McGill University
School of Computer Science
Sable Research Group

Partial Program Analysis

Sable Technical Report No. 2007-6

Barthélémy Dagenais
Software Evolution Research Group
McGill University
Montréal, Québec, Canada

September 14, 2007

www.sable.mcgill. ca

Contents

[1_Mativation] 3
[2__Related Work 4
B_Ea.maLEmgLa.md' 5
4__Partial Analysid 8
k4.1 Named and Anonymous Unknown TYpeS oot v ittt 8
U2 Generatingtypefabts 8

W21 Typedefinitidn

M22 TypeMembelrs

B23 Cavedts
b3 Inferringtypefadts 10
U311 Typeinference Stratedieso 10
U32 CombiningStrategles 11
433 Merging type inference falcts 11
K4 _Implementation detailso 12
a1 ExtendingPolyglot 12

W42 Thealgorithhn
443 Anextensible implementation 15
I5__Experimental FrameworH 16
lb__Resuith 17
[Z_Conclusioh 19
[A__Annex A - .Java Source Filels 20
IB_Annex B - Jimple Source Files 23

Abstract

Software engineers often need to perform static analysias sabset of a program source
code. Unfortunately, static analysis frameworks usualii/tb complete their analyses be-
cause the definitions of some types used within a partialrarocare unavailable and the
complete program type hierarchy cannot be reconstructez pMpose a technique, Partial
Program Analysis, to generate and infer type facts in indete@ava programs to allow static
analysis frameworks to complete their analyses. We dessthib various levels of inference
soundness our technique provides, and then, we cover threatgairithm and type inference
strategies we use. We conclude with a detailed case studyirsiidnow our technique can
provide more precise type facts than standard parsers atihetsyntax tree generators.

1 Motivation

Software engineering researchers often perform simplé staalyses such as computing and
following use-def chains and building call graphs. Sometiphowever, they only have access to
a subset of the program source code and their analyses argréatly hindered.

For example, researchers that mine software repositdiearé¢ typically interested only in the
files that were modified between two revisions of a softwarecaBise they need to perform their
analysis on every single revision of the system, the conitylef their analysis must be pro-
portional to the size of the change and not to the size of thgram, if they want their work to
complete in areasonable time. Moreover, they usually dbaet access to the compiled program
corresponding to each revision.

With strongly typed languages such as Java, most parserscenplilers fail to reconstruct the
complete type hierarchy in the presence of partial prograumcg code and thus complain and
report an error. This limitation greatly reduces the amaunt the quality of the analyses that can
be performed on partial programs even though:

1. It should be possible to perform some static analyses asitbcals use-def chains without
having a complete type hierarchy because such informagitypically not required by these
analyses.

2. Facts about a type can be inferred just by looking at hovpé#ngal program uses the type.

We call the ability to statically analyze a subset of a progsource cod®artial Program Anal-
ysisor PPA. In the following sections, we present the ideas lithiis analysis in Java and its
implementation in the Sootl[6] static analysis framewor&.lihten the writing, we will refer to
any parser, compiler or framework such as Sodaralysis framework

2 Related Work

Since the Java type system has been proved to be sound [X]anadgsis frameworks stay away
from partial program analysis because it is inherently ungo Still, some research projects re-
lated to program fragments and partial type systems addidar problems.

In [5], researchers wanted to evaluate the test coveraderetaiver classes and target methods at
polymorphic call sites. To compute this coverage, they adead perform whole-program analyses
such as Rapid Type Analysis (RTA) and points-to analysis,ftwuperformance reasons, they
wanted to cover only a fraction of a program. Thus, they éel/is general scheme where they
create a main method in each potentially interesting claaisdalls every method and copy every
field of the class. Then, they use these main methods as ewitnis gor their whole-program
analyses. One prerequisite of their approach is that thest haye access to the definition of any
types required by their input classes. Since our work addethe cases where the users do not
control the input classes and do not have access to the aefioit all types referenced in the
input, this approach cannot be used.

Work also have been done on performing type inference usiogl information [4] or partial
evaluation|[¥], but in all cases, the prerequisite is theeasto the type definition.

3 Partial Programs

Partial Program Analysis aims at helping an analysis fraomkwo reconstruct a complete type
hierarchy when receiving as input a subset of a program eaagde. For this to be realizable, we
must make the following assumption:

Al: Given a subset of a program P’s source code, we assum@iibgtam P’s complete source
code can compile without any error.

Indeed, there is no point in generating and inferring typesféd the way types are used in the par-
tial program, our only source of information, is flawed. Wgua this is a reasonable assumption,
especially when mining software repositories: a widelyegted convention is to commit code to
the repository only if the developer's workspace compiléhaiit an error. If we assume that the
full program compiles, partial program analysis can thedibrled into two problems:

P1: What type facts need to be generated so the analysis\varke&an reconstruct the complete
type hierarchy and complete its analysis?

Type facts are needed almost everywhere in a Java progrdmefédences to a type by its name
are discussed in the Java Language Specificdilon [2] (Je8jps 4.11. Such references include
import statements at the beginning of a Java file, extendselawariable declarations or catch
statements, to name only a few.

Unfortunately, referring to a type by its name is only onganse where an analysis framework
needs to interact with the type system. Here is a non exlvaust of situations where type facts
can also be required:

e When the analysis framework encounters a method call made atject, the framework
needs to access the definition of this method to produce tieatdinding.

e When a method is accessed in a static way, the analysis frarkawight check if the
method is declared to be static.

e When an object is passed as a parameter to a known methodalysia framework might
want to ensure that the object is a subclass of the formahpstea type.

¢ In a catch statement, the analysis framework might want soirenthat the referenced type
is a subtype of th&hr owabl e type.

e When an object is assigned to another object, the analysisefivork might want to check
if the implicit cast is valid.

Since we assume the program compiles, we need to generatechieed type facts, such as
method declarations, and ensure that all checks implemhdnytéhe analysis framework pass.

P2:. What type facts can we infer once the partial program heenbparsed and checked?

Generating the fact that an unknown tyipeontains a certain methad) because it is called in

the partial program is only one side of the problem. What carsay about the unknown type’s
hierarchy? If a known method is overloaded, can we determirieh one is called? Can we infer
the type of an unknown field? Can we infer the return type ofrdmown method?

This problem is generally known as type inference. But amepg to complete programs written
in a strongly type language we, cannot use standard camshased type inference because most

5

of the type facts are expected to be missing. It follows thatan perform two kinds of type facts
inference:

Sound type fact inference

We expect this kind of inference to be very rare. For exanf@ai nt is assigned to an unknown

field and the unknown field is assigned toiah , we can then soundly infer that the unknown field
is ani nt . But if there is only one assignment, the inference becomesund because it could be
a short or a long (or evenjava. | ang. | nt eger) depending on the side of the assignment.

Unsound type fact inference
We expect this kind of inference to be more common. Still, ae differentiate the unsound type
fact inference results in three categories:

1. Correct hierarchy-related inference
This kind of inference will always be correct, but the inéafitype might not be the one defined in
the missing source code (i.e, formal type). Let us consiuesd three examples:

Example 1:
super. age = 2;

In this example, if the definition of the super class is unknpwe can infer thasuper. age is
a primitive. When we generate the final code, we need at soiiné tpachoose a primitive. The
obvious choice would be in this caseiart , but it is possible that it is in factleong. We say that
the inference is correct because this is definitively a gimiand this is not &ool ean, but the
real type might be in the hierarchy of the inferred type (iis ttase, a super type ofit).

Example 2:

Bird bl = ...
Bird b2 = ...
bl.si ngFor (b2);

In this example, we can infer that the tyRier d declares a methagl ngFor () that accepts 8i rd
type as input. Again, we say that the inference is correcte@a, there is one method accessible
from theBi r d type that accepts a parameter that can be a bird), bt tigd=or () method might
be declared in a super type Bifrd and it could accept a super type Bifrd as a parameter
(hierarchy-related).

Example 3:

Bird bl = unknownCbj ect. unknownMet hod() ;
unknownQbj ect . unknownMet hod() . eat () ;

In this example, we first infer thainknownMet hod returns an object in the hierarchy Bifr d.

In the second statement, we infer that the metbatl) is called on an object with a type in
the hierarchy oBi rd. In other words, we will generate the fact that the metBiodd. eat () is
called. Strictly speaking, this might be wrong since it isgible thaunknownMet hod() returns a
subclass oBi rd (e.g.,Bl ueJet) and that theeat () method is only declared within the subclass.
However, theeat () method is still declared in a type within the descendant8iofi, so we
conclude that this is a correct hierarchy-related infeeenc

2. Unknown types inference
Sometimes, we expect to be unable to generate any fact altgoe.alet us consider fielfl in
this example:

unknownQbj ect. f1 = unknownChj ect. unknownMet hod(...);

In this case, where everything is unknown, we will simply giette the fact that the type bt is
unknown.

3. Possibly incorrect inference
Finally, we might want to be aggressive when doing type #&riee even if this could lead to
incorrect type facts. See Sectidn 6-E for an example.

When writing the final output, the type inference soundnesslishould be clear.

4 Partial Analysis

In this section, we cover the main strategies we devised Itee gsbe two problems presented in
Section[B. We also briefly present the technical framewots which we implemented those
strategies.

4.1 Named and Anonymous Unknown Types

When analyzing a partial program, the analysis framewonkcoene across two kinds of unknown
types, i.e., types for which we do not have the definition:

Example:

1. Bird bird = new Bird();

2. Systemout. println(bird. propertyl);

If we know the name of a particular type but do not have acaeds tefinition as it is the case
with Bi rd in the first line, we call it &Named Unknown Typsnce we at least know its short name
(and maybe its fully qualified name as we will see in the nekiseation). We also know that it
is not a primitive nor the reference version of a primitiveca those are restricted and cannot be
extended as specified by the JLS. Finally, we also know tleatyihe is not an array or a subclass
of a final class. For example, it cannot substitug & ng.

If we do not know the name of a particular type as it is the cagiepwopert y1 in the second line,
we call it anAnonymous Unknown Typén this particular case, it can be anything: a primitive,
an array, &tring, a Named Unknown Type, etc. Since the analysis frameworksaefully
gualified name even for unknown types, we chose toM#& CPPACKAGE. MAGI CCLASS as the
name of such types. This is the only type name that is genkiaigur analysis: even if we could
generate other intermediate types, this would not be paddfithe user of our analysis expects to
get real types from the analyzed program.

4.2 Generating type facts

The main strategy when generating type facts is to try to kedfasent and permissive as possible
by doing as little type inference as possible.

4.2.1 Type definition

The first kind of facts that we need to generate for the arafyamework is the type’s fully qual-
ified name. As we will see in the following example, we can emter four different situations:

package bar;

i nport foo.*;
i mport bar. baz. Bird;

class Bluelet extends Bird {
private test.Dog dog;
private Aninmal a;

First, when the analysis framework encountersBihal class name, we infer that its fully qualified
name ishar . baz. Bi r d because there is axplicit import statement

Second, when the analysis framework encounter®dbeclass name, we infer that its fully quali-
fied name ig est . Dog because its fully qualified name is used in the declaration.

Third, when the analysis framework encountersAhiemal class name, we cannot infer its fully
gualified name because it could be:

Ani mal (default package)

f 0o. Ani mal (because of the import all statement)

bar. Ani mal (it would be in the current package)

In this particular case we will generate the fact that thiy fglialified name oAni mal is MVAG CP-
PACKACE. Ani mal telling the analysis framework that we could not make a sassdimption.

Fourth, if thei nport foo.* statement was not part of the above example, we could have gen
erated the fact that the fully qualified name of Animal wasantbar. Ani mal . Even if this
would be an unsound assumption (Animal could be in the defedkage), this default behavior

is desirable since explicitly importing a class in the saraekpge is not a common practice. For
example, Eclipse removes this kind of explicit imports wlaemo-organizing import statements.
Moreover, using a class in the same package is probably megadnt then using a class in the
default package. In all cases, the default behavior shaailtbbfigurable.

4.2.2 Type Members

When dealing with unknown types, the analysis frameworkrofieeds to get facts about their
members (fields and methods). Let us consider the followkagngle, assuming that we do not
have the definition of the clagr d:

1. Bird b =newBird("* Twitibird TM");
2. Systemout.println(b.age);
3. b.singWth(new Bird('‘BigBird TM',2)," " Happy Birthday'');

Here, we need to generate the following facts:

1. TheBird type has at least two constructor declarations, one thastak input &t ring
(unsound but hierarchy related inference on line 1) and bakdccepts onBi r d and one
String (unsound but hierarchy related inference on line 3).

2. TheBi rd type has at least one method declaration nasa@gW t h() that takes as input a
Bi rd and aSt ri ng (unsound but hierarchy related inference on line 3). Tharmetype of
singWth() is an anonymous unknown type.

3. TheBi rd type has a field nameaje which type is an anonymous unknown type (unsound
and unknown inference on line 2).

Basically, we create the members as the analysis framewaduaters them and we use only the
type facts that are at hand. The return type of an unknowndistdan unknown method is always
an anonymous unknown type. Thus, if the same unknown meshasked elsewhere with the same
parameters’ type and is assigned to a variable, we do nottogedenerate the method declaration
because we already allowed any return types.

4.2.3 Caveats

Unfortunately, the syntax of the Java programming langusgebe ambiguous and make type
facts generation a hard problem. Let us consider the fotigweixample:

i nport foo.Bar. Aninmal ;
class Bird extends Animal {

public nmethod mi(...) {
Property. doThis();

}

N R

The first import statement illustrates a problem that wasttahately always present in the pre-
vious examples: i§00. Bar a class, meaning th&ni nal is a static inner class or fo. Bar

a package? If we do not have access to the different packadedteBar class definition, we
need to make a guess. One strategy would be to use the Javagnaoniention (which precludes
the use of upper case in the case of package) to determinatine roff 0oo. Bar, but not all Java
programs follow it. Another strategy is to always take thegputhat it is a package until proved
otherwise (for example, by looking at the way the class iwimt#ated or if theéBar class is used or
instantiated itself). In our solution, we preferred thédasince in our experience, the use of inner
class outside of its declaring class is rarer than not fallguwwthe Java naming convention. In any
case, the fully qualified name of the type will be the same.

The second problem illustrated at line 6 can dramaticalgnge the facts that we generate. In-
deed, igdoThi s() a static method of thBr operty class or iPr operty a field of the super class
Ani mal ? Both alternatives are possible because (1Pthgerty class is not explicitly imported,
and (2) the current type extends a named unknown type. Agairtan rely on the Java naming
convention or simply choose to treat the method as a statiaiatil proved otherwise (for exam-
ple, if Property is used in an assignment or as a method parameter). We cleotatdr to be
consistent with the previous heuristic.

4.3 Inferring type facts
4.3.1 Type inference Strategies
There are a lot of different statements, operations andinezgents in the Java programming

languages that can be used to infer type facts. The followitngexamples are relevant examples
of the type inference strategies that we implemented:

10

a) Assignment

If one side of an assignment is unknown, we can use the typbheobther operand to do the
inference. The known operand side is important becausefitedea type constraint. Let us
consider the following example:

1. int tenp = bird. age;
2: bird.name = *‘Twitibird TM";

In the first line, we know that the type of age must be less oalsgo an nt : it can be ashort or
anint. In the second line, we know that the type of name must be@reatquals to & ri ng:

it can be any ancestors 8fring or theStri ng type itself. An assignment can also be used to
infer the return type of an unknown method.

b) Parameter binding
The parameter types of a method can be used either to inféyhef unknown parameters or to
infer the correct binding for an unknown method. Let us cdaisthe following example:

net hod1(2, bird. age) ;

private void nethodl(int pl, int p2)

1
2
3
4.
5
6: private void nethodl(String pl, String p2)

From the call taret hodl at line 2, we can infer two type facts. First, because the fiashmeter
is ani nt, only the method at line 5 can be called. Second, this metkothoes that the second
parameter is annt , so the unknown fieldge must be annt .

4.3.2 Combining Strategies

Inference strategies can be combined as illustrated bydkieexample:
int tenp = methodl(bird.age, bird.nunmber);

1
2
3
4.
5. private int methodl(int pl, int p2) {}

6: private String nethodl(String pl, String p2) {}

Here, we first use the assignment inference strategy tordigterthat the return type afet hodl
must be equals or less thaniart . Only the first declaration afet hod1 fulfills this requirement.
Then, we use the parameter binding inference strategy ¢ordite the type of thage andnunber
unknown fields.

4.3.3 Merging type inference facts

When applying type inference strategies, we can gatherictng facts about the same type and
thus, encounter one of those three situations:

11

Decidable conflict
This is the case when type constraints can be resolved as foltbwing example:

1. Cbject o = bird. name;
2. String s = bird. nane;

Here, we get the two following constraintsane’s type must be less or equals to @j ect and
less or equals to & ri ng. Since theSt ri ng type satisfies both constraints, we infer tBati ng
is the type of thenane field.

Undecidable conflict
This is the case when we cannot get enough facts about thivedvtypes to resolve the con-
straints.

1. dog.friend = new Bird();
2: dog.friend = new Cat();

In this example, we do not have access to the definitioBi ofl andCat types. Thus, even if we
know that they are part of the same hierarchy because of tha$signments, we do not know
if one is a subclass of the other, who their first common ancéstor what interface they share.
There are three strategies that we can use to deal with thietisn. The first strategy involves
keeping in memory those various constraints (thaf theend field must be a subclass Bifr d and
Cat). A second strategy would be to declare thatftheend field is unknown. Finally, another
strategy would be to keep the first or the last constraint gndre the other, until a stronger
inference can be made. We chose to implement the last solodoause we hypothesize that a
partial program will not provide sufficient facts to use tlaigus constraints gathered and that, in
the end, we will need to make the same choice as if we did ni#atdhose various constraints.

Erroneous conflict
This is the case where constraints cannot be resolved kethesunderlying code would not
compile (contradicting our main assumption). Here is sutkxample:

1. bird. name = new Cbject();
2. String s = bird. nane;

In the first line,bi r d. name cannot be &t ri ng even if in the second line, it must besari ng. If
we encounter this case, we report an error.

4.4 Implementation details
4.4.1 Extending Polyglot

We implemented our solution in the Soot static analysis &w&ork [6] and more precisely in the
Polyglot compiler framework(]3]. Soot uses Polyglot to Hudbstract syntax trees from Java
source files and then, transforms those trees into JimpledaBess intermediate representation.
Unfortunately, when providing Polyglot with incompleteograms, exceptions are thrown because
the type hierarchy cannot be completed. Indeed, Polygtos d&or full compliance with the Java
Language Specification and needs to perform various vadititnvolving type checking.

12

Because of this requirement, the first part of the problemmeging type facts, needed to be
implemented into Polyglot to ensure that it would build thetaact syntax trees without throwing
exceptions. To achieve this goal, we modified the two follayelasses:

SourceResolver

This class is responsible for finding and parsing refererataslses. Typically, Polyglot makes
multiple requests to SourceResolver when it encountersnknawn type. For example, if the
classf 0o. bar. Baz is imported, Polyglot will make three requests in the follogvorder: one
for f 0o, one forf 0o. bar and one forf 0o. bar. Baz (in the case thaBaz is an internal class).
Each of these requests can throw an exception, but only sheite can make Polyglot crash. We
thus needed to modify the SourceResolver API to know whenetpgest was the last one and act
accordingly by creating the requested type.

TypeSystem

This class is responsible for providing method or field insaaccording to certain requests. For
example, when a method call is parsed, Polyglot will makeqaiest to the TypeSystem to know
which method should be bound according to the parametes tpé the target class. We needed
to modify this class to generate the methods and fields ofawmkriypes.

For the second part of the problem, inferring type facts, ae the choice of implementing the
solution at the AST level in Polyglot or at the Jimple levelSoot. The latter has the advan-
tage of simplifying the analysis since we would deal withrsfioand simpler statements (no call
chains for example). On the other hand, once new facts abiypieaare discovered, we need to
modify the code representation accordingly. We argue Higattould not be efficient at the Jimple
level because of the intermediate variables introduceldgi3taddress intermediate representation.
Type inference is hence done at the AST level.

4.4.2 The algorithm

Here is our algorithm implementing those two sides of thetsmh (generating type facts and type
facts inference):
e While building ASTs

— Generate type facts.
— Put and merge inferred type facts into the worklist.

e First pass - Type inference

— Mark and index unsafe nodes.
— While the worklist is not empty

+x Make nodes safer.
x Put and merge new inferred type facts into worklist.

e Optional - Second pass - Method binding and inference

— Mark and index unsafe nodes.
— Bind all unsafe methods, put and merge new inferred type fatd worklist.
— While the worklist is not empty

13

x Make nodes safer.
x Put and merge new inferred type facts into worklist.

The first part of the algorithm is performed while parsing flaga source code and building the
abstract syntax trees. At this stage, most unknown methudifields refer to our magic type. The
facts that we gather about the unknown types (e.g., thereadl & a methockat () on an object
of typeBi r d) are put in a worklist and will be the seed of the type infeeesatep.

Once all ASTs are built, we visit all nodes to mark and index dhes that aransafe A node,
such as a method call, is considered to be unsafe if it refead tunknown type (anonymous or
not). A node can be made unsafe because of more than one &leRoerexample, if a method
contains two parameters of an unknown type, the method ikedas unsafe and is indexed twice.
Then, the type facts in the worklist are processed. Evergaattiexed by a type in the worklist is
reprocessed (by the “make nodes safer” operation). If,eminéinsforming a node new type facts
are inferred, the new data is added and merged into the \sbrkli

In the two first stages, it is possible that a method call mighbound to multiple method decla-
rations. Let us consider this example:

System out. println(unknown. fiel dl);
met hod1(unknown. fiel d1);

private void methodl(bool ean b) {}
private void methodl(Bird b) {}

In this example, the methogtri nt| n is overloaded and thus; el d1 could be of any type (a
bool ean, anQbj ect, aString, etc.). Deciding the method call binding too early mightdarce
incorrect inference that could cascade. It follows that efedthe binding of these kinds of method
calls until no other inference can be done. Then, in the sktdarence pass, we arbitrarily choose
one binding and infer type facts from it.

The algorithm can be run in three modes:

Mode 1: Generate-only
In this mode, we only parse the source code and do not inferfggts. This is the fastest mode,
but also the least precise.

Mode 2: Isolated type system

In this mode, we try to infer type facts but we do not sharedhfasts across classes that are
parsed by Polyglot. This mode is expected to be slower tharpthvious one, but also more

precise. Another advantage of this mode is that it restdaggressive but possibly wrong type

inferences to the class being analyzed, preventing fatde fa pollute other classes.

Mode 3: Shared type system

In this mode, we share any inferred facts with all parsedselas This mode is expected to the
slowest one but also the most precise depending on the afiplicor the context in which partial
program analysis is used. For example, when mining softwegresitories, files that are changed
are often related which might significantly increase the amaof type inference we can do.

14

4.4.3 An extensible implementation

In our implementation of partial program analysis, we deded the reporting of type facts from
the rest of the algorithm so new type inference strategiekid®e added easily: the PPA framework
is responsible for merging this new facts and sending itéamibdes that might be made safer. The
framework is also responsible for generating and keepiegntide indexes up to date: indeed,
when new facts about a type are processed, we want to vigitlomlinodes that might refer to this
type. Once the nodes are made “safer”, the indexes oftentodsziregenerated since the nodes
now refer to other the new type.

15

5 Experimental Framework

Partial program analysis must be validated against thiféerelit variables:

Robustness

The main motivation behind partial program analysis is t&enan analysis framework accepts an
incomplete program without “crashing”. Our implementatighould then be able to accept any
incomplete program as long as it compiled in its completsioer

Correctness
We devised multiple type inference strategies with diffieréegrees of soundness. We need to
ensure that our implementation respects those strategietha intended soundness.

Precision and performance tradeoff
Because we propose different modes, we need to evaluatatlenffs between performance and
precision.

To evaluate correctness, we wrote a series of case stugiesncomplete Java programs where
we associated for each line and each mode an expected Msulliscuss those case studies in the
next section.

To evaluate robustness and precision, we will apply paptiagjram analysis on all the revisions
of a Java program using a repository mining framework. Maezigely, we intend to apply the

three modes of this analysis on all revisions of the Java Dpugent Environment in the Eclipse

platform and report the number of nodes that were made maeger in each case. We will

also select a random sample of the revisions to evaluateotiiectness of the type inference by
comparing the types and bindings of the partial programyaisalvith the types and bindings of
the compiled program at those versions.

16

6 Results

A
In the three modes, two constructors should be generatéiofoamed unknown tygeackagel. -
package2. Ani mal , one with no parameter and one witl$ta i ng.

B
Since theDog type is not explicitly imported, the fully qualified name bfs named unknown type
should beVAG CPACKAGE. Dog.

C

In mode 2 (isolated type inference), there is no way thatythe forsuper . age could be inferred.
Thus, when producing the Jimple code, the first possible ogebtimding is chosen (which should
beprint!|n(bool ean)).

In mode 3 (shared type inference), the typesafer . age should be an int (because of line 9 in
BlueJet.java). The correct binding for the println methbdwdd then berint | n(int).

D
super . ol dAge should be an intin mode 3 since iam (super. age) is assigned to this unknown
field (assignment inference strategy).

E

Because of the assignment inference strategyd@®enet hi ng method should return & ri ng.
Since there is only one known definition that fulfills this u@e@ment, the first parameter must be a
String. Thus, the super.name unknown field iStai ng (parameter binding inference strategy).
This inference is possibly incorrect because Appl i cation class is extending the unknown
classBird: it might be possible that Bird defines another method tharms aSt ri ng and that
accepts a different parameter.

F
Because of the assignment inference strategy, we can danttiat the unknown field meToF| ee
isanint.

G

In this case, we should generate the fact thaDdweclass defines a method callget Speed. In
mode 2 and 3, we should also infer that the method return /pdaubl e using the assignment
inference strategy.

H
This case is a good example of type merging. mheknane unknown field should be &t ri ng
because of the second assignment.

I

The analysis framework should generate the fact thabtigeclass defines a method called chase
that accepts one parameter. In mode 2 and 3, we should alisatedhat the method accepts a
String as a parameter.

J

Again, because of the assignment inference strategy, thgsi framework should determine
that the return type adoSonet hi ng should be &t ri ng. Using the parameter binding inference
strategy, it should then infer that thel | Name unknown field is &t ri ng and the child unknown
field is aBi r d. Like E, this inference is possibly incorrect.

17

K

Because of the assignment inference strategy, the anfgisi@work should determine that the
return type ofdoSonet hi ng is an int. Using the parameter binding inference stratagghauld
then infer that theyet Age method should return an int and the second call chain shewloir
an int. This means that a methgdt Decay() returning an anonymous unknown type should
be created for the type Dog and a methyad | nt () returning an int should be created for this
unknown type.

L

Because of the assignment inference strategy, the type afthunknown field should be amt .
Note thatBl ueJet andAppl i cati on are both subtypes of tH r d class andge is a field of the
Bi rd class. Thus, in mode 3, both classes refer to the same faglel,as an nt .

18

7 Conclusion

The main contributions of this project include both the jgagirogram analysis at the conceptual
level and its extensible implementation. We clearly defittesitheoretical and implementation

problems associated to incomplete programs and devisaticsw to overcome these issues. Be-
cause the whole problem of partial program analysis is um$@und undecidable, we categorized
our type inference strategies according to their diffefevel of soundness. This allows PPA to be
used in various contexts.

As future work, we identified several areas for improveméitst, we would like to increase the
robustness our implementation of PPA, i.e., ensure thatitpgarse any incomplete program. We
would also like to continue our work on inference strategkénally, we would like to leverage the
Soot tagging facility to provide type inference informati@e.g. level of soundness) on statements
that were made “safer”.

19

A Annex A - Java Source Files

package packagel;

i nport packagelO. *;

i nport packagel. package2. Ani mal ;
i nport package3. Bird;

inport java.io.PrintStream

public class Application extends Bird {
public static void main(String[] args) {
Il A Ceneration of two constructors
Animal animal = new Aninmal ();
Ani mal animal 2 = new Aninal (args[0]);
Systemout. printlin(animl.toString())
Systemout. println(ani mal 2.toString()

}

/1 B- MAG CPACKAGE. Dog
public void flee(Dog dog) {
PrintStream printer = Systemout;

)

[l G printin(int) if node 3
{1 G println(unknown) if node 2
printer.println(super.age);

{1 D ol dAge should be an int in node3
super. ol dAge = super. age;

Il E- doSonet hi ng(String)
String salutations = doSomet hi ng(super. nane);
printer.println(salutations);

[l F- super.timeToFlee = int
super.timeToFl ee = doSonet hi ng(10);

/1 G getSpeed should return a doubl e
doubl e speed = dog. get Speed();

{1 H super.nickNane nust be String
bj ect obj = super. ni cknane;
String s = super. ni cknane;

{1 1- chase(String)
dog. chase(super. ni cknane) ;

/1 J- doSorething(String, Bird)
s = doSonet hi ng(super. ful | Nane, super. child);

20

Il K- getAge() should return int, getDecay() should return magic class
{1 getint should return an int!
int var = doSomet hi ng(dog. get Age(), dog. get Decay().getlnt());

}

public String doSomething(String nane) {
return "Hello " + name

}

public int doSonmething (int age) {
return age * 10;

}

public String doSonething(String name, Bird child) {
return name + " is the parent of " + child.toString();

}

public int doSonething(int age, int increment) {
return age + increnent

}
}

21

package packagel. package2;
i nport package3. Bird;

public class Bluelet extends Bird {
public void decay() {
/I L - super.age is an int
int ageTenp = super. age;
ageTenp = ageTenp + 10;
super.age = ageTenp;
}
}

22

B Annex B - Jimple Source Files

/'l packagel. Application.jinple - MXDE 1
public class packagel. Application extends package3.Bird
{
public static void main(java.lang.String[])
{

java.lang. String[] args;

packagel. package2. Ani mal animal, $r0, animal2, $ri;

java.lang. String $r2, $r4, $r6;

java.io.PrintStream $r3, $r5;

args := @araneter0: java.lang.String[];

$r0 = new packagel. package2. Ani mal ;

speci al i nvoke $r0. <packagel. package2. Animal: void <init>()>();

animal = $r0;

$r1 = new packagel. package2. Ani mal ;

$r2 = args[0];

speci al i nvoke $r1. <packagel. package2. Ani nal: void
<init>(java.lang. String)>($r2);

animal 2 = $r1;

$r3 = <java.lang. System java.io.PrintStream out>;

$r4 = virtualinvoke animal.<java.lang. Cbject: java.lang.String
toString()>();

virtualinvoke $r3.<java.io.PrintStream void
println(java.lang. String)>($r4);

$r5 = <java.lang. System java.io.PrintStream out>;

$r6 = virtualinvoke animal 2. <java.lang. Object: java.lang.String
toString()>();

virtualinvoke $r5.<java.io.PrintStream void
println(java.lang. String)>($r6);

return;
¥
public void flee(MAG CPPACKAGE. Dog)
{

packagel. Application this;

MVAG CPPACKAGE. Dog dog;

java.io.PrintStream printer;

MVAG CPPACKAGE. Magi cCl ass $r0, $rl, $r2, $r3, $r5, $r6, $r7, $r8, $r9;

java.lang. String salutations, s;

int $i0;

java. lang. Qbj ect obj;

this := @his: packagel. Application;

dog := @araneter0;: MVAG CPPACKAGE. Dog;

printer = <java.lang. System java.io.PrintStream out>;

$r0 = this.<package3.Bird: MAG CPPACKAGE. Magi cC ass age>;

virtualinvoke printer.<java.io.PrintStream void
println(bool ean) >($r0);

23

$rl1 = this.<package3.Bird: MAG CPPACKAGE. Magi cC ass age>;

this. <package3. Bird: MVAG CPPACKAGE. Magi cd ass ol dAge> = $r1;

$r2 = this.<package3.Bird: MAG CPPACKAGE. Magi cC ass nane>;

salutations = virtualinvoke this.<packagel. Application:
java.lang. String doSomet hing(java.lang. String)>($r2);

virtualinvoke printer.<java.io.PrintStream void
println(java.lang. String)>(sal utations);

$i 0 = virtualinvoke this.<packagel. Application: int
doSonet hi ng(int)>(10);

this. <package3. Bird: MVAG CPPACKAGE. Magi cd ass tinmeToFl ee> = $i0;

virtual invoke dog. <MVAG CPPACKAGE. Dog: MVAG CPPACKAGE. Magi cd ass
get Speed() >() ;

obj = this.<package3.Bird: MG CPPACKAGE. Magi cC ass ni ckname>;

s = this.<package3.Bird: MVAG CPPACKAGE. Magi cCl ass ni cknane>;

$r3 = this.<package3.Bird: MVAG CPPACKAGE. Magi cCl ass ni ckname>;

virtual i nvoke dog. <MVAG CPPACKAGE. Dog: MVAG CPPACKAGE. Magi cd ass
chase(MVAG CPPACKAGE. Magi ¢ ass) >($r3);

$r5 = this.<package3.Bird: MAG CPPACKAGE. Magi cC ass ful | Nane>;

$r6 = this.<package3.Bird: MVAG CPPACKAGE. Magi cC ass chil d>;

virtual i nvoke this.<packagel. Application: java.lang.String
doSonet hi ng(j ava.l ang. String, package3. Bi rd)>($r5, $r6);

$r7 = virtualinvoke dog. <MVAG CPPACKAGE. Dog: MVAG CPPACKAGE. Magi ¢Cl ass
get Age() >();

$r8 = virtualinvoke dog. <MVAG CPPACKAGE. Dog: MVAG CPPACKAGE. Magi ¢Cl ass
get Decay() >() ;

$r9 = virtualinvoke $r8.<MVAG CPPACKAGE. Magi cd ass:
MVAG CPPACKAGE. Magi cC ass getint()>();

virtualinvoke this.<packagel. Application: java.lang.String
doSonet hi ng(j ava. | ang. Stri ng, package3. Bi rd) >($r7, $r9);

return;

}

public java.lang. String doSonething(java.lang. String)
{
packagel. Application this;
java.lang. String nane, $r3;
java.lang. StringBuffer $r0, $ri1, $r2;
this .= @his: packagel. Application;
name := @arameter0: java.lang.String;
$r0 = new java.lang. StringBuffer;
speci al i nvoke $r0.<java.lang. StringBuffer: void <init>()>();
$r1 = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer
append(java.lang. String)>("Hello ");
$r2 = virtualinvoke $rl.<java.lang.StringBuffer: java.lang.StringBuffer
append(j ava. l ang. Stri ng) >(nane) ;
$r3 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.String
toString()>();
return $r3;

24

}

public int doSonething(int)
{
packagel. Application this;
int age, $i0;

this := @his: packagel. Application;
age := @araneterQ: int;
$i0 = age * 10;

return $i0;
}
public java.lang. String doSonething(java.lang.String, package3.Bird)
{

packagel. Application this;

java.lang. String name, $r3, $rb5;

package3.Bird child;

java.lang. StringBuffer $r0, $rl, $r2, $ré4;

this .= @his: packagel. Application;

name := @arameter0: java.lang.String;

child := @araneterl: package3.Bird;

$r0 = new java.lang. StringBuffer;

speci al i nvoke $r0.<java.lang. StringBuffer: void <init>()>();

$r1 = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer
append(j ava. | ang. Stri ng)>(nane);

$r2 = virtualinvoke $rl.<java.lang.StringBuffer: java.lang.StringBuffer
append(java.lang. String)>(" is the parent of ");

$r3 = virtualinvoke child.<java.lang. Qbject: java.lang.String
toString()>();

$r4 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.StringBuffer
append(j ava. | ang. String)>($r3);

$r5 = virtualinvoke $r4.<java.lang.StringBuffer: java.lang.String
toString()>();

return $r5;
}
public int doSonmething(int, int)
{

packagel. Application this;
int age, increment, $i0;

this := @his: packagel. Application;
age := @araneter0: int;

increnent .= @aranmeterl: int;
$i0 = age + increnent;
return $i0;

25

public void <init>()

{

packagel. Application this;

this := @his: packagel. Application;
speci al i nvoke this. <package3.Bird: void <init>()>();
return;

}

26

/'l packagel. package2. Bl ueJet.jinmple - MDE 1
public class packagel. package2. Bl ueJet extends package3.Bird

{
public void decay()

{
packagel. package2. Bl ueJet this;

int ageTenp;

this .= @his: packagel. package2. Bl uelet ;

ageTenp = this.<package3.Bird: MVAG CPPACKAGE. Magi cCl ass age>
ageTenp = ageTenp + 10

this. <package3. Bird: MVAGQ CPPACKAGE. Magi cCl ass age> = ageTenp;
return;

}

public void <init>()

{
packagel. package2. Bl ueJet this;
this := @his: packagel. package2. Bl ueJet
specialinvoke this.<package3.Bird: void <init>()>();
return;

}
}

27

/1 packagel. Application.jinple - MXDE 2
public class packagel. Application extends package3.Bird

{

public static void main(java.lang.String[])
{

java.lang. String[] args;

packagel. package2. Animal aninal, $r0, aninal2, $ri;

java.lang. String $r2, $r4, $r6;

java.io.PrintStream $r3, $r5;

args := @araneter0: java.lang.String[];

$r0 = new packagel. package2. Ani mal ;

speci al i nvoke $r0. <packagel. package2. Animal: void <init>()>();

animal = $ro;

$r1 = new packagel. package2. Ani mal ;

$r2 = args[0];

speci al i nvoke $r1. <packagel. package2. Ani nal: void
<init>(java.lang. String)>($r2);

animal 2 = $r1;

$r3 = <java.lang. System java.io.PrintStream out>;

$r4 = virtualinvoke animal.<java.lang. Cbject: java.lang.String
toString()>();

virtualinvoke $r3.<java.io.PrintStream void
println(java.lang. String)>($r4);

$r5 = <java.lang. System java.io.PrintStream out>;

$r6 = virtualinvoke animal 2. <java.lang. Qbject: java.lang.String
toString()>();

virtualinvoke $r5.<java.io.PrintStream void
printlin(java.lang. String)>($r6);

return;
}
public void flee(MAG CPPACKAGE. Dog)
{

packagel. Application this;

MVAG CPPACKAGE. Dog dog;

java.io.PrintStream printer;

MVAG CPPACKAGE. Magi cCl ass $r0, $r1, $r7;

java.lang. String salutations, $r2, s, $r3, $r5;

int $i0, $i1, $i2

java. | ang. Qbj ect obj;

package3. Bird $r6;

this := @his: packagel. Application;

dog := @araneter0: MVAG CPPACKAGE. Dog;

printer = <java.lang. System java.io.PrintStream out>;

$r0 = this.<package3.Bird: MVAG CPPACKACE. Magi cCl ass age>;

virtualinvoke printer.<java.io.PrintStream void
print ! n(bool ean) >($r0);

28

$rl1 = this.<package3.Bird: MAG CPPACKAGE. Magi cC ass age>;

this. <package3. Bird: MVAG CPPACKAGE. Magi cC ass ol dAge> = $r1;

$r2 = this.<package3.Bird: java.lang.String name>;

salutations = virtualinvoke this.<packagel. Application:
java.lang. String doSomet hing(java.lang. String)>($r2);

virtualinvoke printer.<java.io.PrintStream void
println(java.lang. String)>(sal utations);

$i 0 = virtualinvoke this.<packagel. Application: int
doSonet hi ng(int)>(10);

this. <package3.Bird: int tinmeToFlee> = $i0;

virtual invoke dog. <MVAG CPPACKAGE. Dog: doubl e get Speed()>();

obj = this.<package3.Bird: java.lang.String nicknane>;

s = this.<package3.Bird: java.lang.String nicknane>;

$r3 = this.<package3.Bird: java.lang.String nicknane>;

virtual invoke dog. <MVAG CPPACKAGE. Dog: MVAG CPPACKAGE. Magi cd ass
chase(java.lang. String)>($r3);

$r5 = this.<package3.Bird: java.lang.String full Nane>;

$r6 = this.<package3.Bird: package3.Bird child>;

virtualinvoke this.<packagel. Application: java.lang.String
doSonet hi ng(j ava. | ang. St ri ng, package3. Bi rd) >($r5, $r6);

$i 1l = virtualinvoke dog. <MVAG CPPACKACGE. Dog: int getAge()>();

$r7 = virtualinvoke dog. <MVAG CPPACKAGE. Dog: MVAG CPPACKAGE. Magi ¢Cl ass
get Decay() >() ;

$i2 = virtualinvoke $r7. <MVAG CPPACKAGE. Magi cCl ass: int getint()>();

virtual i nvoke this.<packagel. Application: int
doSonet hing(int,int)>($i 1, $i2);

return;
}
public java.lang. String doSonething(java.lang. String)
{

packagel. Application this;
java.lang. String nane, $r3;
java.lang. StringBuffer $r0, $r1, $r2;
this := @his: packagel. Application;
name := @araneter0: java.lang.String;
$r0 = new java.lang. StringBuffer;
speci al i nvoke $r0.<java.lang. StringBuffer: void <init>()>();
$rl = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer
append(java.lang. String)>("Hello ");
$r2 = virtualinvoke $rl.<java.lang.StringBuffer: java.lang.StringBuffer
append(j ava. l ang. Stri ng) >(nane) ;
$r3 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.String
toString()>();
return $r3;

}

public int doSonething(int)

29

packagel. Application this;
int age, $i0;

this .= @his: packagel. Application;
age := @araneter0: int;
$i0 = age * 10;

return $i0;
}
public java.lang. String doSonething(java.lang. String, package3.Bird)
{

packagel. Application this;

java.lang. String nane, $r3, $rb5;

package3.Bird child;

java.lang. StringBuffer $r0, $rl1, $r2, $r4;

this := @his: packagel. Application;

name := @araneter0: java.lang.String;

child := @araneterl: package3.Bird;

$r0 = new java.lang. StringBuffer;

speci al i nvoke $r0.<java.lang. StringBuffer: void <init>()>();

$rl = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer
append(j ava. l ang. Stri ng) >(nane) ;

$r2 = virtualinvoke $rl.<java.lang.StringBuffer: java.lang.StringBuffer
append(java.lang. String)>(" is the parent of ");

$r3 = virtualinvoke child.<java.lang. Qbject: java.lang.String
toString()>();

$rd4 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.StringBuffer
append(j ava. l ang. String) >($r3);

$r5 = virtualinvoke $r4.<java.lang.StringBuffer: java.lang.String
toString()>();

return $rb5;
}
public int doSomething(int, int)
{

packagel. Application this;
int age, increnment, $i0;

this .= @his: packagel. Application;
age := @araneter0: int;

increnent := @aranmeterl: int;

$i0 = age + increnent;

return $io0;

}

public void <init>()

{

30

packagel. Application this;

this := @his: packagel. Application;

speci alinvoke this.<package3d.Bird: void <init>()>();
return;

31

/1 packagel. package2. Bl ueJet.jinple - MODE 2
public class packagel. package2. Bl ueJet extends package3.Bird

{
public void decay()
{
packagel. package2. Bl ueJet this;
int ageTenp;
this .= @his: packagel. package2. Bl uelet ;
ageTenp = this.<package3.Bird: int age>
ageTenp = ageTenp + 10
this.<package3.Bird: int age> = ageTenp;
return;
}
public void <init>()
{
packagel. package2. Bl ueJet this;
this := @his: packagel. package2. Bl ueJet
speci al i nvoke this.<package3.Bird: void <init>()>();
return;
}
}

32

/1 packagel. Application.jinple - MODE 3
public class packagel. Application extends package3.Bird

{

public static void main(java.lang.String[])

{

java.lang. String[] args;

packagel. package2. Ani nal animal, $r0, animl2, $ri;
java.lang. String $r2, $r4, $r6;
java.io.PrintStream $r3, $r5;

args := @araneter0: java.lang.String[];

$r0 = new packagel. package2. Ani mal ;

speci al i nvoke $r0. <packagel. package2. Aninmal: void <init>()>();
animal = $r0;

$r1 = new packagel. package2. Ani mal ;

$r2 = args[0];

speci al i nvoke $r1. <packagel. package2. Ani mal : void

<init>(java.lang. String)>($r2);

aninmal 2 = $ri;
$r3 = <java.lang. System java.io.PrintStream out>;
$r4 = virtualinvoke animal.<java.lang. Cbject: java.lang.String

toString()>();

virtualinvoke $r3.<java.io.PrintStream void

printin(java.lang. String)>($r4);

$r5 = <java.lang. System java.io.PrintStream out>;
$r6 = virtualinvoke animal 2. <java.lang. Qbject: java.lang.String

toString()>();

virtualinvoke $r5.<java.io.PrintStream void

println(java.lang. String)>($r6);

}

return;

public void flee(MAG CPPACKAGE. Dog)

{

packagel. Application this;

MVAG CPPACKAGE. Dog dog;

java.io.PrintStream printer;

int $i0, $i1 $i2 $i3 $i4

java.lang. String salutations, $r0, s, $ri1, $r3;

java. | ang. Qbj ect obj;

package3. Bird $r4;

MVAG CPPACKAGE. Magi cCl ass $r5;

this .= @his: packagel. Application;

dog := @araneter0: MVAG CPPACKAGE. Dog;

printer = <java.lang. System java.io.PrintStream out>;
$i 0 = this.<package3.Bird: int age>;

virtualinvoke printer.<java.io.PrintStream void printIn(int)>($i0);
$i 1 = this.<package3.Bird: int age>;

this. <package3.Bird: int ol dAge> = $i 1;

33

$r0 = this.<package3.Bird: java.lang.String name>;

salutations = virtualinvoke this.<packagel. Application:

java.lang. String doSomet hing(java.lang. String)>($r0);

virtualinvoke printer.<java.io.PrintStream void
println(java.lang. String)>(sal utations);

$i2 = virtualinvoke this.<packagel. Application: int
doSonet hi ng(int)>(10);

this.<package3.Bird: int tinmeToFlee> = $i2;

virtual i nvoke dog. <MVAG CPPACKAGE. Dog: doubl e get Speed()>();

obj = this.<package3.Bird: java.lang.String nickname>;

s = this.<package3.Bird: java.lang.String nicknane>;

$rl = this.<package3.Bird: java.lang.String nicknane>;

virtual invoke dog. <MVAG CPPACKAGE. Dog: MVAG CPPACKAGE. Magi cCl ass
chase(java.lang. String)>($ri);

$r3 = this.<package3.Bird: java.lang.String full Nane>;

$r4 = this.<package3.Bird: package3.Bird child>;

virtualinvoke this.<packagel. Application: java.lang.String
doSonet hi ng(j ava. | ang. St ri ng, package3. Bi rd) >($r3, $r4);

$i 3 = virtualinvoke dog. <MVAG CPPACKACE. Dog: int getAge()>();

$r5 = virtual i nvoke dog. <MVAG CPPACKAGE. Dog: MVAG CPPACKAGE. Magi cC ass
get Decay() >();

$i4 = virtualinvoke $r5. <MVAG CPPACKAGE. Magi cCl ass: int getint()>();

virtual i nvoke this.<packagel. Application: int
doSonet hing(int,int)>($i3, $i4);

return;
}
public java.lang. String doSonet hing(java.lang. String)
{

packagel. Application this;
java.lang. String nane, $r3;
java.lang. StringBuffer $r0, $ri1, $r2;

this .= @his: packagel. Application;
name := @araneter0: java.lang.String;
$r0 = new java.lang. StringBuffer;
speci al i nvoke $r0.<java.lang. StringBuffer: void <init>()>();
$r1 = virtualinvoke $r0.<java.lang. StringBuffer: java.lang.StringBuffer
append(java.lang. String)>("Hello ");
$r2 = virtualinvoke $rl.<java.lang.StringBuffer: java.lang.StringBuffer
append(j ava. | ang. Stri ng)>(nane);
$r3 = virtualinvoke $r2.<java.lang. StringBuffer: java.lang.String
toString()>();

return $r3;
}
public int doSonething(int)
{

34

}

packagel. Application this;
int age, $i0;

this := @his: packagel. Application;
age := @araneter0: int;

$i0 = age * 10;

return $iO0;

public java.lang. String doSonething(java.lang. String, package3.Bird)

{

packagel. Application this;

java.lang. String name, $r3, $rb5;
package3.Bird child;

java.lang. StringBuffer $r0, $rl, $r2, $ré4;

this := @his: packagel. Application;

name := @araneter0: java.lang.String;

child := @araneterl: package3.Bird;

$r0 = new java.lang. StringBuffer;

speci al i nvoke $r0.<java.lang. StringBuffer: void <init>()>();

$rl = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer

append(j ava. l ang. Stri ng) >(nane);

$r2 = virtualinvoke $rl.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang. String)>(" is the parent of ");

$r3 = virtualinvoke child.<java.lang. Object: java.lang.String

toString()>();

$rd4 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.StringBuffer

append(j ava. l ang. String) >($r3);

$r5 = virtualinvoke $r4.<java.lang. StringBuffer: java.lang.String

toString()>();

}

return $rb5;

public int doSomething(int, int)

{

}

packagel. Application this;
int age, increnment, $i0;

this .= @his: packagel. Application;
age := @araneterQ: int;

increnent .= @aranmeterl; int;
$i0 = age + increnent;
return $i0;

public void <init>()

{

35

packagel. Application this
this .= @his: packagel. Application;

speci al i nvoke this.<package3.Bird: void <init>()>();
return;

36

/1 packagel. package2. Bl ueJet.jinple - MOXDE 3
public class packagel. package2. Bl ueJet extends package3.Bird

{
public void decay()
{
packagel. package2. Bl ueJet this;
int ageTenp;
this .= @his: packagel. package2. Bl ueJet;
ageTenp = this.<package3.Bird: int age>;
ageTenp = ageTenp + 10
this.<package3.Bird: int age> = ageTenp;
return;
}
public void <init>()
{
packagel. package2. Bl ueJet this;
this := @his: packagel. package2. Bl ueJet;
specialinvoke this.<package3.Bird: void <init>()>();
return;
¥
}

37

References

[1]

S. Drossopoulou, S. Eisenbach, and S. Khurshid. Is treetjgpe system soundPheory and
Practice of Object Systenis(1):3-24, 1999.

[2] J. Gosling, B. Joy, G. Steele, and G. Brachihe Java Language Specification Third Edition

[3]

[4]

Addison-Wesley, Boston, Mass., 2005.

N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: Artensible compiler framework
for java. InProceedings of the 12th International Conference on Coenglonstruction
pages 138-152, 2003.

B. C. Pierce and D. N. Turner. Local type inferencACM Trans. Program. Lang. Syst.
22(1):1-44, 2000.

[5] A. Rountev, A. Milanova, and B. G. Ryder. Fragment clasalgsis for testing of polymor-

phism in java software. IfProceedings of the 25th International Conference on Soéwa
Engineering pages 210-220, 2003.

[6] V. Sundaresan, P. Lam, E. Gagnon, R. Vallée-Rai, L. Hemdand P. Co. Soot - a java

optimization framework. IlProceedings of CASCQIages 125-135, 1999.

[7] A. Tomb and C. Flanagan. Automatic type inference vidipbhevaluation. InProceedings

[8]

of the 7th international conference on Principles and pieetof declarative programming
pages 106-116, 2005.

T. Zimmermann, A. Zeller, P. Wei3gerber, and S. Diehl. nMg version histories to guide
software changedEEE Transactions on Software Engineeridd.(6):429-445, 2005.

38

	Motivation
	Related Work
	Partial Programs
	Partial Analysis
	Named and Anonymous Unknown Types
	Generating type facts
	Type definition
	Type Members
	Caveats

	Inferring type facts
	Type inference Strategies
	Combining Strategies
	Merging type inference facts

	Implementation details
	Extending Polyglot
	The algorithm
	An extensible implementation

	Experimental Framework
	Results
	Conclusion
	Annex A - Java Source Files
	Annex B - Jimple Source Files

