
McGill University

School of Computer Science

Sable Research Group

Phase-based adaptive recompilation in a JVM

Sable Technical Report No. 2007-4

Dayong Gu and Clark Verbrugge
{dgu1, clump}@cs.mcgill.ca

May 25, 2007

w w w . s a b l e . m c g i l l . c a

Abstract

Modern JIT compilers often employ multi-level recompilation strategies as a means of ensuring the
most used code is also the most highly optimized, balancing optimization costs and expected future
performance. Accurate selection of code to compile and level of optimization to apply is thus important
to performance. In this paper we investigate the effect of animproved recompilation strategy for a Java
virtual machine. Our design makes use of a lightweight, low-level profiling mechanism to detect high-
level, variable length phases in program execution. Phasesare then used to guide adaptive recompilation
choices, improving performance. We develop both an offline implementation based on trace data and a
self-contained online version. Our offline study shows an average speedup of 8.5% and up to 21%, and
our online system achieves an average speedup of 4.5%, up to 18%. We subject our results to extensive
analysis and show that our design achieves good overall performance with high consistency despite the
existence of many complex and interacting factors in such anenvironment.

1 Introduction

Many of today’s Java Virtual Machines (JVMs) [36] employdynamic recompilationtechniques as a means
of improving performance in Java programs. At runtime the dynamic Just-in-Time (JIT) compiler locates
a “hot set” of important code regions and applies different optimizations, balancing the overhead costs of
optimized (re)compilation with expected gains in runtime performance.

Building a high-performance, adaptive recompilation strategy in a JVM requires making resource-constrained
choices as to which methods to optimize, what set or level of optimization to apply,and when the optimized
compilation should be done. Heuristically, the earlier the method is compiled to it’s “optimal” optimization
level the better. Naively assuming optimal means more optimizations, the potential for such improvements
is illustrated schematically in Figure 1. The upper left image shows a typical method history, compiled ini-
tially at a low level, and progressively recompiled to higher optimization levels. Better prediction of future
behaviour allows a method to move more quickly between these steps (upper right), or to skip intermediate
steps (lower left). The area under the curve (rectangle) summarizes the “amount” of optimized method exe-
cution. On the bottom right a method is compiled to its highest optimization level immediately; this roughly
represents an upper limit for the potential performance gains, at least assuming simple models of method
execution and optimization impact.

One of the key factors involved in finding ideal recompilation choices for a given method is methodlifetime.
Method lifetime is an estimate of how much future execution will be spent in a givenmethod based on current
and past behaviour; techniques for estimating method lifetime are critical in making online recompilation
decisions. A straightforward solution used in the JikesRVM [1,2,4] adaptive recompilation component is to
assume that the relative proportion of total execution time that will be spent in agiven method is the same
as its existing proportion: the ratio of future lifetime to past lifetime for every method is assumed to be1.0.
This is a generally effective heuristic, but as an extremely simple predictor of future method execution time
it is not necessarily the best general choice for all programs or at all points in a program’s execution.

Our work aims at investigating and improving the prediction of future method execution times in order to
improve adaptive optimization decisions. To achieve better predictions we divide Java program execution
into coarse phases; different phases imply different recompilation strategies, and by detecting or predicting
phase changes we can appropriately alter recompilation behaviour. We perform anoffline analysis of the
practical “head space” available to such an optimization that depends on apost mortemanalysis of program
traces, allowing the method recompilation system to perform as in the bottom rightof Figure 1. We also
develop anonlineanalysis that is more practical and dynamically gathers and analyzes phaseinformation.

1

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16 18 20

O
pt

. L
ev

el

Samples

Opt0
Opt1
Opt2
Opt3

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16 18 20

O
pt

. L
ev

el

Samples

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16 18 20

O
pt

. L
ev

el

Samples

 0

 1

 2

 3

 4

 0 2 4 6 8 10 12 14 16 18 20

O
pt

. L
ev

el

Samples

Figure 1: Sources of optimization due to improved recompilation decisions for agiven method. In each
case thex-axis is samples (normalized time), and they-axis is optimization level. More time at higher
optimization heuristically means better performance, and so the area under each curve roughly represents
how well a method is optimized. Left to right on the top row are base recompilation behaviour and the
result of more aggressive recompilation. The lower row shows the effects of skipping some intermediate
recompilation steps (left), and of making an initial “ideal” choice, skipping all intermediate recompilation
(right). Note that even in the latter case at least 1 sample is required to identifythe hot method.

To keep our online system lightweight, we base our phase analysis on hardware counter information avail-
able in most modern processors, recovering high-level phase data from low-level event data. Based on our
JikesRVM implementations we observe an average of 8.5% and up to 21% speed improvement in our bench-
mark suite using the offline approach, and an average of 4.5% and up to 18% speedup in our benchmarks
using our online system, including all runtime overhead.

Although these results demonstrate significant potential, changes to the dynamic recompilation system in-
troduce feedback in the sense that different compilation times and choices perturb future recompilation
decisions. There are also many potential parameters of our design, and different kinds of benchmarks can
respond quite differently to adaptive recompilation—programs with small, coremethod execution sets and
long execution times can be well-optimized without an adaptive recompilation strategy, while programs
with larger working sets and more variable behaviour should perform better with adaptive recompilation.
We consider a number of confounding factors and include a detailed investigation of the source and extent
of improvement in our benchmarks, including potential variability due to choiceof recompilation algorithm.
Our results show that our phase-based optimization provides greater benefits in terms of performance, sta-
bility, and consistency than current designs or simpler optimizations.

2

Contributions of this work include:

• We demonstrate a lightweight system for obtaining high-level, variable length and coarse grained
phase information for Java programs. Other phase analyses concentrate on finding fixed length and/or
fine-grain periods of stability.

• We give the results of an offline study of the head space for optimization in theselection of hot-method
recompilation points based on our phase information. In the case of repeated or allowed “warm up”
executions our study represents an effective optimization by itself.

• We present a new dynamic, phase-based hot-method recompilation strategy. Our implementation
incorporates online data gathering and phase analysis to dynamically and adaptively improve recom-
pilation choices and thus overall program performance.

• We provide non-trivial experimental data, comparative results, and detailed analysis to show our de-
sign achieves significant and general improvement. Potential variation, identification of influences,
and consideration of the precise source of improvements and degradations are important for optimiza-
tions to complex runtime services in modern virtual machines.

The remainder of this paper is organized as follows. In Section 2 we discuss related work on hot method
set identification, profiling techniques, phase detection/prediction, and hardware counters. Our main data
gathering system and phase prediction systems are described in Sections 3and 4 respectively. Performance
results and analytical measurements are reported in Section 5, and Section 6provides detailed data analysis
and discussion. Finally, we conclude and provide directions for future work in Section 7.

2 Related Work

JIT compiling and optimizing all the code of a program can easily introduce fartoo much overhead, both
in time and resources. JVM JIT compilers thus typically attempt to identify a smaller hot set on which to
concentrate optimization effort. This kind of adaptive optimization allows sophisticated optimizations to be
applied selectively, and has been widely explored in the community [4, 31, 40]. Most of this work focuses
on methods as a basic compilation unit, but other choices are possible; Whaley, for instance, presents an
approach to determining important intra-method code regions from dynamic profile data [54]. In all these
efforts recompilation overhead is reduced by avoiding compiling and optimizingrarely used code, based on
either the assumption that “future = past,” or by using simple counter-basedschemes to determine relative
execution frequency. Our work here augments these approaches by concentrating on the specific problem of
providing additional predictive information to the adaptive engine of a JVM inorder to improve optimization
decisions, rather than providing the concrete adaptive optimization framework itself.

One of the crucial technical challenges for adaptive optimizations is to gather accurate profiling data with
as low an overhead as possible. Profiles can be obtained from programinstrumentation or from a sam-
pling scheme. Instrumentation techniques are widely used in adaptive optimization: by inserting instru-
mentation into a program, we can gather accurate profiles at a fine granularity. For example, Dynamo [7]
uses instrumentation to guide code transformations. Instrumentation techniques are also useful in program
understanding; Daikon [22] is a system for dynamic detection of likely invariants in a program through
instrumentation. Even commercial JVMs provide a basic instrumentation interface through Sun’s JVMTI
specification [51]. Unfortunately, instrumented profilers can also be fairly heavyweight, producing large

3

runtime overheads [14, 15]. This has inspired work on reducing instrumentation overhead, such as that by
Kumaret al. in their INS-opsystem that optimizes (reduces) instrumentation points [33].

Alternatively, runtime profiles can be gathered by sampling. In a sampling-based approach, only a repre-
sentative subset of the execution events are considered, and this can greatly reduce costs. Systems such as
JikesRVM [2,4], use a timer-based approach to determine sampling points. On some other systems, such as
IBM’s Tokyo JIT compiler [50] and Intel’s ORP JVM [17], a count-downscheme is used. An optimization
candidate is chosen when the correspondingcounterreaches a pre-defined value. Arnold and Grove present
an approach that combines the timer-based and count-down schemes [5].Based on the original timer-based
scheme in JikesRVM, a stride counter is set to control a series of non-contiguous burst count-down sampling
actions.

A sampling-based strategy allows the system to reduce the profiling overhead with reductions in profiling
accuracy as a tradeoff. Many techniques have been developed to reduce profiling overhead while maintaining
profiling accuracy at a reasonable level. For instance, Zhuanget al. [55], for instance, develop an adaptive
“bursting” approach to reduce the overhead while preserving accuracy. The key idea of this work is to
perform detailed and heavy profiling, but only at selective points.

Phase work can be generally considered with respect to phasedetectionand/or phaseprediction.Detection
techniques work in a reactive manner; program behaviour changes are observed only after the occurrence
of the change. Apredictivemechanism is clearly more desirable for optimization purposes. Prediction
techniques can be roughly divided into two types:statistical predictionandtable-based prediction.

Statistical predictors estimate future behaviour based on recent historicalbehaviour [21]. Many statistical
predictors have been developed, includinglast value, average(N), most frequent(N)and theexponentially
weighted moving average(EWMA(N)) predictors. Statistical predictors have been widely used in optimiza-
tions based on(return) value prediction[13, 24, 39, 41]. Huet al. present aparameter stridepredictor that
predicts return values as a constant offset from one parameter [28].Table-basedpredictors allow for more
arbitrary correlation of program activity and predicted behaviour. Mappings between events or states and
predictions of the future are stored in a table and dynamically updated when large behaviour changes are
identified. Pickett and Verbrugge develop amemoizationpredictor forreturn value predictionthat correlates
function arguments with likely return values [41]. Sherwood and Sair use atable-based technique to to per-
form run length encoding phase predictionbased on patterns in low level branch data [46]. Duesterwaldet
al. give a general study on predicting program behaviour [21], comparing statistical and table-based models
operating on fixed size intervals. Their experimental results show that table-based predictors can cope with
program behaviour variability better than statistical predictors. Our prediction technique is largely table-
based as well; we use a mixed global/local history and give prediction resultswith a confidence probability.

Phase information can be used to locate stable or repetitive periods of execution at runtime, and has been in-
corporated into various adaptive optimizations and designs for dynamic system reconfiguration [8,16,19,29,
44]. Nagpurkaret al. present a flexible scheme to reduce network-based profiling overheadbased on repet-
itive phase information gathered from remote programs [38]. Theirphase trackeris implemented using the
SimpleScalar hardware simulator [12]. Data for phase analysis may in general be gathered through offline
analysis of program traces, or through online techniques. Nagpurkaret al. present an online phase detection
algorithm that detects stable, flat periods in program execution as usefulphases [37], and further provide a
set of accuracy scoring metrics to measure the stability and length of the detected phases. Phases based on
various statistics are of course also possible, and many different data measurements have been considered
for phase analysis work. Dhodapkaret al. make a comparison between several detection techniques based
onbasic block vectors, instruction working setsandconditional branch counts[20]. Phase data is also often
employed for high level program understanding [23,49].

4

Most phase analysis techniques are based on fixed-length intervals, aiming to detect stable periods of pro-
gram execution [8,27,45]. For programs with complex control flow, such as Java and other object-oriented
programs, at the levels of granularity useful for optimization there may be noactual flat and stable phases,
even if there is obvious periodicity. For such situations the majority of techniques and associated quality
metrics are not sufficient to capture or accurately present program phases. Basic problems with phase gran-
ularity are starting to be considered; Lauet al. point out the intrinsic problem of fixed interval designs
being “out of synchronization” with the actual periodicity of the execution,and graphically show that it is
necessary to study variable length intervals [34]. Here we use actual hardware data to detect coarse, variable
length, recurrent phases in a program and use it to give useful advice to the adaptive engine of a JVM.

To actually gather hardware data we make use of the specialized hardwareperformance counters available
in modern processors. Hardware counters can provide important micro-architectural performance informa-
tion that is difficult or impossible to derive from software techniques alone.These data allows the program
behaviour to be more directly understood from the viewpoint of the underlying hardware platform, and al-
though low level, this information can be used for guiding higher level adaptive behaviour. Barneset al.
use hardware profiling to detect hot code regions and apply code optimizations efficiently [9]. Schneider
and Gross present a runtime compiler framework using instruction level information provided by hardware
counters to detect hot spots and bottlenecks [43]. Their work providesa platform to study the relation be-
tween dynamic compiler decisions and hardware specific properties. Kistlerand Franz describe theOberon
system that performs continuous program optimization [32]. They describe the benefits of using hardware
counters in addition to software based techniques as crucial components of their profiling system. Other
works based on hardware event information can be found in [3,26,42,52]. Many software applications and
libraries are available to access these counters, including VTune [18], PMAPI [30], PCL [10] and PAPI [11].
In this work, we use the PAPI library.

3 Basic System

Hardware
Counters

Pattern Analysis Model

Pattern DB

 Hardware
event data

Program phase
advice

Hardware
Performance

Monitor

Runtime Measurement
Component

Hot method
samplesProfiling

advice

Recompilation
Analytic Model

Recompilation
Subsystem

Recompilation
decisions

Adaptive Recompilation System

Figure 2: The cooperation among hardware performance monitor, patternanalysis model and adaptive opti-
mization components.

Our system design is based on an extension to the current recompilation system in JikesRVM. Figure 2
shows the overall structure and components of our base system, and howit integrates with JikesRVM.
Raw hardware event data is obtained through thehardware performance monitor(HPM), a pre-existing
component in JikesRVM. The pattern analysis model detects “patterns” in thehardware data. Through
comparison with previous patterns stored in thepattern database, the pattern analysis model detects the
current phase of an executing program. Phase information is then used togive advice on the program
phase to the adaptive recompilation engine, and also to control the behaviour of the runtime measurement
component. By taking phase advice into account, the adaptive recompilation engine is able to make better

5

adaptive recompilation decisions, as we show in our experimental data. Below we provide more detailed
descriptions of the core components of our implementation design and environment.

3.1 Hardware performance data

Hardware performance data is acquired by reading hardware-specific performance counters. Fundamentally,
the hardware counters in modern processors are a set of registers. Values in these registers can represent a
variety of hardware events, such as machine cycles, instruction and dataL1/L2 cache misses, TLB misses,
and branch predictor hits/misses. Counter data reflects the performance of the underlying hardware directly
and collecting it imposes little overhead.

Critically, although hardware counter data is low level it can be related to highlevel aspects of program
behaviour. Lauet al. show there is a strong relation between hardware performance and codesignatures or
instruction working sets [35]. Our implementation mainly samples the “L1 instructioncache miss” event, an
event known to correlate well with method execution behaviour [26]. The HPM component of JikesRVM is
used to gather our raw hardware event data. To ensure a lightweight design our system samples events only
at each process context switch point; in a typical benchmark this produces several thousand sample points
per benchmark run.

3.2 Hardware event pattern construction

To detect coarse grained and variable length phases the input hardware event data is inspected for patterns.
Our pattern analysis modeldiscovers simple patterns by observing how event density changes overtime,
and looking for distinct sequences of change. There are many parameters possible in such a design, and here
we provide an overview of an approach optimized for accuracy, generality, and simplicity; precise details of
the pattern construction process and parameter justification are available in atechnical report [25].

Our technique operates by summarizing low-level behaviour with short bit-vectors that encode the overall
pattern of variation. We use of a “second order” approach that considers variation in hardware event counts
rather than absolute counts themselves as the basic unit to focus the technique on detecting changes in
behaviour, heuristically important for identifying phases. The actual algorithm for translating hardware
event data to bit-vector patterns involves first coarsening the (variation in) data into discretelevels, and then
building a corresponding bit-vectorshaperepresentation.

• Levels: A basic discretization is applied to variations in event density data to coarsenthe data and
help identify changes that indicate significant shifts in behavior. We computethe density of events
over time for each sample. By comparing the density of the current sample with that of the previous
sample, we obtain a variationV . This variationV is discretized to to a corresponding level,PV . In
our experiments we use 4 discrete levels.

• Shapes: We determineshapesby observing the direction of changes, positive or negative, between
consecutive samples. Complexity in shape construction is mainly driven by determining when a
pattern begins or ends.

Each shape construction is represented by a pair(PV , v), wherePV is a level associated with the be-
ginning of the shape, andv is a bit-vector encoding the sign (positive, negative) of successive changes
in event density. Given data with levelPV , if there is no shape under construction a new construction
begins with an empty vector:(PV , []). Otherwise, there must be a shape under construction(QW , v).

6

If QW = PV , or we have seenQW > PV less thann times in a row, then shape construction contin-
ues based on the current shape construction(QW , v): a bit indicating whetherV > 0 or not is added
to the end ofv.

The following conditions terminate a shape construction:

1. If we findQW < PV we consider the current shape building complete and begin construction of
(PV , []). Increases in variation of event density are indicative of a significant change in program
behavior.

2. If we find QW > PV , n times in a row the current shape has “died out”. In this case we also
consider the current shape building complete. In our experiments we havefound n = 2 is
sufficient for good performance.

3. If in (QW , v) we find |v| has reached a predefined maximum length we also report the current
construction as complete. In our experiments we use a maximum of 10 bits as a tradeoff of
storage cost and expressiveness in patterns.

Get hardware data D
V = Variation(D,D_last)

Pv=Lev(V)

Pv > Qw?
Yes

Start a new pattern construction:
Qw := Pv

ShapeCode=[]

Compute shape bits S of V as:
case (Pv < Qw) : S =00
case (Pv==Qw) && (V >0) : S =01
case (Pv==Qw) && (V < 0): S =10

ShapeCode += S;

Pattern End?

Report pattern to analysis model

No

No

Yes

Figure 3: A flow chart for pattern construction.

A overview of the pattern construction algorithm is shown in Figure 3. After obtaining hardware dataD, we
compute the variationV betweenD and the same data (Dlast) for the previous interval.V is then mapped
from a real value to an integer valuePV ∈ {0, . . . , n}, representing the level ofV . As mentioned in the
formal description of this algorithm,QW to represents the level of the pattern currently under construction.
Initially the value ofQW is set to -1 to indicate no pattern is under construction. IfPV > QW then we are
facing a larger and hence more important variation than the one that began the current pattern construction.
The current pattern is thus terminated and a new pattern construction associated with levelPV begins. The
value ofPV is assigned toQW and the shape code vector (denoted asShapeCodein Figure 3) is blanked.
Otherwise (PV ≤ QW) and the current pattern building continues.

The actual pattern encoding is based on the relation betweenPV , QW and the sign ofV . Two bits will be
appended to the currentShapeCodeeach time a pattern grows:01 means a positive variation at levelQW ,
10 represents a negative variation at levelQW , and00 means either a positive or negative variation at a level
belowQW . Binary 1s in our scheme thus indicate points of significant change. Construction continues until

7

one of the pattern termination conditions is met, at which point we report the pattern to the pattern analysis
model. A concrete example of the construction of a pattern is shown in Figure 4.

 1 2 3 4 5 6

Hardware data (1) -1

-0.5

 0

 0.5

 1

 1 2 3 4 5 6

Variation (2)

 2 3 4 5 6

Lv0

Lv1

Lv2

Lv3

Level (3)

 2 3 4 5 6

Lv0

Lv1

Lv2

Lv3
01 00 01 00 00

Pattern (4)

Figure 4: Pattern construction example. (1) Acquire the raw hardware data. (2) Calculate the variation
between consecutive points. (3) Coarsen the variation into different levels; the triangles inside each circle
show the direction (negative/positive) of variation. (4) The final patternconstruction results; the arrow on
the y-axis indicates that we obtain a level 2 pattern; the number above each circle shows the 2-bit code for
each variation. The four trailing zeros are omitted (the pattern has died out),and the final pattern code is
010001.

The same pattern construction strategy can be applied to any hardware event counter, and in general any
scalar event data. In our actual system we make use of the instruction cache miss density as a hardware
event, found useful by others and confirmed effective in our own experiments. Section 6 discusses this issue
further, but a more thorough investigation of different events and event combinations is left for future work.

3.3 Pattern analysis and prediction

Pattern analysis and prediction consumes created hardware patterns. Here we further examine the patterns
to discover repetitive phases and generate predictions of future program behaviour. All created patterns are
stored in apattern database.The recurrent pattern detection and prediction are based on the information in
the pattern database and the incoming pattern.

The recurrent detection is straightforward: if we find a newly created pattern that shares the same pattern
code as a pattern stored in the pattern database we declare it to have recurred. An actually repetitive phase,
however, is not declared unless the current pattern also matches the prediction results.

The prediction strategy we use is a variant of fixed-length, local/global mixed history, table-based prediction.
Unlike more direct table-based methods our predictions include an attached “confidence” value; this allows
us to track multiple prediction candidates and select the most likely.

8

...

Tri-distance Selection Algorithm

Dual-channel Selection Algorithm

Channel I Channel II

Comparison

Prediction Result

...

Figure 5: Overview of the prediction mechanism.

Figure 5 gives an overview of our prediction scheme. For each pattern,we keep the three most popular
repetition “distances” from a former occurrence to a later one; our experiments showed that three candidates
provided a good balance of performance and accuracy. Prediction updates are performed by heuristically
evaluating these distances for a given incoming pattern to find the most likely, variable length pattern repe-
tition. Our tri-distance selection algorithmupdates the likely choices for an incoming patternp by tracking
three repetitionsDi, i ∈ {0, 1, 2}:

• For eachDi we keep a repetition lengthLi, measured by subtracting time stamps of occurrences, and
a “hotness” valueHi.

• The differenceTi between the current pattern occurrencep and the ending point of each ofDi is
calculated.

• If the difference betweenTi andLi is smaller than a thresholdT , the hotnessHi is increased. Other-
wise,Hi is decreased.

• If the difference betweenTi andLi is larger thanT for all threeDi, we replace theDj associated with
the lowest hotness with a newDj . The lengthLj is based on the distance to the closest of the current
set ofDi, and hotnessHj , is initialized to a constant value representing a low but positive hotness in
order to give the new pattern a chance to become established.

• We use theDi with the greatest hotness as the prediction result;Hi further functions as a confidence
value for this prediction.

With the current prediction updated we then make a final prediction from the global set of pattern updates.
In this case we use two global prediction “channels” to limit the cost of choosing among all possible pat-
terns. Ourdual-channel selection algorithmis similar to the tri-distance selection algorithm: if the current
prediction matches one or both of the prediction channels the channel hotness is increased by the predic-
tion confidence, and if it matches neither then the coldest channel is replaced. The hottest channel then
determines the global prediction result.

9

3.4 Adaptive recompilation system in JikesRVM

The adaptive recompilation system [4] of JikesRVM involves three main subsystems. Aruntime measure-
ment componentis responsible for gathering method samples. Ananalytic modelreads this data and makes
the decision on whether to recompile a method and the appropriate optimization level. The recompilation
plan is fed to therecompilation subsystemwhich carries out the actual recompilation.

The crucial point is the decision-making strategy of the analytic model. This selects between different
optimization levels, based on an estimate of the potential benefit of each level. For each optimization level
i (0 ≤ i ≤ N), JikesRVM gives an estimate of the execution speedSpi of a methodm. The value ofN can
be different for different platforms; in our system,N = 3. A recompilation decision is then made based on
the following computations:

• Tp: The time of the program already spent inm. It is computed as

Tp = SampleNumber∗ TPS

TPSstands for “time per sample,” a constant value in JikesRVM.

• Ti: The expected time ofm at level i, if it is not recompiled. In the original implementation, the
system assumes:

Ti = Tp (1)

• Cj : The cost of recompiling methodm at levelj, for i ≤ j ≤ N .

• Tj : The expected time the program will spend inm in the future, if it is recompiled at levelj:

Tj = Ti ∗
Spi
Spj

The analytic model chooses the levelj that minimizes the value ofCj + Tj , the compile time overhead and
expected future time inm. If Cj + Tj < Ti, thenm will be recompiled to levelj.

4 Phase Analysis

Improvements to the prediction model used by the adaptive recompilation enginehave the potential to im-
prove performance, executing highly optimized code more often and decreasing the overhead of successive
recompilations. We investigate the improvement from two perspectives. The first is an offline technique
based on trace data; this mainly serves to give a sense of the maximal benefitthat could be reached given
optimal information. The second is a purely online implementation, that uses our low-level profiling and
dynamic phase systems to improve predictions.

4.1 Offline trace-driven mechanism

Recompiling a hot method to an ideal optimization level at the earliest point in program execution will in
general maximize the benefit of executing optimized code, as well as eliminate further potential compilation
overhead from the method. For a recompilation mechanism based on runtime sampling data, knowledge

10

of the final optimization level of a method at the time when the first sample of it is taken represents ideal
results with minimal profiling overhead. Optimality is bounded by the accuracy ofthe estimation, including
heuristic choices that balance optimization costs and benefits. Here we implement an offline trace-driven
optimization technique to discover the approximate improvement head space if optimal choices are made in
the sense of maximizing the heuristic benefit.

Implementation of the offline mechanism (Offline) is straightforward. A set of traces from training runs
is gathered, analyzed, averaged, and used in a subsequent replaysof the program to select an appropriate
optimization level for each recompiled method. Use of multiple runs accommodates minor variations in
performance; sources of noise in recompilation data is discussed more fullyin Section 6.

Implementation details include that:

• First, training data is gathered; a Java program is executedN times to produce trace filesTi(1 ≤ i ≤
N).

• Each traceTi is composed of a set of pairs< M, Li >. M is a particular method, andLi is the last
and highest optimization level ofM in Ti.

• A summary traceTs is constructed, composed of pairs< M, Ls >, whereLs = Max(L1, L2, ..., LN)
for a givenM .

• In the tested runs,Ts is loaded at the beginning of execution. Each time a method sampleM is taken,
if we can find a record< M, Ls > for it in Ts, we recompileM to levelLs directly, and mark the
recompilation as a final decision. No further compilation will be applied toM .

• It is possible that speed gains due to better adaptive recompilation allows a method not recompiled
in any training run to be added to the hot set in an actual run. If we cannotfind a record forM in
Ts, M is treated per JikesRVM’s original recompilation strategy. Note that in our experiments such
cases are rare and involved infrequently executed methods; the impact ofthis divergence in hot set
identification is reasonably expected to be small.

Performance results from the offline strategy are given in Section 5.1. Onsome benchmarks the benefit
obtained is quite significant, confirming both the potential available to a more flexible online optimization,
and the value of our offline design as an optimization unto itself.

4.2 Online mechanism

The success of an online recompilation system depends on the accuracy of methodlifetimes, or the future
time spent in a method, as well as other recompilation cost and benefit estimates.Underestimating future
method execution time results in missed optimization opportunities, while overestimating runs the risk of be-
ing overly aggressive in compilation, wasting time on unnecessary recompilations and/or high optimization
levels. This is particularly true early and late in program executions, wherecode execution variability is high
and the expectation of continued behaviour is lower. This can also occur when programs make major phase
changes, shifting into markedly different modes of execution. The kernel of our online mechanism is thus a
system that detects coarse grained and variable length program phasesand uses this information to control
the relative aggression of the recompilation subsystem in JikesRVM. The resulting improved recompilation
choices improve overall program performance.

11

The existence of basic startup, core execution, and shutdown phases are well known. Our phase identifi-
cation is based on identifyingage, but further allows programs torejuvenate, as a means of allowing for
the identification of multiple major execution phases. These phases imply distinct patterns of control for
recompilation, and are classified as follows:

• Newborn: At startup a Java program tends to spend time on a set of methods that perform initialization
actions, and these are often not executed after basic setup is complete. When considering whether past
behaviour is a good predictor of future behaviour we can heuristically expect that the future execution
time of a given method will be less than the past:Future< Past.

• Young: After a period of time, the program comes into the main application or kernel code and will
spend a comparatively long time on the same set of methods. Methods executedat this stage are likely
to be executed even more in the future:Future> Past.

• Mature: After the program works within its kernel code for a while, we consider the program to
be mature. In this case, we assume the runtime profiling subsystem has gathered enough samples
to support the recompilation engine in determining suitable optimization levels. Herethe original
estimate that future and past performance will be similar is most valid:Future≈ Past.

• Rejuvenated: Experience with coarse grained phase analysis of Java programs shows some programs
will have distinct, kernel-based phases, and at runtime will have more than one hot method set. When
a program enters a new hot set it thus transitions to the young phase again. Once sorejuvenatedas
such, however, we have a slightly more cautious estimate as to the future behaviour of the new hot
set:Future> Past.

Phase HW Event Behaviour Recompilation
Newborn No recurrence of patterns Less aggressive

Young Recurrence of patterns More aggressive
Mature Less new patterns Moderately

More old patterns aggressive
Rejuvenated More new patterns More aggressive

Invalidation of old patterns

Table 1: Program phase, hardware patterns, and recompilation aggression.

The second column of Table 1 describes how program phases are heuristically determined from the underly-
ing hardware event data. Changes in how lower-level patterns are identified in the data suggest correspond-
ing changes in the program code, and thus phase or age. At program startup a wide variety of “execute-once”
startup code is executed, and few recurring low-level patterns are found. A young program will start to show
significant recurrences of new patterns as it begins to execute its kernel code. The mature phase is de-
tected by noticing the balance tipping from discovery of new patterns to recurrence of old patterns, and the
rejuvenated phase by a subsequent loss of old patterns and introductionof new ones.

Understanding program phase allows for heuristic control of the relative aggression of the recompilation
engine. In cases where the future performance is not equal to the pastthe expected execution time should be
appropriately scaled. The third column in Table 1 gives a summary of how ageaffects the behaviour of the
recompilation engine. A newborn program is less likely to repeat its behaviour, and recompilation should
be more conservative. A young program enters into its kernel; the new code is likely to be executed much

12

more than it has been in the past, and recompilation becomes aggressive. Asthe execution enters a mature
phase aggression is decreased; in such a relatively stable environmentthe recompilation engine is expected
to have sufficient past data for making good decisions. A program that enters a new significant kernel of
execution requires again ramping up the aggressiveness of recompilation.

Theaggressionof the adaptive recompilation engine is controlled by using a scaling parameterin the esti-
mation of future execution times. We introduce a variablefutureEstimatorand change the definition ofTi

in Formula 1 to:
Ti = Tp ∗ futureEstimator (2)

Figure 6 shows a high level overview of the complete online algorithm. Each hardware patternPAT has
a field occNumwhich remembers the number of occurrences. If the adaptive recompilationmodel finds
a recurringPAT, such that,PAT.occNumis more than one, the estimated “age” of a program (Prog.age)
is increased. WhenProg.ageis larger than a thresholdyoungThresh, the program has left the newborn
phase and become young. From then on, each time there is afreshpatternPAT such that the occurrence
number is less than a thresholdmatureThresh, the value offutureEstimatoris increased; otherwise its value
is decreased. A larger value offutureEstimatordrives the adaptive recompilation model to make more
aggressive recompilation decisions, assuming methods will run for longer than currently estimated. Fixed
upper and lower bounds protect thefutureEstimatorvalue from diverging in cases of extended bursts of fresh
or mature patterns. Based on earlier experiments we limitfutureEstimatorto the range[0.9, 5.0].

Get a pattern PAT

End

PAT.occNum > 1
 No

 Yes

Increase Prog.age

Prog.age > youngThresh?
 No

 Yes

PAT.occNum < matureThresh?

Increase
 futureEstimator

Decrease
futureEstimator

 Yes

 No

futureEstimator >
MaxValue?

futureEstimator <
MinValue?

 futureEstimator :=
MaxValue

 futureEstimator :=
MinValue

End

 Yes Yes

 No No

Figure 6: An overview of the algorithm used in the computation of thefutureEstimator.

13

5 Experimental Results

Experimentally we evaluated the performance of both our offline and online solutions. Our implementations
are built upon JikesRVM 2.3.6 with an adaptive compiler, and runs on an Athlon 1.4GHz workstation with
1GB memory, under Debian Linux with a 2.6.9 kernel.

Benchmarks used in this work include the industry standard SPECJVM98 suite [47], and two larger exam-
ples,SOOT [53] and PSEUDOJBB (PJBB). SOOT is a Java optimization framework which takes Java class
files as input and applies optimizations to the bytecode. In our experiments, werun SOOTon the class file of
benchmarkJAVAC in SPECJVM98 with the--app -O options, which performs all available optimizations
on application classes. PSEUDOJBB is a variant of SPECJBB2000 [48] which executes a fixed number of
transactions in multiple warehouses. In these experiments it executes from one to eight warehouses with
100 000 transactions in each warehouse. For SPECJVM98 we use the S100 input size.

For performance evaluation we measured our benchmarks quantitatively using a baseline (original), and
using our offline and online strategies. Overall execution time for the online approach includes all overhead
for phase analysis and low-level profiling. In the case of the offline approach the overall execution time
includes the overhead of processing the recompilation trace. Full results for our benchmarks in absolute and
relative terms are shown in Table 2.

Benchmark Original Offline Online Benchmark Characteristics
Time(s) Time(s) Improvement (%) Time(s) Improvement (%) Patterns Optimized methods

compress 15.75 15.55 1.3 15.73 0.1 157.9 17.6
db 37.97 37.22 2.0 37.72 0.6 450.5 25.3

jack 22.59 20.08 11.2 19.78 12.5 343.5 90.0
javac 11.78 10.72 9.4 11.10 5.7 193.9 36.9

jess 18.11 14.25 21.3 14.87 17.9 204.5 50.0
mpegaudio 20.24 17.81 12.1 19.79 2.3 103.6 58.9

mtrt 15.14 14.29 6.4 15.42 -1.8 58.8 36.4
raytrace 14.35 13.30 7.3 14.21 0.8 63.9 35.3

soot 303.12 278.45 8.1 291.28 3.9 2542.3 408.2
PseudoJbb 753.95 705.90 6.4 735.62 2.5 7832.8 331.8

Average - - 8.5 - 4.5 - -

Table 2: Execution results, number of patterns created in the online version, and number of methods opti-
mized for SPECJVM98, SOOTand PSEUDOJBB. Values are the arithmetic average of the middle 11 out of
15 runs.

To gain greater insight into the source of improvement, and inspired by our intuition as to potential perfor-
mance gains in introductory Figure 1, we also developed more abstract, analytical measures that summarize
the amountof optimized code executed. Our abstract measures of optimization quality areshown in Fig-
ure 7 and Figure 8. For space reasons we cannot show all such results in detail, so the analytical results are
selected to be representative of the different kinds of observed behaviour.

To measure the relative proportion of code executed at different optimization levels we developed amethod-
level speed(MLS) metric that can be applied to individual methods in individual program executions. MLS
is computed as the sum of the time, measured in samples, spent at different optimization levels, weighted
by the proportion of time at each optimization level. Each partial sum for an optimization level in this
calculation is scaled by an estimate of optimization quality, namely thespeedof the code under the given
optimization level; JikesRVM provides fixed estimates for these latter values. Figure 7 shows the results
for a measurement of MLS for the three methods with the largest MLS values inJACK,ordered from top to
bottom. Thex-axis in these graphs is time, measured in samples, while they-axis is the estimated speed for

14

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

E
st

im
at

ed
 S

pe
ed

Number of Samples

Method: getNextTokenFromStream

Original
Offline
Online

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120

E
st

im
at

ed
 S

pe
ed

Number of Samples

Method: RunTimeNfaState.Move

Original
Offline
Online

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450 500

E
st

im
at

ed
 S

pe
ed

Number of Samples

Method: resolvedNewScalar

Original
Offline
Online

Figure 7: DynamicMethod Level Speedmeasurements over time for each of our baseline, offline and online
recompilation approaches. Each graph is a distinct method fromJACK.

different optimization levels in JikesRVM. An upward step in the graph corresponds to a recompilation at a
higher optimization level. The size of the area under each curve gives an estimate of how MLS changes under
different recompilation strategies—greater area means greater use of optimized code, and hence heuristically
improved performance.

In Figure 8 we show a summary of the same basic property, but summarized over the entire execution and all

15

methods. To simplify calculations, method contributions are weighted here not by actual number of runtime
samples, but by static method size. This provides a more approximate picture ofbehaviour, akin to a static
versus dynamic analysis, but also demonstrates the effect is robust in theface of different and less precise
forms of evaluation. In these figures thex-axis is normalized execution time, and they-axis is “weighted
optimized methods”, a sum of weighted method size of all sampled methods, where each weighted sum
is again scaled by the appropriate optimizationspeedfactor provided by JikesRVM. The interpretation of
these graphs is similar to that used for Figure 7; a higher curve means thereare more methods optimized
to a higher level and the execution speed should be faster, with the area underneath approximating relative
amount and quality of optimized code executed.

5.1 Offline mechanism

The results of our offline mechanism in absolute terms as well as relative improvement over the original
version are given in the third and fourth columns of Table 2. The offline version does achieve significant
improvements on some benchmarks. OnJESS, it improves execution time by 21.3%. OnJACK, JAVAC

andMPEGAUDIO, the improvements are also quite large. On average, the offline version saves 8.5% of the
execution time, although the effect is not uniform; for some benchmarks, such asCOMPRESSandDB, there
is little to no improvement at all. We will discuss these benchmark-specific behaviours in more detail in
Section 6.

In the weighted optimized methods graphs, the curves for our offline implementation are shown as dashed
lines. Corresponding with the faster execution speeds, these curves are also the highest ones in these graphs.
Interestingly, in most of the benchmarks, there is only one major upwards trend. In the graph forSOOT,
however, there are two such increasing phases. This shows the existence of programs with multiple major
phases that can require large and relatively abrupt changes in identified hot method sets.

5.2 Online mechanism

The execution time results for the online mechanism are shown in the fifth and sixth columns of Table 2.
For benchmarks where the offline version shows a large improvement, the online version also performs
well. We obtain up to nearly 18% improvement forJESS, quite close to the 21% improvement found for
JESSoffline. On average the online version achieves a 4.5% improvement, about53% of the possible
performance improvement demonstrated in the offline version. For the 4 benchmarks that responded most
positively to the offline version, the improvement online is on average 9.6%, or 71% of the offline result.

In the weighted optimized methods graphs, the curves for the online version are shown as dotted lines, and
typically lie between the curves for the offline and original implementations. In the graph forSOOT (the
bottom graph in Figure 8), the online curve reflects the multiple phases that are more clearly seen in the
offline curve; our online system correctly identifies the rejuvenated phase, as we discuss in more detail in
Section 6.1.

Further details on performance can be seen in the behaviour of specific methods, as shown forJACK in Fig-
ure 7. As with the weighted optimized method results, the offline version has the greatest area and provides
higher optimization earlier, with the online implementation lying between the offline andoriginal versions.
Note the bottom graph (resolvedNewScalar) shows the offline implementation optimizing the method later
than both the original and online versions. This is a result of resource management in the recompilation
system, prioritizing requests for relatively fast lower levels of optimization over more expensive requests for
longer, highly optimized compilations.

16

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50 60 70 80 90 100

jack

Original
Offline
Online

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50 60 70 80 90 100

jess

Original
Offline
Online

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10 20 30 40 50 60 70 80 90 100

mpegaudio

Original
Offline
Online

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50 60 70 80 90 100

PseudoJbb

Original
Offline
Online

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 10 20 30 40 50 60 70 80 90 100

soot

Original
Offline
Online

Figure 8: Weighted optimized methods:JACK, JESS, MPEGAUDIO, PSEUDOJBB andSOOT. In each of these
graphs thex-axis is normalized time and they-axis is the “weighted method sum,” a heuristic measurement
of the amount of optimized execution as described in Section 5.

17

5.3 Variance and overhead

Figure 9 shows 99% confidence intervals for our original, offline, and online data measurements. Our
evaluation is experimentally quite stable and deterministic, with confidence ranges for the three variations
generally showing good separation. Note that the intervals forJACK are among the largest and have clear
overlap; the≈ 1% performance gain forJACK online as opposed to offline could be attributed to data
variance and/or the intrinsic imprecision of simple optimization benefit/cost estimates. We discuss accuracy
and noise concerns in depth in the following section.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

comp db jack javac jess mpeg mtrt rt soot PJbb Avg

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Original Online Offline

Figure 9: Normalized execution time of SPECJVM98,SOOTand PSEUDOJBB with 99% confidence interval
errorbars for each of our three test scenarios: original, online and offline.

Overhead in profiling systems is always a major design concern. In our case we make use of hardware coun-
ters that are sampled at every process context switch; at a few tens of machine cycles per read and only on
the order of thousands of context switches over a program’s lifetime this technique is extremely cheap. Pat-
tern construction and phase analysis provide the bulk of our actual overhead, and to measure total overhead
costs we compared the original, baseline JikesRVM with an implementation of our online technique that
computes phases as normal but does not actually change the adaptive recompilation settings (futureEstima-
tor). Figure 10 shows the computed relative overhead. On average there isa 1.33% slowdown across these
benchmarks due to our data gathering and phase analysis system. There isalways room for improvement,
but this relatively small cost is in most cases greatly exceeded by the benefit, and demonstrates the practical
low overhead of our technique; again, speedup and other experimentaldata includes all overhead.

6 Discussion

Initial recompilation choices affect later recompilation choices, and there are many potential parameters
and choices in our, or any, recompilation design. A good understanding of potential variation and relative
performance gain is therefore important to making good, general selections of recompilation strategies.

We have chosen algorithmic parameters to include resource requirements (eg use of tri-selection and dual-
channel approaches), and performed extensive initial experimentationand numerical validation of the pa-
rameter space to justify our main approach; this numerical evaluation is described in [25]. Here we discuss
various factors that can influence our performance, and present data validating the general stability and ef-
fectiveness of our design. We first consider different benchmark characteristics that are important in our

18

 0

 0.5

 1

 1.5

 2

 2.5

comp db jack javac jess mpeg mtrt rt soot pjbb Avg

O
ve

rh
ea

d(
%

)

Figure 10: Relative overhead in the online system compared with the original.Overhead comes from
sources such as hardware monitoring, pattern construction, phase prediction, and building control events for
the recompilation component.

approach. This is followed by a detailed comparison of our design with othersimple optimizations to the
recompilation system, again showing the practicality of our work and the generally good quality of the
result.

6.1 Benchmark characteristics

Benchmarks in our study demonstrate a wide range of responses to our optimization. Several benchmark-
specific factors can be seen to influence whether and where performance will be realized using our tech-
niques. Benchmark length, the stability of the hot set, as well as more general sensitivity of the program to
our profiling and optimization systems can all affect the relative success.

Benchmark execution time

In our benchmark suite, the SPECJVM98 benchmarks finish in a comparatively short time whileSOOTand
PSEUDOJBB execute for an order of magnitude or so longer, and also recompile many more methods than
other benchmarks, as seen in the last column of Table 2. Longer running programs have an advantage in
that recompilation has more data to work with as there are more sample points. Furthermore, any reduction
in speed due to less optimal recompilation choices can be amortized over a longer period and often a larger
hot set. For shorter programs our mechanism helps the VM locate the hot set more quickly; the reduction
in overhead obtained by promoting methods more quickly to their final optimization level is also a greater
benefit. This factor can be seen in the results for the longer and shorter running programs.SOOT and
PSEUDOJBB show an average improvement of 7.3% and 3.2% using offline and online analyses respectively,
while the other, shorter benchmarks improve on average of 8.9% and 4.8%.

Hot set stability

We observe that many programs contain a single hot set of methods that is more-or-less stable over the
course of execution. Some benchmarks, however, do have large, distinct execution phases, and show a clear

19

hot set variation. SOOT in our benchmarks demonstrates this quite clearly; in Figure 8, theSOOT curve of
the offline version obviously has multiple stages. Each large incline corresponds to a major change in the
hot set.

Using our offline implementation with perfect knowledge of the future, we candetect the hot set variation
or rejuvenatedphase correctly and quickly, resulting in relatively steep slopes upward as the new hot set
is optimized. The original implementation, on the other hand, has no apparent sensitivity to this change
in program behaviour and shows a gradually increasing curve with no obvious bursts of optimization. Our
online implementation achieves an intermediate level between these two. It has a moderate sensitivity to the
hot set variation and goes through a couple of smaller steps at approximately the same points in time, rising
more quickly to the level of the offline analysis.

An unfortunate side effect of our optimization for detecting rejuvenation, or variations in the hot set is a cer-
tain overzealousness of optimization toward the end of execution. The onlinecurves ofJACK, MPEGAUDIO

andSOOT in Figure 8 tend to rise above even that of the offline curve by the end of execution, indicating
that optimized recompilation may be being overused, recompiling and optimizing methods that will only
be used in the final fraction of program execution. We experimented with identifying a termination phase,
but termination tends to look like any other phase change (rejuvenation) with our current pattern analysis
and data. Solutions based on incorporating extra, high level information such as knowledge of termination-
specific methods may be more profitable. In practice, these sub-optimal onlinedecisions at termination time
do not have an overly large impact, and so we leave reducing this “tail” problem to future work.

Appropriateness of data source

It is interesting that low level events can expose high level behaviour, even for complex, object-oriented
programs with non-trivial control flow. We have successfully used the I-cache miss rate as a base event,
but this does impact not only what can be measured but also how it can be measured, and of course other
choices and event combinations are possible.

Although a good choice in general, for some benchmarks I-cache miss rateprovides somewhat reduced in-
formation. RAYTRACE andMPEGAUDIO, for instance, have a relatively small instruction working set. Thus
we observe only slight changes in I-cache performance, and as can be seen from the 2nd-last column in
Table 2 our pattern creator finds significantly fewer patterns in these cases. This provides less information
to the recompilation engine, and thus recompilation choices are not much better than in the original version:
RAYTRACE andMPEGAUDIO show marginally positive improvements, whileMTRT shows a 2% reduction.
The fact that performance even in this situation is close to the original and not significantly degraded is evi-
dence of the low overhead of our implementation design in general, and sample-based hardware monitoring
specifically.

Other benchmarks have instruction working sets large enough to producesignificant misses as different code
paths are exercised, allowing our online solution to identify patterns easily. The performance difference
resulting from the improved information is evident in benchmarks such asJACK, JESS, andJAVAC. Some
benchmarks, however, exhibit cache performance changes, but theactual hot method set remains quite small.
If a small set of methods are called frequently, as forCOMPRESSandDB, the original adaptive recompilation
engine has the chance to gather enough samples to recompile a method relatively quickly. In these cases,
the potential improvement available by reducing the delay of recompilation is small.The marginal benefit
achieved by our offline solution can be mainly attributed to reductions in optimization overhead due to
skipping redundant intermediate recompilations for some methods.

20

Programs can also exhibitbias with respect to different hardware events. We previously showed, for in-
stance, that some programs likeJESSandJACK are highly “instruction cache sensitive”, meaning that from a
processor-level point of view the instruction cache performance has alarge impact on the execution time of
the program [26]. On the other hand,DB and especiallyCOMPRESSare highly data cache biased. There is
obviously limited room to improve performance from the code side if data usagehas a dominating impact.
In these cases even the offline version only obtains a small improvement. We expect that programs with large
memory requirements and hence garbage collection overhead, heavy I/O,and so forth will also respond less
well to our design, as in general programs that are dominated by other costs than code execution speed will
receive reduced benefits from adaptive code optimization techniques.

The above discussion suggests that monitoring different or multiple hardware events may be a route to
further optimization. We have explored a few hybrid forms of pattern-building based on combinations of
I-cache miss rate, D-cache miss rate, branch instruction counts, and brand prediction miss rates. So far,
these designs have not shown useful improvement above that of one based on a simple I-cache miss rate;
further exploring this space is, however, potentially fruitful future work.

6.2 Stability and comparison with simple approaches

Understanding which benchmarks can work well is important, but differentiating them online may be non-
trivial, and a good recompilation system should perform reasonably well over a range of benchmarks. For
our adaptive system to be useful it is also important to know that the adaptivity is effective. Both our online
and offline strategies generally increase the aggression of recompilation choices, and we must consider that
similar effects could be achieved by simply making the the JikesRVM estimator more aggressive without
adaptation.

Testing the effects of trivial, constant increases in recompiler aggression provides a baseline that shows
both the variability of performance of different recompilation strategies andin comparison with our online
approach, the actual impact of adapting to program phases. We evaluateseveral versions of JikesRVM with
no hardware monitoring or phase analysis, but incorporating our scaledtime estimate formula in Formula 2
with futureEstimatorset to different fixed, constant factors to increase recompiler aggression. Table 3 shows
the normalized overall execution time for our benchmarks when the future time estimate of methods is
increased by values between 1.5× and 3.0×; this represents the range of average increase in aggression
used by our online system for benchmarks in our suite (Table 3, last row).

futureEstimator compress db jack javac jess mpegaudio mtrt raytrace soot PseudoJbb

1.5× 0.997 0.991 0.987 0.970 0.924 0.960 1.017 0.983 0.966 0.991
2.0× 0.970 1.008 1.041 0.955 0.879 0.924 1.039 1.010 0.950 0.978
2.5× 1.018 1.022 1.063 0.975 0.856 0.925 1.127 1.057 0.945 0.969
3.0× 1.018 1.025 1.080 0.991 0.852 0.948 1.151 1.053 0.969 0.975

online 0.999 0.993 0.876 0.942 0.821 0.978 1.018 0.990 0.961 0.976

online average 3.06 1.98 2.16 2.40 2.34 2.44 2.22 1.99 1.35 1.09

Table 3: Fixed setting offutureEstimatorversus the online version. The “online average” row shows the
averagefutureEstimatorvalue used in the online version, weighted proportionally over program execution.

The data in Table 3 shows that there is certainly no one fixed setting that is optimal for all benchmarks;
benchmarks respond differently, and simply increasing aggression overall is not a generally effective strat-
egy. This is more apparent graphically, as seen in Figure 11. Some benchmarks have a large variance in
performance asfutureEstimatorchanges, and some are relatively unaffected. For all benchmarks except

21

MPEGAUDIO andCOMPRESS, our online version is optimal or within variance of optimal. In comparison
with simple approaches, our online design provides stable and good resultsoverall, significantly more so
than the base version or any of the constant aggression settings.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

comp db jack javac jess mpeg mtrt rt soot pJbb

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Orig
1.5X

2.0X
2.5X

3.0X
Online

Figure 11: Normalized execution time for benchmarks using different recompilation optimization strategies.

Recompilation algorithm sensitivity

We can separate benchmarks into those that exhibit a low sensitivity to recompilation decisions (less than
≈5% variance between approaches), and those that show relatively high variance due to such choices. The
former are shown in Figure 12 and the latter in Figure 13.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

Orig. 1.5X 2.0X 2.5X 3.0X Online

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

compress
db

javac
soot

PseudoJbb

Figure 12: Normalized execution time for benchmarks using different recompilation optimization strategies.
These benchmarks seem insensitive to strategy.

The less sensitive benchmarks in Figure 12 correspond reasonably well with our discussion of benchmark-
specific behaviours that impair the effectiveness of our technique. SOOT and PSEUDOJBB are long-running
with large hot sets, whileCOMPRESSandDB contain hot sets that are easily identified under all scenarios.

22

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

Orig. 1.5X 2.0X 2.5X 3.0X Online

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

jack
jess

mpegaudio
mtrt

raytrace

Figure 13: Normalized execution time for benchmarks using different recompilation optimization strategies.
These benchmarks are quite sensitive to strategy.

JAVAC is a marginal inclusion; likeRAYTRACE it has a small working set, but falls within the threshold of
insensitive benchmarks in our simple binary division.

More sensitive benchmarks where recompilation decisions can have a relatively large performance impact
are shown separately in Figure 13. Adaptivity accommodates benchmarks where greater aggression usually
improves performance such asJESS, and benchmarks where greater aggression decreases performance, such
asJACK andMTRT. A more detailed view of typical benchmark behaviour found in our experimental data is
shown in Figure 14, with the upper row showing the normalized performanceof benchmarks that improve
or degrade performance as an almost linear function of recompiler aggression. For benchmarks such as
SOOT andMPEGAUDIO, however, a “sweet spot” exists in terms of overall aggression, in both cases here
around 2.0–2.5. Adaptation is not as successful overall forMPEGAUDIO while for SOOTadaptation finds a
good performance level, albeit in a context where the total performance variation is small. Universally good
performance under these conditions is hard to achieve; however, the online system, generally does quite well
in adapting to different benchmark conditions and is clearly an overall better choice than either the current
or other fixed aggression schemes.

7 Conclusions and Future Work

For many programs, sub-optimal choices in recompilation can result in reduced performance. We have
shown how improvements to recompilation strategy can result in better performance, and provided a design
using coarse grained, variable length phase prediction to adaptively improve recompilation choices. Using
offline trace data for prediction provides an experimental high performance watermark for such a technique,
and functions as a useful optimization when program executions are repeated exactly. Our fully online
implementation makes choices based on dynamically acquired data, and exhibits both low overhead and
good overall performance.

Multiple factors influence performance in a recompilation system, and to show meaningful improvement a
close evaluation of performance under different scenarios and with different levels of detail is important. We
have explored our optimization in terms of execution time, and further validated our results with analytical
measurements. Detailed examination of benchmark behaviour reveals that benchmarks respond in different

23

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

Orig. 1.5X 2.0X 2.5X 3.0X Online

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

jess

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

Orig. 1.5X 2.0X 2.5X 3.0X Online

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

mtrt

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

Orig. 1.5X 2.0X 2.5X 3.0X Online

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

soot

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

Orig. 1.5X 2.0X 2.5X 3.0X Online

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

mpegaudio

Figure 14: Typical behaviour of benchmarks in response to differentrecompilation strategies. More ag-
gressive recompilation is in general good for benchmarks likeJESS(upper left), bad for others likeMTRT

(upper right), while some such asSOOTandMPEGAUDIO have an intermediate sweet spot in terms of over-
all recompiler aggression. In the first three cases the online system adapts well; for MPEGAUDIO the online
performance is improved over the baseline but does not achieve optimal performance.

ways to the relative aggression of a recompilation engine, and we considered a wide variety of benchmark-
specific factors, including high level considerations such as overall runtime and low level influences such as
the density of hardware event data. Under these highly variable and “noisy” conditions our adaptive online
system achieves a significantly improved performance.

There exist a large number of possible extensions to this work. The success of our approach, like most
adaptive online systems, depends on the extent of variability in runtime execution data. We have expended
a great deal of effort to understand and experimentally validate potentiallycritical factors, ensuring our ap-
proach is a generally robust optimization. Further understanding and detection of benchmark characteristics
may improve our design, and could also be used to help select benchmark-specific responses by the adap-
tive optimization system.Profile repositories,aggregating profile data from multiple executions may be a
useful way of moving online performance closer to that of offline performance [6]. Mixing profile data from
multiple runs or using offline/online hybrid data might also help with the “tail problem” of predicting the
termination phase of a program.

We intentionally exploit coarse grained phase information to allow complex optimizations time to act and
improve performance. Startup phases are well-known, but the use of high level and variable length phase
information, when cheaply gathered, is also obviously of value. Predictingmajor phase changes may be use-
ful for scheduling garbage collection, heap data reorganization or anyother design for larger scale adaptive

24

execution. Additional or different hardware event data may be usefulfor more “data-centric” applications,
and part of our current investigations include the use of multiple and hybridhardware event sources.

References

[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J.J. Barton, S. F. Hummel, J. C.
Sheperd, and M. Mergen. Implementing Jalapeño in Java. InOOPSLA ’99: Proceedings of the 14th
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
pages 314–324, Oct. 1999.

[2] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby, S. Fink, D. Grove,
M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar, and M. Trapp. The Jikes Re-
search Virtual Machine project: Building an open-source research community. IBM Systems Journal,
44(2):399–417, Apr. 2005.

[3] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A. Leung, R. L. Sites,
M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Continuous profiling: where have all the
cycles gone?ACM Trans. Comput. Syst., 15(4):357–390, Nov. 1997.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive optimization in the Jalapeño
JVM. ACM SIGPLAN Notices, 35(10):47–65, 2000.

[5] M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directed optimization of Java. InOOPSLA
’02: Proceedings of the 17th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 111–129, New York, NY, USA, 2002. ACM Press.

[6] M. Arnold, A. Welc, and V. T. Rajan. Improving virtual machine performance using a cross-run profile
repository. InOOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications, pages 297–311, New York, NY, USA,
2005. ACM Press.

[7] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimization system. In
PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and
implementation, pages 1–12, New York, NY, USA, 2000. ACM Press.

[8] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. Memory hierarchy
reconfiguration for energy and performance in general purpose architectures. InMICRO 33:the 33rd
Annual Intl. Sym. on Microarchitecture, pages 245–257, Dec. 2000.

[9] R. D. Barnes, E. M. Nystrom, M. C. Merten, and W. mei W. Hwu. Vacuum packing: extracting
hardware-detected program phases for post-link optimization. InMICRO 35: Proceedings of the 35th
annual ACM/IEEE international symposium on Microarchitecture, pages 233–244, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

[10] R. Berrendorf, H. Ziegler, and B. Mohr. PCL-the performancecounter library. http://www.
fz-juelich.de/zam/PCL/.

[11] S. Brown, J. Dongarra, N. Garner, K. London, and P. Mucci.PAPI. http://icl.cs.utk.edu/
papi.

25

[12] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Technical Report CS-TR-1997-
1342, 1997.

[13] M. Burtscher. An improved index function for (D)FCM predictors.Computer Architecture News,
30(3):19–24, June 2002.

[14] B. Calder, P. Feller, and A. Eustace. Value profiling and optimization,1999.

[15] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data placement.SIGPLAN Not.,
33(11):139–149, 1998.

[16] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching for general-purpose programs.
In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, pages 199–209, New York, NY, USA, 2002. ACM Press.

[17] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth. The openruntime platform: a flexible high-
performance managed runtime environment: Research articles.Concurr. Comput. : Pract. Exper.,
17(5-6):617–637, 2005.

[18] I. Corporation. VTune performance analyzer. http://www.intel.com/software/
products/vtune/.

[19] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration hardware via dynamic working set
analysis. InISCA ’02: Proceedings of the 29th annual international symposium on Computer archi-
tecture, pages 233–244. IEEE Computer Society, 2002.

[20] A. S. Dhodapkar and J. E. Smith. Comparing program phase detection techniques. InProceedings of
the 36th Annual IEEE/ACM International Symposium on Microarchitecture, page 217. IEEE Computer
Society, 2003.

[21] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and predicting program behavior and
its variability. InPACT ’03: Proceedings of the 12th International Conference on Parallel Architectures
and Compilation Techniques, page 220. IEEE Computer Society, Sep. 2003.

[22] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,M. S. Tschantz, and C. Xiao. The
Daikon system for dynamic detection of likely invariants.Science of Computer Programming, 2006.

[23] A. Georges, D. Buytaert, L. Eeckhout, and K. D. Bosschere. Method-level phase behavior in Java
workloads. InOOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN Conference on Object-
oriented programming, systems, languages, and applications, pages 270–287, Oct. 2004.

[24] B. Goeman, H. Vandierendonck, and K. de Bosschere. Differential FCM: Increasing value prediction
accuracy by improving table usage efficiency. InProceedings of the 7th International Symposium
on High-Performance Computer Architecture (HPCA), pages 207–216. IEEE Computer Society, Jan.
2001.

[25] D. Gu and C. Verbrugge. Using hardware data to detect repetitiveprogram behavior. Technical Re-
port SABLE-TR-2007-2, Sable Research Group, School of Computer Science, McGill University,
Montréal, Qúebec, Canada, March 2007.

[26] D. Gu, C. Verbrugge, and E. Gagnon. Relative factors in performance analysis of Java virtual machines.
In VEE ’06: Proceedings of the 1st ACM/USENIX international conferenceon Virtual execution envi-
ronments, New York, NY, USA, June 2006. ACM Press.

26

[27] M. J. Hind, V. T. Rajan, and P. F. Sweeney. Phase shift detection: A problem classification. Technical
Report IBM Research Report RC-22887, IBM T. J. Watson, August2003.

[28] S. Hu, R. Bhargava, and L. K. John. The role of return value prediction in exploiting speculative
method-level parallelism.JILP, 5:1–21, Nov. 2003.

[29] M. C. Huang, J. Renau, and J. Torrellas. Positional adaptation ofprocessors: application to energy
reduction. InISCA ’03: Proceedings of the 30th annual international symposium on Computer archi-
tecture, pages 157–168, New York, NY, USA, 2003. ACM Press.

[30] IBM. Pmapi.http://www.alphaworks.ibm.com/tech/pmapi.

[31] H.-S. Kim and J. E. Smith. Dynamic software trace caching. Inthe 30th International Symposium on
Computer Architecture (ISCA 2003), 2003.

[32] T. Kistler and M. Franz. Continuous program optimization: A case study. ACM Trans. Program. Lang.
Syst., 25(4):500–548, 2003.

[33] N. Kumar, B. R. Childers, and M. L. Soffa. Low overhead program monitoring and profiling. In
PASTE ’05: The 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 28–34, New York, NY, USA, 2005. ACM Press.

[34] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation for variable length intervals
to find hierarchical phase behavior. In2005 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS’05), March 2005.

[35] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The strong correlation between code
signatures and performance. InISPASS ’05: Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, page 220. IEEE Computer Society, March 2005.

[36] T. Lindholm and F. Yellin.Java Virtual Machine Specification. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[37] P. Nagpurkar, M. Hind, C. Krintz, P. Sweeney, and V. Rajan. Online phase detection algorithms. In
CGO ’06: Proceedings of the international symposium on Code generation and optimization, Wash-
ington, DC, USA, March 2006. IEEE Computer Society.

[38] P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-aware remote profiling. InCGO ’05: Proceedings of
the international symposium on Code generation and optimization, pages 191–202, Washington, DC,
USA, 2005. IEEE Computer Society.

[39] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of speculative thread-level parallelism. InPACT
’99, pages 303–313. IEEE, 1999.

[40] M. Paleczny, C. A. Vick, and C. Click. The Java HotSpot server compiler. InJava Virtual Machine
Research and Technology Symposium, pages 1–12, 2001.

[41] C. J. F. Pickett and C. Verbrugge. Return value prediction in a Java virtual machine. InProceedings of
the 2nd Value-Prediction and Value-Based Optimization Workshop (VPW2), pages 40–47, Oct. 2004.

[42] R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong, and W.-F. Wong. Compiler orchestrated
prefetching via speculation and predication. InASPLOS-XI: Proceedings of the 11th international
conference on Architectural support for programming languages andoperating systems, pages 189–
198, Oct. 2004.

27

[43] F. Schneider and T. R. Gross. Using platform-specific performance counters for dynamic compila-
tion. In Proceedings of the 18th International Workshop on Languages and Compilers for Parallel
Computing (LCPC’05), October 2005.

[44] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction.SIGPLAN Not., 39(11):165–176, 2004.

[45] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find periodic behavior
and simulation points in applications. InPACT ’01: Proceedings of the 2001 International Conference
on Parallel Architectures and Compilation Techniques, pages 3–14, Washington, DC, USA, 2001.
IEEE Computer Society.

[46] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In ISCA ’03: Proceedings of the
30th annual international symposium on Computer architecture, pages 336–349, 2003.

[47] Standard Performance Evaluation Corporation. SPECjvm98 benchmarks. http://www.spec.
org/osg/jvm98.

[48] Standard Performance Evaluation Corporation. SPECjbb2000.http://www.spec.org/osg/
jbb2000, 2000.

[49] M. M. Strout, L. Carter, and J. Ferrante. Compile-time composition of run-time data and iteration
reorderings.SIGPLAN Not., 38(5):91–102, 2003.

[50] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani.A dynamic optimization frame-
work for a Java just-in-time compiler. InOOPSLA ’01: Proceedings of the 16th ACM SIGPLAN
conference on Object oriented programming, systems, languages, and applications, pages 180–195,
New York, NY, USA, 2001. ACM Press.

[51] Sun Microsystems, Inc. The Java Virtual Machine Tools Interface. http://java.sun.com/
j2se/1.5.0/docs/guide/jvmti/.

[52] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove, and M. Hind. Using hardware
performance monitors to understand the behavior of Java applications. InVM’04:Proceedings of the
3rd Virtual Machine Research and Technology Symposium, May 2004.

[53] R. Vallee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot - a Java bytecode
optimization framework. InCASCON ’99: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative research, page 13. IBM Press, 1999.

[54] J. Whaley. Partial method compilation using dynamic profile information. InOOPSLA ’01: Proceed-
ings of the 16th ACM SIGPLAN conference on Object oriented programming, systems, languages, and
applications, pages 166–179, New York, NY, USA, 2001. ACM Press.

[55] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, efficient, and adaptive calling context
profiling. InPLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, pages 263–271, New York, NY, USA, 2006. ACM Press.

28

