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Abstract

Virtual Machine authors face a difficult choice: to settle for low performance, cheap interpreter, or to
write a specialized and costly compiler. One of the methods to bridge the gap between these two distant
solutions is to use the existingcode-copying technique that reuses chunks of VM’s binary code creating a
simple JIT. While simple in principle this technique is not reliable without a compiler that can guarantee
that copied chunks are functionally equivalent, which is often not the case due to aggressive optimiza-
tions. We present a proof-of-concept, minimal-impact modification of a highly optimizing compiler,
GCC. It allows a VM programmer to mark specific chunks of VM source code ascopyable. The chunks
of native code resulting from compilation of the marked source become addressable and self-contained.
Chunks can be safely copied at VM runtime, concatenated and executed together. With minimal impact
on compiler maintenance we guarantee the necessary safety and correctness properties of chunks. This
allows code-copying VMs to safely achieve performance improvement up to 200%, 67% average, over
direct interpretation. ensured thanks to chunks integrity verification. This maintanable enhancement
makes the code-copying technique reliable and thus practially usable.
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1 Introduction

Virtual Machines (VMs) are used as a target compilation architecture by many languages. The most widely
known example is Java, but the same is true of a host of languages with dynamic properties, including
Python, PHP, Perl6, Forth and many others. To maintain a clear abstraction and portable execution each
of these languages uses a virtual assembly, usually called bytecode, to encode mostly simple operations
performed on the Virtual Machine. The choice of the operations represented by the bytecodes and the
construction of a Virtual Machine differ for each language. For example, Java uses a virtual stack-based
machine, while Perl6 uses a virtual register-based machine. Despite the differences between bytecodes of
different programming languages they all require a Virtual Machine, andthus also a translation mechanism
involving either the use of a cheap but slowerinterpreter or the use of a more dynamic just-in-time or ahead-
of-time costly compiler that generates better optimized code. For many environments efficiency remains
important, but the development and maintenance costs of an optimizing compiler are outweighed by the
simplicity and rapid development time of an interpreter-based VM.

Code-copying has been proposed as a VM interpreter implementation technique that improvesperformance,
reducing the gap between interpreters and compilers [7, 16]. In this workwe address the main safety, prac-
tical implementation and maintenance problems inherent in such a technique that were left mostly unsolved
by the previous works. Our design builds on the well-known GCC compiler to ensure semantic guarantees
appropriate for code-copying in VM designs. This allows dynamic code construction and interpretation with
good efficiency versus maintenance tradeoffs. Supporting language enhancements in a continually evolving,
optimizing compiler such as GCC can be complex; we thus further show how support changes to the basic
VM compiler itself can be minimally intrusive, requiring changes dependent mainly on core, stable internal
compiler structures. Low maintenance and easily isolated changes are important practical requirements for
a feasible system.

An attractive feature of supporting advanced interpreter execution designs is that a static compiler such as
GCC can become an effective back-end for multiple VM architectures. Thisprovides optimized execution
at low cost for a number of interpreted languages. We provide experimental data from an implementation
based on the SableVM Java Virtual Machine [7]. Our results show that our automatic and verified safe
design is able to match, and sometimes exceed that of previous, labour-intensive, hand-done and unverified
attempts. This demonstrates the viability of our approach in terms of performance and portability.

Contributions

We make the following specific contributions:

• We develop safe and practical code-copying techniques appropriate for a high-performance interpreter
using GCC as a back-end. This also allows us to provide previously elusive safety guarantees for the
code-copying technique.

• Our approach ensures a maintainable design within the context of GCC itself.Ensuring safety in code-
copying could be performed by large, invasive efforts at nearly all levels of compilation; our technique
minimizes the impact on general GCC development to insertion of few well-separated phases: addi-
tional data gathering (at the beginning of compilation), some data recovery,and final verification.

• Our work provides an attractive, single-compiler solution for a variety of different programming lan-
guages and virtual machines. This takes advantage of the ubiquity and continuous development of a
major compiler framework such as GCC.
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In the next section we give related work on code-copying and other interpreter optimization techniques. Sec-
tion 3 then gives background on code-copying techniques and requirements. Our design and GCC modifica-
tions are detailed in Section 4, and Section 5 provides some experimental results from our implementation.

2 Related Work

In our work we are concerned with optimizing interpreter-based VMs by enabling them to practically and
safely use thecode-copying technique. This technique originates fromdirect-threaded interpretation and
was first described by Piumarta and Riccardi in their work on, what they called, selective inlining [16].
Compilers used at that time did not use too many optimizations that would make code-copying impossible,
but their solution also did not give safety guarantees.

Gagnon was the first to use the code-copying technique in a Java interpreter [7,8]. While this implementation
solved some important problems specific to the interpretation of Java bytecode, its code-copying engine
required manual tuning that could not give guarantees of safe execution and therefore could not be regarded
as a production-ready solution. Interestingly, experiments done with a simple, non-optimizing portable JIT
for SableVM (SableJIT [1]) showed that such a JIT was only barely able to achieve speeds comparable to
the code-copying engine. This demonstrated once again that code-copying is a very attractive solution, save
only for its lack of safety.

One of the important reasons why code-copying is significantly faster thanother interpretation techniques is
its positive influence on the success rate of branch predictors commonly used in today’s hardware containing
branch target buffers (BTB). As Ertl showed in his work on indirect branch prediction in interpreters [3, 6]
other solution that improve branch prediction, like bytecode duplication, canalso give significant perfor-
mance improvement. Speedup due to branch prediction improvements much outweighs other negative ef-
fects such as increased i-cache misses.

A solution similar to code copying engine is a JIT using code generated by a C compiler developed by
Ertl [4]. In this solution, however, the pieces of code were actually modified (patched) on the fly, so as to
contain immediate values and remove the need for the instruction counter. Due tothe patching architecture-
specific code was necessary. Ertl’s solution did include automated tests to detect code chunks that were
definitely not copyable, but it was not guaranteed to find all such chunks and thus did not ensure safety.

Of course there exist several popular Virtual Machines for Java thatsignificantly differ in their design.
JikesRVM [12] is written in an extended Java, does not make use of an interpreter, but employs a JIT
compiler with 3 levels of optimizations. Its focus is on delivering high performance. A different approach
has been taken by the architects of Kaffe [13], which offers a standard direct-threaded interpreter on many
architectures, and employs a good optimizing JIT compiler on selected few dueto the limited resources
of the project. The design of the IBM’s Java VM [11] employs an interpreter and a highly optimizing JIT
compiler used only for frequently executed code.

Specialized interpreters are another route to optimized performance. In Vmgen the VM system can be
trained on a set of programs to detect the most often occurring small sequences of bytecodes and then
modify the source of the interpreter to combine these sequences into superinstructions, optimized the next
time the interpreter is recompiled [5]. While the speed benefits of this solution areindisputable, it still
requires non-automated training, selection of the set of training programs and interpreter recompilation.

Another optimization based on exploitation of frequently occurring bytecodesequences were shown by
Stephenson under the name ofmulticode substitution [17]. He showed that to limit the total number of in-
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Figure 1: The taxonomy of Virtual Machines execution engines.

structions (including those created by the optimization itself) such approach must be combined with careful
selection of sequences based on how well a sequence of bytecodes can be optimized.

A completely different approach to execution of bytecode was taken by GCJ [2] and LLVM [14]. GCJ is
a GCC-based Ahead-Of-Time compiler, including also a direct-threaded interpreter for dynamically loaded
code. GCJ takes as its input either Java source or Java bytecode (classfiles) and compiles them to an
architecture-specific executable. LLVM is a compilation framework createdfor lifelong program analysis
that features its own code representation, own compiler and other tools thatmake it very extendable and
reusable.

3 VM Execution and Code-Copying

Our optimized design forcode-copying is within the context of a VM interpreter. Figure 1 shows a rough
taxonomy of the different kinds of execution engines used by Virtual Machines; in general this is through
an interpreter or compiler, though mixed designs are also possible [15]. Onthe right side of Figure 1
compiler approaches translate streams of bytecodes into native machine code, either Ahead-Of-Time, where
the compiled code is stored and made ready for multiple, repeated execution, or Just-in-Time, compiling the
code just prior to execution and (typically) discarding the result after the program is completed. Compilation
is desirable for performance, but implies a very non-trivial resource commitment not always available to VM
designers.

Interpreters have the advantage of simplicity, although improved performance is possible with different
design approaches. We illustrate the main designs on the left side of Figure 1to situate the code-copying
approach; these include a basicswitch-threaded interpreter, and adirect-threaded model.

A switch-threaded interpreter simulates a basic fetch, decode, execute cycle, reading the next bytecode to
execute and using a largeswitch-case statement to branch to the actual VM code appropriate for that byte-
code. This process is straightforward but if, such as in Java, bytecodes often encode only small operations
the overhead of fetching and decoding an instruction is proportionally high, making the overall design quite
inefficient.

A direct-threaded interpreter is a more advanced interpreter that minimizes decoding overhead. This kind
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of interpreter requires an extension offered by some compilers known aslabels-as-values. Normally a C1

program can containgotos only to labels. With the labels-as-values extension it is possible to take an address
of a label and store it in a variable. Later this variable can be used as an argument of a goto. In a direct-
threaded interpreter a stream of bytecodes is thus replaced by a stream of addresses of labels. The labels
themselves are placed at the start of the code responsible for the execution of operations encoded by each
bytecode. With this mechanism the interpreter can immediately execute a directgoto to the right chunk of
code. Optimization is implied by reducing the repeated decoding of instructions, trading repeated test-and-
branch sequences for a one-time preparatory action where a stream ofbytecodes is translated into a stream
of addresses.

It is important to notice that the speed advantage of a direct-threaded interpreter over a switch-threaded
interpreter already comes with the requirement of additional, specialized support from the compiler used to
compile the interpreter.

3.1 Code-copying technique

In some sense, and as indicated in Figure 1, code-copying2 bridges interpreter and compiler-based VM
implementation approaches. Code-copying is a further optimization to interpreter design, but one which
makes relatively strong assumptions about compiler code generation. The basic idea of code-copying is to
make use of the compiler applied to the VM to generate binary code for matching bytecodes. Parts orchunks
of the VM code are used to implement the behaviour of each bytecode. Those chunks of code are marked
with labels at their begin and end. At runtime, the interpreter copies the binarychunks corresponding to an
input stream of bytecodes and concatenates them into a new place in memory,as shown in Figure 2. Such a
set of concatenated instructions is called a superinstruction and it can execute at a much greater speed than
using any of the other two formerly described techniques.

Depending on an application and other factors the code-copying technique can give from 20% to 200% per-
formance gain over the direct-threaded technique. There are two main reasons for this large improvement:

• Reduction of the number of dispatches. With the code-copying technique there is only one dispatch
per superinstruction instead of one dispatch per instruction. This usually removes about 70% of the
dispatches in superinstructions [7].

• Improvement in branch prediction. In a code-copying interpreter there are multiple copies of each
instruction, each copy being a part of one of many superinstructions. Indirect-threaded or switch-
threaded interpreters there usually is only one copy of each instruction. Because of that the branches
to the next instruction have a highly variable target, making branch misprediction rates extremely
high [3].

In this way the code-copying technique removes a vast amount of dispatches and mispredicted dispatches
that are especially costly on modern, highly pipelined processors.

1The C language (and its close derivatives) is the most popular languagein which operating systems and their related tools,
including compilers, are written. Many virtual machines are also written in C;our work thus focuses on virtual machines written
mainly in the C language.

2Note that in the literature what we call code-copying is sometimes referredto asinlining or inline-threading [7]; these latter
terms, however, we find, suggest method or function inlining to most compiler developers and researchers.
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Figure 2: A simplified comparison of direct-threaded and code-copying engines.

3.2 Safety

As numerous studies have shown the performance gains from using code-copying technique are clear [3,6–
8,16]. However one of the biggest problems the implementators of code-copying interpreter engines face is
ensuring that the fragments of the code chunks copied to construct superinstructions are still fully functional
in their new locations and as a part of a superinstruction. In particular, to behave correctly a code chunk
must not contain relative jumps or calls to targets that would be outside of the chunk, and its control flow
must start at thetop and exit at thebottom. Chunks which do not possess these properties cannot guarantee
safety at runtime.

Unfortunately, the C standard does not contain any semantics that would allow us to express and impose
such restrictions on selected parts of code. The labels placed before and after the code chunks do not
guarantee contiguity of the resulting binary code chunks, nor do they place restrictions on the use of relative
addressing. Even with the sub-optimal property of disabling optimizations selectively for code chunks
(let alone the entire VM) to our best knowledge there is no production-quality solution that would ensure
creation of code chunks that can be safely copied and executed.

Without guaranteed safety in code-copying an interpreter cannot practically, reliably make use of this useful
technique. Previous results used hand-done examination, trial-and-error [7], and manual porting combined
with specialized test suites3 in attempt to ensure safety. The large effort required, and the lack of a fully
verified result motivates our design in the next section.

3Based on unpublished research within the SableVM framework.
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I. Register pragma locations start/end during parsing

II. Scan the tree (twice)

III. Insert permanent marking and ensure areas are solid

IV. Fix ordering of basic blocks in copyable areas

VI. Verify RLT of copyable areas, that they

    hold the copyable-code properties

- ensure each pragma location is followed by a label

- flag these label statements as BEGIN & END

- insert volatile assembly around END labels

- modify gotos within the copyable areas to use absolute

  addressing (via register) if the target is outside of an area

- modify calls within areas to use absolute addressing

    (call via register)

AST is created

Scan 1

Scan 2

CFG is created
BB’s are created

Tree-SSA and RTL 
optimizations

late
optimizations

- initial permanent marking of BEGIN/TARGET basic blocks

- restore marking of copyable areas using BEGIN, TARGET

    and computed gotos as boundaries (reusable pass)

- restore marking of copyable areas (reusable pass)

- reorder basic blocks of copyable areas

V. Insert RTL markers of copyable areas boundaries

Figure 3: To produce copyable code with minimal changes to the internal structure of the compiler we
inserted several well isolated special passes.

4 Design

For VM designers our approach requires the additional use of simple identifiers bracketing copyable code.
We make use of the well-known#pragma operator to surround and thus help identify copyable chunks. The
bulk of our design effort is in ensuring safety for code copying, a result guaranteed by a small set of well-
specified passes within GCC. Below we first detail requirements for code toberelocatable and thus suitable
for code-copying, followed by a description of the GCC modifications, including the final verification phase.

4.1 Generation of safely copyable code

There are specific requirements that a chunk of code has to meet so it could be copied to another location in
memory, concatenated with other chunks and safely executed. If a chunkof copied code does not mimic the
functionality of the original it cannot be safely copied. We thus define a chunk of codeC to becopyable if
all of the following conditions are true:

• C occupies a single contiguous space in memory that starts and ends with two distinct code labels
specified by a programmer.

• Natural control flow entersC only at its “top” and exits only at its “bottom.”
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• Any jump from inside ofC to code outside ofC (e.g. to an exception handler) uses an absolute target
address.

• Any jump from the inside ofC to another place insideC uses a relative target address.

• Any function call from inside ofC uses an absolute target address.

If any of the above requirements is not met then a particular chunk of codeis not copyable. Our goal was
to modify a highly optimizing C compiler, such as GNU C Compiler 4.0, so it could process input chunk
requests and selectively generate code that meets these requirements.

4.2 GCC modifications

To compile a single function GCC executes several dozens of optimization passes. These passes modify the
code in ways that are usually supposed to improve the speed of the resultingcode, or its other parameters.
It is not feasible to modify, and maintain, all of these passes to selectively generate code conforming to our
requirements. Instead we modify the compiler to:

• preserve the information about which parts of the code have to be treated specially—from the moment
the source code is parsed to the moment the final assembly is generated

• allow (almost) all of the optimizations to execute without modifications and then at certain selected
points of the compilation process use specially crafted passes that modify the code in a manner that
makes selected code chunks copyable.

The overall set of modifications is divided into separate passes that collectively track or restore information
throughout the whole compilation process; a general description is shownin Figure 3. Depending on the
representation of the code at each stage of compilation this information is tracked in a different form. In the
source code it exists as#pragma lines, then as special flags of selected AST elements, later we attach it to
basic blocks andcomputed goto’s, and eventually it is inserted in a form ofnotes into the assembly. Tracking
this information turned out to be the most difficult part of our work. It is because of all the aggressive
optimizations that might duplicate, remove, and move parts of the code in which weare interested that
ensuring copyable code is non-trivial.

Phase I: Code parser pragma hook

The information about copyable areas originates from the source code,so it is necessary to start tracking
this information from the moment the source code is parsed. We plug our#pragma handler into the standard
GCC mechanism for parsing pragmas to register the locations ofcopyable pragmas in the source code.
Figure 4 illustrates a fragment of interpreter source code for a single code chunk. The first part of the code
performs the initialization necessary for the code-copying engine. The second part is the actual chunk or
body of a bytecode instruction. The code is surrounded by the specialcopyable #pragma statements that
mark the beginning and end of the copyable chunk.

GCC contains generic code for handling pragmas, so we only had to add to GCC a function that is called
when this#pragma is encountered. This function records the position of#pragmas in the source code which
are the beginning and ending positions that encompass eachcopyable area. At this stage the compiler also
performs sanity checks and warns about doubly started or open copyable areas.
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case SVM_INSTRUCTION_LCMP:
{ /* instruction initialization */
vm->instructions[instr].param_count = 0;
vm->instructions[instr].copyable_code = &&COPYABLE_START_LCMP;
env->vm->instructions[instr].copyable_size =

((char *) &&END_LCMP) - ((char *) &&COPYABLE_START_LCMP);
break;

}

#pragma copyable begin
COPYABLE_START_LCMP:
{ /* instruction body */

jlong value1 = *((jlong *) (void *) &stack[stack_size - 4]);
jlong value2 = *((jlong *) (void *) &stack[stack_size - 2]);
stack[(stack_size -= 3) - 1].jint =
(value1 > value2) - (value1 < value2);

}
#pragma copyable end

END_LCMP:

Figure 4: Pragma directives are placed around the code that will be usedby code-copying engine at runtime.

Original source code:

#pragma copyable end
END_LCMP:

Is changed into:

__volatile__ __asm__ ("":::"memory");
END_LCMP:

__volatile__ __asm__ ("":::"memory");

Figure 5: Volatile statements are inserted around theend label to ensure that thetarget basic block will
remain intact throughout optimizations.

In GCC inlining of functions is done very early, soon after the parsing is completed. The result of parsing
is a stream of statements describing the parsed function and does not contain information about#pragmas.
However each statement has attached information about the source code location from which it was created.
Integrating our previously gathered information on the location of#pragmas allows us to identify the code
of copyable areas within the stream of statements.

Phase II: Scan the tree (1)

To ensure chunks are properly identified and separated an initial pass isperformed to check starting and
ending conditions. Each location of#pragma copyable begin andend registered during parsing is checked
to ensure it is followed by a label. Thesestart andend labels have then their specialstart andend flags set
accordingly. Finally the code is modified by artificially inserting into the stream ofstatements two empty
volatile assembly instructions around theend label, as shown in Figure 5.
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Original code within a copyable area:

goto labelX; /* where labelX is outside of the copyable area */

Is replaced with:

{
void *address = &labelX;

/* this assembly claims to read and modify address

* and in this way prevents constant propagation */
__asm__ __volatile__ ("" : "=r" (address) : "0" (address) : "memory");

goto *address; /* computed goto uses absolute addressing */
}

Figure 6: To ensure absolute addressing agoto to outside of a copyable area is replaced with a specially
craftedcomputed goto.

The volatile assembly code acts as a barrier to code movement, and is used to ensure the basic blocks directly
following areas, thetarget blocks, are preserved and act as the sole and unique exits of the naturalcontrol
flow from a copyable area. Our tests showed that otherwise some optimizations would attempt to remove
or mergetarget blocks. In principle a similar concern applies to the first basic block of a copyable area, the
starting block. However in our tests the compiler would never try to remove or duplicate this block. We did
not investigate it further, but if it did it could always be handled the same way as intarget blocks.

Phase II: Scan the tree (2)

In most architectures control flow jumps can berelative or absolute. Relative jumps have the advantage
of being (usually) smaller instructions, but having a machine-specific limitationson the distance for which
they are useful. Absolute jumps are often longer instruction sequences since the complete target address
must be encoded, not just the relative displacement. As mentioned in Section 4.1 for control flow that goes
outside of the copyable areaabsolute jumps are required to ensure the code behaves the same once copied.
Similarly, jumps within a copyable region must use relative addressing to guarantee a copy will behave in a
similar fashion.

Our second phase thus includes a pass to convert control flow statementsthat go outside of a copyable area
(and not to thetarget block) to use absolute addresses for their targets. There are two cases of such control
flow: a goto and a function call, both complicated by the fact that GCC itself doesnot produce the final
binary code, rather it uses an external, platform-specific assembler program. It is in fact the assembler’s
role to choose the addressing mode for each call or jump; typically the shortest addressing mode to reach
the target is chosen, but there is no general and relatively platform-agnostic way to specify in the assembler
input that a jump or a call is to use absolute addressing. Below we describe how we ensure absolute jumps
are used through the use ofcomputed gotos, and then how we process the code chunk to ensure control flow
is safe for copying.

To force selected jumps and calls to use absolute addressing we modify the code of these instructions to make
jumps and calls via a register. As shown in Figure 6, in C these instructions arerepresented respectively by
a computed goto and a function call using afunction pointer. A computed goto is a special feature of the
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labels-as-values extension of GCC used by direct-threaded engine. It is agoto whose argument is not a label
but a variable containing the address of a label (or any other address). Using a register to hold the destination
address may have a negative impact on the performance that will vary from platform to platform, or even
CPU type. Here the benefits of maintainability and safety are paramount, and as we will show in Section 5
our solution is efficient in practice. Nevertheless, more portable ways of expressing absolute addressing
could improve performance further.

Our pass scans each copyable area forgotos having as their targets a label outside that area; a similar
process is applied to function calls. As shown in the Figure 6, each suchgoto is replaced with a stream of
statements that force the compiler to use acomputed goto, and therefore an absolute addressing mode. First
a declaration of a variable is inserted into the stream of statements. At runtime thisvariable will contain the
address of the target. Then an empty volatile assembly statement is inserted. This statement claims to use
and modify the value of the variable. Then a newgoto is created to replace the existing one. The target of
the newgoto is the address stored in the variable. We do not concern ourselves with pre-existingcomputed
gotos as these already use absolute addresses.

Our current system assumes that instructions are small enough that the compiler will use optimal, relative
jumps within the code of instructions found in a region, and so does not attemptto ensure intra-area jumps
are not absolute. Violations to this assumption, however, will be detected in our final verification phase.

Phase III: Mark and ensure areas are solid

Rather than modifying a large part of GCC to ensure properties of copyable code regions are preserved at
all subsequent compilation stages, by all compilation passes, we instead inserted two additional passes. The
first pass modifies the code in a way that ensures the minimal information aboutcopyable code regions is
always preserved. The second (reusable) pass uses this informationand is capable of finding all the basic
blocks belonging to copyable areas after arbitrary optimizations.

After the source code is parsed into the stream of statements the compiler creates descriptions of basic
blocks. Each such description contains pointers to the first and the last instruction that a basic block contains.
We found that a basic block is a convenient unit to carry the additional information about the copyable code.
It gives an easy access to smaller components of the code, like each particular instruction, while also being
easily accessible via higher-level structures like the control flow graph.We extended the data structure
describing a basic block to store the unique id of the copyable area a block belongs to and to store a field of
utility flags.

The initial marking of basic blocks is straightforward. We scan the stream ofstatements for labels earlier
marked asstart andend, and mark basic blocks with corresponding flags. Note that the initial marking,
as shown in Figure 7 might not be preserved by the optimizations performed later which might split, join,
duplicate, and delete basic blocks. It is therefore necessary to have a method of restoring the marking after
the optimizations, if we are to be able to detect which basic blocks belong to a copyable area.

In general optimizations can create new basic blocks, move or split existing ones. One of the possible results
is that some basic blocks that functionally are part of a copyable area mightnot anymore be placed between
thestart andtarget basic blocks of this area and might not carry the initial marking. An example is shown
in Figure 8 where the last basic block (BB6), even though placed far after thestart andtarget basic blocks,
clearly belongs to the control flow of this copyable area.

To recover marking after optimizations we rely on the preservation of thestart and target blocks. Area
marking restoration can then be done through simple propagation along the control flow graph, from the
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area = 5
flags = START

area = 5

area = 0

area = 5

area = 5
flags = TARGET

area = 0

Basic blocksStatements stream

  /* Code before the area */

#pragma copyable start

  COPYABLE_ICMP_START:

  . . .

  . . . /* Copyable code */

  . . .

#pragma copyable end

    ICMP_END:

  /* Code after the area */

Figure 7: Initial marking of basic blocks right after parsing.
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Figure 8: From the marking of only two basic blocks,start andtarget, the complete marking can be restored
by following the edges of the control flow graph. Once the marking is restored it is possible to rearrange the
basic blocks of a marked copyable area.
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start block of each area until thetarget block and jumps via computed gotos. It is critical that the compiler
had earlier modified all the jumps to outside of copyable areas to use computed gotos. This way it is
possible to always find the limits of copyable areas. Importantly, our approach does not use a heuristic
and is guaranteed to either properly restore the list of blocks belonging to acopyable area or fail explicitly
(which is reported as an internal compiler error).

During the marking restoration process the compiler performs several sanity checks. It ensures that both
start and target blocks exist for all initially existing copyable areas. It detects an attempt to mark a basic
block twice, from two different areas. Each of these problems is reported as an internal compiler error, as
that kind of situation should never arise because the lists of basic blocks belonging to copyable areas can
never intersect or overlap.

There currently exists one optimization performed by the compiler that has to bedisabled for a function that
uses copyable areas. This optimization, in GCC, is calledcross-jump. It attempts to find parts of code within
a function that are identical and then share a single copy of the code amongall the places in the function
where this code is used, mainly reducing overall code size. This optimization clearly conflicts with the need
of the code-copying engine to use self-contained code chunks and hastherefore always been useless in this
context. We trivially modified the pass controller in GCC so that this optimization is automatically disabled
for functions that use copyable areas. This selective approach doesnot change the way all the rest of code
of Virtual Machine is compiled.

Phase IV: Fix basic blocks ordering

Our initial marking pass ensured that the minimal information about the copyableareas is always preserved
or recovered. However, physical ordering of blocks is not necessarily guaranteed—blocks belonging to an
area may not be all located within thestart andtarget blocks of this area after optimizations are complete.
A further pass is thus applied to reorder basic blocks and ensure that code belonging to an area is contained
within its start andtarget blocks.

The main reason for basic block reordering is an optimization performed by GCC by default,basic block
partitioning. This pass does two things. It divides the set of basic blocks of a function into those that are ex-
pected to be executed frequently (hot blocks) and those that are expected to be executed rarely (cold blocks).
In the final assembly all the hot blocks of each function are located contiguously in the upper part of the
function, and the cold blocks are located below the hot blocks. This optimization also reorders basic blocks
to ensure that the fall-thru edges are used for the most often encountered control flow. These are heuristic
techniques for improving instruction cache hit rate and simplifying control flow, and this optimization can
in practice improve the performance of a virtual machine by several percent.

It is of course possible to disable this optimization on a per-function basis. This was deemed unsatisfactory
for two reasons. First, we perceive the fall-thru edges optimization as a welcomed attempt to improve the
quality of the resulting code later used for code-copying. Secondly, we have to be aware that there are other
optimization passes that can also relocate basic blocks. With or without block partitioning we had to create
a solution that would be able to deal with any kind of relocation of basic blocks.

For a chunk of code to be copyable the compiler has to restore the order ofbasic blocks so that the code
is self-contained. In this case the goal is to move basic blocks to ensure thatthe start basic block of the
copyable area is followed by all other blocks belonging to it, which are then followed by thetarget basic
block of the same copyable area. After the marking of basic blocks belonging to all areas is restored (as
described in the previous section) it is relatively easy to move all basic blocks belonging to an area into the
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wanted positions, as illustrated in Figure 8. Positions of other basic blocks, not belonging to copyable areas,
are left unchanged.

4.3 Phase V and VI: RTL markers and final verification

The additional passes described above modify the structure of the code based on up to date information
about the boundaries of basic blocks, construction of the control flow graph, and other data. During the last
compilation passes the GCC compiler discards some of this information or does not keep it up to date. Our
copyable region data is therefore again out of date for these final passes. In our tests we found that these last
optimization passes do not change the structure of the code enough to invalidate the properties of copyable
code. Nonetheless, this was not sufficient for the strong safety guarantees we required and another solution
was needed. We therefore added two passes.

Not long before the information about basic blocks and control flow graph becomes unavailable a special
pass inserts into the program representation (RTL stream) specialnotes that mark the start and end of copy-
able areas, including the ID of an area.

The second pass is then a simple verification pass that uses only a minimum of information. It is executed
just before the final assembly is sent to the external assembler. With thenotes inserted by the previous
special pass it is possible to verify all the necessary properties of copyable areas when the code is final. The
verification algorithm takes each instruction from the instruction stream and ensures that:

• all copyable areas are present

• copyable areas do not interleave with one another

• jumps from a copyable areaA are either to a target withinA or to this area’s target label (the label that
begins the target basic block). Note that it is also necessary to ensure that all jumps withinA are also
within the allowable range of a relative jump4

• jumps to the outside of an area are made via register and not a symbol (thus are absolute)

• all calls from within areas are made via register and not a symbol (thus are absolute).

A verification error at this point is uncorrectable and is treated as an internal compiler error. This guarantees
that if a code compiles properly then the copyable chunks of code will be safe to copy and execute in the
code-copying engine. In our experience we have not yet encountered a case where the verification pass
would fail when all the former passes executed properly.

5 Experimental Results

To examine practicality of our design we modified a Java Virtual Machine, SableVM [8], to use our modified
GCC and mark code chunks with ourcopyable #pragma. Code-copying was already supported in SableVM,
but required globally disabling block reordering in GCC and did not provide safety guarantees. The goal
of our experiments was thus to demonstrate that our new approach allows thecode-copying strategy to be
realistically and more reliably used while maintaining or improving performance.

4This check has not been implemented in our current system.
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Figure 9: Comparison of the performance of SableVM with direct-threadedengine, unreliable code-copying
engine and code-copying engine using the GCC copyable-code extension.
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Table 1: Metrics of code modified and added to GCC
Metric #

Data structures modified 4
Fields added to existing data structures 6
Data structures added 3
Functions added to existing GCC files 4
Function calls/hooks inserted into the existing code 8
Code lines added to or modified in the existing files139
Code lines in new files 1500

The results shown in Figure 9 have been gathered using a machine with IntelPentium IV at 3GHz, 512MB
RAM. The SPEC benchmarks were run with their default settings, and performance is shown normalized to
the speed of the direct-threaded engine as a baseline for comparison.

The benefits of code-copying are clear. More surprising perhaps is that the performance of SableVM version
1.13 modified to use our GCC extensions actually improved over the manual code-copying design in most
cases. We attribute the general improvement to the fact that previously SableVM had to globally disable
basic block reordering for the code-copying engine to work at all. With theadded GCC support for code-
copying this useful optimization was enabled. We also note that the performance of two SPEC benchmarks
that benefit the most from code-copying, as well asSoot slightly decreased, about 2-3%. We suspect that
this effect is caused by the memory barriers inserted into the code in places where the special#pragma is
used. These barriers might be inhibiting some of the optimizations. Overall, however, the effect is clear, our
modifications efficiently enable code-copying as a safe technique for VM interpreter design.

Reliably measuring the performance differences between different versions of the same virtual machine does
not at first seem a big issue. Gu et al. [9, 10], however, note that changes to the executable code placement
without actual changes to the functioning of a VM can cause a tremendous variance (up to almost 10%)
in the VM performance. More detailed analysis of performance gains and losses is thus warranted, but
certainly the magnitude of improvement and correlation in Figure 9 is sufficientto demonstrate the general
success of our compiler-facilitated approach.

Interestingly enough, in other series of experiments, where we attempted to enable code-copying for as many
bytecodes as possible (mainly Java bytecodes of conditionals), we foundthat making many more bytecodes
copyable actually slightly decreased the overall performance of the code-copying engine. This may be due
to lower i-cache hit rate caused by bigger number of superinstructions, or again due to increased use of
barriers and indirect jumping. We intend to further investigate this as near future work.

One of our goals was to minimize impact of our changes to GCC on the GCC maintenance. Table 1 contains
the results of our impact measurements. We did not modify any existing data structure in a way that would
require changes to existing code. We only added several fields to existingdata structures and created a few
utility data structures used solely by the code we added. The functions added were utility functions that are
routinely created in order to insert new passes into the list of passes run by GCC pass controller and can
therefore be viewed more as non-invasive hooks. We had to add several conditionals to the existing code
in places where our added code would be run conditionally, only when compiling a function that uses our
extension. Finally, the actual code of the extension has been written in a separate file containing only about
1500 lines of code. In a truly large project such as a GCC we see these numbers as indicators that our exten-
sion has minimal impact on the existing GCC code and its maintenance, validating ourclaim that a relatively
simple compiler modification can help improve the performance of dynamic language environments.
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6 Conclusions and Future Work

For a variety of reasons, including simplicity and dynamic support, many modernlanguages are based on
virtual machine (VM) designs. Efficiency and ease of design are key features for rapidly evolving languages
and associated execution environments.

Code-copying interpreters offer a good trade-offs between performance and maintenance, but were previ-
ously limited by the lack of critical safety guarantees, as well maintenance concerns with respect to the VM
compiler itself. Copyable code must behave functionally the same when copied, and while conceptually
trivial these strong guarantees are simply not provided by current compilers or C language extensions. Our
approach and implementation demonstrates the viability of our technique and shows how it can be relatively
easily integrated with a modern C compiler like GCC. Our work shows how the safety properties essential to
code-copying can be practically guaranteed in the standard GCC compiler,while keeping changes relatively
isolated and making only limited assumptions about GCC behaviour. The choice of many key elements of
our design is in fact driven by the need to ensure that maintainability of GCC development is well separated
from our modifications.

As well as deeper performance analysis, further determining the sourceof our gains over hand-done code-
copying, our immediate future work is in the application of our technique to otherVM architectures and
other hardware architectures. Simplified use of code-copying could enable a variety of predominantly in-
terpreted languages, and we hope to show greater generality of our design by replicating the code-copying
technique in other environments.
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