McGill University
School of Computer Science
Sable Research Group

Arithmetic Coding revealed @
A guided tour from theory to praxis

Sable Technical Report No. 2007-5

Joachim Kneis
Computer Science Department
RWTH Aachen University
Aachen, Germany

Eric Bodden
Sable Research Group
McGill University
Montréal, Québec, Canada

Malte Clasen
Zuse Institut Berlin
Berlin, Germany

May 25, 2007

www.sable.mcgill. ca

1This survey was originally established as contributionh® $eminar Data Compression WS 2001/2002 at the
RWTH Aachen University, under supervision of Ralf Schiiite

Contents

[abstract 4
l — =] c
[2__Introductionl 6
1 Foundatiohs, 6
D2 Example: Entropy 8
2.3 _Encoderanddecoller 10
2.4 _The notions of uniqueness and efticiéncy 10
[3__Encoding to real numberk 12
B1 Exampleintervalcreatbn 12
B2 Upperandlowerboudds 12
B3 Encodifgo 13
B2 Decodifg . . .« o 17
B5 Decodingexample 18
B.6 _Uniqueness of representalion 19
B6.1 Example 19
B62 Prodf 20
BZ Summaly 22
4 Encoding as sequence of bits 23
M1 Motivatioh 23
k.2 Abstracting fromthe madel 23
B3 Encodilg - .« o oo e 23
b4 Example:encodihg 24
BE Decodiy . .« . v oot 25
W6 Example:decoder 26
i T I -
B MOMVAtioh . . o . v o o 28
5.2 E1and EZSQaIihg 28
B3 E3SCAlAg -« -« o oo e 92

BE Decodiy . .« v oot 34
b6 Exampledecoder 34
lb_Rangek 36
6.1 Interval SiZeo 36
6.2 Alternative calculation e 36
[7__Summary of encoder and decoder implementation 38
Za Encoddr 38
F2 Decodifg . . . o o 39
[2.3__Termination of the decoding pradess 39
[B__Efficiency 40
lB1 lookingattheefficienby 40
8.2 Comparison to Huffman Q;leng 40
19__Alternative models 43
0.1 Order-nmoddls, 43
9.2 Adaptive Madels 43
021 Example, 43
0.3 Additionalmadels 44
[10_Conclusioh 45
[10.1 Remember: Compression has its baunds 45
[10.2 Methods of Optimizatibn oo 45
1021 MemoaryUsafle oo 45
(022 Spedd 46
[o_A reference implementation in C+4 47
[a.1 Arithmetic Coder (Head@r) o oo 47
A2 Arithmetic Coddr 48
lo.3 ModelBase Class (Header) 52
8.4 ModelBase Clabs 52
o5 Model Order O (Head@r)o v 53
A6 ModelOrderD 45
D7 Taolk., 55

List of Tables

1 Probability of letters in an average German text (takemf“.
2 Model for the examplﬁ.z

[L___Creating an interval using given mddel
[lterated partitioning of the interv&D, 1) (uniform distributior)
B Functionoftheencader oo
U Application of E3SCAIAG « « « « « v o oo e e e e e

58

59

31
33
33
35

Abstract

This document is an updated and translated version of thm&epapeArithmetische
Kodierung[BCKOZ] from 2002. It tries to be a comprehensive guide toahteof arithmetic
coding.

First we give an introduction to the mathematic principtasived. These build the foun-
dation for chaptell3, where we describe the encoding andditegalgorithms for different
numerical systems. Here we also mention various probleragan come across as well as
solutions for those. This is followed by a proof of uniquenaad an estimation of the effi-
ciency of the algorithm. In the end we briefly mention differ&inds of statistical models,
which are used to actually gain compression through thedingoThroughout this paper we
occasionally make some comparisons to the related Huffmaading algorithm. Though,
some rudimentary knowledge about Huffman encoding shauffits for the reader to follow
the line of reasoning.

This paper is mainly based on [Say00] ahd [BCW90]. On theiatte base our imple-
mentation which is included in the appendix as full C++ sewode. We also make use of
parts of this code during some of our examples. The mathealatiodel we use, however, is
strongly based ori [Say00] arid [Fah61]. Also we employ thé-ketwn Shannon-Theorem
[WS49], which proofs the entropy to be the bound of feasibssless compression.

1 Motivation and History

In comparison to the well-known Huffman Coding algorithnrjtAmetic Coding overcomes the

constraint that the symbol to be encoded has to be coded bylke whmber of bits. This leads

to higher efficiency and a better compression ratio in généndeed Arithmetic Coding can be

proven to almost reach the best compression ratio possililieh is bounded by the entropy of

the data being encoded. Though during encoding the algogi@nerates one code for the whole
input stream, this is done in a fully sequential manner, syirafier symbol.

Arithmetic Coding, though not being very complex to undemnst was not know before the late
70’s in the form we use it today. It was able to gain more irdeme the 80’s, due to its high
efficiency and the fact that the hardware implementationrithfetic Coding is very straightfor-
ward. First approaches to the topic were already giveAllmamsormandEliasin 1960, however,
these days they did not come up yet with an appropriate soltiti a problem we are soon going
to address: The arithmetic accuracy needs to be increasbdhailength of the input message.
Fortunately, in 1976ascoand Rissanerproved that specific finite-length numbers actually suf
fice for encoding - without any loss of accuracy. Howeverséhalgorithms were still not very
memory-efficient. In 1979 and 1980 thétbin GuazzoRissanermndLangdonpublished almost
simultaneously the basic encoding algorithm as it is stéditoday. It is based on finite-precision
arithmetic, employing a FIFO mechanism. The implementatioy RissanerandLangdonwere
also very close to later hardware implementations.

Thus, compared to other fields of Computer Science, Aritlm@&bding is still very young, how-
ever already mature and efficient principle for lossless @aicoding, which satisfies all the re-
guirements of what people understand of a modern compresdiorithm: Data input streams
can be compressed symbolwise, enabling on-the-fly data remsipn. Also Arithmetic Coding
works in linear time with only constant use of memory. As nmmad above, finite precision in-
teger arithmetic suffices for all calculations. These ameoproperties make it straightforward to
derive hardware-based solutions. As we will see soon, ddttic Coding is also known to reach
a best-possible compression ratio, provided the singlésigrof the input stream are statistically
independent, which should be the case for most data strelstsit can be enhanced very simple
by allowing simple plug-in of optimized statistical model$he decoder uses almost the same
source code as the encoder which also makes the implenoensataightforward.

Nowadays there are a lot of hidden applications of Arithmé&oding, such as hardware based
codecs as for instance the fax protocols G3 and G4. This Kimgbplication makes Arithmetic
Coding maximally efficient by the use of a small alphabet vaithunevenly distributed probabil-

ityE

2Note that a fax page usually holds much more white pixels tiack ones.

2 Introduction

Before jumping into the fray and starting with the explaoatof the encoding algorithm, first we
introduce some basic terms commonly used in data compres$itey will be used throughout
the whole paper.

Our goal is to compress data, which might either be stored comgputer-readable media or be
sent over some form of stream. This data could represenhiagytreaching from simple text up
to graphics, binary executable programs etc.

However, we do not distinguish here between all those datasty We simply see them all as
binary input. A group of such input bits is what we will refer as a symbol. For instance one
could think of an input stream being read bytewise, leadingft= 256 different input symbols.
For raw text compression, it could also suffice to take anaiph of 128 symbols only, because
the ASCII code is based on a 7-byte structure.

2.1 Foundations

DEFINITION 1 (ALPHABET AND SYMBOL)
We call a finite, nonempty set anPHABET. TheLENGTH or cardinality of an alphabet A will be
referred to agA|. The element$ay, ..., an} of an alphabet are calledYmBOLS.

Also we assume tha is an ordered set, so givin@y, ..., am} a distinct order.

We already mentioned above that the Arithmetic Coding @lgor works sequentially. Thus we
need some notion of what the sequential input and outputeoétitode/decoder might look like.
This leads us directly to the notion ofSEQUENCE

DEFINITION 2 (SEQUENCE)
A series S= (s1,%,...) of symbolsisfrom an alphabet A is calledEQUENCE In the latter we will
also use the shortcutSs;s;...

In analogy to the definition dfA|, | is the symbol for the length &, provided thasSis of finite
length. However|S < o will be a general assumption henceforth, since most of theolzwy
would otherwise make no sense.

Please note that this representation of data is somehowahatince most human-made media can
be read in a sequential order. Just think of books, videpgsstand more.

Also, when looking at a sequence, one can calculate a digiibability of each symbol of the
alphabet to occur in this very sequence. This probabilitghibe very unevenly distributed, a
lot depending on the application domain. For instance demghe lettere, which is much more
common tharzin the English Iangua&Since Arithmetic Coding depends a lot of such statistical
measures in order to achieve compression, we introduagerheABILITY of a symbol as follows:

DEFINITION 3 (PROBABILITY)
Let S= (s1,...,5) a finite-length sequence witl = n over A= {ay,...,am}. Also let|S5 the

frequency of gin S. Then we define(R) := |S|Tﬁ as thePROBABILITY of g (in S).

3An elaboration on http://www.simonsingh.net states amaaye probability of 12.7% for lettarand 0,1% forz.

From the definition, we can directly conclude ti{t;) is always contained in the interv, 1)

for any symbol, whereas the sum over all such probabiliseshirayss " ; P(a;) = 1. Please note
that this interval is open-ended, because it would make nses encode a constant sequence
holding only a symbol of probability 1, simply because intttase the full content of the sequence
would have been known beforehand already. We will later okemese of this property in certain
conclusions.

Recapturing the example efz however, we would like to emphasize that the probability of a
symbol might heavily depend on its context. If one consideasid z as symbols for bytes in a
binary executable for example, they might be rather eveislyiduted. Also one could even show
that certain symbols are more likely to occur in scientifid tkan newspaper articles and so forth.

Some data is subject to interpretation: E.g. consider theesee 1111131311. It could be inter-
preted as a sequence of symbal8 @r 11 13. At least this example proves that we need some kind
of unambiguous rule of how probabilities are related to sgisibT his relation between symbols of
an alphabet and their probability is commonly known asomEL in terms of data compression.

DEFINITION 4 (MODEL)
Let A an alphabet. MODEL M is a function

M:A—[0,1):a+— Pu(a),
which maps a probability (&) to each symbol;ae A.

This probability might be estimated / calculated and dodgsecessarily have to match the real
probability of the symbolP(a). Indeed in most cases it does not. Please also note thatteabalp
is not restricted to only hold symbols of length 1. In the eplerabove, employing 11 and 13 as
symbols we already got a picture of that. If one estimategpthbability of a given symbol not
only by looking at the symbol itself but also at the contextegi by the lash symbols seen, one
speaks of arDrder—n model For instance the average probability of the letielo occur in
any German text is only about@35. If one considers its probability to occur after theeleq
however, this value raises to nearly 1! As one can see almeagyan increased value ofmight
lead to better predictions of probabilities.

As already briefly mentioned above, the probability distiidn that is given by the interpretation
of a sequence under a certain model, matches the real pligbdkstribution at best by chance.
Usually this will not be the case. For instance there will beast no German text fulfilling the
distribution given by TablEl1 exactly, but rather approxiehaor even worse. To distinguish the
probability induced by the model from the real one, we labelformer withPy (&) in order to
emphasize the dependency of the model and in order to dissimgrom the latter, given bip(&;).

So we conclude that a model can be seen as an interpretatiom arbitrary dataset. A simple

model could for instance be given by the probability disttibn of Table[dl. This table shows the

probabilities of most letters of the German alphabet to petan average German text. Probably
the clever reader can already anticipate now, that the casajm ration will heavily depend on

how good this model matches the reality.

This leads to the need to define some kind of measure of cosipnesnabling us to actually
compare the efficiency of different compression approachfesatural measure of how much
information is contained in a given sequence of data is@¢@leENTROPY.

a| 00651} h | 0,0476|| o | 0,0251| v | 0,0067
b| 00189 i | 0,0755| p| 0,0079| w | 0,0189
c | 0,0306(j | 0,0027| g | 0,0002| x | 0,0003
d| 0,0508| k | 0,0121}| r | 0,0700| y | 0,0004
e| 0,1740|| | | 0,0344|| s | 0,0727| z | 0,0113
f | 0,0166| m | 0,0253| t | 0,0615

g| 0,0301|| n | 0,0978| u | 0,0435

Table 1: Probability of letters in an average German tekiftdrom [Beu94]).

DEFINITION 5 (ENTROPY)
Let S a sequence over alphabetAa,...,an}. TheENTROPY Hy(S) of the sequence S under
model M is defined as

Hu(S) = 3 Pla) Id s W

The unit of the entropy ibits/symbo] because the formula only refers to probabilities as rekativ
frequencies rather than absolute ones.

By the formula one can easily see that with our definition,ghopy of a sequence depends on
the modelM being used, since thay(a;) are the probabilities under that model. Hd%
can be interpreted as the minimal length of a binary symbafavhile the factoP(a) (being the
real probability ofg;) can be interpreted as probability of requiring the encaddiinary encode

this very symboIE

Considering a model as perfect, one obtains dbeect probability distribution leading to the
natural form of the entropy:

H(S)= 3 Playld %)

This kind of entropy is depended on the input data only mmdubject to interpretation. However
the interested reader might wish to know that most of theditee about Arithmetic Coding
sloppily does not distinguish between both kinds of entropy

2.2 Example: Entropy

Let us have a look at the sequerfse- abaabcdaover alphabeta,b,c,d}. We want to binary
encode this sequence. Since we have no clue at all about bgwahabilities should be distributed
in the first place, we decide for the simple modi&l, which - by chance - leads to the correct
probability valuesPy, (a) = 0,5, P, (b) = 0,25, Py, (c) = 0,125 andPy, (d) = 0,125. One can
easily see that this model is ideal in the sense that the &stihprobabilitie$y, (s) match the real
onesP(s):

Pw.(s) = P(s) Vse A:={a,b,c,d} .

41f one does not encode binary but rather to a baséen one only has to replate with lognm.

When encoding this sequence, we can do so in a very naive wsiynpyy using 2 bits per symbol,
{00,01,10,11}, which leads to overall costs of« bits = 16 bits. So what about the entropy of
Hwm, (5)?

1
HMl Se{a%qd} P(S) Id PMl(S)
— (0.5 1d =)+ (0,25 1d ——)
’ 05 "\ 0,25
(0,125 1d ——)+(0,125. Id ——)
’ 0,125 0,125

= 0,5-1d2+0,25- 1d 4+0,125- |d 8+0,125- |d 8
0,5+ 0,5+ 0,375+ 0,375
= 1,75Bits/Symbo]

Note that this is given ifBits/Symbo], which means that we need a minimum efl375= 14 bits
to encode the whole input sequence. We cannot do any Bettes gives a saving of 16 14=2
bits.

However, what would have happened if we had not been so laclyess the correct probability
distribution on advance? Have a look at the following madelwith Py, (a) = 0,125, Py, (b) =
0,125,Py,(c) = 0,5 andPy,(d) = 0,25. The entropy undev, calculates to:

1
Hy, = P(s) Id ———
? Se{a%qd} PMZ (S)

1 1
0, 105 +(0:25-1d 0, 125

(0,125 1d =)+ (0,125 1d —

0,5 0,25)

= 0,5-1d8+0,25- 1d 8+0,125- |d 2+0,125- Id 4
= 1,540,75+0,125+0,25

= 2,625[Bits/Symbo]

= (0,5-1d

We should see this example as a warning. A warning, not to mitha notion ofcodingwith
compressionThe reason for this is that we can see that under the nibglele would be required
to use 2625+ 8 = 21 bits to encode the input sequence. However, this woulaslw®mpression at
all, if one remembers that our naive encoding with 2 bits per®l employed 16 bits altogether
only. Also we can conclude that the compression ration cdy lo& as good as the underlying
model allows. The better the model matches the reality, #tiebthe compression will be.

However, in the following chapters we will prove, that giveemy particular model (that on its own
might be as optimal as it can be), Arithmetic Coding achidhesabsolutely best compression
ratio, meaning that no other algorithm could do any bettelenthe very same model.

5Note that we do not prove the entropy as measure of optintadity. This fact is commonly known as tShannon
TheorenWS449].

Since we now stirred up your interest so much, we are now goinlgscribe the actual encoding
and decoding algorithms.

2.3 Encoder and decoder

DEFINITION 6 (ENCODER& DECODER
An algorithm which encodes a sequence is calle&mnoDeER The appropriate algorithm de-
coding the sequence again is calledBCODER

In opposite to the input sequen&we refer to the encoded sequence which is output of the
encoder and input for the decoder®@gd€&S) or C(S) for short. The application of both algorithms
is referred to aENCODING respectivelyDECODING.

We want to emphasize that we use the notion of an algorithrtsimost natural way, meaning a
general sequence of steps performed by any arbitrary cem@y purpose we do not limit our-

selves to a certain implementation at this stage. An encoaldd be any algorithm transforming
the input in such a way that there is a decoder to reproduceathhénput data. However at the
end of this paper we present the full C++ source code of a emtetoder pair (also referred to
ascoDEQ), which employs Arithmetic Coding. The following code exalas are taken from this

reference implementation.

In the theory of data compression one often distinguishesdan lossy and lossless compression
algorithms. Especially analogous signals are often erttoda lossy way because such data is in
the end meant to be interpreted by some kind of human orgam éa,...) and such organs are
very limited in a sense that they simply do not recognizeagerievels of noise or distortion at
all. Of course lossy compression algorithms can reach tbetimpression ratios by losing some
accuracy. However we are not going to consider any lossy oessjon in this article and rather
concentrate on lossless compression, that can be applabkiods of data in general. Thus we
are only going to consider codecs that are able to reprodueceput data up to the last symbol.
In a nutshell our resultin@od€S) will be proven lossless and optimal.

2.4 The notions of uniqueness and efficiency

DEFINITION 7 (UNIQUE DECODABILITY)
We call a codeJNIQUELY DECODABLE, if any sequence is mapped to its code in an injective way.
If this is the case one can determine the unigue input symbaliy given code.

A special class of uniquely decodable codes are so-calkftkmodes. These can be characterized
by the property that no codeword is a prefix of any other coddwo

DEFINITION 8 (PREFIX CODE
We call a given code C BREFIX CODE if for no pair (x,y) of symbols of the alphabet,(© is

prefix of Qy).

Prefix codes have the big advantage that as soon as the déax=lezadC(x) for a certainx,
it knows at ones that the code is terminated and that symbas encoded. In the case of an
arbitrary code, it could be the case that the decoder wowld taaread on in order to seeGf(x)
was probably only the prefix of another co@¢y). Thus, prefix codes are known to be a class

of uniquely decodable codes. The diligent reader can finchatoactive proof of this property in
[Say00] p.31.

Now we are fully equipped to start with the actual coding &thm. The following chapter in-
troduces the general method of Arithmetic Coding. The syt chapters evolve this method,
address some of the problems one comes across and discassuslemplementation.

3 Encoding to real numbers

Huffman-coding was considered to be almost optimal unitharetic coding was developed in
the 70s. The resulting code is usually very close to the pptemd reaches it in some special
cases. Its disadvantages are the relatively complex gemei@at the code tree and the limitation
to encode symbols or groups of symbols as such. The binary icoduffman-coding is looked
up in a balanced binary tree that approximates the symbblibities: One starts at the root and
searches for the appropriate node for the given symbol. Téeches are labeled binary, so the
resulting code word is the sequence of passed branches tBmaumber of passed branches in
one pass is always a whole number, each symbol is always etdod sequence of full bits. We
will show that this is an unnecessary constraint.

Arithmetic Coding uses a one-dimensional table of proligdsl instead of a tree. It always en-
codesthe whole messagat once. This way it is possible to encode symbols using feadm
of bits. However, one have cannot access the code word rdpdblsing Huffman-coding, one
can specify marks that allow decoding starting within thiedbieam. Of course one can also
split messages in arithmetic coding, but this limits thecafficy since use of bit-fragments on the
boundaries is impossible.

What we are looking for is a proper way to encode a messag@utithssigning a fixed binary
code to each symbol. So let's take a look at the probabiliiethe symbols: All probabilities
fall into the rang€0, 1) while their sum equals 1 in every case. This interval costaim infinite
amount of real numbers, so it is possible to encode everyljesequence to a number (it 1).
One partitions the interval according to the probabilitytleé symbols. By iterating this step for
each symbol in the message, one refines the interval to aairegult that represents the message.
Any number in this interval would be a valid code.

Let M be a model that assigns a probabilfy(a) to each symbao; that appears in the message.
Now we can split the intervdD, 1) using these values since the sum always equals 1. The size of
thei—th sub-interval corresponds to the probability of the syhaho

3.1 Example: interval creation

Let M be a model using the alphab&t= a,b,c,d. Let the probabilities of the symbols in the
message be

Pv(a) = 0.5, Py (b) = 0.25 Py (c) = 0.125 Py (d) = 0.125

Now the intervall0, 1) would be split as emphasized in Figlife 1.

3.2 Upper and lower bounds

Henceforth we call the upper and lower bounds of the entireentiintervalhigh andlow. The
bounds of the sub-intervals are calculated from the curinelgtobabilities:

o

0.5 0.75 0.875 1

a b d C

Figure 1: Creating an interval using given model

k
K(ak) = _;PM(au) :

The valueshigh andlow change during the encoding process whereas the cumulatitalglities
remain constaft They are used to updakégh andlow. With respect to the previous example,
we get the following values:

high 1.0] K(0) 0.0] K(2) 0.75
low 0.0|K(1) 05]|K(3) 0.875

We will see that this subdivision depends on the model. Hewdor now we assume that it is
given by a constant table containing the cumulative prdibasi K (a). This type of model also
exists in real applications and is callsthtic

3.3 Encoding

The first step in encoding is the initialization of the int&rlv:= [low, high) by low = 0 andhigh =

1. When the first symbga}, is read, the intervdl can be resized to a new intervahccording to the
symbol. The boundaries ¢f are also calledow andhigh. We choosé’ to equal the boundaries

of s, in the model. However, how are these boundaries calculdtet®, = ax be thekth symbol
of the alphabet. Then the lower bound is

k-1
low := _Zlm(a;) =K(ak-1)

and the upper bound is

k
high:= _Zlm(au) =K(ak)

The new interval’ is set to[low, high). This calculation is nothing new, it just corresponds to the
mathematical method of the construction of Figre 1. Thetmedevant aspect of this method is

provided we are using a constant model

that the sub-interval’ becomes larger for more probable symbsls The larger the interval the
lower the number of fractional places which results in sfrocbde words. All following numbers
generated by the next iterations will be located in the ir@dl’ since we use it as base interval as
we did used0, 1) before.

We proceed with the second symlispl= a;. However, now we have the problem that our model
M describes a partiti&nf the interval[0,1), not of I’ which was calculated in the previous step.
We have to scale and shift the boundaries to match the newateScaling is accomplished by
a multiplication withhigh— low, the length of the interval. Shifting is performed by addiog.
This results in the equation

-1
low = Iow+{ZlPM(a;).(high—Iow) =low+K(aj_1) - (high—low) ; €))
high = Iow+iPM(ai)-(high—low) = low+K(a;) - (high—low) . (4)

This rule is valid for all steps, especially the first one witlwv = 0 andhigh— low = 1. Since we
do not need the old boundaries any more for the next itemtioe can overwrite them:

low = low;
high := high .

This iteration might look complicated, but we will give anagmple resembling the settinglin2.2.
Figure[3 on pagE’16 gives a picture of this. Bdte the sequenagbaabcdausing our ideal model
Mj.

We start with the interval0, 1) and the first element & Sinces; is ana, the new boundaries are
calculated as follows:

low = 0
high = 0405-1=05.
The resulting interval if0...0.5). The next iteration encodesia
low = 0+0.5-(0.5-0)=0.25
high = 0+40.5-(0.5-0)+0.25-(0.5—0) =0.375.
followed by a second

low = 0.25
high = 0.2540.5-(0.375—0.25) = 0.3125.

A partition is a disjoint union of sets calledasses All classes have empty intersections and the union of all
classes results in the base set.

and a thirda
low = 0.25
high = 0.2540.5-(0.3125— 0.25) = 0.28125,
The fifth character is b
low = 0.25+0.5-(0.28125-0.25) = 0.265625
high = 0.25+0.5-(0.28125-0.25) 4 0.25-(0.28125- 0.25) = 0.2734375.
followed by ac
low = 0.265625+ 0.5-(0.2734375-0.265625 + 0.25- (0.2734375- 0.265625
= 0.271484375
high = 0.265625+ 0.5-(0.2734375- 0.265625 + 0.25- (0.2734375- 0.265625

+0.125.0.25- (0.2734375- 0.265625
= 0.2724609375

ad
low = 0.271484375+ (0.5+ 0.25+0.125) - (0.2724609375- 0.27148437%

= 0.2723388672
high = 0.2724609375

and at last anothex
low = 0.2723388672

high = 0.2723388672-0.5-(0.2724609375- 0.2723388672
= 0.2723999024

So the resulting interval i.2723388672; 2723999024

0.5

Input a

T 0.5

d

B 0.25 ~

Input b

0.375
d

e

0.3125

0.25

Figure 2: Iterated partitioning of the inten@, 1) (uniform distribution)

Input a

0.3125
d

0.28125

0.25

Input a

0.28125
d

0.265625

0.25

Input b

0.2734375
d

e

0.26953125

0.265625

Input ¢

**/ 0.2724609375 T
d

0.2719726563

0.271484375

Figure 3: Function of the encoder

Input d
—> 0.2724609375
d
C
b

0.2723999024

0.2723388672

| —p

Input a
0.2723999024
d
Cc
b

0.2723693848

0.2723388672

Target inteval

The next matter is the actual code. We have to specify theleddd interval. So we could simply
save the upper and lower bound, but this is rather inefficiknbwing that the whole interval is
unique for this message, we can safely store only a singleevatide the interval. The following
lemma should clarify this technigque.

LEMMA 1 The codes of all messages with the same length form a partifiche interval I:=
[0,1).

This results clearly from Figurdg 2. A direct conclusion o ikmma is the fact that the classes
of the partition become infinitely small for infinitely longeasages. There are no infinitely long
messages in practice, but there are very large messagefedrtesponding small partitions
would cause problems on common computers using finite agiticer A solution it the rescaling
presented in sectidd 5.

In the last example we can for instance stoi27@34 or any other value in the interval. Here we
still assume that we know when the message ends, althougisthsually not the case (think of

remote data transmissions). End-of-message handlingdssied later, for now we will proceed

with a short summary on encoding:

low =0;
high=1;
do {
temp = read_symbol();
ival = model->get_interval(temp); \\ returns the interval containing temp

low = calculate_lower_bound(ival);

high = calculate_upper_bound(ival);
} while (lend_of sequence());
return(value_in_interval(low,high));

3.4 Decoding

To decode a sequence, one somewhat have to apply the enauevaods. The valuy =
CoddS) is given and we have to restore the original sequehicgVe assume that the message
length is known and equals In the first iteration we compaié with each interval’ := [K(ax —
1),K(ax)) to find the one that contains. It corresponds to the first symbol of the sequersge,
To compute the next symbol, we have to modify the probabgéytition in the same way we did
while encoding:

low low+ K (g_1) - (high— low)
high := low+K(&)- (high—low) ,

wherei has to comply

low <V < high

g Iis the next symbol in the encoded sequence. This time, thiecstse is again a special case of
the general formula. The iteration is very similar to theaatar, so from its implemention should
arise no further problems.

3.5 Decoding example

We illustrate the decoder using the same data as in the peeamples. The resulting code was
V = 0.27234 and we assume that we know the lerigth8. Starting withlow = 0 andhigh=1
we see tha¥ lies inside the first intervall0...0.5). The corresponding symbol is arand we set

low = O
high = 05

In the next iteration we see thatd¥234 lies between the boundaries

low = 0405 (0.5—0) =025
high = 0+0.75-(0.5—0) =0.3125

and decode h. The relevant boundaries are underlined. The next iteratio

low = 0.25+0-(0.3125-0.25) = 0.25
high = 0.25+0.5-(0.3125—0.25) = 0.28125

results in ara. Since the next iterations are very similar, we skip themtakd a look at the last
iteration:

low = 0.2723388672-0-(0.2724609375- 0.2723388672 = 0.2723388672
high = 0.2723388672-0.5-(0.2724609375- 0.2723388672 = 0.2723999024

This is the finala in the sequencabaabcda Because of the similarities, one can use Fidlire 3 in
this case, too. The decoding algorithm can be summarizeollag/$:

seq = "
low = 0;
high = 1;

do {

low = model->lower_bound(Value,low,high);
high" = model->upper_bound (Value,low,high);
low = low’;
high = high’;
seq .= model->symbol_in_interval(low,high);

} while ('end_of sequence());

return(seq);

We used floating point arithmetic to calculate the boundaroeit without further methods, this
results in a large number of fractional places. In partigutas possible that infinite numbers of
fractional places appear (considei3) The circumvention of this problem is covered by the next
subsection. Note that the for the implementation of thosthaus it makes no difference if one
works over symbols or sequences. One can see this by workthghe probability distributions

of sequences (see [Say00]).

3.6 Unigueness of representation

LetC(a) be a code fog;:

Qa%=K®Fn+%HMa%

C(a) is the center of the interval @&. One can replac€(a;) by a shortened code of the length

1
(@) =[1d g s T+1.

|C(a&)]i(a) is defined as the binary code farshortened to(a) digits.

3.6.1 Example

Let Sbe the sequence

S=s519%%

over the alphabed = {a;,...,a4}. Let the probabilities computed by the modiélbe

Pu(a) = %, Pu(a2) = %, Puv(as) = %, Pu(as) = :—é.

The following table shows a possible binary code for thisusege. The binary representation of

C(a) was shortened tpld mW + 1 which led to the respective code.

K(a) C(a) binary I(&) [C(ai)ia) Code

|

1 05 0.25 0.0100 2 0.01 01

2 075 0625 0.1010 3 0.101 101
3 0875 0.8125 0.1101 4 0.1101 1101
4 1.0 0.9375 0.1111 4 0.1111 1111

3.6.2 Proof

We will now show that the code that was generated in the destnivay is unique. Beforehand
we chose the cod€(g;) to represent the symba. However, any other value in the interval
[K(g-1),K(&)) would also result in an unique code far To show that the codgC(&)] () is
unique, it is consequently enough to show that the coderiéssi intervalK (a;_1),K(&;)). Since
we cut off the binary representation©fa;) to get|C(&;) J (s, the following equation is satisfied:

IC(a)]i(a) < C(a).
Or in detail:

1

OSC(ai)—LC(ai)J|(a)§W.)

SinceC(a) is smaller tharK (&) by definition, it follows that

1C(a) i) < K(a).

This satisfies the upper bound. The next equation deals Withawer bound|C(&) |) >
K(ai,]_)i

1 def 1
2@) Sl gyl
1
< i
B
B 1
2.2 mr
B 1
= 1
ZPM(ai>
_ Pu(@)
2

Consequently

Cla) —K(ai-1) 2 2|(—1a> : 6)

is satisfied. The combination d¢fl(5) arid (6) results in

IC(a&) i) > K(ai-1) - (7)

which implies

K(ai-1) < [C(a)]ia) < K(&) ,

and thus

1C(@) Ji(a) € K(ai-1),K(&)) -

0

Therewith it is proven thafC(a) | (4 is @ non-ambiguous representationGit;). To show that
it is non-ambiguously decodable, it suffices to show that & prefix code, since we already know
that any prefix code is non-ambiguously decodable.

Given a numbea in the interval0, 1) with binary representation of the length[ay,ap, ..., a,]. It

is obvious that any other numblexvith the prefix[a;, ay, ..., a,] in binary representation lies in the
interval [a,a+). If & anda; are different, we know that the valugS(ai) Jia) and[C(ay) i(a))
lie in two disjunct intervals

[K(ai-1),K(&)), [K(aj-1),K(aj))

If we are able to show that for any symtsplthe interval

[1C(&)]i@), [C(&) @) + W)

is contained iNK(g-1),K(&)), this implies that the code of symbal cannot be prefix of the
code of another symbai;.

Equation [) implies C(&)]i(5) > K(g-1). That proves the assumption for the lower bound, so
it is sufficient to show

This is obvious because of

K@) —[Ca)]i@) > K(a)-C(a)

>

Therefore the code is prefix free. In particular, shorter@g;) to | (&) Bits results in a non-
ambiguously decodable code. Hence we solved the problemmité firithmetics with floating
point numbers.

3.7 Summary

We have got to know the theoretical function of arithmetidiog and have seen several exam-
ples. All this was based on floating point arithmetic with mite precision. We showed that it

is actually possible to use this in implementations, butgisintegers usually results in faster and
easier implementations. In the following we show how to meger arithmetic, which raises new
problems with respect to finite arithmetics. The output wbe' a real number as in this chapter,
instead we will use a sequence of bits. This sequence wi# labe terminated properly.

4 Encoding as sequence of bits

4.1 Motivation

To implement arithmetic coding efficiently, we have to maé&strictions: There are no (infinite)
real numbers, and pure integer implementations are wagrfastsimple processors as found in
fax machines (which actually use arithmetic coding in thep@R&ocol).

This chapter covers an implementation with very low memamystimption (only one register for
the boundaries, using 32 bits in the examples) and only a iepls integer instructions. The
output is a non-ambiguous sequence of bits that can be stosshd on the fly.

4.2 Abstracting from the model

One cannot express probabilities in fractions of 1 usinggats. Since probabilities equal the
frequencies of symbol occurrences in simple models, onenoamalize them to the humber of
symbols. The lower bound is the sum of frequencies of all fasyenbols (in canonical order), the
upper bound is this sum plus the frequency of the current symb

symbol-1
low_count = Z} CumCounfi] ,
i=
high.count = low_count+CumCounfsymbo] ,

whereCumCount contains the cumulative frequency counts. This resemblegtobabilities of
the previous section in so far as one does not divide by tla tount before adding up. This
results in the following equations:

low_count = low-total,
high.count = high-total ,

wheretotal represents the total count.

4.3 Encoding

The encoder consists of a function and static variablesstbat the current stﬁe

° mLOV\E stores the current lower bound. It is initialized with

e mHigh stores the current upper bound. Itis initialized vixiFFFFFFF, the maximum value
that fits in 31 bits.

e mStep stores a step size that is introduced later. It is not nedgsstatic in the encoder,
but the decoder depends on this property.

8This implementation followd WBMZ4].
9The prefix m denotes static variables. This resembles mewaliables in object oriented programming.

Note that one can use only 31 of 32 bits to prevent overflows.willego into this later. The
function declaration looks as follows:

void Encoder(unsigned int low_count,
unsigned int high_count,
unsigned int total);

The cumulative probabilities (which are calculated by theded) of the current symbai and the
next lower symbob;_1 are passed to the encoder. The encoder computes the newampidewer
bounds from these. At first, the interval franbowto mHigh is divided intototal ~ steps, resulting
in a step size of

mStep = (mHigh - mLow + 1) / total;

One has to add 1 to the difference moHigh and mLow sincemHigh represents the open upper
bound. Therefore the interval is larger by 1. An analogy em¢bmmon decimal system would be
an interval from 0 to 99 where the upper bound is stored as 99. The fractional placés the
interval larger by 1 compared to 990 = 99.

This is also the reason for the limitation to 31 bitsHigh is initialized with the maximum pos-
sible value. If one would choose 32 bit, then the additiofigh - mLow + 1 would result in an
overflow, which might lead to an exception in the best caseven ¢o sporadic encoding errors,
which would result in file corruption.

However the upper bound is now updated to
mHigh = mLow + mStep * high_count - 1;
and the lower bound to

mLow = mLow + mStep * low_count;

Both calculations rely on the previous valuemifow therefore overwriting it has to be the last
step. Since we are dealing with an open interval, we havedmedsenHigh by one to reflect this.

4.4 Example: encoding

This time we handle the same input sequence as in all prevrasples (seE4.2), but limit
ourselves to the first two symbokt). The model specifies the following data:

At first we initialize the encoder:

mBuffer = 0;
mLow = O;
mHigh = OX7FFFFFFF;

Then we encode the symbols of the sequence. Note that thel igostatic, sototal stays
constant.

symbol | frequency| low_count high_count
a 4 0 4
b 2 4 6
c 1 6 7
d 1 7 8

Table 2: Model for the example2.2

mStep = (mHigh - mLow + 1) / total;
(OX7TFFFFFFF - 0 + 1) / 8
0x80000000 / 8

0x10000000

mHigh = mLow + mStep * high_count - 1;
0 + 0x10000000 * 4 - 1
0x40000000 - 1

OX3FFFFFFF

mLow = mLow + mStep * low_count;
0 + 0x10000000 * O

=0
2.0
mStep = (mHigh - mLow + 1)/ total
= (OX3FFFFFFF - 0 + 1)/ 8
= (0x40000000 / 8
= 0x08000000

mHigh = mLow + mStep * high_count - 1;
0 + 0x08000000 * 6 - 1
0x30000000 - 1

OX2FFFFFFF

mLow = mLow + mStep * low_count;
= 0 + 0x08000000 * 4
= 0x20000000

After these two symbols we can store any value in the intdroah 0x20000000 to Ox2FFFFFFF.

4.5 Decoding

The task of the decoder is to follow the steps of the encoderbgrone. Hence we have to deter-
mine the first symbol and update the bounds accordingly. dikides the decoder functionality
into two functions:

unsigned int Decode_Target(unsigned int total);
void Decode(unsigned int low_count, unsigned int high_cou nt);

Decode_Target() determines the interval that contains the symbol. This maplished by
calculating the code value of the symbol:

mStep = (mHigh - mLow + 1) / total;
value = (mBuffer - mLow) / mStep;

mBuffer is the variable that contains the encoded sequence. Thd saudase the return value to
determine the encoded symbol by comparing it to the cunvel@idunt intervals. As soon as the
proper interval is found, the boundaries can be updatedhig were during encoding:

mHigh = mLow + mStep * high_count - 1;
mLow = mLow + mStep * low_count;

Note thatmStep is reused. That is why it was declared statically in the filste.

4.6 Example: decoder

Now we decode the sequence of bits that was generated in¢bdiag examplE4l4. L&xk28000000
be the value that was stored by the encoder. We initializeléoeder using the following values:

mBuffer = 0x28000000;
mLow = O;
mHigh = OX7FFFFFFF;

1. 'a’ At first we calculate a value compatible to the modehgddecode Target()

mStep = (mHigh - mLow + 1) / total;
(OX7TFFFFFFF - 0 + 1)/ 8
0x80000000 / 8

0x10000000

value = (mBuffer - mLow) / mStep;

(0x28000000 - 0) / 0x10000000
0x28000000 / 0x10000000

2

This 2 is now compared to Tablg 2 which represents the modlslfolind in the interval
[0,4), therefore the encoded symbol is@n\e update the bounds usibgcode() :

mHigh = mLow + mStep * high_count - 1;
0 + 0x10000000 * 4 - 1
0x40000000 - 1

= OX3FFFFFFF

mLow = mLow + mStep * low_count;
= 0 + 0x10000000 * O
=0

o

Decode_Target():
mStep = (mHigh - mLow + 1) / total;
(OX3FFFFFFF - 0 + 1)/ 8

0x40000000 / 8
0x08000000

value = (mBuffer - mLow) / mStep;

(0x28000000 - 0) / 0x08000000
0x28000000 / 0x08000000

5

Decode():

mHigh = mLow + mStep * high_count - 1;
0 + 0x08000000 * 6 - 1
0x30000000 - 1

Ox2FFFFFFF

mLow = mLow + mStep * low_count;
= 0 + 0x08000000 * 4
= 0x20000000

This 5 is located in the interval correspondingotdNow we have decoded the sequeabe
successfully.

5 Scaling in limited ranges

5.1 Motivation

When we use the presented methods to encode several symlnels, problem arisesnLowand
mHigh converge more and more and so further encoding will be imiplesas soon as the two
values coincide. However, there is a simple solution basetti® following observation:

5.2 E1 and E2 scaling

As soon asnLowand mHigh lie in the same half of the range of numbers (in this caser >
0x40000000), it is guaranteed that they will never leave this rangeragaice the following sym-
bols will shrink the interval. Therefore the informationcaib the half is irrelevant for the following
steps and we can already store it and remove it from consioera

Given the presented implementation, the most significast® SB) ofmLowandmHigh are equal

in this case. 0 corresponds to the lower half while 1 repitasis® upper. As soon as the MSBs
match, we can store them in the output sequence and shiftabenThis is calledE1- respective
E2-scaling:

while((mHigh < g_Half) || (mLow >= g_Half)) {
if(mHigh < g_Half) // E1
{
SetBit(0);
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;
}
else if(mLow >= g Half) // E2

{

SetBit(1);
mLow = 2 * (mLow - g_Half);
mHigh = 2 * (mHigh - g_Half) + 1;

g_Half is the global constariix40000000 that marks the center of the range. The multiplication
by 2 enlarges the interval. The addition of 1 fixes the uppeandas we deal with an open interval.

It is equivalent to the more intuitive solution: Whenevemicalation involves an open bound, add
1 before and subtract 1 after it. Adding 1 after the multgtion by 2 produces the same result.

SetBit() adds a bit to the output sequence. The complementary fumictithe decoder is called

GetBit() . Both functions work sequentially, one can interpret thenfrbcO queue. Seeking in

the encoded sequence is neither possible nor required)detae algorithm itself works sequen-
tially, too.

5.3 E3scaling

Though E1 and E2 scaling are a step in the right directiony, #ne not sufficient on their own.
They won't work whermrmLowandmHigh converge to the center of the interval: Both stay in their
halves, but the interval soon becomes too small. The extcaseewould be a value 6%3FFFFFFF

for mLowand 0x40000000 for mHigh. They differ in every bit (apart from the one reserved for
overflows), but further encoding is impossible.

This is where E3 scaling comes into play: As soomaswleaves the lowest quarter (maximum
value of the first quarterg_FirstQuarter) andmHigh the highest (fourth) quarter (maximum
value of the third quarterg_ThirdQuarter), the total range is less than half of the original range
and it is guaranteed that this won’t change because of theimgghrinking. It is not immediately
determinable which half will contain the result, but as sastthe next E1 or E2 scaling is possible,
one knows the values that one could have stored earlier Wvene able to foresee this. This might
sound strange, but it's the way E3 scaling works: One endattye interval just as one did with E1
or E2 scaling, but instead of storing a bit in the output seqgagone remembers that one did a E3
scaling using the helper variabiescale :

while((g_FirstQuarter <= mLow) && (mHigh < g_ThirdQuarter) {
mScale++;
mLow = 2 * (mLow - g_FirstQuarter);
mHigh = 2 * (mHigh - g_FirstQuarter) + 1;

}

On the next E1 or E2 scaling, one adds the correct bit for e@céckling to the output sequence.
Using E3 scaling followed by E1 scaling means that the imilevwould have fit into the range
betweeng_FirstQuarter andg_Half . This is equivalent to an E1 scaling followed by an E2
scalingd The sequence E3-E2 can be interpreted analogous, the sandogdterated E3 scal-
ings. Hence one has to store E3 scalings after the next EtAipg, using the inverse bit of that
scaling:

while((mHigh < g_Half) || (mLow >= g_Half)) {
if(mHigh < g_Half) // E1
{
SetBit(0);
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;

Il E3
for(; mScale > 0; mScale--)
SetBit(1);

else if(mLow >= g Half) // E2

SetBit(1);
mLow = 2 * (mLow - g Half);
mHigh = 2 * (mHigh - g_Half) + 1;

10We prove this on padeBoO.

Il E3
for(; mScale > 0; mScale--)
SetBit(0);

This coherence is illustrated by the figufds 4 &hd 5 on papel22.A be the alphabeA =
{a,b,c,d, e} using uniformly distributed probabilities. Figurk 4 shoawsas the first symbol. The
corresponding interval i§.4,0.6) that covers the second and third quarter. Therefore we can
apply E3 scaling and the resulting interval covers the se@md third quarter again. After the
next E3 scaling, the interval covers more than two quarsersye have to proceed with the next
symbolb. The resulting interval i$0.3750.5) which is contained completely in the lower half.
The E1 scaling stores a 0 in the output sequence, followed/b\ thits for the E3 scalings.

Figure[® illustrates why storing 011 was correct. Startirithwhe intervall[0,1), we apply E1
and E2 scalings according to the stored bits, meaning onen&twso E2 scalings. The resulting
interval is the same as lih 4 which shows the result of two EBrgrsafollowed by one E1 scaling.

This is valid in general. Let andg be two functions andjo f the consecutive application df
andg. Then we can express the method as follows:

LEMMA 2 Applied to any sequence, the following equations are valid:
Elo(E3)"= (E2)"0EL,
E20(E3)"= (E1)"oE2.

Proof:
Leta:=low, b:= highandl :=[0,1) be the interval we are working with. The scaling functions

can be expressed as follows:
a 2a
El =
) - ()

(=2

m M
w N
7~ N N\
o Q9 T 9O
NN
Il Il
N N
N N N DN
o 9 T QO
N
NI NP = =
N ——

Thenth iteration results in

) = ()
~\2
nfa)y (2"a-2"+1
2(3) = (om 22

exn(d) _ (2'a- 141
b 2p—2n-14 3
2

The proof by induction can be done by the reader with littferef This results in the following
equation:

a ng—on-1,1 2ntlg_2n41

(Elo (E3)I’l) = El(znb_ 2n_1 X ;) = <2n+lb— 2n + 1> (8)
n a o n 2a N 2”+1a—2n+1

((E2) oE1) = (E2) <2b> = <2n+1b_2n+1 ©

Equating [B) and{9) implies:

Elo(E3)" = (E2)"0E1

The second identity can be proven in an analogous way. d

5.4 Example encoding

We encode the input sequenaleccedac over A = a,b,c,d, e for further illustration of the E3
scaling. The model has to be adjusted according to the Table Bagd31l. The example is
presented in Tabld 4 to improve readability. The first colwantains the symbol that should be
encoded next. The following three columns show the parasé¢bat are passed tncode() .
They are followed by the computed boundsowandmHigh. The next columns contain E1 and
E2 scalings together with the resulting output bits. Urided bits represent bits of E3 scalings.
The next columns show further E3 scalings and the updateddso@ollowed by the required bits
to chose a value inside these bounds.

This example is limited to 7 bit integers. This is sufficieat dur sequence and far easier to read
than 31 bit.

symbol | frequency| low_count high_count
a 2 0 2
b 1 2 3
c 3 3 6
d 1 6 7
e 1 7 8

Table 3: Model for the example of scaling functions

0.5 1

0.5 -

Step 1
0.75 -

0.5 1

L

0.25 -

Step 2

e

I

0.625 -

0.5 1

Step 3
0.5

0.4375

0.375 - —— 0.375

Figure 4: Application of E3 scaling

Step 1

0.25

0L

Step 2

05—

Step 3
05— 05+
0.375 + 0.4375 +
0.25 - 0.375 -

Figure 5: For comparison - without E3 scaling

Sym|lc| hc |t | mStep| mLow mHigh Bits | E1/2-mLow | E1/2-mHigh mScale| E3-mLow E3-mHigh
a 0| 2 |8]16 0000000[0] 0011111[31] 00 0000000[0] 1111111[127) 0
b 2| 3 |8]|16 0100000[32] 0101111[47] 010 | 0000000[0] 1111111[127) 0
o 3| 6 |8]16 0110000[48] 1011111[95] 1 0100000[32] 1111111[127]
C 3| 6 |8|12 1000100[68] 1100111[103] 10 0
e 71 8189 1001111[71] 1001111[79] 100 | 0111000[56] 1111111[127) 0
d 6 | 7189 1101110[110] 1110110[118] 11 0111000[56] 1011011[91] 1 0110000[48] 1110111[119]
a 0| 2 |8|9 0110000[48] 1000001[65] 3 0000000[0] 1000111[71]
o 3| 6 |89 0011011[27] 0110101[53] 0111 | 0110110[54] 1101011[107] 0
rest 1
Table 4: Example of scaling functions in the encoder

Sym current symbol

I_c low_count, lower bound of the cumulative frequency of the symbol

h_c high_count, upper bound of the cumulative frequency of the symbol

t total, total frequency count

mStep step size

mLow lower bound of the new interval

mHigh upper bound of the new interval

Bits Bits that are stored and removed by E1/E2 scalings

E1/2-mLow | lower bound after E1/E2 scaling

E1/2-mHigh | upper bound after E1/E2 scaling

mScale sum of the new and the remaining E3 scalings

E3-mLow lower bound after E3 scaling

E3-mHigh | upper bound after E3 scaling

Table 5: Explanation of columns

5.5 Decoding

Since the decoder follows the steps of the encoder, thengsaliork the same. However, note that
one has to update the buff@Buffer , too. This works the same way the bounds are updated, one
just does not generate the subsequent bits but rather takeftom the encoded sequence.

II' E1 scaling

mLow = mLow * 2;

mHigh = mHigh * 2 + 1;
mBuffer = 2 * mBuffer + GetBit();

/I E2 scaling

mLow = 2 * (mLow - g Half);

mHigh = 2 * (mHigh - g _Half) + 1;
mBuffer = 2 * (mBuffer - g_Half) + GetBit();

II' E3 scaling

mLow = 2 * (mLow - g_FirstQuarter);

mHigh = 2 * (mHigh - g_FirstQuarter) + 1;
mBuffer = 2 * (mBuffer - g_FirstQuarter) + GetBit();

5.6 Example decoder

In the next example we decode the sequence that has beeredrindtie last one. The input for
the decoder i9$0010101001101111 . The first 7 bits of this sequence are loaded im&uffer .
The next bits are omitted in the table to improve readabilltypte that even on E3 scalings the
buffer is updated although no bits would be sent in the encatléhis stage. We had to cut off
some column names: StiigStep, Sy is Sym and Sc imScale .

St | mBuffer l_c| h.c| Sy mLow mHigh Bits | E1/2-mLow | E1/2-mHigh Sc| E3-mLow | E3-mHigh

16 | 0001010[10] 0 2 | a | 0000000[0] 0011111[31] 00 0000000[0] 1111111]127] 0

16 | 0101010[42] 2 3 | b | 0100000[32] 0101111[47] 010 | 0000000[0] 1111111]127] 0

16 | 1010011[83] 3 | 6 | c | 0110000[48] 1011111[95] 1 | 0100000[32] | 1111111[127]
12 | 0100110[38] 3 6 | c | 1000100[68] 1100111]103] 10 0

9 | 1001101[77] 7 8 | e | 1001111[71] 1001111[79] 100 | 0111000[56] 1111111]127] 0

9 | 1101111]117] 6 7 | d | 1101110[110] 1110110[118] 11 0111000([56] 1011011[91] 1 | 0110000[48] 1110111]119]
9 | 1110000[112] 0 2 | a | 0110000[48] 1000001[65] 3 | 0000000[0] 1000111[71]
9 | 1000000[64] 3 6 | c | 0011011[27] 0110101[53] 0111 | 0110110[54] 1101011]107] 0

Table 6: Example of scaling functions in the decoder

6 Ranges

6.1 Interval size

Since all necessary methods have been presented by nowultidbe clear that the valued ow
andmHigh can fall into two ranges when one iteration by the encodeeaoder is finished:

e mLow< FirstQuarter< Half < mHigh,

e mLow< Half < ThirdQuarter< mHigh.

This interval contains at least one complete quarter. Mopossible but not guaranteed.

The calculation ofmStep involves a division of the interval size kigtal . If total is larger than
the interval, this integer division results in 0. The altfum cannot proceed with this value, so the
model has to assure thiatal stays always below the minimum guaranteed size of the ialterv
in our case one quarter of the base range. Since we use 3t thitséxamples, a quarter equals to
29 bits, sufficing for models with less thaf®Zymbols (=512 Mbyte at 1 byte/symbol).

6.2 Alternative calculation

Literatur@] sometimes mentions another method to calculate the boundsur algorithm the
step size is computed first, followed by a multiplicationtwihe cumulative frequency counts of
the model. Sometimes this might result in quite large uniisedvals:

Let the interval be of the size 7 and the model returns a valdefar total . Then the step size
calculation results it / 4 = 1 because of the integer arithmetic. This way the upper bound
mHigh will not equal the previous upper bound when the last symbarnicodedhjgh_count
equals 4). Instead it is cut down to 4, hence almost one haliefnterval remains unused. To
circumvent this limitation one can exchange the order dharétic operations:

range = mHigh - mLow + 1;
mHigh = mLow + (high_count * range) / total;
mLow = mLow + (low_count * range) / total;

Using this method results imHigh (4« 7)/4 = 28/4 = 7, so one can use the whole interval.
However, the new order provokes overflows due to the mutgibn. Let the range b@,15) (4
bits). The alternative method would result in = 12 (mod16) [14, an unusable value for further
calculations. Using our method results imd7= 1 (mod 16) respective ¥4 = 4 (mod 16) which

is the expected value. To run the encoder on 32 bit regisberes,has to limit the width of the
factors:[ld(axb+1)] < [ld(a+1)] + [Id(b+1)].

Sincetotal must not be larger than the minimal interval available (atguaf the base interval),
it follows that

11See [BCWID], chapter 5.2.5, page 118.
12447 = 0100« 0111= 0010% 1110= 0001x 1100= 1100= 12

!
Id(total) < Id(range —2,
!
Id(total)+Id(range) < Id(register) .
This means in practice that one is limited to 17 bits respelstil5 bits fortotal . Because of the

lower precision and the additional division, this alteiveatmethod is usually less efficient than the
method presented here.

7 Summary of encoder and decoder implementation

En- and decoder can be pooled in one class. The only publicadstare those required by users
of the en-/decoder, i.&ncode, internal functions likeGetBit can be private. Static variables can
be implemented as member variables.

7.1 Encoder
The encoder can be implemented with the following interface

void Encode(const unsigned int low_count,
const unsigned int high_count,
const unsigned int total);

void EncodeFinish();

EncodeFinish() terminates the code correctly. At first it has to be ensuratittte following bits
determine a value inside the final interval. Since we knowttiainterval always contains at least
one quarter, we can simply use the lower bound of that quartere are two cases:

1. second quarter

mLow< FirstQuarter < Half < mHigh.

It is sufficient to store a O followed by a 1. That means that elect the lower half first,
followed by the upper. Since the decoder adds Os to the ityg#tra automatically at the end
of the stored file, this marks the lower bound of the secondtgudf there is an unhandled
E3 scaling, one also has to ad@cale 1 bits. One can combine this with the last 1 to a loop
overmScale+1 bits.

2. third quarter

mLow< Half < ThirdQuarter< mHigh.

The second case is a bit easier to encode: One would havet¢écardrifollowed bynScale+1
0 bits, but because these are added automatically, teirmgnaith a 1 is sufficient. There-
fore no loop is required.

if(mLow < g_FirstQuarter) // mLow < FirstQuarter < Half <= mH igh

{
SetBit(0);

for(int i=0; i<mScale+1; i++) // 1 + e3 scaling
SetBit(1);
}

else // mLow < Half < ThirdQuarter <= mHigh

{
}

SetBit(1); // decoder adds zeros automatically

7.2 Decoding

The decoder consists of the following three methods:

void DecodeStart();
unsigned int DecodeTarget(const unsigned int total);

void Decode(const unsigned int low_count,
const unsigned int high_count);

DecodeStart() initializes the buffer by reading the first bits of the enaddgout sequence.

for(int i=0; i<31; i++) /[only use the last 31 bits
mBuffer = (mBuffer << 1) | GetBit();

There are no further functions needed and the presentatiemcoding and decoding is finished.

We showed that overflows in integer arithmetics can be civamed using E1, E2 and E3 scaling.
A positive side effect is that one can send already the stoitedn sequential data transmissions
like remote data transfer. Since the decoder takes onlystimite account the bits found in the

buffer, it can start decoding as soon as 31 bits are recelNetk that errors in the encoded stream
corrupt the whole transmission. One has to split the messaged more redundancy to get a
robust implementation.

7.3 Termination of the decoding process

Since the bit sequence does not imply an end of the encodeshgesone has to add additional
information.

The simplest way is to add a file header that contains the Heofythe file. A disadvantage is
that one can only encode files of a fixed length or one has to t@Egom access on the output
file. Both is not available for example in fax machines tha sigecial end symbols instead. This
symbol is encoded using thminimal probability and must not appear in the regular data stream.
The decoder terminates as soon as this symbol is read.

The following chapter provides a closer look to the efficien¢ arithmetic coding and gives a
comparison with Huffman coding.

8 Efficiency

8.1 Looking at the efficiency

In chapte’36 we demonstrated, that a sequencannot be stored using less thdm) space
without any loss. From that we can derive thesragdength of an Arithmetic Code for a sequence
S™ of lengthm:

lam = ZPM(X) 1(x) (10)
_ [PM] (11)
1
< {Id EWE +1+1} (12)
_ —ZPM (x) 1d Py(x) —|—2sz (13)
= Hu(S™)+2. (14)

And since we already know that the average length is alwagater or equal to the entropy, it
turns out that

Hw(S™) < lpm < Hw(S™) +2. (15)
The average length per symHal also known azompression ratimf the Arithmetic Code, is
la= 4" S0 we get the following bounds féx:

Hu(S™) 2

M§IA<7+—. (16)

m - m m
Also we know that the entropy of the sequence is nothing lutethgth of the sequence times the
average entropy of every symlEI:

Hw (S™) = m- Hy (X) (17)

For the bounds folp this means

HM(X)glASHm(X)—F%. (18)

By examining this comparison one can easily see that he assijon ratida is guaranteed to
come close to the entropy, which itself is just determinedHsymodelM. This is the desired
effect.

8.2 Comparison to Huffman Coding

After having pointed out the efficiency of Arithmetic Codiimgthe last subsection, we now want
to compare this efficiency to the one of the well known Huffn@ode. Let us recall example
B6.1. The average length of the code can be calculated as

| = 0,5-2+0,25-3+0,125-4+0,125-4
= 2,75 [bits/symbo] .

13proof in [Say0D] p.50

But the entropy of this sequence is rather:

Hu(x) = le Id—

Hu(x) = —<lip(ai) 1d Pu(a)

1,1 1 1 1ogt.t gt
= —<z'dz g 1Azt ldg z'd8>
- Geadradioteo)

= 2,25

So it turns out that the length of the code thanbolwiseArithmetic Coding produces is here
not very close to the entropy. And even worse: If one encodedsibigience using Huffman
Coding, one would achieve the entropy completely. Why is?hBhat is simply due to the fact
that Huffman Coding isdeal if and only if one can assign whole bits for the single prolitds
(because the constraint of Huffman Coding is that it cansetftaction of bits). And this is here
obviously the case because because all probabilities agatjme) powers of 2. However, exactly
this is almost never the case in practical use - but unfotéiyaoes not prevent many people
from using such arguments as justification for Huﬁﬂm\part from that, Arithmetic Coding is
not even worse is such cases. However, obviously it canmfirpe any better either, because the
lower bound is already achieved by Huffman. Another commssumption in comparisons of
efficiency is that the sequence of symbols is independent ft® context. Also this will actually
never be the case for real life data sources. However, usgschssumption leads to much easier
equations, which fortunately are not too far from realityiag Equation[{17) for instance uses
this precondition. Now one can easily see that instead afgugie comparisori{18) one could
also work with [I6). However, the latter is just unnece$garomplicated and differs just by
an unimportant factor. One can proof that the efficiency ef ltuffman Code is constraint as
followsd:

Hm(S) <Is<Hm(S)+1. (19)

For Extended Huffmarwhich is a special version of Huffman Coding, mergimgymbols together
to longer, single symbols, the efficiency rises to

Hu(S) <15 < H(S)+ (20)
This is obviously more efficient for non-utopian sequenébsHS: P(x) # 2" vn € N). If one now
considers approachingnand compares this with equatidn]18), one could come to thelgsion
that Huffman Coding here has an advantage over Arithmetdir@o although this benefit shrinks
with raising lengthm of the sequence. However, this property is in real life nditMaecause one
must take with into account thatcannot be chosen arbitrarily big. Let us consider workingrov
an alphabet of lengtk and to groupb symbols together then we get a codebook sizkPofFor
plausible values d = 16 andb = 20 this already leads to the value?3Awhich is way too big for
every known RAM at the current time. $ds constrained by simple physics, while the length of
the sequencenincreases more and more. So in a practical view, Arithmetidi@y has also here
its advantages.

145ee alsd[Say00] ch. 4.5.
15A1s0 see[[Say00] ch. 3.2.3.

Another probable benefit of Arithmetic Coding depends ondaie source. One can show that
Huffman Coding never overcomes a compression rati®@d86+ Pnax) - Hw (S) for an arbitrary
sequences with Pyax being the largest of all occurring symbol probabilitiés Obviously, for
large alphabets it will turn out that one achieves a reltigmall value forPqayx leading to better
results for the Huffman Code. This gives indeed a good jaatifin for such a code on large
alphabets. Compared to that, for small alphabets, whiclosifgly lead to bigger probabilities,
Arithmetic Coding can win the race again. Applications gssuch small alphabet are for instance
the compression standar@8 andG4, which are used for fax transmission. Here we have a binary
alphabet (containing two symbols, one for black and one fatey and the probability for a white
pixel is usually very high. This leads to a value .4 of nearly 1, which disqualifies Huffman
Coding and gives us Arithmetic Coding as first choice.

Considering practical results_[Qan], it turns out that Amietic Coding is a small step ahead for
most of the real life data sources. That is due to the factHiaéiinan Coding is really just optimal
for the almost utopian case that all symbol probabilities@owers of two because in this case the
Huffman tree has minimal depth. However, since this is atmeser the case, the Huffman Coder
is usually forced to assign whole numbers of bits for symbdigre an Arithmetic Coder could
assign fractions of bits at the same time.

Another benefit of Arithmetic Coding, which we will not inuegate any further in this paper, is
that it can be adapted to work with various probability medeéls we saw in previous chapters,
one has just to attach an appropriate optimized model falyed&ta source. The basic coding /
decoding algorithm remains unchanged, so that implenientaf multiple codecs is relatively
straightforward. This is especially an advantage if onesi@rsadaptivemodels, which require
complex changes of the tree structure using the Huffmarrighgo.

We will now explain such adaptive models in further detadcéuse compared to the previously
used static models, they are usually much more powerful.

16[Say00] p.37f

9 Alternative models

In previous chapters we used the cumulative function

k
K(@) =3 Pu(a)

to code the symbadl, being thek-th symbol of the alphabe. In reality, the probabilitie®v (a),
(i=1,...,]A|) are therefore retrieved from the modél]. However, until now, we have withheld
if this model is capable of determining the probability ofyabol ax in a sequenc&at all. And
if it is, how does it work? We will now try to answer these qi@ss.

First of all, we want to note that the entropi (S) is depended on the modkl by definition.
Therefore, regardless how good or bad our model is, the mgtit Coder always achieves the
best possible result (neglecting some few bits of overhe&tywever this lower bounc@recall
equation [IIB)) can still be lowered further using appropriate models.

9.1 Order-n models

Hitherto we considered all symbols as being independentstoehastic sense. However, it is
actually quite common that probabilities change dependanthe current context. In German
texts for example the average probability of the letter &rapproximately 4.35%. But if one
considers the predecessor being a 'q’, the probability éeirgg a 'u’ increases to almost 100%.

Models which take the context of a symbol with into accourd ealled GRDER-N MODELS,
whereN stands for the size of the context. So for example an Ordeo@ewill always return
the probability in relation to the last 3 symbols seen so far.

9.2 Adaptive Models

Most implementations are developed for varidifferentdata sources. This means that usually the
exact probability distribution of the data source is unknowlso it might not always be possible
to simply count the occurring symbols. Just consider a famgmission: The transmission shall
already begin when the first page becomes read and the rds dbtument(s) and its symbol
probabilities are still unknown. So the only useful thingea@an do is performing an estimation.

And now it seems obvious that this estimation mustdaptedto probabilities of the symbols
which have already been read by the current position. Thahisin this case we speak of an
adaptive modelLet us have a look at the following example:

9.2.1 Example

As an easy demonstration we chooseadaptive order-0 modelWwhereorder-0 means that our
model always considers the probability of just the symbdiheut any context.

To achieve that, it is sufficient enough to define an aKagt the beginning, which has the size of
the cardinality of the alphab&t All array values become initialized with the value 0. Noefdre

1"Depending on the implementation, the model may also padsoiinedK (ay) directly.

s Klal Kbl Kl Kdl |z|R'@ R RY© R
a 1 0 0 0 |1 1 0 0 0
b 1 1 0 0|2 1/2 1/2 0 0
a 2 1 0 0 [3]| 2/3 1/3 0 0
d 2 1 0 1 |4 1/2 1/4 0 1/4

Table 7: Function of an adaptive order-0 model

each coding step, a symbmis passed from the input stream to the model and this increntlea
appropriate array entry as well as the absolute symbol eornffterwards the probabilities are
redistributed using the assignment

Let us for example consider the following alphabet
A=ab,.cd

and encode the sequenakad Table[T gives the calculation results for this model. Ihtuout
that the probability values which are assigned after thieshambol was read are equal to treal
probabilities of the symbols. So it is obvious that the clatad probabilities come pretty close to
the real ones for long sequences.

Since the initialization is known in advance and every assignt is done step by step after reading
each symbol, the decoder can retrace these steps withoptralolems. It just updates the model

in the very same way. This leads to the advantage that no eghgabbabilities must be sent over

the data stream. They can just be generated from the dath Wis@ecoder receives anyway.

9.3 Additional models

For some applications, such as mixed files which consist of destinct data partitions with
different probability distributions, it might be useful tetect rapid changes of the probability
distribution and - once such a jump is detected - to reiiiaihe arrayK of the model e.g. with
a uniform distribution. This usually leads to a better coasgion for the following part of the
sequence because the model can adapt much faster.

Obviously one can imagine a lot of different additional misdehich might be better for appropri-
ate data sources. However, we will not go any further ints theéme because the implementation
of the models is actually independent from the mechanism rithietic Coding and there is
already a lot of literature around about stochastic modelBai] might give some useful hints.

10 Conclusion

After all these consideration, let us now recap and checleihave achieved what we promised in
the beginning. With Arithmetic Coding, we have describeddilrg method, which is suitable for
data compression. This was proven by showing that the remeints of a bijective encoding are
met. Implementation can nowadays employ integer as welbasirily point arithmetics. We have
seen, that Arithmetic Coding can work sequentially, encgdiymbol per symbol and thus is able
to send already encoded parts of a message before it is fudiwk This property is exploited
when applying the three scaling functions, which enlargevibrking interval in such a way that
overflows do not occur and even finite arithmetics suffice.oAl® showed up the bounds of the
efficiency of general encoding and noted, that the averade lemgth for any symbol of an input
sequence approaches closer and closer to the model-depemtopy with raising length of the
input sequence. We also demonstrated in what cases Arith@eding is especially efficient and
in what cases it is only as efficient as Huffman Coding. We chtie@t the compression ratio that
can be reached by any encoder under a given model is actuallyded by the quality of that
model. Here we also realized another advantage of Aritlar@biding, since it allows the easy
exchange of statistical models, that might be optimizedtéstain input data.

We conclude that we have achieved our goal. In the end of #pefpwe now want to share some
thoughts about fields of improvement and applied techniques

10.1 Remember: Compression has its bounds

Although Arithmetic Coding has been established and opguohiover the past 10 to 20 years,
every now and then a new variation appears. Interestedneatght want to observe the news-
groupcomp.compressiofor new techniques and further insights. However, bewamn&imes
people claim having invented an outstanding algorithmpleaforms several times better than any-
thing seen before. Frequently they are exaggerating, sm@&isimply ignoring that Arithmetic
Codingis aboutosslesscoding. We know for sure that the Shannon theorem_[WS49]aguar
tees that compression below the entropy of the source isssilgle. One can remove as much
redundancy from one’s data as one likes, but entropy is pravee a hard limit.

10.2 Methods of Optimization

However one can optimize one’s algorithms in at least twoetdigions: memory usage and speed.

10.2.1 Memory Usage

Arithmetic Coding is almost optimal in terms of memory usageses only a constant amount of
memory for simple models (elaborate models might take soore nbut usually less than linear).
Furthermore it generates a code that cannot be compresgédtiier. Note that this code depends
on the modelH(S) < Hwu(S) < |Cod€S)|. We have to differentiate between the natural entropy
of the source sequendd,S), which represents the mathematical lower bound, and thedthat

is set by our modeHy (S). Arithmetic Codingreachely(S), but that might be far from perfect

if one’s model is incapable of representing the input dats wesll.

Since input data is not predictable in a general way, onehaie to find a model that works for

one specific application context. Arithmetic Coding allaawsodular design so that the coder can
interact with different models, even switching betweemthehile coding. Quite a lot of models
have been developed, one of the most popular model famdi®$M (Prediction with partial
match) They are quite efficient due to varying context length, bostof the advanced ones lack
a sound mathematical background. Visit [Dat] for furthdoimation.

10.2.2 Speed

The speed of Arithmetic Coding coders has been improvedthegrears. Integer implementations
are common, but with improving floating point power of modéUs this way might become an
alternative. We showed [0°3.6 that an implementation basdibating point arithmetic is possible.
A very efficient integer implementation is tikange CodejMar79], [Cam99]. It performs scaling
byte-wise, thus eliminating large parts of the bit-fiddlimgich is a major performance problem on
current CPUs. Speed improvements up to 50% are reporteceadhéiie code size increases only
by 0.01%. These numbers have to be seen with caution singetitg reflect the performance
of the coder, not of the model. However, the bottleneck oaysdmplementations of Arithmetic
Coding is almost always the model. As usual one can get awvieveabout all this on[Déat].

As one can see, the most interesting research fields in thextasf Arithmetic Coding are the

models. Code size, memory usage and speed depends maihBrnomhereas a well implemented
coder can be seen as a minor task, especially since Aritbr@eiilingitself is documented very
well.

A Areference implementation in C++

also available athttp://ac.bodden.de

This implementation should present the whole algorithm imoa-ambiguous way to answer any
open questions regarding implementation details. We udmples adaptive order 0 model as
describes in chaptér®.2. Therefore the compression mtjoite low, but one can exchange the
model anytime, just derive a new one from the base dlasisll .

A.1 Arithmetic Coder (Header)

#ifndef _ ARITHMETICCODERC H__
#define _ ARITHMETICCODERC H__

#include <fstream>
using namespace std;

class ArithmeticCoderC

{

public:
ArithmeticCoderC();

void SetFile(fstream *file);

void Encode(const unsigned int low_count,
const unsigned int high_count,
const unsigned int total);
void EncodeFinish();

void DecodeStart();
unsigned int DecodeTarget(const unsigned int total);
void Decode(const unsigned int low_count,

const unsigned int high_count);

protected:
Il bit operations
void SetBit(const unsigned char bit);
void SetBitFlush();
unsigned char GetBit();

unsigned char mBitBuffer;
unsigned char mBitCount;

Il in-foutput stream
fstream *mFile;

Il encoder & decoder
unsigned int mLow;

unsigned int mHigh;
unsigned int mStep;
unsigned int mScale;

/I decoder
unsigned int mBuffer;

3

#endif

A.2 Arithmetic Coder

#include "ArithmeticCoderC.h"
#include "tools.h"

/I constants to split the number space of 32 bit integers
/I most significant bit kept free to prevent overflows
const unsigned int g_FirstQuarter = 0x20000000;

const unsigned int g_ThirdQuarter = 0x60000000;

const unsigned int g_Half = 0x40000000;

ArithmeticCoderC::ArithmeticCoderC()
{

mBitCount
mBitBuffer

0;
0;

mLow = O;
mHigh = Ox7FFFFFFF; /I just work with least significant 31 bi
mScale = 0;

mBuffer = 0;
mStep = 0;
}

void ArithmeticCoderC::SetFile(fstream *file)
{
mFile = file;

}

void ArithmeticCoderC::SetBit(const unsigned char bit)

{
/I add bit to the buffer

mBitBuffer = (mBitBuffer << 1) | bit;
mBitCount++;

if(mBitCount == 8) /I buffer full
{

Il write

mFile->write(reinterpret_cast<char*>(&mBitBuffer),s izeof(mBitBuffer));

mBitCount = 0;
}
}

void ArithmeticCoderC::SetBitFlush()

{
Il fill buffer with 0 up to the next byte
while(mBitCount = 0)

SetBit(0);
}
unsigned char ArithmeticCoderC::GetBit()
{
if(mBitCount == Q) // buffer empty
{
if(!(mFile->eof())) // file read completely?
mFile->read(reinterpret_cast<char*>(&mBitBuffer),si zeof(mBitBuffer));
else
mBitBuffer = 0; // append zeros
mBitCount = 8;
}

/I extract bit from buffer

unsigned char bit = mBitBuffer >> 7;
mBitBuffer <<= 1;

mBitCount--;

return bit;

}

void ArithmeticCoderC::Encode(const unsigned int low_co unt,
const unsigned int high_count,

const unsigned int total)
Il total < 2729

{

/I partition number space into single steps
mStep = (mHigh - mLow + 1) / total; // interval open at the top =>

/I update upper bound
mHigh = mLow + mStep * high_count - 1; // interval open at the to

Il update lower bound
mLow = mLow + mStep * low_count;

Il apply elle2 scaling

+1

p=>-1

}

while((mHigh < g_Half) || (mLow >= g_Half))
{
if(mHigh < g_Half)
{
SetBit(0);
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;

Il perform e3 scalings
for(; mScale > 0; mScale--)

SetBit(1);
}
else if(mLow >= g_Half)
{
SetBit(1);
mLow = 2 * (mLow - g_Half);
mHigh = 2 * (mHigh - g_Half) + 1;

Il perform e3 scalings
for(; mScale > 0; mScale--)

SetBit(0);
}

}
Il e3
while((g_FirstQuarter <= mLow) && (mHigh < g_ThirdQuarter
{

Il keep necessary e3 scalings in mind

mScale++;

mLow = 2 * (mLow - g_FirstQuarter);
mHigh = 2 * (mHigh - g_FirstQuarter) + 1;
}

void ArithmeticCoderC::EncodeFinish()

{

Il There are two possibilities of how mLow and mHigh can be dis
/I which means that two bits are enough to distinguish them.

if(mLow < g_FirstQuarter) // mLow < FirstQuarter < Half <= mH

{
SetBit(0);

for(int i=0; i<mScale+1; i++) // perform e3-scaling
SetBit(1);
}

else // mLow < Half < ThirdQuarter <= mHigh

{

tributed,

igh

SetBit(1); // zeros added automatically by the decoder; no n eed to send them

}

Il empty the output buffer
SetBitFlush();

}

void ArithmeticCoderC::DecodeStart()
{
Il Fill buffer with bits from the input stream
for(int i=0; i<31; i++) /I just use the 31 least significant b its
mBuffer = (mBuffer << 1) | GetBit();
}

unsigned int ArithmeticCoderC::DecodeTarget(const unsi gned int total)
/I total < 2729
{
Il split number space into single steps
mStep = (mHigh - mLow + 1) / total; // interval open at the top => +1

Il return current value
return (mBuffer - mLow) / mStep;

}

void ArithmeticCoderC::Decode(const unsigned int low_co unt,
const unsigned int high_count)
{
Il update upper bound
mHigh = mLow + mStep * high_count - 1; // interval open at the to p=>-1

Il update lower bound
mLow = mLow + mStep * low_count;

Il elle2 scaling
while((mHigh < g_Half) || (mLow >= g_Half))
{
if(mHigh < g_Half)
{
mLow = mLow * 2;
mHigh = mHigh * 2 + 1;
mBuffer = 2 * mBuffer + GetBit();
}

else if(mLow >= g Half)
{
mLow = 2 * (mLow - g_Half);
mHigh = 2 * (mHigh - g_Half) + 1;
mBuffer = 2 * (mBuffer - g _Half) + GetBit();
}

mScale = 0;

}

Il e3 scaling
while((g_FirstQuarter <= mLow) && (mHigh < g_ThirdQuarter))

{

mScale++;

mLow = 2 * (mLow - g_FirstQuarter);

mHigh = 2 * (mHigh - g_FirstQuarter) + 1;
mBuffer = 2 * (mBuffer - g_FirstQuarter) + GetBit();

A.3 Model Base Class (Header)

#ifndef _ MODELI_H__
#define _ MODELI_H__

#include "ArithmeticCoderC.h"

enum ModeE

{
MODE_ENCODE = 0,

MODE_DECODE
3

class Modell

{
public:
void Process(fstream *source, fstream *target, ModeE mode);

protected:
virtual void Encode() = 0;
virtual void Decode() = 0;
ArithmeticCoderC mAC;

fstream *mSource;
fstream *mTarget;

3

#endif

A.4 Model Base Class
#include "Modell.h"

void Modell::Process(fstream *source, fstream *target, M odeE mode)

mSource = Source;
mTarget = target;

if(mode == MODE_ENCODE)

{
mAC.SetFile(mTarget);

/I encode
Encode();

mAC.EncodeFinish();

}
else // MODE_DECODE

{
mAC.SetFile(mSource);

mAC.DecodeStart();

/I decode
Decode();

A.5 Model Order 0 (Header)

#ifndef _ MODELORDEROC_H__
#define _ MODELORDEROC_H__

#include "Modell.h"

class ModelOrderOC : public Modell

{
public:
ModelOrder0C();

protected:
void Encode();
void Decode();

unsigned int mCumCount[257];
unsigned int mTotal;

3

#endif

A.6 Model Order O
#include "ModelOrder0C.h"

ModelOrder0C::ModelOrder0C()
{

Il initialize probabilities with 1
mTotal = 257; // 256 + escape symbol for termination
for(unsigned int i=0; i<257; i++)

mCumCount[i] = 1;

}

void ModelOrder0C::Encode()
{

while(' 'mSource->eof())

{

unsigned char symbol;

Il read symbol
mSource->read(reinterpret_cast<char*>(&symbol), size

if('mSource->eof())
{
/I cumulate frequencies
unsigned int low_count = 0;
for(unsigned char j=0; j<symbol; j++)
low_count += mCumCount[j];

/I encode symbol

mAC.Encode(low_count, low_count + mCumCount[j), mTotal)

/I update model
mCumCount[symbol]++;
mTotal++;
}
}

Il write escape symbol for termination
mAC.Encode(mTotal-1, mTotal, mTotal);

}

void ModelOrder0C::Decode()
{

unsigned int symbol;

do
{

of(symbol));

unsigned int value;

/I read value
value = mAC.DecodeTarget(mTotal);

unsigned int low_count = 0;

Il determine symbol
for(symbol=0; low_count + mCumCount[symbol] <= value; sym
low_count += mCumCount[symbol];

I write symbol
if(symbol < 256)
mTarget->write(reinterpret_cast<char*>(&symbol), siz

/I adapt decoder
mAC.Decode(low_count, low_count + mCumCount[symbol]);

/I update model
mCumCount][symbol]++;
mTotal++;

}

while(symbol = 256); // until termination symbol read

}

A.7 Tools

#ifndef __ TOOLS H__
#define __ TOOLS H__

int inline min(int a, int b)

{

return a<b?a:b;

3

#endif

A.8 Main

#include <iostream>
#include <fstream>
using namespace std;

#include "ModelOrder0C.h"

Il signature: "ACMC" (0x434D4341, intel byte order)
II' (magic number for recognition of encoded files)

bol++)

eof(char));

const int g_Signature = 0x434D4341;

int __cdecl main(int argc, char *argv[])

{

cout << "Arithmetic Coding” << endl;

if(argc = 3)
{

cout << "Syntax: AC source target' << endl;
return 1;

}

fstream source, target;
Modell* model;

Il choose model, here just order-0
model = new ModelOrder0C;

source.open(argv[l], ios:in | ios::binary);
target.open(argv[2], ios:out | ios::binary);

if(!source.is_open())

{
cout << "Cannot open input stream";
return 2;
}
if('target.is_open())
{
cout << "Cannot open output stream";
return 3;
}
unsigned int signature;
source.read(reinterpret_cast<char*>(&signature),siz eof(signature));
if(signature == g_Signature)
{

cout << "Decoding " << argv[l] << " to " << argv[2] << end|
model->Process(&source, &target, MODE_DECODE);
}

else
{
cout << "Encoding " << argv[l] << " to " << argv[2] << endl;
source.seekg(0, ios::beg);
target.write(reinterpret_cast<const char*>(&g_Signat ure),
sizeof(g_Signature));
model->Process(&source, &target, MODE_ENCODE);

source.close();
target.close();

return O;

}

Index

abstract clas§, B8 PPM,[4®
adaptive model$, 43 prefix code[I0
Algorithmus [TD probability,[®
alphabet[16 _
alternative calculatiori_36 Scaling[ZB

scaling functiond, 28
C(S)[1D sequencd,]6
Code[TD sequence of bit§, P23
Code(S)[ID Shannon-Theorerh, %5
codec[ID symbols[b
compression rati¢, 40 o
cumulative probabilitief 12 Termination of the codé. 38
decoder 0 unique decodability, 10
Decoding[(I 24,34 uniquely decodablé&, 10
decoding[ID uniqueness of representatign] 19

E1-Scaling[ZB

E2-Scaling[ZB

E3-Scaling[ZP

Efficiency of Arithm. Coding[ZZI0
Efficiency of Huffman Codind,-40
encoder 10

Encoding[2B

encoding [T 13

Entropy[40

entropy[T[B

finite arithmetic[IP
high,[12

Implementation[-47
interface encodel,_38
interval creation[_112
interval size[:3b

length [
low, 12

model [T
model, statid_13
MSB,[Z23

Optimization, methods of 45
Order-n modeld,_43
Order-n-Modell[¥

58

References

[BCKO2] Eric Bodden, Malte Clasen, and Joachim Kneis. Ar#itic Coding in a nutshell. In
Proseminar Datenkompression 2001niversity of Technology Aachen, 2002. En-
glish version available: Arithmetic coding, introductj@ource code, example, appli-
cations.

[BCW90] Timothy C. Bell, John G. Cleary, and lan H. WitteFext compressionPrentice-Hall,
Inc., 1990.

[Beu94] A. BeutelspacheCryptology Mathematical Association of America, 1994.

[Cam99] Arturo Campos. Range coder implementation, 1999.
http://www.arturocampos.com/aange.html.

[Can] The canterbury corpus.
http://corpus.canterbury.ac.nz/summary.html.

[Dat] The data compression library.
http://dogma.net/DataCompression/ArithmeticCodihtynd.

[Fan6l] R. FanoTransmission of InformationMIT Press, Cambridge, 1961.

[Mar79] G. N. N. Martin. Range encoding, an algorithm for mimg redundancy from a
digitised message. Mideo and Data Recording Conference, Southampton, July 24-
27,19791979.

[Say00] Khalid Sayoodintroduction to data compression (2nd edMlorgan Kaufmann Pub-
lishers Inc., 2000.

[WBM94] lan H. Witten, Timothy C. Bell, and Alistair MoffatManaging Gigabytes: Compress-
ing and Indexing Documents and Imagdshn Wiley & Sons, Inc., 1994.

[WS49] W. Weaver and C.E. Shannofhe Mathematical Theory of Communicatidgniver-
sity of lllinois Press, Urbana, lllinois, 1949. republishia paperback 1963.

	Abstract
	Motivation and History
	Introduction
	Foundations
	Example: Entropy
	Encoder and decoder
	The notions of uniqueness and efficiency

	Encoding to real numbers
	Example: interval creation
	Upper and lower bounds
	Encoding
	Decoding
	Decoding example
	Uniqueness of representation
	Example
	Proof

	Summary

	Encoding as sequence of bits
	Motivation
	Abstracting from the model
	Encoding
	Example: encoding
	Decoding
	Example: decoder

	Scaling in limited ranges
	Motivation
	E1 and E2 scaling
	E3 scaling
	Example encoding
	Decoding
	Example decoder

	Ranges
	Interval size
	Alternative calculation

	Summary of encoder and decoder implementation
	Encoder
	Decoding
	Termination of the decoding process

	Efficiency
	Looking at the efficiency
	Comparison to Huffman Coding

	Alternative models
	Order-n models
	Adaptive Models
	Example

	Additional models

	Conclusion
	Remember: Compression has its bounds
	Methods of Optimization
	Memory Usage
	Speed

	A reference implementation in C++
	Arithmetic Coder (Header)
	Arithmetic Coder
	Model Base Class (Header)
	Model Base Class
	Model Order 0 (Header)
	Model Order 0
	Tools
	Main

	Index
	Bibliography

