportionally over prograoution.

The data in Table 3 shows that there is certainly no one fixed setting that is bftinal benchmarks;
benchmarks respond differently, and simply increasing aggressioallogenot a generally effective strat-
egy. This is more apparent graphically, as seen in Figure 11. Somerbarichhave a large variance in
performance asutureEstimatorchanges, and some are relatively unaffected. For all benchmarkgtexce

21

MPEGAUDIO and COMPRESS our online version is optimal or within variance of optimal. In comparison
with simple approaches, our online design provides stable and good regeigg!, significantly more so
than the base version or any of the constant aggression settings.

1.2

115 L

1.1 fleveniny

1.05 P ! '}

1 o

0.95

Normalized Execution Time

0.9
0.85 s
;.!
0.8 L L L L L L L L
comp db jack javac jess mpeg mitrt rt soot pJbb
Orig —— 2.0X ook 3.0X —-m-
1.5X —--x--- 2.5X 8 Onling == @=:

Figure 11: Normalized execution time for benchmarks using differentmpéation optimization strategies.

Recompilation algorithm sensitivity

We can separate benchmarks into those that exhibit a low sensitivity to réatampdecisions (less than
~ 5% variance between approaches), and those that show relativelydrighae due to such choices. The
former are shown in Figure 12 and the latter in Figure 13.

1.2

115

11

1.05

1

0.95 S .

Normalized Execution Time

0.9
0.85
08t L L L L .
Orig. 1.5X 2.0X 2.5X 3.0X Online
compress—+— javac ---%--- PseudoJbb--=-
db ---x--- soot &

Figure 12: Normalized execution time for benchmarks using differentmpdation optimization strategies.
These benchmarks seem insensitive to strategy.

The less sensitive benchmarks in Figure 12 correspond reasondblyitieour discussion of benchmark-

specific behaviours that impair the effectiveness of our techniqgpeT&nd FSEUDOJIBB are long-running
with large hot sets, whileoMmPRESSandDB contain hot sets that are easily identified under all scenarios.

22

1.2

1.15

11

1.05

1 M

0.95

Normalized Execution Time

0.9

0.85

0.8
Orig. 1.5X 2.0X 2.5X 3.0X Online

jack —— mpegaudio----»--- raytrace —-m-:
jess ---x--- mtrt g

Figure 13: Normalized execution time for benchmarks using differentmpdation optimization strategies.
These benchmarks are quite sensitive to strategy.

JavAc is a marginal inclusion; lik&kAYTRACE it has a small working set, but falls within the threshold of
insensitive benchmarks in our simple binary division.

More sensitive benchmarks where recompilation decisions can haveiaelgléarge performance impact
are shown separately in Figure 13. Adaptivity accommodates benchmhieke greater aggression usually
improves performance such &sss and benchmarks where greater aggression decreases perfersaic
asJACK andMTRT. A more detailed view of typical benchmark behaviour found in our experiatelata is
shown in Figure 14, with the upper row showing the normalized performahisenchmarks that improve
or degrade performance as an almost linear function of recompiler ssigme For benchmarks such as
SOOTand MPEGAUDIO, however, a “sweet spot” exists in terms of overall aggression, in kathschere
around 2.0-2.5. Adaptation is not as successful overaMf@GAuUDIO while for sooT adaptation finds a
good performance level, albeit in a context where the total performaredion is small. Universally good
performance under these conditions is hard to achieve; however,lthe system, generally does quite well
in adapting to different benchmark conditions and is clearly an overallrigttéce than either the current
or other fixed aggression schemes.

7 Conclusions and Future Work

For many programs, sub-optimal choices in recompilation can result in edduerformance. We have
shown how improvements to recompilation strategy can result in better perfoemand provided a design
using coarse grained, variable length phase prediction to adaptivelyvmepmoompilation choices. Using
offline trace data for prediction provides an experimental high perfoceamatermark for such a technique,
and functions as a useful optimization when program executions arateepbexactly. Our fully online
implementation makes choices based on dynamically acquired data, and exbibitsvb overhead and
good overall performance.

Multiple factors influence performance in a recompilation system, and to shaminggul improvement a
close evaluation of performance under different scenarios and widnefit levels of detail is important. We
have explored our optimization in terms of execution time, and further validatecesults with analytical
measurements. Detailed examination of benchmark behaviour revealsribhtisrks respond in different

23

jess mtrt

12 — ‘ ‘ : ‘ ‘ 12 — ‘ : ‘ —
11 11 [
g 1t g 1 o O
Eooor [Eooo09f .
S o087 e S 08¢ .
3 07 3 07f .
X 06 s 06 8
n} nj
3 05 r 3 05 r .
£ 04r S 04r 1
E 037 E 03} .
S o2t 1 S o2t .
0.1t 1 0.1 .
0 0
Orig. 15X 2.0X 25X 3.0X Online Orig. 15X 2.0X 25X 3.0X Online
soot mpegaudio
1.2 T T T T . T 1.2 T T .
11 1.1
g o I - e
'; 09 '; 09 r 1 [8
S 08¢ S 08¢ :
3 07 3 07f .
X 06t X 06 .
3 05 r 3 05 r .
S o4r 8 o4r 1
E 037 E 03} 1
S o2t 1 S o2t .
0.1 1 0.1 8
0 0
Orig. 15X 20X 25X 3.0X Online Orig. 15X 20X 25X 3.0X Online

Figure 14: Typical behaviour of benchmarks in response to diffeldmpilation strategies. More ag-
gressive recompilation is in general good for benchmarksJi®s(upper left), bad for others likeTRT
(upper right), while some such a®oTandMPEGAUDIO have an intermediate sweet spot in terms of over-
all recompiler aggression. In the first three cases the online systertsaudgj for MPEGAUDIO the online
performance is improved over the baseline but does not achieve optirf@imance.

ways to the relative aggression of a recompilation engine, and we cosgidavide variety of benchmark-
specific factors, including high level considerations such as overaihne and low level influences such as
the density of hardware event data. Under these highly variable amsly"ramnditions our adaptive online
system achieves a significantly improved performance.

There exist a large number of possible extensions to this work. Thessuof@ur approach, like most
adaptive online systems, depends on the extent of variability in runtime texeciata. We have expended
a great deal of effort to understand and experimentally validate potertréllyal factors, ensuring our ap-
proach is a generally robust optimization. Further understanding anctidetef benchmark characteristics
may improve our design, and could also be used to help select benchpemikiesresponses by the adap-
tive optimization systemProfile repositoriesaggregating profile data from multiple executions may be a
useful way of moving online performance closer to that of offline pentorce [6]. Mixing profile data from
multiple runs or using offline/online hybrid data might also help with the “tail pnoBlef predicting the
termination phase of a program.

We intentionally exploit coarse grained phase information to allow complex optimizatime to act and
improve performance. Startup phases are well-known, but the uselofdvigl and variable length phase
information, when cheaply gathered, is also obviously of value. Predictajgr phase changes may be use-
ful for scheduling garbage collection, heap data reorganization oothwey design for larger scale adaptive

24

execution. Additional or different hardware event data may be usafuhore “data-centric” applications,
and part of our current investigations include the use of multiple and hipardiware event sources.

References

[1]

2]

[3]

[4]

[5]

[6]

B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. NgoJJBarton, S. F. Hummel, J. C.
Sheperd, and M. Mergen. Implementing Jafape Java. INDOPSLA '99: Proceedings of the 14th
ACM SIGPLAN conference on Object-oriented programming, systentgdges, and applications

pages 314-324, Oct. 1999.

B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, Fhéhg, J. Dolby, S. Fink, D. Grove,
M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkand M. Trapp. The Jikes Re-
search Virtual Machine project: Building an open-source reseanctmmity. IBM Systems Journal
44(2):399-417, Apr. 2005.

J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Heraing.-T. A. Leung, R. L. Sites,
M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Continuowsiljng: where have all the
cycles gone ACM Trans. Comput. Sysii5(4):357-390, Nov. 1997.

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adeptoptimization in the Jalajpe
JVM. ACM SIGPLAN Notices35(10):47—-65, 2000.

M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directedimization of Java. IMTODOPSLA
'02: Proceedings of the 17th ACM SIGPLAN conference on Object4adeprogramming, systems,
languages, and applicationpages 111-129, New York, NY, USA, 2002. ACM Press.

M. Arnold, A. Welc, and V. T. Rajan. Improving virtual machine perfance using a cross-run profile
repository. INOOPSLA '05: Proceedings of the 20th annual ACM SIGPLAN conferencObject
oriented programming, systems, languages, and applicatipsges 297-311, New York, NY, USA,
2005. ACM Press.

[7] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transpangrdrdic optimization system. In

[8]

[9]

[10]

[11]

PLDI '00: Proceedings of the ACM SIGPLAN 2000 conference onRrogiing language design and
implementationpages 1-12, New York, NY, USA, 2000. ACM Press.

R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and Safkadas. Memory hierarchy
reconfiguration for energy and performance in general purpasétectures. IlMICRO 33:the 33rd
Annual Intl. Sym. on Microarchitecturpages 245-257, Dec. 2000.

R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. mei W. Hwu. Maecupacking: extracting
hardware-detected program phases for post-link optimizatioMIGRO 35: Proceedings of the 35th
annual ACM/IEEE international symposium on Microarchitectymrgges 233-244, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

R. Berrendorf, H. Ziegler, and B. Mohr. PCL-the performamoenter library. http: // wwv.
fz-juelich.de/zanl PCL/.

S. Brown, J. Dongarra, N. Garner, K. London, and P. MuB&PI. http: / /i cl . cs. ut k. edu/
papi .

25

[12] D. C. Burger and T. M. Austin. The SimpleScalar tool set, versionPe@hnical Report CS-TR-1997-
1342, 1997.

[13] M. Burtscher. An improved index function for (D)FCM predictor€omputer Architecture News
30(3):19-24, June 2002.

[14] B. Calder, P. Feller, and A. Eustace. Value profiling and optimizafiéag.

[15] B. Calder, C. Krintz, S. John, and T. Austin. Cache-consciats glacement. SIGPLAN Not.
33(11):139-149, 1998.

[16] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching fengral-purpose programs.
In PLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference on farogning language design
and implementatigrpages 199-209, New York, NY, USA, 2002. ACM Press.

[17] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth. The opartime platform: a flexible high-
performance managed runtime environment: Research arti€escurr. Comput. : Pract. Exper.
17(5-6):617-637, 2005.

[18] I. Corporation. VTune performance analyzer. http://ww. i ntel.conl software/
product s/ vt une/.

[19] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration hardwia dynamic working set
analysis. INISCA '02: Proceedings of the 29th annual international symposiumampiter archi-
tecture pages 233-244. IEEE Computer Society, 2002.

[20] A. S. Dhodapkar and J. E. Smith. Comparing program phase dete¢etbniques. IfProceedings of
the 36th Annual IEEE/ACM International Symposium on Microarchitecphage 217. IEEE Computer
Society, 2003.

[21] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Charactgenih predicting program behavior and
its variability. InPACT '03: Proceedings of the 12th International Conference on Pdiaftshitectures
and Compilation Techniquepage 220. IEEE Computer Society, Sep. 2003.

[22] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pachdc&. Tschantz, and C. Xiao. The
Daikon system for dynamic detection of likely invariangcience of Computer Programmir06.

[23] A. Georges, D. Buytaert, L. Eeckhout, and K. D. Bosscheresthidd-level phase behavior in Java
workloads. INOOPSLA '04: Proceedings of the 19th annual ACM SIGPLAN ConferendObject-
oriented programming, systems, languages, and applicatjmages 270-287, Oct. 2004.

[24] B. Goeman, H. Vandierendonck, and K. de Bosschere. Differe-CM: Increasing value prediction
accuracy by improving table usage efficiency. Rroceedings of the 7th International Symposium
on High-Performance Computer Architecture (HPCpages 207-216. IEEE Computer Society, Jan.
2001.

[25] D. Gu and C. Verbrugge. Using hardware data to detect repetitvgram behavior. Technical Re-
port SABLE-TR-2007-2, Sable Research Group, School of Comgtence, McGill University,
Montréal, Qebec, Canada, March 2007.

[26] D. Gu, C. Verbrugge, and E. Gagnon. Relative factors in perdmce analysis of Java virtual machines.
In VEE '06: Proceedings of the 1st ACM/USENIX international conferemc¥irtual execution envi-
ronmentsNew York, NY, USA, June 2006. ACM Press.

26

[27] M. J. Hind, V. T. Rajan, and P. F. Sweeney. Phase shift detecdi@moblem classification. Technical
Report IBM Research Report RC-22887, IBM T. J. Watson, AugQ088.

[28] S. Hu, R. Bhargava, and L. K. John. The role of return valwedigtion in exploiting speculative
method-level parallelismJILP, 5:1-21, Nov. 2003.

[29] M. C. Huang, J. Renau, and J. Torrellas. Positional adaptatigmogiessors: application to energy
reduction. INISCA '03: Proceedings of the 30th annual international symposiumamptiter archi-
tecture pages 157-168, New York, NY, USA, 2003. ACM Press.

[30] IBM. Pmapi.htt p://ww. al phawor ks. i bm conml t ech/ pnapi .

[31] H.-S. Kim and J. E. Smith. Dynamic software trace cachingh&30th International Symposium on
Computer Architecture (ISCA 20Q03003.

[32] T. Kistler and M. Franz. Continuous program optimization: A caseystd@M Trans. Program. Lang.
Syst, 25(4):500-548, 2003.

[33] N. Kumar, B. R. Childers, and M. L. Soffa. Low overhead pagrmonitoring and profiling. In
PASTE '05: The 6th ACM SIGPLAN-SIGSOFT workshop on Prograatysis for software tools and
engineeringpages 28-34, New York, NY, USA, 2005. ACM Press.

[34] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Caldetivietmn for variable length intervals
to find hierarchical phase behavior. 2005 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS'0frch 2005.

[35] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. tidregscorrelation between code
signatures and performance. IBPASS '05: Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Softwaaige 220. IEEE Computer Society, March 2005.

[36] T. Lindholm and F. Yellin.Java Virtual Machine Specificatioddison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[37] P. Nagpurkar, M. Hind, C. Krintz, P. Sweeney, and V. Rajanlir@mphase detection algorithms. In
CGO '06: Proceedings of the international symposium on Code genaratid optimizationWash-
ington, DC, USA, March 2006. IEEE Computer Society.

[38] P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-awareteprofiling. INnCGO '05: Proceedings of
the international symposium on Code generation and optimizatiages 191-202, Washington, DC,
USA, 2005. IEEE Computer Society.

[39] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of spectgdtiread-level parallelism. IRACT
'99, pages 303-313. IEEE, 1999.

[40] M. Paleczny, C. A. Vick, and C. Click. The Java HotSpot senamgiler. InJava Virtual Machine
Research and Technology Symposipages 1-12, 2001.

[41] C.J. F. Pickett and C. Verbrugge. Return value prediction in a Vistual machine. IfProceedings of
the 2nd Value-Prediction and Value-Based Optimization Workshop (VR)&@¢s 40-47, Oct. 2004.

[42] R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong, and Weng. Compiler orchestrated
prefetching via speculation and predication. ABPLOS-XI: Proceedings of the 11th international
conference on Architectural support for programming languages@etating systemspages 189—
198, Oct. 2004.

27

[43] F. Schneider and T. R. Gross. Using platform-specific perfoomamunters for dynamic compila-
tion. In Proceedings of the 18th International Workshop on Languages amape&rs for Parallel
Computing (LCPC’05)October 2005.

[44] X. Shen, Y. Zhong, and C. Ding. Locality phase predicti8iGPLAN Not.39(11):165-176, 2004.

[45] T. Sherwood, E. Perelman, and B. Calder. Basic block distributiayais to find periodic behavior
and simulation points in applications. BACT '01: Proceedings of the 2001 International Conference
on Parallel Architectures and Compilation Techniquesges 3-14, Washington, DC, USA, 2001.
IEEE Computer Society.

[46] T. Sherwood, S. Sair, and B. Calder. Phase tracking and piedidn ISCA '03: Proceedings of the
30th annual international symposium on Computer architecioages 336—349, 2003.

[47] Standard Performance Evaluation Corporation. SPECjvm98 bemkbmht t p: / / www. spec.
or g/ osg/j vnB8.

[48] Standard Performance Evaluation Corporation. SPECjbb20®@.p: / / ww. spec. or g/ osg/
j bb2000, 2000.

[49] M. M. Strout, L. Carter, and J. Ferrante. Compile-time composition pftime data and iteration
reorderings.SIGPLAN Not.38(5):91-102, 2003.

[50] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakataiynamic optimization frame-
work for a Java just-in-time compiler. I®@OPSLA '01: Proceedings of the 16th ACM SIGPLAN
conference on Object oriented programming, systems, languagesotications pages 180-195,
New York, NY, USA, 2001. ACM Press.

[51] Sun Microsystems, Inc. The Java Virtual Machine Tools Interfabét p: //j ava. sun. cont
j 2se/ 1. 5.0/ docs/ guide/jvntil.

[52] P.F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwaigidve, and M. Hind. Using hardware
performance monitors to understand the behavior of Java applicatioNd'0¥:Proceedings of the
3rd Virtual Machine Research and Technology SymposiMay 2004.

[53] R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and Vd&tesan. Soot - a Java bytecode
optimization framework. INCASCON '99: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative reseagage 13. IBM Press, 1999.

[54] J. Whaley. Partial method compilation using dynamic profile informatiofO@PSLA '01: Proceed-
ings of the 16th ACM SIGPLAN conference on Object oriented progragiisystems, languages, and
applications pages 166—179, New York, NY, USA, 2001. ACM Press.

[55] X.Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accyreficient, and adaptive calling context
profiling. INPLDI '06: Proceedings of the 2006 ACM SIGPLAN conference ontRrogning language
design and implementatippages 263—-271, New York, NY, USA, 2006. ACM Press.

28

