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Abstract

Software engineers often need to perform static analysis ona subset of a program source
code. Unfortunately, static analysis frameworks usually fail to complete their analyses be-
cause the definitions of some types used within a partial program are unavailable and the
complete program type hierarchy cannot be reconstructed. We propose a technique, Partial
Program Analysis, to generate and infer type facts in incomplete Java programs to allow static
analysis frameworks to complete their analyses. We describe the various levels of inference
soundness our technique provides, and then, we cover the main algorithm and type inference
strategies we use. We conclude with a detailed case study showing how our technique can
provide more precise type facts than standard parsers and abstract syntax tree generators.
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1 Motivation

Software engineering researchers often perform simple static analyses such as computing and
following use-def chains and building call graphs. Sometimes, however, they only have access to
a subset of the program source code and their analyses are thus greatly hindered.

For example, researchers that mine software repositories [8] are typically interested only in the
files that were modified between two revisions of a software. Because they need to perform their
analysis on every single revision of the system, the complexity of their analysis must be pro-
portional to the size of the change and not to the size of the program, if they want their work to
complete in a reasonable time. Moreover, they usually do nothave access to the compiled program
corresponding to each revision.

With strongly typed languages such as Java, most parsers andcompilers fail to reconstruct the
complete type hierarchy in the presence of partial program source code and thus complain and
report an error. This limitation greatly reduces the amountand the quality of the analyses that can
be performed on partial programs even though:

1. It should be possible to perform some static analyses suchas locals use-def chains without
having a complete type hierarchy because such information is typically not required by these
analyses.

2. Facts about a type can be inferred just by looking at how thepartial program uses the type.

We call the ability to statically analyze a subset of a program source codePartial Program Anal-
ysisor PPA. In the following sections, we present the ideas behind this analysis in Java and its
implementation in the Soot [6] static analysis framework. To lighten the writing, we will refer to
any parser, compiler or framework such as Soot asanalysis framework.
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2 Related Work

Since the Java type system has been proved to be sound [1], most analysis frameworks stay away
from partial program analysis because it is inherently unsound. Still, some research projects re-
lated to program fragments and partial type systems addresssimilar problems.

In [5], researchers wanted to evaluate the test coverage of all receiver classes and target methods at
polymorphic call sites. To compute this coverage, they needed to perform whole-program analyses
such as Rapid Type Analysis (RTA) and points-to analysis, but for performance reasons, they
wanted to cover only a fraction of a program. Thus, they devised a general scheme where they
create a main method in each potentially interesting class that calls every method and copy every
field of the class. Then, they use these main methods as entry points for their whole-program
analyses. One prerequisite of their approach is that they must have access to the definition of any
types required by their input classes. Since our work addresses the cases where the users do not
control the input classes and do not have access to the definition of all types referenced in the
input, this approach cannot be used.

Work also have been done on performing type inference using local information [4] or partial
evaluation [7], but in all cases, the prerequisite is the access to the type definition.
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3 Partial Programs

Partial Program Analysis aims at helping an analysis framework to reconstruct a complete type
hierarchy when receiving as input a subset of a program source code. For this to be realizable, we
must make the following assumption:

A1: Given a subset of a program P’s source code, we assume thatprogram P’s complete source
code can compile without any error.

Indeed, there is no point in generating and inferring type facts if the way types are used in the par-
tial program, our only source of information, is flawed. We argue this is a reasonable assumption,
especially when mining software repositories: a widely accepted convention is to commit code to
the repository only if the developer’s workspace compile without an error. If we assume that the
full program compiles, partial program analysis can then bedivided into two problems:

P1: What type facts need to be generated so the analysis framework can reconstruct the complete
type hierarchy and complete its analysis?

Type facts are needed almost everywhere in a Java program. All references to a type by its name
are discussed in the Java Language Specification [2] (JLS), section 4.11. Such references include
import statements at the beginning of a Java file, extend clauses, variable declarations or catch
statements, to name only a few.

Unfortunately, referring to a type by its name is only one instance where an analysis framework
needs to interact with the type system. Here is a non exhaustive list of situations where type facts
can also be required:

• When the analysis framework encounters a method call made onan object, the framework
needs to access the definition of this method to produce the correct binding.

• When a method is accessed in a static way, the analysis framework might check if the
method is declared to be static.

• When an object is passed as a parameter to a known method, the analysis framework might
want to ensure that the object is a subclass of the formal parameter type.

• In a catch statement, the analysis framework might want to ensure that the referenced type
is a subtype of theThrowable type.

• When an object is assigned to another object, the analysis framework might want to check
if the implicit cast is valid.

Since we assume the program compiles, we need to generate therequired type facts, such as
method declarations, and ensure that all checks implemented by the analysis framework pass.

P2: What type facts can we infer once the partial program has been parsed and checked?

Generating the fact that an unknown typet contains a certain methodm() because it is called in
the partial program is only one side of the problem. What can we say about the unknown type’s
hierarchy? If a known method is overloaded, can we determinewhich one is called? Can we infer
the type of an unknown field? Can we infer the return type of an unknown method?

This problem is generally known as type inference. But as opposed to complete programs written
in a strongly type language we, cannot use standard constraint-based type inference because most
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of the type facts are expected to be missing. It follows that we can perform two kinds of type facts
inference:

Sound type fact inference
We expect this kind of inference to be very rare. For example if anint is assigned to an unknown
field and the unknown field is assigned to anint, we can then soundly infer that the unknown field
is anint. But if there is only one assignment, the inference becomes unsound because it could be
a short or a long (or even ajava.lang.Integer) depending on the side of the assignment.

Unsound type fact inference
We expect this kind of inference to be more common. Still, we can differentiate the unsound type
fact inference results in three categories:

1. Correct hierarchy-related inference
This kind of inference will always be correct, but the inferred type might not be the one defined in
the missing source code (i.e, formal type). Let us consider those three examples:

Example 1:

super.age = 2;

In this example, if the definition of the super class is unknown, we can infer thatsuper.age is
a primitive. When we generate the final code, we need at some point to choose a primitive. The
obvious choice would be in this case anint, but it is possible that it is in fact along. We say that
the inference is correct because this is definitively a primitive and this is not aboolean, but the
real type might be in the hierarchy of the inferred type (in this case, a super type ofint).

Example 2:

Bird b1 = ...
Bird b2 = ...
b1.singFor(b2);

In this example, we can infer that the typeBird declares a methodsingFor() that accepts aBird
type as input. Again, we say that the inference is correct (indeed, there is one method accessible
from theBird type that accepts a parameter that can be a bird), but thesingFor() method might
be declared in a super type ofBird and it could accept a super type ofBird as a parameter
(hierarchy-related).

Example 3:

Bird b1 = unknownObject.unknownMethod();
unknownObject.unknownMethod().eat();

In this example, we first infer thatunknownMethod returns an object in the hierarchy ofBird.
In the second statement, we infer that the methodeat() is called on an object with a type in
the hierarchy ofBird. In other words, we will generate the fact that the methodBird.eat() is
called. Strictly speaking, this might be wrong since it is possible thatunknownMethod() returns a
subclass ofBird (e.g.,BlueJet) and that theeat() method is only declared within the subclass.
However, theeat() method is still declared in a type within the descendants ofBird, so we
conclude that this is a correct hierarchy-related inference.
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2. Unknown types inference
Sometimes, we expect to be unable to generate any fact about atype. Let us consider fieldf1 in
this example:

unknownObject.f1 = unknownObject.unknownMethod(...);

In this case, where everything is unknown, we will simply generate the fact that the type off1 is
unknown.

3. Possibly incorrect inference
Finally, we might want to be aggressive when doing type inference even if this could lead to
incorrect type facts. See Section 6-E for an example.

When writing the final output, the type inference soundness level should be clear.
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4 Partial Analysis

In this section, we cover the main strategies we devised to solve the two problems presented in
Section 3. We also briefly present the technical framework into which we implemented those
strategies.

4.1 Named and Anonymous Unknown Types

When analyzing a partial program, the analysis framework can come across two kinds of unknown
types, i.e., types for which we do not have the definition:

Example:

1. Bird bird = new Bird();

2. System.out.println(bird.property1);

If we know the name of a particular type but do not have access to its definition as it is the case
with Bird in the first line, we call it aNamed Unknown Typesince we at least know its short name
(and maybe its fully qualified name as we will see in the next subsection). We also know that it
is not a primitive nor the reference version of a primitive since those are restricted and cannot be
extended as specified by the JLS. Finally, we also know that the type is not an array or a subclass
of a final class. For example, it cannot substitute aString.

If we do not know the name of a particular type as it is the case with property1 in the second line,
we call it anAnonymous Unknown Type. In this particular case, it can be anything: a primitive,
an array, aString, a Named Unknown Type, etc. Since the analysis framework needs a fully
qualified name even for unknown types, we chose to useMMAGICPPACKAGE.MAGICCLASS as the
name of such types. This is the only type name that is generated in our analysis: even if we could
generate other intermediate types, this would not be practical if the user of our analysis expects to
get real types from the analyzed program.

4.2 Generating type facts

The main strategy when generating type facts is to try to be asefficient and permissive as possible
by doing as little type inference as possible.

4.2.1 Type definition

The first kind of facts that we need to generate for the analysis framework is the type’s fully qual-
ified name. As we will see in the following example, we can encounter four different situations:

package bar;

import foo.*;
import bar.baz.Bird;
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class BlueJet extends Bird {
private test.Dog dog;
private Animal a;

...

First, when the analysis framework encounters theBird class name, we infer that its fully qualified
name isbar.baz.Bird because there is anexplicit import statement.

Second, when the analysis framework encounters theDog class name, we infer that its fully quali-
fied name istest.Dog because its fully qualified name is used in the declaration.

Third, when the analysis framework encounters theAnimal class name, we cannot infer its fully
qualified name because it could be:
Animal (default package)
foo.Animal (because of the import all statement)
bar.Animal (it would be in the current package)

In this particular case we will generate the fact that the fully qualified name ofAnimal isMMAGICP-
PACKAGE.Animal telling the analysis framework that we could not make a soundassumption.

Fourth, if theimport foo.* statement was not part of the above example, we could have gen-
erated the fact that the fully qualified name of Animal was in fact bar.Animal. Even if this
would be an unsound assumption (Animal could be in the default package), this default behavior
is desirable since explicitly importing a class in the same package is not a common practice. For
example, Eclipse removes this kind of explicit imports whenauto-organizing import statements.
Moreover, using a class in the same package is probably more frequent then using a class in the
default package. In all cases, the default behavior should be configurable.

4.2.2 Type Members

When dealing with unknown types, the analysis framework often needs to get facts about their
members (fields and methods). Let us consider the following example, assuming that we do not
have the definition of the classBird:

1: Bird b = new Bird(‘‘Twitibird TM’’);
2: System.out.println(b.age);
3: b.singWith(new Bird(‘‘BigBird TM’’,2),‘‘Happy Birthday’’);

Here, we need to generate the following facts:

1. TheBird type has at least two constructor declarations, one that takes as input aString
(unsound but hierarchy related inference on line 1) and one that accepts oneBird and one
String (unsound but hierarchy related inference on line 3).

2. TheBird type has at least one method declaration namedsingWith() that takes as input a
Bird and aString (unsound but hierarchy related inference on line 3). The return type of
singWith() is an anonymous unknown type.

3. TheBird type has a field namedage which type is an anonymous unknown type (unsound
and unknown inference on line 2).
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Basically, we create the members as the analysis framework encounters them and we use only the
type facts that are at hand. The return type of an unknown fieldand an unknown method is always
an anonymous unknown type. Thus, if the same unknown method is used elsewhere with the same
parameters’ type and is assigned to a variable, we do not needto regenerate the method declaration
because we already allowed any return types.

4.2.3 Caveats

Unfortunately, the syntax of the Java programming languagecan be ambiguous and make type
facts generation a hard problem. Let us consider the following example:

1: import foo.Bar.Animal;
2:
3: class Bird extends Animal {
4:
5: public method m1(...) {
6: Property.doThis();
7: }
8:
9: }

The first import statement illustrates a problem that was unfortunately always present in the pre-
vious examples: isfoo.Bar a class, meaning thatAnimal is a static inner class or isfoo.Bar
a package? If we do not have access to the different packages or to theBar class definition, we
need to make a guess. One strategy would be to use the Java naming convention (which precludes
the use of upper case in the case of package) to determine the nature offoo.Bar, but not all Java
programs follow it. Another strategy is to always take the guess that it is a package until proved
otherwise (for example, by looking at the way the class is instantiated or if theBar class is used or
instantiated itself). In our solution, we preferred the latter since in our experience, the use of inner
class outside of its declaring class is rarer than not following the Java naming convention. In any
case, the fully qualified name of the type will be the same.

The second problem illustrated at line 6 can dramatically change the facts that we generate. In-
deed, isdoThis() a static method of theProperty class or isProperty a field of the super class
Animal? Both alternatives are possible because (1) theProperty class is not explicitly imported,
and (2) the current type extends a named unknown type. Again,we can rely on the Java naming
convention or simply choose to treat the method as a static one until proved otherwise (for exam-
ple, if Property is used in an assignment or as a method parameter). We chose the latter to be
consistent with the previous heuristic.

4.3 Inferring type facts

4.3.1 Type inference Strategies

There are a lot of different statements, operations and requirements in the Java programming
languages that can be used to infer type facts. The followingtwo examples are relevant examples
of the type inference strategies that we implemented:
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a) Assignment
If one side of an assignment is unknown, we can use the type of the other operand to do the
inference. The known operand side is important because it defines a type constraint. Let us
consider the following example:

1: int temp = bird.age;
2: bird.name = ‘‘Twitibird TM’’;

In the first line, we know that the type of age must be less or equals to anint: it can be ashort or
anint. In the second line, we know that the type of name must be greater or equals to aString:
it can be any ancestors ofString or theString type itself. An assignment can also be used to
infer the return type of an unknown method.

b) Parameter binding
The parameter types of a method can be used either to infer thetype of unknown parameters or to
infer the correct binding for an unknown method. Let us consider the following example:

1: ...
2: method1(2,bird.age);
3: ...
4:
5: private void method1(int p1, int p2)
6: private void method1(String p1, String p2)

From the call tomethod1 at line 2, we can infer two type facts. First, because the firstparameter
is anint, only the method at line 5 can be called. Second, this method declares that the second
parameter is anint, so the unknown fieldage must be anint.

4.3.2 Combining Strategies

Inference strategies can be combined as illustrated by the next example:

1: ...
2: int temp = method1(bird.age, bird.number);
3: ...
4:
5: private int method1(int p1, int p2) {}
6: private String method1(String p1, String p2) {}

Here, we first use the assignment inference strategy to determine that the return type ofmethod1
must be equals or less than anint. Only the first declaration ofmethod1 fulfills this requirement.
Then, we use the parameter binding inference strategy to determine the type of theage andnumber
unknown fields.

4.3.3 Merging type inference facts

When applying type inference strategies, we can gather conflicting facts about the same type and
thus, encounter one of those three situations:
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Decidable conflict
This is the case when type constraints can be resolved as in the following example:

1: Object o = bird.name;
2: String s = bird.name;

Here, we get the two following constraints:name’s type must be less or equals to anObject and
less or equals to aString. Since theString type satisfies both constraints, we infer thatString
is the type of thename field.

Undecidable conflict
This is the case when we cannot get enough facts about the involved types to resolve the con-
straints.

1: dog.friend = new Bird();
2: dog.friend = new Cat();

In this example, we do not have access to the definition ofBird andCat types. Thus, even if we
know that they are part of the same hierarchy because of the two assignments, we do not know
if one is a subclass of the other, who their first common ancestor is or what interface they share.
There are three strategies that we can use to deal with this situation. The first strategy involves
keeping in memory those various constraints (that thefriend field must be a subclass ofBird and
Cat). A second strategy would be to declare that thefriend field is unknown. Finally, another
strategy would be to keep the first or the last constraint and ignore the other, until a stronger
inference can be made. We chose to implement the last solution because we hypothesize that a
partial program will not provide sufficient facts to use the various constraints gathered and that, in
the end, we will need to make the same choice as if we did not collect those various constraints.

Erroneous conflict
This is the case where constraints cannot be resolved because the underlying code would not
compile (contradicting our main assumption). Here is such an example:

1: bird.name = new Object();
2: String s = bird.name;

In the first line,bird.name cannot be aString even if in the second line, it must be aString. If
we encounter this case, we report an error.

4.4 Implementation details

4.4.1 Extending Polyglot

We implemented our solution in the Soot static analysis framework [6] and more precisely in the
Polyglot compiler framework [3]. Soot uses Polyglot to build abstract syntax trees from Java
source files and then, transforms those trees into Jimple, a 3-address intermediate representation.
Unfortunately, when providing Polyglot with incomplete programs, exceptions are thrown because
the type hierarchy cannot be completed. Indeed, Polyglot aims for full compliance with the Java
Language Specification and needs to perform various validations involving type checking.
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Because of this requirement, the first part of the problem, generating type facts, needed to be
implemented into Polyglot to ensure that it would build the abstract syntax trees without throwing
exceptions. To achieve this goal, we modified the two following classes:

SourceResolver
This class is responsible for finding and parsing referencedclasses. Typically, Polyglot makes
multiple requests to SourceResolver when it encounters an unknown type. For example, if the
classfoo.bar.Baz is imported, Polyglot will make three requests in the following order: one
for foo, one forfoo.bar and one forfoo.bar.Baz (in the case thatBaz is an internal class).
Each of these requests can throw an exception, but only the last one can make Polyglot crash. We
thus needed to modify the SourceResolver API to know when therequest was the last one and act
accordingly by creating the requested type.

TypeSystem
This class is responsible for providing method or field instance according to certain requests. For
example, when a method call is parsed, Polyglot will make a request to the TypeSystem to know
which method should be bound according to the parameter types and the target class. We needed
to modify this class to generate the methods and fields of unknown types.

For the second part of the problem, inferring type facts, we had the choice of implementing the
solution at the AST level in Polyglot or at the Jimple level inSoot. The latter has the advan-
tage of simplifying the analysis since we would deal with shorter and simpler statements (no call
chains for example). On the other hand, once new facts about atype are discovered, we need to
modify the code representation accordingly. We argue that this would not be efficient at the Jimple
level because of the intermediate variables introduced in the 3-address intermediate representation.
Type inference is hence done at the AST level.

4.4.2 The algorithm

Here is our algorithm implementing those two sides of the solution (generating type facts and type
facts inference):

• While building ASTs

– Generate type facts.

– Put and merge inferred type facts into the worklist.

• First pass - Type inference

– Mark and index unsafe nodes.

– While the worklist is not empty

∗ Make nodes safer.

∗ Put and merge new inferred type facts into worklist.

• Optional - Second pass - Method binding and inference

– Mark and index unsafe nodes.

– Bind all unsafe methods, put and merge new inferred type facts into worklist.

– While the worklist is not empty
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∗ Make nodes safer.

∗ Put and merge new inferred type facts into worklist.

The first part of the algorithm is performed while parsing theJava source code and building the
abstract syntax trees. At this stage, most unknown methods and fields refer to our magic type. The
facts that we gather about the unknown types (e.g., there is acall to a methodeat() on an object
of typeBird) are put in a worklist and will be the seed of the type inference step.

Once all ASTs are built, we visit all nodes to mark and index the ones that areunsafe. A node,
such as a method call, is considered to be unsafe if it refers to an unknown type (anonymous or
not). A node can be made unsafe because of more than one element. For example, if a method
contains two parameters of an unknown type, the method is marked as unsafe and is indexed twice.
Then, the type facts in the worklist are processed. Every nodes indexed by a type in the worklist is
reprocessed (by the “make nodes safer” operation). If, while transforming a node new type facts
are inferred, the new data is added and merged into the worklist.

In the two first stages, it is possible that a method call mightbe bound to multiple method decla-
rations. Let us consider this example:

1: System.out.println(unknown.field1);
2: method1(unknown.field1);
3: ...
4: private void method1(boolean b) {}
5: private void method1(Bird b) {}

In this example, the methodprintln is overloaded and thus,field1 could be of any type (a
boolean, anObject, aString, etc.). Deciding the method call binding too early might produce
incorrect inference that could cascade. It follows that we defer the binding of these kinds of method
calls until no other inference can be done. Then, in the second inference pass, we arbitrarily choose
one binding and infer type facts from it.

The algorithm can be run in three modes:

Mode 1: Generate-only
In this mode, we only parse the source code and do not infer type facts. This is the fastest mode,
but also the least precise.

Mode 2: Isolated type system
In this mode, we try to infer type facts but we do not share these facts across classes that are
parsed by Polyglot. This mode is expected to be slower than the previous one, but also more
precise. Another advantage of this mode is that it restrictsaggressive but possibly wrong type
inferences to the class being analyzed, preventing false facts to pollute other classes.

Mode 3: Shared type system
In this mode, we share any inferred facts with all parsed classes. This mode is expected to the
slowest one but also the most precise depending on the application or the context in which partial
program analysis is used. For example, when mining softwarerepositories, files that are changed
are often related which might significantly increase the amount of type inference we can do.
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4.4.3 An extensible implementation

In our implementation of partial program analysis, we decoupled the reporting of type facts from
the rest of the algorithm so new type inference strategies could be added easily: the PPA framework
is responsible for merging this new facts and sending it to the nodes that might be made safer. The
framework is also responsible for generating and keeping the node indexes up to date: indeed,
when new facts about a type are processed, we want to visit only the nodes that might refer to this
type. Once the nodes are made “safer”, the indexes often needto be regenerated since the nodes
now refer to other the new type.
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5 Experimental Framework

Partial program analysis must be validated against three different variables:

Robustness
The main motivation behind partial program analysis is to make an analysis framework accepts an
incomplete program without “crashing”. Our implementation should then be able to accept any
incomplete program as long as it compiled in its complete version.

Correctness
We devised multiple type inference strategies with different degrees of soundness. We need to
ensure that our implementation respects those strategies and the intended soundness.

Precision and performance tradeoff
Because we propose different modes, we need to evaluate the tradeoffs between performance and
precision.

To evaluate correctness, we wrote a series of case studies, i.e., incomplete Java programs where
we associated for each line and each mode an expected result.We discuss those case studies in the
next section.

To evaluate robustness and precision, we will apply partialprogram analysis on all the revisions
of a Java program using a repository mining framework. More precisely, we intend to apply the
three modes of this analysis on all revisions of the Java Development Environment in the Eclipse
platform and report the number of nodes that were made more precise in each case. We will
also select a random sample of the revisions to evaluate the correctness of the type inference by
comparing the types and bindings of the partial program analysis with the types and bindings of
the compiled program at those versions.
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6 Results

A
In the three modes, two constructors should be generated forthe named unknown typepackage1.-
package2.Animal, one with no parameter and one with aString.

B
Since theDog type is not explicitly imported, the fully qualified name of this named unknown type
should beMAGICPACKAGE.Dog.

C
In mode 2 (isolated type inference), there is no way that the type forsuper.age could be inferred.
Thus, when producing the Jimple code, the first possible method binding is chosen (which should
beprintln(boolean)).

In mode 3 (shared type inference), the type ofsuper.age should be an int (because of line 9 in
BlueJet.java). The correct binding for the println method should then beprintln(int).

D
super.oldAge should be an int in mode 3 since anint (super.age) is assigned to this unknown
field (assignment inference strategy).

E
Because of the assignment inference strategy, thedoSomething method should return aString.
Since there is only one known definition that fulfills this requirement, the first parameter must be a
String. Thus, the super.name unknown field is aString (parameter binding inference strategy).
This inference is possibly incorrect because theApplication class is extending the unknown
classBird: it might be possible that Bird defines another method that returns aString and that
accepts a different parameter.

F
Because of the assignment inference strategy, we can conclude that the unknown fieldtimeToFlee
is anint.

G
In this case, we should generate the fact that theDog class defines a method calledgetSpeed. In
mode 2 and 3, we should also infer that the method return type is adouble using the assignment
inference strategy.

H
This case is a good example of type merging. Thenickname unknown field should be aString
because of the second assignment.

I
The analysis framework should generate the fact that theDog class defines a method called chase
that accepts one parameter. In mode 2 and 3, we should also indicate that the method accepts a
String as a parameter.

J
Again, because of the assignment inference strategy, the analysis framework should determine
that the return type ofdoSomething should be aString. Using the parameter binding inference
strategy, it should then infer that thefullName unknown field is aString and the child unknown
field is aBird. Like E, this inference is possibly incorrect.
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K
Because of the assignment inference strategy, the analysisframework should determine that the
return type ofdoSomething is an int. Using the parameter binding inference strategy, it should
then infer that thegetAge method should return an int and the second call chain should return
an int. This means that a methodgetDecay() returning an anonymous unknown type should
be created for the type Dog and a methodgetInt() returning an int should be created for this
unknown type.

L
Because of the assignment inference strategy, the type of theage unknown field should be anint.
Note thatBlueJet andApplication are both subtypes of theBird class andage is a field of the
Bird class. Thus, in mode 3, both classes refer to the same field,age, as anint.
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7 Conclusion

The main contributions of this project include both the partial program analysis at the conceptual
level and its extensible implementation. We clearly definedthe theoretical and implementation
problems associated to incomplete programs and devised solutions to overcome these issues. Be-
cause the whole problem of partial program analysis is unsound and undecidable, we categorized
our type inference strategies according to their differentlevel of soundness. This allows PPA to be
used in various contexts.

As future work, we identified several areas for improvement.First, we would like to increase the
robustness our implementation of PPA, i.e., ensure that it can parse any incomplete program. We
would also like to continue our work on inference strategies. Finally, we would like to leverage the
Soot tagging facility to provide type inference information (e.g. level of soundness) on statements
that were made “safer”.
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A Annex A - Java Source Files

package package1;

import package10.*;
import package1.package2.Animal;
import package3.Bird;
import java.io.PrintStream;

public class Application extends Bird {
public static void main(String[] args) {

// A- Generation of two constructors
Animal animal = new Animal();
Animal animal2 = new Animal(args[0]);
System.out.println(animal.toString());
System.out.println(animal2.toString());

}

// B- MAGICPACKAGE.Dog
public void flee(Dog dog) {

PrintStream printer = System.out;

// C- println(int) if mode 3
// C- println(unknown) if mode 2
printer.println(super.age);

// D- oldAge should be an int in mode3
super.oldAge = super.age;

// E- doSomething(String)
String salutations = doSomething(super.name);
printer.println(salutations);

// F- super.timeToFlee = int
super.timeToFlee = doSomething(10);

// G- getSpeed should return a double
double speed = dog.getSpeed();

// H- super.nickName must be String
Object obj = super.nickname;
String s = super.nickname;

// I- chase(String)
dog.chase(super.nickname);

// J- doSomething(String,Bird)
s = doSomething(super.fullName,super.child);
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// K- getAge() should return int, getDecay() should return magic class
// getInt should return an int!
int var = doSomething(dog.getAge(),dog.getDecay().getInt());

}

public String doSomething(String name) {
return "Hello " + name;

}

public int doSomething (int age) {
return age * 10;

}

public String doSomething(String name, Bird child) {
return name + " is the parent of " + child.toString();

}

public int doSomething(int age, int increment) {
return age + increment;

}
}
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package package1.package2;

import package3.Bird;

public class BlueJet extends Bird {
public void decay() {

// L - super.age is an int
int ageTemp = super.age;
ageTemp = ageTemp + 10;
super.age = ageTemp;

}
}
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B Annex B - Jimple Source Files

// package1.Application.jimple - MODE 1
public class package1.Application extends package3.Bird
{

public static void main(java.lang.String[])
{

java.lang.String[] args;
package1.package2.Animal animal, $r0, animal2, $r1;
java.lang.String $r2, $r4, $r6;
java.io.PrintStream $r3, $r5;
args := @parameter0: java.lang.String[];
$r0 = new package1.package2.Animal;
specialinvoke $r0.<package1.package2.Animal: void <init>()>();
animal = $r0;
$r1 = new package1.package2.Animal;
$r2 = args[0];
specialinvoke $r1.<package1.package2.Animal: void

<init>(java.lang.String)>($r2);
animal2 = $r1;
$r3 = <java.lang.System: java.io.PrintStream out>;
$r4 = virtualinvoke animal.<java.lang.Object: java.lang.String

toString()>();
virtualinvoke $r3.<java.io.PrintStream: void

println(java.lang.String)>($r4);
$r5 = <java.lang.System: java.io.PrintStream out>;
$r6 = virtualinvoke animal2.<java.lang.Object: java.lang.String

toString()>();
virtualinvoke $r5.<java.io.PrintStream: void

println(java.lang.String)>($r6);
return;

}

public void flee(MMAGICPPACKAGE.Dog)
{

package1.Application this;
MMAGICPPACKAGE.Dog dog;
java.io.PrintStream printer;
MMAGICPPACKAGE.MagicClass $r0, $r1, $r2, $r3, $r5, $r6, $r7, $r8, $r9;
java.lang.String salutations, s;
int $i0;
java.lang.Object obj;
this := @this: package1.Application;
dog := @parameter0: MMAGICPPACKAGE.Dog;
printer = <java.lang.System: java.io.PrintStream out>;
$r0 = this.<package3.Bird: MMAGICPPACKAGE.MagicClass age>;
virtualinvoke printer.<java.io.PrintStream: void

println(boolean)>($r0);
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$r1 = this.<package3.Bird: MMAGICPPACKAGE.MagicClass age>;
this.<package3.Bird: MMAGICPPACKAGE.MagicClass oldAge> = $r1;
$r2 = this.<package3.Bird: MMAGICPPACKAGE.MagicClass name>;
salutations = virtualinvoke this.<package1.Application:

java.lang.String doSomething(java.lang.String)>($r2);
virtualinvoke printer.<java.io.PrintStream: void

println(java.lang.String)>(salutations);
$i0 = virtualinvoke this.<package1.Application: int

doSomething(int)>(10);
this.<package3.Bird: MMAGICPPACKAGE.MagicClass timeToFlee> = $i0;
virtualinvoke dog.<MMAGICPPACKAGE.Dog: MMAGICPPACKAGE.MagicClass

getSpeed()>();
obj = this.<package3.Bird: MMAGICPPACKAGE.MagicClass nickname>;
s = this.<package3.Bird: MMAGICPPACKAGE.MagicClass nickname>;
$r3 = this.<package3.Bird: MMAGICPPACKAGE.MagicClass nickname>;
virtualinvoke dog.<MMAGICPPACKAGE.Dog: MMAGICPPACKAGE.MagicClass

chase(MMAGICPPACKAGE.MagicClass)>($r3);
$r5 = this.<package3.Bird: MMAGICPPACKAGE.MagicClass fullName>;
$r6 = this.<package3.Bird: MMAGICPPACKAGE.MagicClass child>;
virtualinvoke this.<package1.Application: java.lang.String

doSomething(java.lang.String,package3.Bird)>($r5, $r6);
$r7 = virtualinvoke dog.<MMAGICPPACKAGE.Dog: MMAGICPPACKAGE.MagicClass

getAge()>();
$r8 = virtualinvoke dog.<MMAGICPPACKAGE.Dog: MMAGICPPACKAGE.MagicClass

getDecay()>();
$r9 = virtualinvoke $r8.<MMAGICPPACKAGE.MagicClass:

MMAGICPPACKAGE.MagicClass getInt()>();
virtualinvoke this.<package1.Application: java.lang.String

doSomething(java.lang.String,package3.Bird)>($r7, $r9);
return;

}

public java.lang.String doSomething(java.lang.String)
{

package1.Application this;
java.lang.String name, $r3;
java.lang.StringBuffer $r0, $r1, $r2;
this := @this: package1.Application;
name := @parameter0: java.lang.String;
$r0 = new java.lang.StringBuffer;
specialinvoke $r0.<java.lang.StringBuffer: void <init>()>();
$r1 = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>("Hello ");
$r2 = virtualinvoke $r1.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>(name);
$r3 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.String

toString()>();
return $r3;
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}

public int doSomething(int)
{

package1.Application this;
int age, $i0;

this := @this: package1.Application;
age := @parameter0: int;
$i0 = age * 10;
return $i0;

}

public java.lang.String doSomething(java.lang.String, package3.Bird)
{

package1.Application this;
java.lang.String name, $r3, $r5;
package3.Bird child;
java.lang.StringBuffer $r0, $r1, $r2, $r4;
this := @this: package1.Application;
name := @parameter0: java.lang.String;
child := @parameter1: package3.Bird;
$r0 = new java.lang.StringBuffer;
specialinvoke $r0.<java.lang.StringBuffer: void <init>()>();
$r1 = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>(name);
$r2 = virtualinvoke $r1.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>(" is the parent of ");
$r3 = virtualinvoke child.<java.lang.Object: java.lang.String

toString()>();
$r4 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>($r3);
$r5 = virtualinvoke $r4.<java.lang.StringBuffer: java.lang.String

toString()>();
return $r5;

}

public int doSomething(int, int)
{

package1.Application this;
int age, increment, $i0;

this := @this: package1.Application;
age := @parameter0: int;
increment := @parameter1: int;
$i0 = age + increment;
return $i0;

}
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public void <init>()
{

package1.Application this;

this := @this: package1.Application;
specialinvoke this.<package3.Bird: void <init>()>();
return;

}
}
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// package1.package2.BlueJet.jimple - MODE 1
public class package1.package2.BlueJet extends package3.Bird
{

public void decay()
{

package1.package2.BlueJet this;
int ageTemp;
this := @this: package1.package2.BlueJet;
ageTemp = this.<package3.Bird: MMAGICPPACKAGE.MagicClass age>;
ageTemp = ageTemp + 10;
this.<package3.Bird: MMAGICPPACKAGE.MagicClass age> = ageTemp;
return;

}

public void <init>()
{

package1.package2.BlueJet this;
this := @this: package1.package2.BlueJet;
specialinvoke this.<package3.Bird: void <init>()>();
return;

}
}
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// package1.Application.jimple - MODE 2
public class package1.Application extends package3.Bird
{

public static void main(java.lang.String[])
{

java.lang.String[] args;
package1.package2.Animal animal, $r0, animal2, $r1;
java.lang.String $r2, $r4, $r6;
java.io.PrintStream $r3, $r5;
args := @parameter0: java.lang.String[];
$r0 = new package1.package2.Animal;
specialinvoke $r0.<package1.package2.Animal: void <init>()>();
animal = $r0;
$r1 = new package1.package2.Animal;
$r2 = args[0];
specialinvoke $r1.<package1.package2.Animal: void

<init>(java.lang.String)>($r2);
animal2 = $r1;
$r3 = <java.lang.System: java.io.PrintStream out>;
$r4 = virtualinvoke animal.<java.lang.Object: java.lang.String

toString()>();
virtualinvoke $r3.<java.io.PrintStream: void

println(java.lang.String)>($r4);
$r5 = <java.lang.System: java.io.PrintStream out>;
$r6 = virtualinvoke animal2.<java.lang.Object: java.lang.String

toString()>();
virtualinvoke $r5.<java.io.PrintStream: void

println(java.lang.String)>($r6);
return;

}

public void flee(MMAGICPPACKAGE.Dog)
{

package1.Application this;
MMAGICPPACKAGE.Dog dog;
java.io.PrintStream printer;
MMAGICPPACKAGE.MagicClass $r0, $r1, $r7;
java.lang.String salutations, $r2, s, $r3, $r5;
int $i0, $i1, $i2;
java.lang.Object obj;
package3.Bird $r6;
this := @this: package1.Application;
dog := @parameter0: MMAGICPPACKAGE.Dog;
printer = <java.lang.System: java.io.PrintStream out>;
$r0 = this.<package3.Bird: MMAGICPPACKAGE.MagicClass age>;
virtualinvoke printer.<java.io.PrintStream: void

println(boolean)>($r0);
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$r1 = this.<package3.Bird: MMAGICPPACKAGE.MagicClass age>;
this.<package3.Bird: MMAGICPPACKAGE.MagicClass oldAge> = $r1;
$r2 = this.<package3.Bird: java.lang.String name>;
salutations = virtualinvoke this.<package1.Application:

java.lang.String doSomething(java.lang.String)>($r2);
virtualinvoke printer.<java.io.PrintStream: void

println(java.lang.String)>(salutations);
$i0 = virtualinvoke this.<package1.Application: int

doSomething(int)>(10);
this.<package3.Bird: int timeToFlee> = $i0;
virtualinvoke dog.<MMAGICPPACKAGE.Dog: double getSpeed()>();
obj = this.<package3.Bird: java.lang.String nickname>;
s = this.<package3.Bird: java.lang.String nickname>;
$r3 = this.<package3.Bird: java.lang.String nickname>;
virtualinvoke dog.<MMAGICPPACKAGE.Dog: MMAGICPPACKAGE.MagicClass

chase(java.lang.String)>($r3);
$r5 = this.<package3.Bird: java.lang.String fullName>;
$r6 = this.<package3.Bird: package3.Bird child>;
virtualinvoke this.<package1.Application: java.lang.String

doSomething(java.lang.String,package3.Bird)>($r5, $r6);
$i1 = virtualinvoke dog.<MMAGICPPACKAGE.Dog: int getAge()>();
$r7 = virtualinvoke dog.<MMAGICPPACKAGE.Dog: MMAGICPPACKAGE.MagicClass

getDecay()>();
$i2 = virtualinvoke $r7.<MMAGICPPACKAGE.MagicClass: int getInt()>();
virtualinvoke this.<package1.Application: int

doSomething(int,int)>($i1, $i2);
return;

}

public java.lang.String doSomething(java.lang.String)
{

package1.Application this;
java.lang.String name, $r3;
java.lang.StringBuffer $r0, $r1, $r2;
this := @this: package1.Application;
name := @parameter0: java.lang.String;
$r0 = new java.lang.StringBuffer;
specialinvoke $r0.<java.lang.StringBuffer: void <init>()>();
$r1 = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>("Hello ");
$r2 = virtualinvoke $r1.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>(name);
$r3 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.String

toString()>();
return $r3;

}

public int doSomething(int)
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{
package1.Application this;
int age, $i0;

this := @this: package1.Application;
age := @parameter0: int;
$i0 = age * 10;
return $i0;

}

public java.lang.String doSomething(java.lang.String, package3.Bird)
{

package1.Application this;
java.lang.String name, $r3, $r5;
package3.Bird child;
java.lang.StringBuffer $r0, $r1, $r2, $r4;
this := @this: package1.Application;
name := @parameter0: java.lang.String;
child := @parameter1: package3.Bird;
$r0 = new java.lang.StringBuffer;
specialinvoke $r0.<java.lang.StringBuffer: void <init>()>();
$r1 = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>(name);
$r2 = virtualinvoke $r1.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>(" is the parent of ");
$r3 = virtualinvoke child.<java.lang.Object: java.lang.String

toString()>();
$r4 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>($r3);
$r5 = virtualinvoke $r4.<java.lang.StringBuffer: java.lang.String

toString()>();
return $r5;

}

public int doSomething(int, int)
{

package1.Application this;
int age, increment, $i0;

this := @this: package1.Application;
age := @parameter0: int;
increment := @parameter1: int;
$i0 = age + increment;
return $i0;

}

public void <init>()
{
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package1.Application this;
this := @this: package1.Application;
specialinvoke this.<package3.Bird: void <init>()>();
return;

}
}
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// package1.package2.BlueJet.jimple - MODE 2
public class package1.package2.BlueJet extends package3.Bird
{

public void decay()
{

package1.package2.BlueJet this;
int ageTemp;

this := @this: package1.package2.BlueJet;
ageTemp = this.<package3.Bird: int age>;
ageTemp = ageTemp + 10;
this.<package3.Bird: int age> = ageTemp;
return;

}

public void <init>()
{

package1.package2.BlueJet this;
this := @this: package1.package2.BlueJet;

specialinvoke this.<package3.Bird: void <init>()>();
return;

}
}
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// package1.Application.jimple - MODE 3
public class package1.Application extends package3.Bird
{

public static void main(java.lang.String[])
{

java.lang.String[] args;
package1.package2.Animal animal, $r0, animal2, $r1;
java.lang.String $r2, $r4, $r6;
java.io.PrintStream $r3, $r5;
args := @parameter0: java.lang.String[];
$r0 = new package1.package2.Animal;
specialinvoke $r0.<package1.package2.Animal: void <init>()>();
animal = $r0;
$r1 = new package1.package2.Animal;
$r2 = args[0];
specialinvoke $r1.<package1.package2.Animal: void

<init>(java.lang.String)>($r2);
animal2 = $r1;
$r3 = <java.lang.System: java.io.PrintStream out>;
$r4 = virtualinvoke animal.<java.lang.Object: java.lang.String

toString()>();
virtualinvoke $r3.<java.io.PrintStream: void

println(java.lang.String)>($r4);
$r5 = <java.lang.System: java.io.PrintStream out>;
$r6 = virtualinvoke animal2.<java.lang.Object: java.lang.String

toString()>();
virtualinvoke $r5.<java.io.PrintStream: void

println(java.lang.String)>($r6);
return;

}

public void flee(MMAGICPPACKAGE.Dog)
{

package1.Application this;
MMAGICPPACKAGE.Dog dog;
java.io.PrintStream printer;
int $i0, $i1, $i2, $i3, $i4;
java.lang.String salutations, $r0, s, $r1, $r3;
java.lang.Object obj;
package3.Bird $r4;
MMAGICPPACKAGE.MagicClass $r5;
this := @this: package1.Application;
dog := @parameter0: MMAGICPPACKAGE.Dog;
printer = <java.lang.System: java.io.PrintStream out>;
$i0 = this.<package3.Bird: int age>;
virtualinvoke printer.<java.io.PrintStream: void println(int)>($i0);
$i1 = this.<package3.Bird: int age>;
this.<package3.Bird: int oldAge> = $i1;
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$r0 = this.<package3.Bird: java.lang.String name>;
salutations = virtualinvoke this.<package1.Application:
java.lang.String doSomething(java.lang.String)>($r0);
virtualinvoke printer.<java.io.PrintStream: void

println(java.lang.String)>(salutations);
$i2 = virtualinvoke this.<package1.Application: int

doSomething(int)>(10);
this.<package3.Bird: int timeToFlee> = $i2;
virtualinvoke dog.<MMAGICPPACKAGE.Dog: double getSpeed()>();
obj = this.<package3.Bird: java.lang.String nickname>;
s = this.<package3.Bird: java.lang.String nickname>;
$r1 = this.<package3.Bird: java.lang.String nickname>;
virtualinvoke dog.<MMAGICPPACKAGE.Dog: MMAGICPPACKAGE.MagicClass

chase(java.lang.String)>($r1);
$r3 = this.<package3.Bird: java.lang.String fullName>;
$r4 = this.<package3.Bird: package3.Bird child>;
virtualinvoke this.<package1.Application: java.lang.String

doSomething(java.lang.String,package3.Bird)>($r3, $r4);
$i3 = virtualinvoke dog.<MMAGICPPACKAGE.Dog: int getAge()>();
$r5 = virtualinvoke dog.<MMAGICPPACKAGE.Dog: MMAGICPPACKAGE.MagicClass

getDecay()>();
$i4 = virtualinvoke $r5.<MMAGICPPACKAGE.MagicClass: int getInt()>();
virtualinvoke this.<package1.Application: int

doSomething(int,int)>($i3, $i4);
return;

}

public java.lang.String doSomething(java.lang.String)
{

package1.Application this;
java.lang.String name, $r3;
java.lang.StringBuffer $r0, $r1, $r2;

this := @this: package1.Application;
name := @parameter0: java.lang.String;
$r0 = new java.lang.StringBuffer;
specialinvoke $r0.<java.lang.StringBuffer: void <init>()>();
$r1 = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>("Hello ");
$r2 = virtualinvoke $r1.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>(name);
$r3 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.String

toString()>();
return $r3;

}

public int doSomething(int)
{
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package1.Application this;
int age, $i0;

this := @this: package1.Application;
age := @parameter0: int;
$i0 = age * 10;
return $i0;

}

public java.lang.String doSomething(java.lang.String, package3.Bird)
{

package1.Application this;
java.lang.String name, $r3, $r5;
package3.Bird child;
java.lang.StringBuffer $r0, $r1, $r2, $r4;

this := @this: package1.Application;
name := @parameter0: java.lang.String;
child := @parameter1: package3.Bird;
$r0 = new java.lang.StringBuffer;
specialinvoke $r0.<java.lang.StringBuffer: void <init>()>();
$r1 = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>(name);
$r2 = virtualinvoke $r1.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>(" is the parent of ");
$r3 = virtualinvoke child.<java.lang.Object: java.lang.String

toString()>();
$r4 = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.StringBuffer

append(java.lang.String)>($r3);
$r5 = virtualinvoke $r4.<java.lang.StringBuffer: java.lang.String

toString()>();
return $r5;

}

public int doSomething(int, int)
{

package1.Application this;
int age, increment, $i0;

this := @this: package1.Application;
age := @parameter0: int;
increment := @parameter1: int;
$i0 = age + increment;
return $i0;

}

public void <init>()
{

35



package1.Application this;

this := @this: package1.Application;
specialinvoke this.<package3.Bird: void <init>()>();
return;

}
}
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// package1.package2.BlueJet.jimple - MODE 3
public class package1.package2.BlueJet extends package3.Bird
{

public void decay()
{

package1.package2.BlueJet this;
int ageTemp;

this := @this: package1.package2.BlueJet;
ageTemp = this.<package3.Bird: int age>;
ageTemp = ageTemp + 10;
this.<package3.Bird: int age> = ageTemp;
return;

}

public void <init>()
{

package1.package2.BlueJet this;
this := @this: package1.package2.BlueJet;
specialinvoke this.<package3.Bird: void <init>()>();
return;

}
}
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