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Montréal, Québec, Canada

Malte Clasen
Zuse Institut Berlin

Berlin, Germany

Joachim Kneis
Computer Science Department

RWTH Aachen University
Aachen, Germany

May 25, 2007

w w w . s a b l e . m c g i l l . c a

1This survey was originally established as contribution to the Seminar Data Compression WS 2001/2002 at the
RWTH Aachen University, under supervision of Ralf Schlüter.



Contents

Abstract 4

1 Motivation and History 5

2 Introduction 6

2.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Example: Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8

2.3 Encoder and decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10

2.4 The notions of uniqueness and efficiency . . . . . . . . . . . . . .. . . . . . . . 10

3 Encoding to real numbers 12

3.1 Example: interval creation . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 12

3.2 Upper and lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12

3.3 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Decoding example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

3.6 Uniqueness of representation . . . . . . . . . . . . . . . . . . . . . .. . . . . . 19

3.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Encoding as sequence of bits 23

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Abstracting from the model . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 23

4.3 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Example: encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24

4.5 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Example: decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26

5 Scaling in limited ranges 28

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 E1 and E2 scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

5.3 E3 scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Example encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31



5.5 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.6 Example decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

6 Ranges 36

6.1 Interval size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36

6.2 Alternative calculation . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 36

7 Summary of encoder and decoder implementation 38

7.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3 Termination of the decoding process . . . . . . . . . . . . . . . . .. . . . . . . 39

8 Efficiency 40

8.1 Looking at the efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 40

8.2 Comparison to Huffman Coding . . . . . . . . . . . . . . . . . . . . . . .. . . 40

9 Alternative models 43

9.1 Order-n models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

9.2 Adaptive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

9.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.3 Additional models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 44

10 Conclusion 45

10.1 Remember: Compression has its bounds . . . . . . . . . . . . . . .. . . . . . . 45

10.2 Methods of Optimization . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 45

10.2.1 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.2.2 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A A reference implementation in C++ 47

A.1 Arithmetic Coder (Header) . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 47

A.2 Arithmetic Coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 48

A.3 Model Base Class (Header) . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 52

A.4 Model Base Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

A.5 Model Order 0 (Header) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53

A.6 Model Order 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.7 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



A.8 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Index 58

Bibliography 59

List of Tables

1 Probability of letters in an average German text (taken from [Beu94]). . . . . . . 8

2 Model for the example 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

3 Model for the example of scaling functions . . . . . . . . . . . . . .. . . . . . 31

4 Example of scaling functions in the encoder . . . . . . . . . . . . .. . . . . . . 33

5 Explanation of columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33

6 Example of scaling functions in the decoder . . . . . . . . . . . . .. . . . . . . 35

7 Function of an adaptive order-0 model . . . . . . . . . . . . . . . . . .. . . . . 44

List of Figures

1 Creating an interval using given model . . . . . . . . . . . . . . . . .. . . . . . 13

2 Iterated partitioning of the interval[0,1) (uniform distribution) . . . . . . . . . . 16

3 Function of the encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16

4 Application of E3 scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 32

5 For comparison - without E3 scaling . . . . . . . . . . . . . . . . . . . .. . . . 32



Abstract

This document is an updated and translated version of the German paperArithmetische
Kodierung[BCK02] from 2002. It tries to be a comprehensive guide to theart of arithmetic
coding.

First we give an introduction to the mathematic principles involved. These build the foun-
dation for chapter 3, where we describe the encoding and decoding algorithms for different
numerical systems. Here we also mention various problems one can come across as well as
solutions for those. This is followed by a proof of uniqueness and an estimation of the effi-
ciency of the algorithm. In the end we briefly mention different kinds of statistical models,
which are used to actually gain compression through the encoding. Throughout this paper we
occasionally make some comparisons to the related Huffman encoding algorithm. Though,
some rudimentary knowledge about Huffman encoding should suffice for the reader to follow
the line of reasoning.

This paper is mainly based on [Say00] and [BCW90]. On the latter we base our imple-
mentation which is included in the appendix as full C++ source code. We also make use of
parts of this code during some of our examples. The mathematical model we use, however, is
strongly based on [Say00] and [Fan61]. Also we employ the well-known Shannon-Theorem
[WS49], which proofs the entropy to be the bound of feasible lossless compression.



1 Motivation and History

In comparison to the well-known Huffman Coding algorithm, Arithmetic Coding overcomes the
constraint that the symbol to be encoded has to be coded by a whole number of bits. This leads
to higher efficiency and a better compression ratio in general. Indeed Arithmetic Coding can be
proven to almost reach the best compression ratio possible,which is bounded by the entropy of
the data being encoded. Though during encoding the algorithm generates one code for the whole
input stream, this is done in a fully sequential manner, symbol after symbol.

Arithmetic Coding, though not being very complex to understand, was not know before the late
70’s in the form we use it today. It was able to gain more interest in the 80’s, due to its high
efficiency and the fact that the hardware implementation of Arithmetic Coding is very straightfor-
ward. First approaches to the topic were already given byAbramsonandElias in 1960, however,
these days they did not come up yet with an appropriate solution to a problem we are soon going
to address: The arithmetic accuracy needs to be increased with the length of the input message.
Fortunately, in 1976PascoandRissanenproved that specific finite-length numbers actually suf-
fice for encoding - without any loss of accuracy. However, these algorithms were still not very
memory-efficient. In 1979 and 1980 then,Rubin, Guazzo, RissanenandLangdonpublished almost
simultaneously the basic encoding algorithm as it is still used today. It is based on finite-precision
arithmetic, employing a FIFO mechanism. The implementations byRissanenandLangdonwere
also very close to later hardware implementations.

Thus, compared to other fields of Computer Science, Arithmetic Coding is still very young, how-
ever already mature and efficient principle for lossless data encoding, which satisfies all the re-
quirements of what people understand of a modern compression algorithm: Data input streams
can be compressed symbolwise, enabling on-the-fly data compression. Also Arithmetic Coding
works in linear time with only constant use of memory. As mentioned above, finite precision in-
teger arithmetic suffices for all calculations. These and other properties make it straightforward to
derive hardware-based solutions. As we will see soon, Arithmetic Coding is also known to reach
a best-possible compression ratio, provided the single symbols of the input stream are statistically
independent, which should be the case for most data streams.Also it can be enhanced very simple
by allowing simple plug-in of optimized statistical models. The decoder uses almost the same
source code as the encoder which also makes the implementation straightforward.

Nowadays there are a lot of hidden applications of Arithmetic Coding, such as hardware based
codecs as for instance the fax protocols G3 and G4. This kind of application makes Arithmetic
Coding maximally efficient by the use of a small alphabet withan unevenly distributed probabil-
ity.2

2Note that a fax page usually holds much more white pixels thanblack ones.



2 Introduction

Before jumping into the fray and starting with the explanation of the encoding algorithm, first we
introduce some basic terms commonly used in data compression. They will be used throughout
the whole paper.

Our goal is to compress data, which might either be stored on acomputer-readable media or be
sent over some form of stream. This data could represent anything, reaching from simple text up
to graphics, binary executable programs etc.

However, we do not distinguish here between all those data types. We simply see them all as
binary input. A group of such input bits is what we will refer to as a symbol. For instance one
could think of an input stream being read bytewise, leading to 28 = 256 different input symbols.
For raw text compression, it could also suffice to take an alphabet of 128 symbols only, because
the ASCII code is based on a 7-byte structure.

2.1 Foundations

DEFINITION 1 (ALPHABET AND SYMBOL )
We call a finite, nonempty set anALPHABET. TheLENGTH or cardinality of an alphabet A will be
referred to as|A|. The elements{a1, . . . ,am} of an alphabet are calledSYMBOLS.

Also we assume thatA is an ordered set, so giving{a1, . . . ,am} a distinct order.

We already mentioned above that the Arithmetic Coding algorithm works sequentially. Thus we
need some notion of what the sequential input and output of the encode/decoder might look like.
This leads us directly to the notion of aSEQUENCE:

DEFINITION 2 (SEQUENCE)
A series S= (s1,s2 . . . ) of symbols si from an alphabet A is calledSEQUENCE. In the latter we will
also use the shortcut S= s1s2 . . .

In analogy to the definition of|A|, |S| is the symbol for the length ofS, provided thatS is of finite
length. However,|S| < ∞ will be a general assumption henceforth, since most of the corrolary
would otherwise make no sense.

Please note that this representation of data is somehow natural, since most human-made media can
be read in a sequential order. Just think of books, videos, tapes and more.

Also, when looking at a sequence, one can calculate a distinct probability of each symbol of the
alphabet to occur in this very sequence. This probability might be very unevenly distributed, a
lot depending on the application domain. For instance consider the lettere, which is much more
common thanz in the English language.3 Since Arithmetic Coding depends a lot of such statistical
measures in order to achieve compression, we introduce thePROBABILITY of a symbol as follows:

DEFINITION 3 (PROBABILITY )
Let S= (s1, . . . ,sn) a finite-length sequence with|S| = n over A= {a1, . . . ,am}. Also let|S|ai the

frequency of ai in S. Then we define P(ai) :=
|S|ai

n as thePROBABILITY of ai (in S).

3An elaboration on http://www.simonsingh.net states an average probability of 12.7% for lettere and 0,1% forz.



From the definition, we can directly conclude thatP(ai) is always contained in the interval[0,1)
for any symbol, whereas the sum over all such probabilities is always∑m

i=1 P(ai) = 1. Please note
that this interval is open-ended, because it would make no sense to encode a constant sequence
holding only a symbol of probability 1, simply because in that case the full content of the sequence
would have been known beforehand already. We will later on make use of this property in certain
conclusions.

Recapturing the example ofe/z however, we would like to emphasize that the probability of a
symbol might heavily depend on its context. If one considerse andz as symbols for bytes in a
binary executable for example, they might be rather evenly distributed. Also one could even show
that certain symbols are more likely to occur in scientific text than newspaper articles and so forth.

Some data is subject to interpretation: E.g. consider the sequence 1111131311. It could be inter-
preted as a sequence of symbols 1,3 or 11,13. At least this example proves that we need some kind
of unambiguous rule of how probabilities are related to symbols. This relation between symbols of
an alphabet and their probability is commonly known as aMODEL in terms of data compression.

DEFINITION 4 (MODEL)
Let A an alphabet. AMODEL M is a function

M : A−→ [0,1) : ai 7−→ PM(ai) ,

which maps a probability PM(ai) to each symbol ai ∈ A.

This probability might be estimated / calculated and does not necessarily have to match the real
probability of the symbol,P(ai). Indeed in most cases it does not. Please also note that an alphabet
is not restricted to only hold symbols of length 1. In the example above, employing 11 and 13 as
symbols we already got a picture of that. If one estimates theprobability of a given symbol not
only by looking at the symbol itself but also at the context given by the lastn symbols seen, one
speaks of anOrder− n model. For instance the average probability of the letteru to occur in
any German text is only about 0.0435. If one considers its probability to occur after the letter q
however, this value raises to nearly 1! As one can see alreadynow, an increased value ofn might
lead to better predictions of probabilities.

As already briefly mentioned above, the probability distribution that is given by the interpretation
of a sequence under a certain model, matches the real probability distribution at best by chance.
Usually this will not be the case. For instance there will be almost no German text fulfilling the
distribution given by Table 1 exactly, but rather approximately or even worse. To distinguish the
probability induced by the model from the real one, we label the former withPM(ai) in order to
emphasize the dependency of the model and in order to distinguish from the latter, given byP(ai).

So we conclude that a model can be seen as an interpretation ofan arbitrary dataset. A simple
model could for instance be given by the probability distribution of Table 1. This table shows the
probabilities of most letters of the German alphabet to occur in an average German text. Probably
the clever reader can already anticipate now, that the compression ration will heavily depend on
how good this model matches the reality.

This leads to the need to define some kind of measure of compression, enabling us to actually
compare the efficiency of different compression approaches. A natural measure of how much
information is contained in a given sequence of data is called theENTROPY.



a 0,0651 h 0,0476 o 0,0251 v 0,0067
b 0,0189 i 0,0755 p 0,0079 w 0,0189
c 0,0306 j 0,0027 q 0,0002 x 0,0003
d 0,0508 k 0,0121 r 0,0700 y 0,0004
e 0,1740 l 0,0344 s 0,0727 z 0,0113
f 0,0166 m 0,0253 t 0,0615
g 0,0301 n 0,0978 u 0,0435

Table 1: Probability of letters in an average German text (taken from [Beu94]).

DEFINITION 5 (ENTROPY)
Let S a sequence over alphabet A= {a1, ...,am}. TheENTROPY HM(S) of the sequence S under
model M is defined as

HM(S) =
m

∑
i=1

P(ai) ld
1

PM(ai)
. (1)

The unit of the entropy is[bits/symbol] because the formula only refers to probabilities as relative
frequencies rather than absolute ones.

By the formula one can easily see that with our definition, theentropy of a sequence depends on
the modelM being used, since thePM(ai) are the probabilities under that model. Here,ld 1

PM(ai)

can be interpreted as the minimal length of a binary symbol for ai , while the factorP(ai) (being the
real probability ofai) can be interpreted as probability of requiring the encoderto binary encode
this very symbol.4

Considering a model as perfect, one obtains thecorrect probability distribution leading to the
natural form of the entropy:

H(S) = ∑
a∈A

P(ai) ld
1

P(ai)
(2)

This kind of entropy is depended on the input data only andnosubject to interpretation. However
the interested reader might wish to know that most of the literature about Arithmetic Coding
sloppily does not distinguish between both kinds of entropy.

2.2 Example: Entropy

Let us have a look at the sequenceS= abaabcdaover alphabet{a,b,c,d}. We want to binary
encode this sequence. Since we have no clue at all about how the probabilities should be distributed
in the first place, we decide for the simple modelM1, which - by chance - leads to the correct
probability valuesPM1(a) = 0,5, PM1(b) = 0,25, PM1(c) = 0,125 andPM1(d) = 0,125. One can
easily see that this model is ideal in the sense that the estimated probabilitiesPM1(s) match the real
onesP(s):

PM1(s) = P(s) ∀s∈ A := {a,b,c,d} .

4If one does not encode binary but rather to a basem, then one only has to replaceld with logm.



When encoding this sequence, we can do so in a very naive way bysimply using 2 bits per symbol,
{00,01,10,11}, which leads to overall costs of 8∗2 bits= 16 bits. So what about the entropy of
HM1(S)?

HM1 = ∑
s∈{a,b,c,d}

P(s) ld
1

PM1(s)

= (0,5· ld
1

0,5
)+ (0,25· ld

1
0,25

)

+(0,125· ld
1

0,125
)+ (0,125· ld

1
0,125

)

= 0,5· ld 2+0,25· ld 4+0,125· ld 8+0,125· ld 8

= 0,5+0,5+0,375+0,375

= 1,75 [Bits/Symbol]

Note that this is given in[Bits/Symbol], which means that we need a minimum of 8∗1,75= 14 bits
to encode the whole input sequence. We cannot do any better.5 This gives a saving of 16−14= 2
bits.

However, what would have happened if we had not been so lucky to guess the correct probability
distribution on advance? Have a look at the following modelM2 with PM2(a) = 0,125,PM2(b) =
0,125,PM2(c) = 0,5 andPM2(d) = 0,25. The entropy underM2 calculates to:

HM2 = ∑
s∈{a,b,c,d}

P(s) ld
1

PM2(s)

= (0,5· ld
1

0,125
)+ (0,25· ld

1
0,125

)

+(0,125· ld
1

0,5
)+ (0,125· ld

1
0,25

)

= 0,5· ld 8+0,25· ld 8+0,125· ld 2+0,125· ld 4

= 1,5+0,75+0,125+0,25

= 2,625 [Bits/Symbol]

We should see this example as a warning. A warning, not to mix up the notion ofcodingwith
compression. The reason for this is that we can see that under the modelM2, we would be required
to use 2,625∗8 = 21 bits to encode the input sequence. However, this would be no compression at
all, if one remembers that our naive encoding with 2 bits per symbol employed 16 bits altogether
only. Also we can conclude that the compression ration can only be as good as the underlying
model allows. The better the model matches the reality, the better the compression will be.

However, in the following chapters we will prove, that givenany particular model (that on its own
might be as optimal as it can be), Arithmetic Coding achievesthe absolutely best compression
ratio, meaning that no other algorithm could do any better under the very same model.

5Note that we do not prove the entropy as measure of optimalityhere. This fact is commonly known as theShannon
Theorem[WS49].



Since we now stirred up your interest so much, we are now goingto describe the actual encoding
and decoding algorithms.

2.3 Encoder and decoder

DEFINITION 6 (ENCODER & D ECODER)
An algorithm which encodes a sequence is called anENCODER. The appropriate algorithm de-
coding the sequence again is called aDECODER.

In opposite to the input sequenceS we refer to the encoded sequence which is output of the
encoder and input for the decoder byCode(S) orC(S) for short.The application of both algorithms
is referred to asENCODING respectivelyDECODING.

We want to emphasize that we use the notion of an algorithm in its most natural way, meaning a
general sequence of steps performed by any arbitrary computer. By purpose we do not limit our-
selves to a certain implementation at this stage. An encodercould be any algorithm transforming
the input in such a way that there is a decoder to reproduce theraw input data. However at the
end of this paper we present the full C++ source code of a encoder/decoder pair (also referred to
asCODEC), which employs Arithmetic Coding. The following code examples are taken from this
reference implementation.

In the theory of data compression one often distinguishes between lossy and lossless compression
algorithms. Especially analogous signals are often encoded in a lossy way because such data is in
the end meant to be interpreted by some kind of human organ (eye, ear,...) and such organs are
very limited in a sense that they simply do not recognize certain levels of noise or distortion at
all. Of course lossy compression algorithms can reach better compression ratios by losing some
accuracy. However we are not going to consider any lossy compression in this article and rather
concentrate on lossless compression, that can be applied toall kinds of data in general. Thus we
are only going to consider codecs that are able to reproduce the input data up to the last symbol.
In a nutshell our resultingCode(S) will be proven lossless and optimal.

2.4 The notions of uniqueness and efficiency

DEFINITION 7 (UNIQUE DECODABILITY)
We call a codeUNIQUELY DECODABLE, if any sequence is mapped to its code in an injective way.
If this is the case one can determine the unique input symbol for any given code.

A special class of uniquely decodable codes are so-called prefix codes. These can be characterized
by the property that no codeword is a prefix of any other codeword:

DEFINITION 8 (PREFIX CODE)
We call a given code C aPREFIX CODE, if for no pair (x,y) of symbols of the alphabet, C(x) is
prefix of C(y).

Prefix codes have the big advantage that as soon as the decoderhas readC(x) for a certainx,
it knows at ones that the code is terminated and that symbolx was encoded. In the case of an
arbitrary code, it could be the case that the decoder would have to read on in order to see ifC(x)
was probably only the prefix of another codeC(y). Thus, prefix codes are known to be a class



of uniquely decodable codes. The diligent reader can find a constructive proof of this property in
[Say00] p.31.

Now we are fully equipped to start with the actual coding algorithm. The following chapter in-
troduces the general method of Arithmetic Coding. The subsequent chapters evolve this method,
address some of the problems one comes across and discuss theactual implementation.



3 Encoding to real numbers

Huffman-coding was considered to be almost optimal until arithmetic coding was developed in
the 70s. The resulting code is usually very close to the entropy and reaches it in some special
cases. Its disadvantages are the relatively complex generation of the code tree and the limitation
to encode symbols or groups of symbols as such. The binary code in Huffman-coding is looked
up in a balanced binary tree that approximates the symbol probabilities: One starts at the root and
searches for the appropriate node for the given symbol. The branches are labeled binary, so the
resulting code word is the sequence of passed branches. Since the number of passed branches in
one pass is always a whole number, each symbol is always encoded in a sequence of full bits. We
will show that this is an unnecessary constraint.

Arithmetic Coding uses a one-dimensional table of probabilities instead of a tree. It always en-
codesthe whole messageat once. This way it is possible to encode symbols using fragments
of bits. However, one have cannot access the code word randomly. Using Huffman-coding, one
can specify marks that allow decoding starting within the bit stream. Of course one can also
split messages in arithmetic coding, but this limits the efficiency since use of bit-fragments on the
boundaries is impossible.

What we are looking for is a proper way to encode a message without assigning a fixed binary
code to each symbol. So let’s take a look at the probabilitiesof the symbols: All probabilities
fall into the range[0,1) while their sum equals 1 in every case. This interval contains an infinite
amount of real numbers, so it is possible to encode every possible sequence to a number in[0,1).
One partitions the interval according to the probability ofthe symbols. By iterating this step for
each symbol in the message, one refines the interval to a unique result that represents the message.
Any number in this interval would be a valid code.

Let M be a model that assigns a probabilityPM(ai) to each symbolai that appears in the message.
Now we can split the interval[0,1) using these values since the sum always equals 1. The size of
the i−th sub-interval corresponds to the probability of the symbol ai .

3.1 Example: interval creation

Let M be a model using the alphabetA = a,b,c,d. Let the probabilities of the symbols in the
message be

PM(a) = 0.5,PM(b) = 0.25,PM(c) = 0.125,PM(d) = 0.125.

Now the interval[0,1) would be split as emphasized in Figure 1.

3.2 Upper and lower bounds

Henceforth we call the upper and lower bounds of the entire current intervalhigh and low. The
bounds of the sub-intervals are calculated from the cumulative probabilities:
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Figure 1: Creating an interval using given model

K(ak) =
k

∑
i=1

PM(ai) .

The valueshighandlow change during the encoding process whereas the cumulative probabilities
remain constant6. They are used to updatehigh and low. With respect to the previous example,
we get the following values:

high 1.0 K(0) 0.0 K(2) 0.75
low 0.0 K(1) 0.5 K(3) 0.875

We will see that this subdivision depends on the model. However, for now we assume that it is
given by a constant table containing the cumulative probabilities K(ai). This type of model also
exists in real applications and is calledstatic.

3.3 Encoding

The first step in encoding is the initialization of the interval I := [low,high) by low= 0 andhigh=
1. When the first symbols1 is read, the intervalI can be resized to a new intervalI ′ according to the
symbol. The boundaries ofI ′ are also calledlow andhigh. We chooseI ′ to equal the boundaries
of s1 in the model. However, how are these boundaries calculated?Let s1 = ak be thekth symbol
of the alphabet. Then the lower bound is

low :=
k−1

∑
i=1

PM(ai) = K(ak−1)

and the upper bound is

high :=
k

∑
i=1

PM(ai) = K(ak)

The new intervalI ′ is set to[low,high). This calculation is nothing new, it just corresponds to the
mathematical method of the construction of Figure 1. The most relevant aspect of this method is

6provided we are using a constant model



that the sub-intervalI ′ becomes larger for more probable symbolss1. The larger the interval the
lower the number of fractional places which results in shorter code words. All following numbers
generated by the next iterations will be located in the interval I ′ since we use it as base interval as
we did used[0,1) before.

We proceed with the second symbols2 = a j . However, now we have the problem that our model
M describes a partition7 of the interval[0,1), not of I ′ which was calculated in the previous step.
We have to scale and shift the boundaries to match the new interval. Scaling is accomplished by
a multiplication withhigh− low, the length of the interval. Shifting is performed by addinglow.
This results in the equation

low′ := low+
j−1

∑
i=1

PM(ai) · (high− low) = low+K(a j−1) · (high− low) ; (3)

high′ := low+
j

∑
i=1

PM(ai) · (high− low) = low+K(a j) · (high− low) . (4)

This rule is valid for all steps, especially the first one withlow = 0 andhigh− low = 1. Since we
do not need the old boundaries any more for the next iterations, we can overwrite them:

low := low′ ;

high := high′ .

This iteration might look complicated, but we will give an example resembling the setting in 2.2.
Figure 3 on page 16 gives a picture of this. LetSbe the sequenceabaabcdausing our ideal model
M1.

We start with the interval[0,1) and the first element ofS. Sinces1 is ana, the new boundaries are
calculated as follows:

low = 0

high = 0+0.5·1 = 0.5 .

The resulting interval is[0. . .0.5). The next iteration encodes ab

low = 0+0.5· (0.5−0) = 0.25

high = 0+0.5· (0.5−0)+0.25· (0.5−0) = 0.375 .

followed by a seconda

low = 0.25

high = 0.25+0.5· (0.375−0.25) = 0.3125.

7A partition is a disjoint union of sets calledclasses. All classes have empty intersections and the union of all
classes results in the base set.



and a thirda

low = 0.25

high = 0.25+0.5· (0.3125−0.25) = 0.28125,

The fifth character is ab

low = 0.25+0.5· (0.28125−0.25) = 0.265625

high = 0.25+0.5· (0.28125−0.25)+0.25· (0.28125−0.25) = 0.2734375.

followed by ac

low = 0.265625+0.5· (0.2734375−0.265625)+0.25· (0.2734375−0.265625)

= 0.271484375

high = 0.265625+0.5· (0.2734375−0.265625)+0.25· (0.2734375−0.265625)

+0.125·0.25· (0.2734375−0.265625)

= 0.2724609375,

ad

low = 0.271484375+(0.5+0.25+0.125) · (0.2724609375−0.271484375)

= 0.2723388672

high = 0.2724609375,

and at last anothera

low = 0.2723388672

high = 0.2723388672+0.5· (0.2724609375−0.2723388672)

= 0.2723999024.

So the resulting interval is[0.2723388672;0.2723999024).
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The next matter is the actual code. We have to specify the calculated interval. So we could simply
save the upper and lower bound, but this is rather inefficient. Knowing that the whole interval is
unique for this message, we can safely store only a single value inside the interval. The following
lemma should clarify this technique.

LEMMA 1 The codes of all messages with the same length form a partition of the interval I:=
[0,1).

This results clearly from Figure 2. A direct conclusion of the lemma is the fact that the classes
of the partition become infinitely small for infinitely long messages. There are no infinitely long
messages in practice, but there are very large messages and the corresponding small partitions
would cause problems on common computers using finite arithmetics. A solution it the rescaling
presented in section 5.

In the last example we can for instance store 0.27234 or any other value in the interval. Here we
still assume that we know when the message ends, although this is usually not the case (think of
remote data transmissions). End-of-message handling is discussed later, for now we will proceed
with a short summary on encoding:

low =0;
high=1;
do {

temp = read_symbol();
ival = model->get_interval(temp); \\ returns the interval containing temp
low = calculate_lower_bound(ival);
high = calculate_upper_bound(ival);

} while (!end_of_sequence());
return(value_in_interval(low,high));

3.4 Decoding

To decode a sequence, one somewhat have to apply the encoder backwards. The valueV :=
Code(S) is given and we have to restore the original sequenceS. We assume that the message
length is known and equalsl . In the first iteration we compareV with each intervalI ′ := [K(ak−
1),K(ak)) to find the one that containsV. It corresponds to the first symbol of the sequence,s1.
To compute the next symbol, we have to modify the probabilitypartition in the same way we did
while encoding:

low′ := low+K(ai−1) · (high− low)

high′ := low+K(ai) · (high− low) ,

wherei has to comply

low≤V ≤ high



ai is the next symbol in the encoded sequence. This time, the start case is again a special case of
the general formula. The iteration is very similar to the encoder, so from its implemention should
arise no further problems.

3.5 Decoding example

We illustrate the decoder using the same data as in the previous examples. The resulting code was
V = 0.27234 and we assume that we know the lengthl = 8. Starting withlow = 0 andhigh= 1
we see thatV lies inside the first intervall[0. . .0.5). The corresponding symbol is ana and we set

low = 0

high = 0.5

In the next iteration we see that 0,27234 lies between the boundaries

low = 0+0.5· (0.5−0) = 0.25

high = 0+0.75· (0.5−0) = 0.3125

and decode ab. The relevant boundaries are underlined. The next iteration

low = 0.25+0 · (0.3125−0.25) = 0.25

high = 0.25+0.5 · (0.3125−0.25) = 0.28125

results in ana. Since the next iterations are very similar, we skip them andtake a look at the last
iteration:

low = 0.2723388672+0 · (0.2724609375−0.2723388672) = 0.2723388672

high = 0.2723388672+0.5 · (0.2724609375−0.2723388672) = 0.2723999024

This is the finala in the sequenceabaabcda. Because of the similarities, one can use Figure 3 in
this case, too. The decoding algorithm can be summarized as follows:

seq = ’’;
low = 0;
high = 1;
do {



low’ = model->lower_bound(Value,low,high);
high’ = model->upper_bound (Value,low,high);
low = low’;
high = high’;
seq .= model->symbol_in_interval(low,high);

} while ( !end_of_sequence() );
return(seq);

We used floating point arithmetic to calculate the boundaries, but without further methods, this
results in a large number of fractional places. In particular, it is possible that infinite numbers of
fractional places appear (consider 1/3). The circumvention of this problem is covered by the next
subsection. Note that the for the implementation of those methods it makes no difference if one
works over symbols or sequences. One can see this by working with the probability distributions
of sequences (see [Say00]).

3.6 Uniqueness of representation

LetC(ai) be a code forai :

C(ai) := K(ai−1)+
1
2

PM(ai) .

C(ai) is the center of the interval ofai . One can replaceC(ai) by a shortened code of the length

l(ai) = ⌈ ld
1

PM(ai)
⌉+1 .

⌊C(ai)⌋l(ai ) is defined as the binary code forai shortened tol(ai) digits.

3.6.1 Example

Let Sbe the sequence

S= s1s2s3s4

over the alphabetA = {a1, . . . ,a4}. Let the probabilities computed by the modelM be

PM(a1) =
1
2
, PM(a2) =

1
4
, PM(a3) =

1
8
, PM(a4) =

1
8
.

The following table shows a possible binary code for this sequence. The binary representation of
C(ai) was shortened to⌈ ld 1

PM(ai)
⌉+1 which led to the respective code.



i K(ai) C(ai) binary l(ai) ⌊C(ai)⌋l(ai ) Code
1 0.5 0.25 0.0100 2 0.01 01
2 0.75 0.625 0.1010 3 0.101 101
3 0.875 0.8125 0.1101 4 0.1101 1101
4 1.0 0.9375 0.1111 4 0.1111 1111

3.6.2 Proof

We will now show that the code that was generated in the described way is unique. Beforehand
we chose the codeC(ai) to represent the symbolai . However, any other value in the interval
[K(ai−1),K(ai)) would also result in an unique code forai . To show that the code⌊C(ai)⌋l(ai ) is
unique, it is consequently enough to show that the code lies in the interval[K(ai−1),K(ai)). Since
we cut off the binary representation ofC(ai) to get⌊C(ai)⌋l(ai ), the following equation is satisfied:

⌊C(ai)⌋l(ai ) ≤C(ai).

Or in detail:

0≤C(ai)−⌊C(ai)⌋l(ai ) ≤
1

2l(ai )
. (5)

SinceC(ai) is smaller thanK(ai) by definition, it follows that

⌊C(ai)⌋l(ai ) < K(ai).

This satisfies the upper bound. The next equation deals with the lower bound⌊C(ai)⌋l(ai ) ≥
K(ai−1):

1

2l(ai )

def
=

1

2⌈ ld 1
PM (ai )

⌉+1

≤
1

2 ld 1
PM (ai )

+1

=
1

2·2 ld 1
PM (ai )

=
1

2 1
PM(ai)

=
PM(ai)

2
.

By definition ofC(ai), the following is valid:

PM(ai)

2
= C(ai)−K(ai−1)



Consequently

C(ai)−K(ai−1) ≥
1

2l(ai )
. (6)

is satisfied. The combination of (5) and (6) results in

⌊C(ai)⌋l(ai ) ≥ K(ai−1) . (7)

which implies

K(ai−1) ≤ ⌊C(ai)⌋l(ai ) < K(ai) ,

and thus

⌊C(ai)⌋l(ai ) ∈ [K(ai−1),K(ai)) .

�

Therewith it is proven that⌊C(ai)⌋l(ai ) is a non-ambiguous representation ofC(ai). To show that
it is non-ambiguously decodable, it suffices to show that it is a prefix code, since we already know
that any prefix code is non-ambiguously decodable.

Given a numbera in the interval[0,1) with binary representation of the lengthn, [a1,a2, ...,an]. It
is obvious that any other numberb with the prefix[a1,a2, ...,an] in binary representation lies in the
interval [a,a+ 1

2n ). If ai anda j are different, we know that the values⌊C(ai)⌋l(ai ) and⌊C(a j)⌋l(aj )

lie in two disjunct intervals

[K(ai−1),K(ai)), [K(a j−1),K(a j ))

If we are able to show that for any symbolai the interval

[⌊C(ai)⌋l(ai ),⌊C(ai)⌋l(ai ) +
1

2l(ai )
)

is contained in[K(ai−1),K(ai)), this implies that the code of symbolai cannot be prefix of the
code of another symbola j .

Equation (7) implies⌊C(ai)⌋l(ai ) ≥ K(ai−1). That proves the assumption for the lower bound, so
it is sufficient to show

K(ai)−⌊C(ai)⌋l(ai ) >
1

2l(ai )
.



This is obvious because of

K(ai)−⌊C(ai)⌋l(ai ) > K(ai)−C(ai)

=
PM(ai)

2

≥
1

2l(ai )
.

Therefore the code is prefix free. In particular, shorteningC(ai) to l(ai) Bits results in a non-
ambiguously decodable code. Hence we solved the problem of finite arithmetics with floating
point numbers.

3.7 Summary

We have got to know the theoretical function of arithmetic coding and have seen several exam-
ples. All this was based on floating point arithmetic with infinite precision. We showed that it
is actually possible to use this in implementations, but using integers usually results in faster and
easier implementations. In the following we show how to use integer arithmetic, which raises new
problems with respect to finite arithmetics. The output won’t be a real number as in this chapter,
instead we will use a sequence of bits. This sequence will have to be terminated properly.



4 Encoding as sequence of bits

4.1 Motivation

To implement arithmetic coding efficiently, we have to make restrictions: There are no (infinite)
real numbers, and pure integer implementations are way faster on simple processors as found in
fax machines (which actually use arithmetic coding in the G3protocol).

This chapter covers an implementation with very low memory consumption (only one register for
the boundaries, using 32 bits in the examples) and only a few simple integer instructions. The
output is a non-ambiguous sequence of bits that can be storedor send on the fly.

4.2 Abstracting from the model

One cannot express probabilities in fractions of 1 using integers. Since probabilities equal the
frequencies of symbol occurrences in simple models, one cannormalize them to the number of
symbols. The lower bound is the sum of frequencies of all lower symbols (in canonical order), the
upper bound is this sum plus the frequency of the current symbol:

low count =
symbol−1

∑
i=0

CumCount[i] ,

high count = low count+CumCount[symbol] ,

whereCumCount contains the cumulative frequency counts. This resembles the probabilities of
the previous section in so far as one does not divide by the total count before adding up. This
results in the following equations:

low count = low · total ,

high count = high· total ,

wheretotal represents the total count.

4.3 Encoding

The encoder consists of a function and static variables thatstore the current state8:

• mLow9 stores the current lower bound. It is initialized with0.

• mHigh stores the current upper bound. It is initialized with0x7FFFFFFF , the maximum value
that fits in 31 bits.

• mStep stores a step size that is introduced later. It is not necessarily static in the encoder,
but the decoder depends on this property.

8This implementation follows [WBM94].
9The prefix m denotes static variables. This resembles membervariables in object oriented programming.



Note that one can use only 31 of 32 bits to prevent overflows. Wewill go into this later. The
function declaration looks as follows:

void Encoder( unsigned int low_count,
unsigned int high_count,
unsigned int total );

The cumulative probabilities (which are calculated by the model) of the current symbolai and the
next lower symbolai−1 are passed to the encoder. The encoder computes the new upperand lower
bounds from these. At first, the interval frommLowto mHigh is divided intototal steps, resulting
in a step size of

mStep = ( mHigh - mLow + 1 ) / total;

One has to add 1 to the difference ofmHigh and mLow sincemHigh represents the open upper
bound. Therefore the interval is larger by 1. An analogy in the common decimal system would be
an interval from 0 to 99.9̄ where the upper bound is stored as 99. The fractional placesmake the
interval larger by 1 compared to 99−0 = 99.

This is also the reason for the limitation to 31 bits:mHigh is initialized with the maximum pos-
sible value. If one would choose 32 bit, then the additionmHigh - mLow + 1 would result in an
overflow, which might lead to an exception in the best case or even to sporadic encoding errors,
which would result in file corruption.

However the upper bound is now updated to

mHigh = mLow + mStep * high_count - 1;

and the lower bound to

mLow = mLow + mStep * low_count;

Both calculations rely on the previous value ofmLow, therefore overwriting it has to be the last
step. Since we are dealing with an open interval, we have to decreasemHigh by one to reflect this.

4.4 Example: encoding

This time we handle the same input sequence as in all previousexamples (see 2.2), but limit
ourselves to the first two symbols,ab. The model specifies the following data:

At first we initialize the encoder:

mBuffer = 0;
mLow = 0;
mHigh = 0x7FFFFFFF;

Then we encode the symbols of the sequence. Note that the model is static, sototal stays
constant.



symbol frequency low_count high_count
a 4 0 4
b 2 4 6
c 1 6 7
d 1 7 8

Table 2: Model for the example 2.2

1. ’a’

mStep = ( mHigh - mLow + 1 ) / total;
= ( 0x7FFFFFFF - 0 + 1) / 8
= 0x80000000 / 8
= 0x10000000

mHigh = mLow + mStep * high_count - 1;
= 0 + 0x10000000 * 4 - 1
= 0x40000000 - 1
= 0x3FFFFFFF

mLow = mLow + mStep * low_count;
= 0 + 0x10000000 * 0
= 0

2. ’b’

mStep = ( mHigh - mLow + 1 ) / total;
= ( 0x3FFFFFFF - 0 + 1 ) / 8
= 0x40000000 / 8
= 0x08000000

mHigh = mLow + mStep * high_count - 1;
= 0 + 0x08000000 * 6 - 1
= 0x30000000 - 1
= 0x2FFFFFFF

mLow = mLow + mStep * low_count;
= 0 + 0x08000000 * 4
= 0x20000000

After these two symbols we can store any value in the intervalfrom 0x20000000 to 0x2FFFFFFF .

4.5 Decoding

The task of the decoder is to follow the steps of the encoder one by one. Hence we have to deter-
mine the first symbol and update the bounds accordingly. Thisdivides the decoder functionality
into two functions:



unsigned int Decode_Target( unsigned int total );
void Decode( unsigned int low_count, unsigned int high_cou nt );

Decode_Target() determines the interval that contains the symbol. This is accomplished by
calculating the code value of the symbol:

mStep = ( mHigh - mLow + 1 ) / total;
value = ( mBuffer - mLow ) / mStep;

mBuffer is the variable that contains the encoded sequence. The model can use the return value to
determine the encoded symbol by comparing it to the cumulative count intervals. As soon as the
proper interval is found, the boundaries can be updated likethey were during encoding:

mHigh = mLow + mStep * high_count - 1;
mLow = mLow + mStep * low_count;

Note thatmStep is reused. That is why it was declared statically in the first place.

4.6 Example: decoder

Now we decode the sequence of bits that was generated in the encoding example 4.4. Let0x28000000
be the value that was stored by the encoder. We initialize thedecoder using the following values:

mBuffer = 0x28000000;
mLow = 0;
mHigh = 0x7FFFFFFF;

1. ’a’ At first we calculate a value compatible to the model using Decode_Target() :

mStep = ( mHigh - mLow + 1 ) / total;
= ( 0x7FFFFFFF - 0 + 1 ) / 8
= 0x80000000 / 8
= 0x10000000

value = ( mBuffer - mLow ) / mStep;
= ( 0x28000000 - 0 ) / 0x10000000
= 0x28000000 / 0x10000000
= 2

This 2 is now compared to Table 2 which represents the model. It’s found in the interval
[0,4), therefore the encoded symbol is ana. We update the bounds usingDecode() :

mHigh = mLow + mStep * high_count - 1;
= 0 + 0x10000000 * 4 - 1
= 0x40000000 - 1



= 0x3FFFFFFF

mLow = mLow + mStep * low_count;
= 0 + 0x10000000 * 0
= 0

2. ’b’

Decode_Target():

mStep = ( mHigh - mLow + 1 ) / total;
= ( 0x3FFFFFFF - 0 + 1 ) / 8
= 0x40000000 / 8
= 0x08000000

value = ( mBuffer - mLow ) / mStep;
= ( 0x28000000 - 0 ) / 0x08000000
= 0x28000000 / 0x08000000
= 5

Decode():

mHigh = mLow + mStep * high_count - 1;
= 0 + 0x08000000 * 6 - 1
= 0x30000000 - 1
= 0x2FFFFFFF

mLow = mLow + mStep * low_count;
= 0 + 0x08000000 * 4
= 0x20000000

This 5 is located in the interval corresponding tob. Now we have decoded the sequenceab
successfully.



5 Scaling in limited ranges

5.1 Motivation

When we use the presented methods to encode several symbols,a new problem arises:mLowand
mHigh converge more and more and so further encoding will be impossible as soon as the two
values coincide. However, there is a simple solution based on the following observation:

5.2 E1 and E2 scaling

As soon asmLow and mHigh lie in the same half of the range of numbers (in this case< or ≥
0x40000000 ), it is guaranteed that they will never leave this range again since the following sym-
bols will shrink the interval. Therefore the information about the half is irrelevant for the following
steps and we can already store it and remove it from consideration.

Given the presented implementation, the most significant bits (MSB) ofmLowandmHigh are equal
in this case. 0 corresponds to the lower half while 1 represents the upper. As soon as the MSBs
match, we can store them in the output sequence and shift themout. This is calledE1- respective
E2-scaling:

while( ( mHigh < g_Half ) || ( mLow >= g_Half ) ) {
if( mHigh < g_Half ) // E1
{

SetBit( 0 );
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;

}
else if(mLow >= g_Half ) // E2
{

SetBit( 1 );
mLow = 2 * ( mLow - g_Half );
mHigh = 2 * ( mHigh - g_Half ) + 1;

}
}

g_Half is the global constant0x40000000 that marks the center of the range. The multiplication
by 2 enlarges the interval. The addition of 1 fixes the upper bound as we deal with an open interval.
It is equivalent to the more intuitive solution: Whenever a calculation involves an open bound, add
1 before and subtract 1 after it. Adding 1 after the multiplication by 2 produces the same result.

SetBit() adds a bit to the output sequence. The complementary function in the decoder is called
GetBit() . Both functions work sequentially, one can interpret them as FIFO queue. Seeking in
the encoded sequence is neither possible nor required, because the algorithm itself works sequen-
tially, too.



5.3 E3 scaling

Though E1 and E2 scaling are a step in the right direction, they are not sufficient on their own.
They won’t work whenmLowandmHigh converge to the center of the interval: Both stay in their
halves, but the interval soon becomes too small. The extremecase would be a value of0x3FFFFFFF
for mLowand0x40000000 for mHigh . They differ in every bit (apart from the one reserved for
overflows), but further encoding is impossible.

This is where E3 scaling comes into play: As soon asmLowleaves the lowest quarter (maximum
value of the first quarter:g_FirstQuarter ) andmHigh the highest (fourth) quarter (maximum
value of the third quarter:g_ThirdQuarter ), the total range is less than half of the original range
and it is guaranteed that this won’t change because of the ongoing shrinking. It is not immediately
determinable which half will contain the result, but as soonas the next E1 or E2 scaling is possible,
one knows the values that one could have stored earlier if onewere able to foresee this. This might
sound strange, but it’s the way E3 scaling works: One enlarges the interval just as one did with E1
or E2 scaling, but instead of storing a bit in the output sequence, one remembers that one did a E3
scaling using the helper variablemScale :

while( ( g_FirstQuarter <= mLow ) && ( mHigh < g_ThirdQuarter )) {
mScale++;
mLow = 2 * ( mLow - g_FirstQuarter );
mHigh = 2 * ( mHigh - g_FirstQuarter ) + 1;

}

On the next E1 or E2 scaling, one adds the correct bit for each E3 scaling to the output sequence.
Using E3 scaling followed by E1 scaling means that the interval would have fit into the range
betweeng_FirstQuarter andg_Half . This is equivalent to an E1 scaling followed by an E2
scaling.10 The sequence E3-E2 can be interpreted analogous, the same goes for iterated E3 scal-
ings. Hence one has to store E3 scalings after the next E1/E2 scaling, using the inverse bit of that
scaling:

while( ( mHigh < g_Half ) || ( mLow >= g_Half ) ) {
if( mHigh < g_Half ) // E1
{

SetBit( 0 );
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;

// E3
for(; mScale > 0; mScale-- )
SetBit( 1 );

}
else if(mLow >= g_Half ) // E2
{

SetBit( 1 );
mLow = 2 * ( mLow - g_Half );
mHigh = 2 * ( mHigh - g_Half ) + 1;

10We prove this on page 30.



// E3
for(; mScale > 0; mScale-- )
SetBit( 0 );

}
}

This coherence is illustrated by the figures 4 and 5 on page 32.Let A be the alphabetA :=
{a,b,c,d,e} using uniformly distributed probabilities. Figure 4 showsac as the first symbol. The
corresponding interval is[0.4,0.6) that covers the second and third quarter. Therefore we can
apply E3 scaling and the resulting interval covers the second and third quarter again. After the
next E3 scaling, the interval covers more than two quarters,so we have to proceed with the next
symbolb. The resulting interval is[0.375,0.5) which is contained completely in the lower half.
The E1 scaling stores a 0 in the output sequence, followed by two 1 bits for the E3 scalings.

Figure 5 illustrates why storing 011 was correct. Starting with the intervall[0,1), we apply E1
and E2 scalings according to the stored bits, meaning one E1 and two E2 scalings. The resulting
interval is the same as in 4 which shows the result of two E3 scalings followed by one E1 scaling.

This is valid in general. Letf andg be two functions andg◦ f the consecutive application off
andg. Then we can express the method as follows:

LEMMA 2 Applied to any sequence, the following equations are valid:
E1◦ (E3)n = (E2)n◦E1,
E2◦ (E3)n = (E1)n◦E2.

Proof:
Let a := low, b := high andI := [0,1) be the interval we are working with. The scaling functions
can be expressed as follows:

E1

(

a
b

)

=

(

2a
2b

)

E2

(

a
b

)

=

(

2a−1
2b−1

)

E3

(

a
b

)

=

(

2a− 1
2

2b− 1
2

)

Thenth iteration results in

E1n
(

a
b

)

=

(

2na
2nb

)

E2n
(

a
b

)

=

(

2na−2n +1
2nb−2n +1

)

E3n
(

a
b

)

=

(

2na−2n−1+ 1
2

2nb−2n−1+ 1
2

)



The proof by induction can be done by the reader with little effort. This results in the following
equation:

(E1◦ (E3)n)

(

a
b

)

= E1

(

2na−2n−1 + 1
2

2nb−2n−1 + 1
2

)

=

(

2n+1a−2n +1
2n+1b−2n +1

)

(8)

((E2)n◦E1)

(

a
b

)

= (E2)n
(

2a
2b

)

=

(

2n+1a−2n +1
2n+1b−2n +1

)

(9)

Equating (8) and (9) implies:

E1◦ (E3)n = (E2)n ◦E1

The second identity can be proven in an analogous way. �

5.4 Example encoding

We encode the input sequenceabccedac over A = a,b,c,d,e for further illustration of the E3
scaling. The model has to be adjusted according to the Table 3on page 31. The example is
presented in Table 4 to improve readability. The first columncontains the symbol that should be
encoded next. The following three columns show the parameters that are passed toEncode() .
They are followed by the computed boundsmLowandmHigh . The next columns contain E1 and
E2 scalings together with the resulting output bits. Underlined bits represent bits of E3 scalings.
The next columns show further E3 scalings and the updated bounds, followed by the required bits
to chose a value inside these bounds.

This example is limited to 7 bit integers. This is sufficient for our sequence and far easier to read
than 31 bit.

symbol frequency low_count high_count
a 2 0 2
b 1 2 3
c 3 3 6
d 1 6 7
e 1 7 8

Table 3: Model for the example of scaling functions
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Figure 4: Application of E3 scaling
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Figure 5: For comparison - without E3 scaling



Sym l c h c t mStep mLow mHigh Bits E1/2-mLow E1/2-mHigh mScale E3-mLow E3-mHigh
a 0 2 8 16 0000000[0] 0011111[31] 00 0000000[0] 1111111[127] 0
b 2 3 8 16 0100000[32] 0101111[47] 010 0000000[0] 1111111[127] 0
c 3 6 8 16 0110000[48] 1011111[95] 1 0100000[32] 1111111[127]
c 3 6 8 12 1000100[68] 1100111[103] 10 0
e 7 8 8 9 1001111[71] 1001111[79] 100 0111000[56] 1111111[127] 0
d 6 7 8 9 1101110[110] 1110110[118] 11 0111000[56] 1011011[91] 1 0110000[48] 1110111[119]
a 0 2 8 9 0110000[48] 1000001[65] 3 0000000[0] 1000111[71]
c 3 6 8 9 0011011[27] 0110101[53] 0111 0110110[54] 1101011[107] 0

rest 1

Table 4: Example of scaling functions in the encoder

Sym current symbol
l c low count, lower bound of the cumulative frequency of the symbol
h c high count, upper bound of the cumulative frequency of the symbol
t total, total frequency count
mStep step size
mLow lower bound of the new interval
mHigh upper bound of the new interval
Bits Bits that are stored and removed by E1/E2 scalings
E1/2-mLow lower bound after E1/E2 scaling
E1/2-mHigh upper bound after E1/E2 scaling
mScale sum of the new and the remaining E3 scalings
E3-mLow lower bound after E3 scaling
E3-mHigh upper bound after E3 scaling

Table 5: Explanation of columns



5.5 Decoding

Since the decoder follows the steps of the encoder, the scalings work the same. However, note that
one has to update the buffermBuffer , too. This works the same way the bounds are updated, one
just does not generate the subsequent bits but rather take them from the encoded sequence.

// E1 scaling
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;
mBuffer = 2 * mBuffer + GetBit();

// E2 scaling
mLow = 2 * ( mLow - g_Half );
mHigh = 2 * ( mHigh - g_Half ) + 1;
mBuffer = 2 * ( mBuffer - g_Half ) + GetBit();

// E3 scaling
mLow = 2 * ( mLow - g_FirstQuarter );
mHigh = 2 * ( mHigh - g_FirstQuarter ) + 1;
mBuffer = 2 * ( mBuffer - g_FirstQuarter ) + GetBit();

5.6 Example decoder

In the next example we decode the sequence that has been encoded in the last one. The input for
the decoder is00010101001101111 . The first 7 bits of this sequence are loaded intomBuffer .
The next bits are omitted in the table to improve readability. Note that even on E3 scalings the
buffer is updated although no bits would be sent in the encoder at this stage. We had to cut off
some column names: St ismStep , Sy is Sym and Sc ismScale .



St mBuffer l c h c Sy mLow mHigh Bits E1/2-mLow E1/2-mHigh Sc E3-mLow E3-mHigh
16 0001010[10] 0 2 a 0000000[0] 0011111[31] 00 0000000[0] 1111111[127] 0
16 0101010[42] 2 3 b 0100000[32] 0101111[47] 010 0000000[0] 1111111[127] 0
16 1010011[83] 3 6 c 0110000[48] 1011111[95] 1 0100000[32] 1111111[127]
12 0100110[38] 3 6 c 1000100[68] 1100111[103] 10 0
9 1001101[77] 7 8 e 1001111[71] 1001111[79] 100 0111000[56] 1111111[127] 0
9 1101111[111] 6 7 d 1101110[110] 1110110[118] 11 0111000[56] 1011011[91] 1 0110000[48] 1110111[119]
9 1110000[112] 0 2 a 0110000[48] 1000001[65] 3 0000000[0] 1000111[71]
9 1000000[64] 3 6 c 0011011[27] 0110101[53] 0111 0110110[54] 1101011[107] 0

Table 6: Example of scaling functions in the decoder



6 Ranges

6.1 Interval size

Since all necessary methods have been presented by now, it should be clear that the valuesmLow
andmHigh can fall into two ranges when one iteration by the encoder or decoder is finished:

• mLow< FirstQuarter< Hal f ≤ mHigh,

• mLow< Hal f < ThirdQuarter≤ mHigh.

This interval contains at least one complete quarter. More is possible but not guaranteed.

The calculation ofmStep involves a division of the interval size bytotal . If total is larger than
the interval, this integer division results in 0. The algorithm cannot proceed with this value, so the
model has to assure thattotal stays always below the minimum guaranteed size of the interval,
in our case one quarter of the base range. Since we use 31 bits in the examples, a quarter equals to
29 bits, sufficing for models with less than 229 symbols (=512 Mbyte at 1 byte/symbol).

6.2 Alternative calculation

Literature11 sometimes mentions another method to calculate the bounds.In our algorithm the
step size is computed first, followed by a multiplication with the cumulative frequency counts of
the model. Sometimes this might result in quite large unusedintervals:

Let the interval be of the size 7 and the model returns a value of 4 for total . Then the step size
calculation results in7 / 4 = 1 because of the integer arithmetic. This way the upper bound
mHigh will not equal the previous upper bound when the last symbol is encoded (high_count
equals 4). Instead it is cut down to 4, hence almost one half ofthe interval remains unused. To
circumvent this limitation one can exchange the order of arithmetic operations:

range = mHigh - mLow + 1;
mHigh = mLow + ( high_count * range ) / total;
mLow = mLow + ( low_count * range ) / total;

Using this method results inmHigh (4∗ 7)/4 = 28/4 = 7, so one can use the whole interval.
However, the new order provokes overflows due to the multiplication. Let the range be[0,15) (4
bits). The alternative method would result in 4∗7≡ 12 (mod16) 12, an unusable value for further
calculations. Using our method results in 7/4≡ 1 (mod16) respective 1∗4≡ 4 (mod16) which
is the expected value. To run the encoder on 32 bit registers,one has to limit the width of the
factors:⌈ld(a∗b+1)⌉ ≤ ⌈ld(a+1)⌉+ ⌈ld(b+1)⌉.

Sincetotal must not be larger than the minimal interval available (a quarter of the base interval),
it follows that

11See [BCW90], chapter 5.2.5, page 118.
124∗7 = 0100∗0111= 0010∗1110= 0001∗1100= 1100= 12



ld(total)
!
≤ ld(range)−2 ,

ld(total)+ ld(range)
!
≤ ld(register) .

This means in practice that one is limited to 17 bits respectively 15 bits fortotal . Because of the
lower precision and the additional division, this alternative method is usually less efficient than the
method presented here.



7 Summary of encoder and decoder implementation

En- and decoder can be pooled in one class. The only public methods are those required by users
of the en-/decoder, i.e.Encode , internal functions likeGetBit can be private. Static variables can
be implemented as member variables.

7.1 Encoder

The encoder can be implemented with the following interface:

void Encode( const unsigned int low_count,
const unsigned int high_count,
const unsigned int total );

void EncodeFinish();

EncodeFinish() terminates the code correctly. At first it has to be ensured that the following bits
determine a value inside the final interval. Since we know that the interval always contains at least
one quarter, we can simply use the lower bound of that quarter. There are two cases:

1. second quarter

mLow< FirstQuarter< Hal f ≤ mHigh.

It is sufficient to store a 0 followed by a 1. That means that we select the lower half first,
followed by the upper. Since the decoder adds 0s to the input stream automatically at the end
of the stored file, this marks the lower bound of the second quarter. If there is an unhandled
E3 scaling, one also has to addmScale 1 bits. One can combine this with the last 1 to a loop
overmScale+1 bits.

2. third quarter

mLow< Hal f < ThirdQuarter≤ mHigh.

The second case is a bit easier to encode: One would have to write a 1 followed bymScale+1
0 bits, but because these are added automatically, terminating with a 1 is sufficient. There-
fore no loop is required.

if( mLow < g_FirstQuarter ) // mLow < FirstQuarter < Half <= mH igh
{

SetBit( 0 );

for( int i=0; i<mScale+1; i++ ) // 1 + e3 scaling
SetBit(1);

}
else // mLow < Half < ThirdQuarter <= mHigh
{

SetBit( 1 ); // decoder adds zeros automatically
}



7.2 Decoding

The decoder consists of the following three methods:

void DecodeStart();

unsigned int DecodeTarget( const unsigned int total );

void Decode( const unsigned int low_count,
const unsigned int high_count );

DecodeStart() initializes the buffer by reading the first bits of the encoded input sequence.

for( int i=0; i<31; i++ ) // only use the last 31 bits
mBuffer = ( mBuffer << 1 ) | GetBit();

There are no further functions needed and the presentation of encoding and decoding is finished.

We showed that overflows in integer arithmetics can be circumvented using E1, E2 and E3 scaling.
A positive side effect is that one can send already the storedbits in sequential data transmissions
like remote data transfer. Since the decoder takes only takes into account the bits found in the
buffer, it can start decoding as soon as 31 bits are received.Note that errors in the encoded stream
corrupt the whole transmission. One has to split the messageor add more redundancy to get a
robust implementation.

7.3 Termination of the decoding process

Since the bit sequence does not imply an end of the encoded message, one has to add additional
information.

The simplest way is to add a file header that contains the length of the file. A disadvantage is
that one can only encode files of a fixed length or one has to haverandom access on the output
file. Both is not available for example in fax machines that use special end symbols instead. This
symbol is encoded using theminimalprobability and must not appear in the regular data stream.
The decoder terminates as soon as this symbol is read.

The following chapter provides a closer look to the efficiency of arithmetic coding and gives a
comparison with Huffman coding.



8 Efficiency

8.1 Looking at the efficiency

In chapter 3.6 we demonstrated, that a sequencex cannot be stored using less thanl(x) space
without any loss. From that we can derive theaveragelength of an Arithmetic Code for a sequence
S(m) of lengthm:

lA(m) = ∑
x

PM(x) l(x) (10)

= ∑
x

PM(x)

[

⌈ ld
1

PM(x)
⌉+1

]

(11)

≤ ∑
x

PM(x)

[

ld
1

PM(x)
+1+1

]

(12)

= −∑
x

PM(x) ld PM(x)+2∑
x

PM(x) (13)

= HM(S(m))+2. (14)

And since we already know that the average length is always greater or equal to the entropy, it
turns out that

HM(S(m)) ≤ lA(m) ≤ HM(S(m))+2. (15)

The average length per symbollA, also known ascompression ratioof the Arithmetic Code, is

lA =
l
A(m)

m . So we get the following bounds forlA:

HM(S(m))

m
≤ lA ≤

HM(S(m))

m
+

2
m

. (16)

Also we know that the entropy of the sequence is nothing but the length of the sequence times the
average entropy of every symbol:13

HM(S(m)) = m·HM(x) (17)

For the bounds forlA this means

HM(x) ≤ lA ≤ HM(x)+
2
m

. (18)

By examining this comparison one can easily see that he compression ratiolA is guaranteed to
come close to the entropy, which itself is just determined bythe modelM. This is the desired
effect.

8.2 Comparison to Huffman Coding

After having pointed out the efficiency of Arithmetic Codingin the last subsection, we now want
to compare this efficiency to the one of the well known HuffmanCode. Let us recall example
3.6.1. The average length of the code can be calculated as

l = 0,5·2+0,25·3+0,125·4+0,125·4

= 2,75 [bits/symbol] .

13Proof in [Say00] p.50



But the entropy of this sequence is rather:

HM(x) =
4

∑
i=1

P(ai) ld
1

PM(ai)

HM(x) = −

(

4

∑
i=1

P(ai) ld PM(ai)

)

= −

(

1
4
· ld

1
2

+
1
4
· ld

1
4

+
1
4
· ld

1
8

+
1
4
· ld

1
8

)

= −

(

1
4
· (−1)+

1
4
· (−2)+

1
4
· (−3)+

1
4
· (−3)

)

= 2,25.

So it turns out that the length of the code thesymbolwiseArithmetic Coding produces is here
not very close to the entropy. And even worse: If one encoded thissequence using Huffman
Coding, one would achieve the entropy completely. Why is that? That is simply due to the fact
that Huffman Coding isideal if and only if one can assign whole bits for the single probabilities
(because the constraint of Huffman Coding is that it cannot use fraction of bits). And this is here
obviously the case because because all probabilities are (negative) powers of 2. However, exactly
this is almost never the case in practical use - but unfortunately does not prevent many people
from using such arguments as justification for Huffman.14 Apart from that, Arithmetic Coding is
not even worse is such cases. However, obviously it cannot perform any better either, because the
lower bound is already achieved by Huffman. Another common assumption in comparisons of
efficiency is that the sequence of symbols is independent from its context. Also this will actually
never be the case for real life data sources. However, use of this assumption leads to much easier
equations, which fortunately are not too far from reality again. Equation (17) for instance uses
this precondition. Now one can easily see that instead of using the comparison (18) one could
also work with (16). However, the latter is just unnecessarily complicated and differs just by
an unimportant factor. One can proof that the efficiency of the Huffman Code is constraint as
follows15:

HM(S) ≤ lS≤ HM(S)+1 . (19)

ForExtended Huffman, which is a special version of Huffman Coding, mergingb symbols together
to longer, single symbols, the efficiency rises to

HM(S) ≤ lS≤ HM(S)+
1
b

. (20)

This is obviously more efficient for non-utopian sequences (∃x∈S: P(x) 6= 2n ∀n∈N). If one now
considersbapproachingmand compares this with equation (18), one could come to the conclusion
that Huffman Coding here has an advantage over Arithmetic Coding, although this benefit shrinks
with raising lengthm of the sequence. However, this property is in real life not valid because one
must take with into account thatb cannot be chosen arbitrarily big. Let us consider working over
an alphabet of lengthk and to groupb symbols together then we get a codebook size ofkb. For
plausible values ofk = 16 andb= 20 this already leads to the value 1620, which is way too big for
every known RAM at the current time. Sob is constrained by simple physics, while the length of
the sequencem increases more and more. So in a practical view, Arithmetic Coding has also here
its advantages.

14See also [Say00] ch. 4.5.
15Also see [Say00] ch. 3.2.3.



Another probable benefit of Arithmetic Coding depends on thedata source. One can show that
Huffman Coding never overcomes a compression ratio of(0,086+Pmax) ·HM(S) for an arbitrary
sequenceS with Pmax being the largest of all occurring symbol probabilities16. Obviously, for
large alphabets it will turn out that one achieves a relatively small value forPmax, leading to better
results for the Huffman Code. This gives indeed a good justification for such a code on large
alphabets. Compared to that, for small alphabets, which oppositely lead to bigger probabilities,
Arithmetic Coding can win the race again. Applications using such small alphabet are for instance
the compression standardsG3andG4, which are used for fax transmission. Here we have a binary
alphabet (containing two symbols, one for black and one for white) and the probability for a white
pixel is usually very high. This leads to a value forPmax of nearly 1, which disqualifies Huffman
Coding and gives us Arithmetic Coding as first choice.

Considering practical results [Can], it turns out that Arithmetic Coding is a small step ahead for
most of the real life data sources. That is due to the fact thatHuffman Coding is really just optimal
for the almost utopian case that all symbol probabilities are powers of two because in this case the
Huffman tree has minimal depth. However, since this is almost never the case, the Huffman Coder
is usually forced to assign whole numbers of bits for symbolswhere an Arithmetic Coder could
assign fractions of bits at the same time.

Another benefit of Arithmetic Coding, which we will not investigate any further in this paper, is
that it can be adapted to work with various probability models. As we saw in previous chapters,
one has just to attach an appropriate optimized model for every data source. The basic coding /
decoding algorithm remains unchanged, so that implementation of multiple codecs is relatively
straightforward. This is especially an advantage if one considersadaptivemodels, which require
complex changes of the tree structure using the Huffman algorithm.

We will now explain such adaptive models in further detail, because compared to the previously
used static models, they are usually much more powerful.

16[Say00] p.37f



9 Alternative models

In previous chapters we used the cumulative function

K(ak) =
k

∑
i=1

PM(ai)

to code the symbolak, being thek-th symbol of the alphabetA. In reality, the probabilitiesPM(ai),
(i = 1, . . . , |A|) are therefore retrieved from the modelM 17. However, until now, we have withheld
if this model is capable of determining the probability of a symbol ak in a sequenceSat all. And
if it is, how does it work? We will now try to answer these questions.

First of all, we want to note that the entropyHM(S) is depended on the modelM by definition.
Therefore, regardless how good or bad our model is, the Arithmetic Coder always achieves the
best possible result (neglecting some few bits of overhead). However this lower bound

(

recall
equation (18)

)

can still be lowered further using appropriate models.

9.1 Order-n models

Hitherto we considered all symbols as being independent in astochastic sense. However, it is
actually quite common that probabilities change dependenton the current context. In German
texts for example the average probability of the letter ’u’ is approximately 4.35%. But if one
considers the predecessor being a ’q’, the probability for seeing a ’u’ increases to almost 100%.

Models which take the context of a symbol with into account are called ORDER-N MODELS,
whereN stands for the size of the context. So for example an Order-3 model will always return
the probability in relation to the last 3 symbols seen so far.

9.2 Adaptive Models

Most implementations are developed for variousdifferentdata sources. This means that usually the
exact probability distribution of the data source is unknown. Also it might not always be possible
to simply count the occurring symbols. Just consider a fax transmission: The transmission shall
already begin when the first page becomes read and the rest of the document(s) and its symbol
probabilities are still unknown. So the only useful thing one can do is performing an estimation.

And now it seems obvious that this estimation must beadaptedto probabilities of the symbols
which have already been read by the current position. That iswhy in this case we speak of an
adaptive model. Let us have a look at the following example:

9.2.1 Example

As an easy demonstration we choose anadaptive order-0 model, whereorder-0 means that our
model always considers the probability of just the symbol, without any context.

To achieve that, it is sufficient enough to define an arrayK at the beginning, which has the size of
the cardinality of the alphabetΣ. All array values become initialized with the value 0. Now, before

17Depending on the implementation, the model may also pass theboundK(ak) directly.



s K[a] K[b] K[c] K[d] z P(z)
M (a) P(z)

M (b) P(z)
M (c) P(z)

M (d)

a 1 0 0 0 1 1 0 0 0
b 1 1 0 0 2 1/2 1/2 0 0
a 2 1 0 0 3 2/3 1/3 0 0
d 2 1 0 1 4 1/2 1/4 0 1/4

Table 7: Function of an adaptive order-0 model

each coding step, a symbols is passed from the input stream to the model and this increments the
appropriate array entry as well as the absolute symbol counter z. Afterwards the probabilities are
redistributed using the assignment

P(z)
M (s) =

K[s]
z

.

Let us for example consider the following alphabet

A = a,b,c,d

and encode the sequenceabad. Table 7 gives the calculation results for this model. It turns out
that the probability values which are assigned after the last symbol was read are equal to thereal
probabilities of the symbols. So it is obvious that the calculated probabilities come pretty close to
the real ones for long sequences.

Since the initialization is known in advance and every assignment is done step by step after reading
each symbol, the decoder can retrace these steps without anyproblems. It just updates the model
in the very same way. This leads to the advantage that no updated probabilities must be sent over
the data stream. They can just be generated from the data which the decoder receives anyway.

9.3 Additional models

For some applications, such as mixed files which consist of very distinct data partitions with
different probability distributions, it might be useful todetect rapid changes of the probability
distribution and - once such a jump is detected - to reinitialize the arrayK of the model e.g. with
a uniform distribution. This usually leads to a better compression for the following part of the
sequence because the model can adapt much faster.

Obviously one can imagine a lot of different additional models which might be better for appropri-
ate data sources. However, we will not go any further into this theme because the implementation
of the models is actually independent from the mechanism of Arithmetic Coding and there is
already a lot of literature around about stochastic modeling. [Dat] might give some useful hints.



10 Conclusion

After all these consideration, let us now recap and check if we have achieved what we promised in
the beginning. With Arithmetic Coding, we have described a coding method, which is suitable for
data compression. This was proven by showing that the requirements of a bijective encoding are
met. Implementation can nowadays employ integer as well as floating point arithmetics. We have
seen, that Arithmetic Coding can work sequentially, encoding symbol per symbol and thus is able
to send already encoded parts of a message before it is fully known. This property is exploited
when applying the three scaling functions, which enlarge the working interval in such a way that
overflows do not occur and even finite arithmetics suffice. Also we showed up the bounds of the
efficiency of general encoding and noted, that the average code length for any symbol of an input
sequence approaches closer and closer to the model-dependent entropy with raising length of the
input sequence. We also demonstrated in what cases Arithmetic Coding is especially efficient and
in what cases it is only as efficient as Huffman Coding. We noted that the compression ratio that
can be reached by any encoder under a given model is actually bounded by the quality of that
model. Here we also realized another advantage of Arithmetic Coding, since it allows the easy
exchange of statistical models, that might be optimized forcertain input data.

We conclude that we have achieved our goal. In the end of this paper we now want to share some
thoughts about fields of improvement and applied techniques.

10.1 Remember: Compression has its bounds

Although Arithmetic Coding has been established and optimized over the past 10 to 20 years,
every now and then a new variation appears. Interested readers might want to observe the news-
groupcomp.compressionfor new techniques and further insights. However, beware: Sometimes
people claim having invented an outstanding algorithm thatperforms several times better than any-
thing seen before. Frequently they are exaggerating, sometimes simply ignoring that Arithmetic
Codingis aboutlosslesscoding. We know for sure that the Shannon theorem [WS49] guaran-
tees that compression below the entropy of the source is impossible. One can remove as much
redundancy from one’s data as one likes, but entropy is proven to be a hard limit.

10.2 Methods of Optimization

However one can optimize one’s algorithms in at least two dimensions: memory usage and speed.

10.2.1 Memory Usage

Arithmetic Coding is almost optimal in terms of memory usage. It uses only a constant amount of
memory for simple models (elaborate models might take some more, but usually less than linear).
Furthermore it generates a code that cannot be compressed any further. Note that this code depends
on the model:H(S) ≤ HM(S) ≤ |Code(S)|. We have to differentiate between the natural entropy
of the source sequence,H(S), which represents the mathematical lower bound, and the bound that
is set by our model,HM(S). Arithmetic CodingreachesHM(S), but that might be far from perfect
if one’s model is incapable of representing the input data very well.

Since input data is not predictable in a general way, one willhave to find a model that works for



one specific application context. Arithmetic Coding allowsa modular design so that the coder can
interact with different models, even switching between them while coding. Quite a lot of models
have been developed, one of the most popular model families is PPM (Prediction with partial
match). They are quite efficient due to varying context length, but most of the advanced ones lack
a sound mathematical background. Visit [Dat] for further information.

10.2.2 Speed

The speed of Arithmetic Coding coders has been improved overthe years. Integer implementations
are common, but with improving floating point power of modernCPUs this way might become an
alternative. We showed in 3.6 that an implementation based on floating point arithmetic is possible.
A very efficient integer implementation is theRange Coder[Mar79], [Cam99]. It performs scaling
byte-wise, thus eliminating large parts of the bit-fiddlingwhich is a major performance problem on
current CPUs. Speed improvements up to 50% are reported whereas the code size increases only
by 0.01%. These numbers have to be seen with caution since they only reflect the performance
of the coder, not of the model. However, the bottleneck of todays implementations of Arithmetic
Coding is almost always the model. As usual one can get an overview about all this on [Dat].

As one can see, the most interesting research fields in the context of Arithmetic Coding are the
models. Code size, memory usage and speed depends mainly on them whereas a well implemented
coder can be seen as a minor task, especially since Arithmetic Codingitself is documented very
well.



A A reference implementation in C++

also available at:http://ac.bodden.de

This implementation should present the whole algorithm in anon-ambiguous way to answer any
open questions regarding implementation details. We use a simple adaptive order 0 model as
describes in chapter 9.2. Therefore the compression ratio is quite low, but one can exchange the
model anytime, just derive a new one from the base classModelI .

A.1 Arithmetic Coder (Header)

#ifndef __ARITHMETICCODERC_H__
#define __ARITHMETICCODERC_H__

#include <fstream>
using namespace std;

class ArithmeticCoderC
{
public:

ArithmeticCoderC();

void SetFile( fstream *file );

void Encode( const unsigned int low_count,
const unsigned int high_count,
const unsigned int total );

void EncodeFinish();

void DecodeStart();
unsigned int DecodeTarget( const unsigned int total );
void Decode( const unsigned int low_count,

const unsigned int high_count );

protected:
// bit operations
void SetBit( const unsigned char bit );
void SetBitFlush();
unsigned char GetBit();

unsigned char mBitBuffer;
unsigned char mBitCount;

// in-/output stream
fstream *mFile;

// encoder & decoder
unsigned int mLow;



unsigned int mHigh;
unsigned int mStep;
unsigned int mScale;

// decoder
unsigned int mBuffer;

};

#endif

A.2 Arithmetic Coder

#include "ArithmeticCoderC.h"
#include "tools.h"

// constants to split the number space of 32 bit integers
// most significant bit kept free to prevent overflows
const unsigned int g_FirstQuarter = 0x20000000;
const unsigned int g_ThirdQuarter = 0x60000000;
const unsigned int g_Half = 0x40000000;

ArithmeticCoderC::ArithmeticCoderC()
{

mBitCount = 0;
mBitBuffer = 0;

mLow = 0;
mHigh = 0x7FFFFFFF; // just work with least significant 31 bi ts
mScale = 0;

mBuffer = 0;
mStep = 0;

}

void ArithmeticCoderC::SetFile( fstream *file )
{

mFile = file;
}

void ArithmeticCoderC::SetBit( const unsigned char bit )
{

// add bit to the buffer
mBitBuffer = (mBitBuffer << 1) | bit;
mBitCount++;

if(mBitCount == 8) // buffer full
{



// write
mFile->write(reinterpret_cast<char*>(&mBitBuffer),s izeof(mBitBuffer));
mBitCount = 0;

}
}

void ArithmeticCoderC::SetBitFlush()
{

// fill buffer with 0 up to the next byte
while( mBitCount != 0 )

SetBit( 0 );
}

unsigned char ArithmeticCoderC::GetBit()
{

if(mBitCount == 0) // buffer empty
{

if( !( mFile->eof() ) ) // file read completely?
mFile->read(reinterpret_cast<char*>(&mBitBuffer),si zeof(mBitBuffer));

else
mBitBuffer = 0; // append zeros

mBitCount = 8;
}

// extract bit from buffer
unsigned char bit = mBitBuffer >> 7;
mBitBuffer <<= 1;
mBitCount--;

return bit;
}

void ArithmeticCoderC::Encode( const unsigned int low_co unt,
const unsigned int high_count,
const unsigned int total )

// total < 2ˆ29
{

// partition number space into single steps
mStep = ( mHigh - mLow + 1 ) / total; // interval open at the top => +1

// update upper bound
mHigh = mLow + mStep * high_count - 1; // interval open at the to p => -1

// update lower bound
mLow = mLow + mStep * low_count;

// apply e1/e2 scaling



while( ( mHigh < g_Half ) || ( mLow >= g_Half ) )
{

if( mHigh < g_Half )
{

SetBit( 0 );
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;

// perform e3 scalings
for(; mScale > 0; mScale-- )

SetBit( 1 );
}
else if( mLow >= g_Half )
{

SetBit( 1 );
mLow = 2 * ( mLow - g_Half );
mHigh = 2 * ( mHigh - g_Half ) + 1;

// perform e3 scalings
for(; mScale > 0; mScale-- )

SetBit( 0 );
}

}

// e3
while( ( g_FirstQuarter <= mLow ) && ( mHigh < g_ThirdQuarter ) )
{

// keep necessary e3 scalings in mind
mScale++;
mLow = 2 * ( mLow - g_FirstQuarter );
mHigh = 2 * ( mHigh - g_FirstQuarter ) + 1;

}
}

void ArithmeticCoderC::EncodeFinish()
{

// There are two possibilities of how mLow and mHigh can be dis tributed,
// which means that two bits are enough to distinguish them.

if( mLow < g_FirstQuarter ) // mLow < FirstQuarter < Half <= mH igh
{

SetBit( 0 );

for( int i=0; i<mScale+1; i++ ) // perform e3-scaling
SetBit(1);

}
else // mLow < Half < ThirdQuarter <= mHigh
{



SetBit( 1 ); // zeros added automatically by the decoder; no n eed to send them
}

// empty the output buffer
SetBitFlush();

}

void ArithmeticCoderC::DecodeStart()
{

// Fill buffer with bits from the input stream
for( int i=0; i<31; i++ ) // just use the 31 least significant b its

mBuffer = ( mBuffer << 1 ) | GetBit();
}

unsigned int ArithmeticCoderC::DecodeTarget( const unsi gned int total )
// total < 2ˆ29
{

// split number space into single steps
mStep = ( mHigh - mLow + 1 ) / total; // interval open at the top => +1

// return current value
return ( mBuffer - mLow ) / mStep;

}

void ArithmeticCoderC::Decode( const unsigned int low_co unt,
const unsigned int high_count )

{
// update upper bound
mHigh = mLow + mStep * high_count - 1; // interval open at the to p => -1

// update lower bound
mLow = mLow + mStep * low_count;

// e1/e2 scaling
while( ( mHigh < g_Half ) || ( mLow >= g_Half ) )

{
if( mHigh < g_Half )
{

mLow = mLow * 2;
mHigh = mHigh * 2 + 1;
mBuffer = 2 * mBuffer + GetBit();

}
else if( mLow >= g_Half )
{

mLow = 2 * ( mLow - g_Half );
mHigh = 2 * ( mHigh - g_Half ) + 1;
mBuffer = 2 * ( mBuffer - g_Half ) + GetBit();

}



mScale = 0;
}

// e3 scaling
while( ( g_FirstQuarter <= mLow ) && ( mHigh < g_ThirdQuarter ) )
{

mScale++;
mLow = 2 * ( mLow - g_FirstQuarter );
mHigh = 2 * ( mHigh - g_FirstQuarter ) + 1;
mBuffer = 2 * ( mBuffer - g_FirstQuarter ) + GetBit();

}
}

A.3 Model Base Class (Header)

#ifndef __MODELI_H__
#define __MODELI_H__

#include "ArithmeticCoderC.h"

enum ModeE
{

MODE_ENCODE = 0,
MODE_DECODE

};

class ModelI
{
public:

void Process( fstream *source, fstream *target, ModeE mode );

protected:
virtual void Encode() = 0;
virtual void Decode() = 0;

ArithmeticCoderC mAC;
fstream *mSource;
fstream *mTarget;

};

#endif

A.4 Model Base Class

#include "ModelI.h"

void ModelI::Process( fstream *source, fstream *target, M odeE mode )



{
mSource = source;
mTarget = target;

if( mode == MODE_ENCODE )
{

mAC.SetFile( mTarget );

// encode
Encode();

mAC.EncodeFinish();
}
else // MODE_DECODE
{

mAC.SetFile( mSource );

mAC.DecodeStart();

// decode
Decode();

}
};

A.5 Model Order 0 (Header)

#ifndef __MODELORDER0C_H__
#define __MODELORDER0C_H__

#include "ModelI.h"

class ModelOrder0C : public ModelI
{
public:

ModelOrder0C();

protected:
void Encode();
void Decode();

unsigned int mCumCount[ 257 ];
unsigned int mTotal;

};

#endif



A.6 Model Order 0

#include "ModelOrder0C.h"

ModelOrder0C::ModelOrder0C()
{

// initialize probabilities with 1
mTotal = 257; // 256 + escape symbol for termination
for( unsigned int i=0; i<257; i++ )

mCumCount[i] = 1;
}

void ModelOrder0C::Encode()
{

while( !mSource->eof() )
{

unsigned char symbol;

// read symbol
mSource->read( reinterpret_cast<char*>(&symbol), size of( symbol ) );

if( !mSource->eof() )
{

// cumulate frequencies
unsigned int low_count = 0;
for( unsigned char j=0; j<symbol; j++ )

low_count += mCumCount[j];

// encode symbol
mAC.Encode( low_count, low_count + mCumCount[j], mTotal ) ;

// update model
mCumCount[ symbol ]++;
mTotal++;

}
}

// write escape symbol for termination
mAC.Encode( mTotal-1, mTotal, mTotal );

}

void ModelOrder0C::Decode()
{

unsigned int symbol;

do
{



unsigned int value;

// read value
value = mAC.DecodeTarget( mTotal );

unsigned int low_count = 0;

// determine symbol
for( symbol=0; low_count + mCumCount[symbol] <= value; sym bol++ )

low_count += mCumCount[symbol];

// write symbol
if( symbol < 256 )

mTarget->write( reinterpret_cast<char*>(&symbol), siz eof( char ) );

// adapt decoder
mAC.Decode( low_count, low_count + mCumCount[ symbol ] );

// update model
mCumCount[ symbol ]++;
mTotal++;

}
while( symbol != 256 ); // until termination symbol read

}

A.7 Tools

#ifndef __TOOLS_H__
#define __TOOLS_H__

int inline min( int a, int b )
{

return a<b?a:b;
};

#endif

A.8 Main

#include <iostream>
#include <fstream>
using namespace std;

#include "ModelOrder0C.h"

// signature: "ACMC" (0x434D4341, intel byte order)
// (magic number for recognition of encoded files)



const int g_Signature = 0x434D4341;

int __cdecl main(int argc, char *argv[])
{

cout << "Arithmetic Coding" << endl;

if( argc != 3 )
{

cout << "Syntax: AC source target" << endl;
return 1;

}

fstream source, target;
ModelI* model;

// choose model, here just order-0
model = new ModelOrder0C;

source.open( argv[1], ios::in | ios::binary );
target.open( argv[2], ios::out | ios::binary );

if( !source.is_open() )
{

cout << "Cannot open input stream";
return 2;

}
if( !target.is_open() )
{

cout << "Cannot open output stream";
return 3;

}

unsigned int signature;
source.read(reinterpret_cast<char*>(&signature),siz eof(signature));
if( signature == g_Signature )
{

cout << "Decoding " << argv[1] << " to " << argv[2] << endl;
model->Process( &source, &target, MODE_DECODE );

}
else
{

cout << "Encoding " << argv[1] << " to " << argv[2] << endl;
source.seekg( 0, ios::beg );
target.write( reinterpret_cast<const char*>(&g_Signat ure),

sizeof(g_Signature) );
model->Process( &source, &target, MODE_ENCODE );

}



source.close();
target.close();

return 0;
}
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