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Abstract

Virtual Machine authors face a difficult choice: to settlelfoav performance, cheap interpreter, or to
write a specialized and costly compiler. One of the methodsitige the gap between these two distant
solutions is to use the existirgde-copying technique that reuses chunks of VM'’s binary code creating a
simple JIT. While simple in principle this technique is ndtakle without a compiler that can guarantee
that copied chunks are functionally equivalent, which igwfnot the case due to aggressive optimiza-
tions. We present a proof-of-concept, minimal-impact rficdiion of a highly optimizing compiler,
GCC. It allows a VM programmer to mark specific chunks of VM m@ucode asopyable. The chunks
of native code resulting from compilation of the marked seurecome addressable and self-contained.
Chunks can be safely copied at VM runtime, concatenated xewleed together. With minimal impact
on compiler maintenance we guarantee the necessary safétjoarectness properties of chunks. This
allows code-copying VMs to safely achieve performance oapment up to 200%, 67% average, over
direct interpretation. ensured thanks to chunks integrity veiion. This maintanable enhancement
makes the code-copying technique reliable and thus pligaisable.



1 Introduction

Virtual Machines (VMs) are used as a target compilation architecture by taaguages. The most widely
known example is Java, but the same is true of a host of languages witmitypeoperties, including
Python, PHP, Perl6, Forth and many others. To maintain a clear abstrantigmoeaable execution each
of these languages uses a virtual assembly, usually called bytecode;oeemostly simple operations
performed on the Virtual Machine. The choice of the operations reptesdy the bytecodes and the
construction of a Virtual Machine differ for each language. For examldea uses a virtual stack-based
machine, while Perl6 uses a virtual register-based machine. Despite theddés between bytecodes of
different programming languages they all require a Virtual Machine tlamslalso a translation mechanism
involving either the use of a cheap but slowuaerpreter or the use of a more dynamic just-in-time or ahead-
of-time costly compiler that generates better optimized code. For many envints@ficiency remains
important, but the development and maintenance costs of an optimizing compileutaveighed by the
simplicity and rapid development time of an interpreter-based VM.

Code-copying has been proposed as a VM interpreter implementation technique that impesf@snance,
reducing the gap between interpreters and compilers [7, 16]. In thiswekddress the main safety, prac-
tical implementation and maintenance problems inherent in such a techniquestedeftymostly unsolved
by the previous works. Our design builds on the well-known GCC compilensare semantic guarantees
appropriate for code-copying in VM designs. This allows dynamic codstcaction and interpretation with
good efficiency versus maintenance tradeoffs. Supporting languhg@&esments in a continually evolving,
optimizing compiler such as GCC can be complex; we thus further show hgrogughanges to the basic
VM compiler itself can be minimally intrusive, requiring changes dependentlynaimcore, stable internal
compiler structures. Low maintenance and easily isolated changes are impoaetical requirements for
a feasible system.

An attractive feature of supporting advanced interpreter executiagrdes that a static compiler such as
GCC can become an effective back-end for multiple VM architectures. prbisdes optimized execution

at low cost for a number of interpreted languages. We provide expetahaata from an implementation

based on the SableVM Java Virtual Machine [7]. Our results show thaawiomatic and verified safe

design is able to match, and sometimes exceed that of previous, labouivietéramd-done and unverified

attempts. This demonstrates the viability of our approach in terms of perfoenaatcportability.

Contributions

We make the following specific contributions:

e We develop safe and practical code-copying techniques appromiaéigh-performance interpreter
using GCC as a back-end. This also allows us to provide previously elsafety guarantees for the
code-copying technique.

e Our approach ensures a maintainable design within the context of GCCHasliring safety in code-
copying could be performed by large, invasive efforts at nearly adll$eof compilation; our technique
minimizes the impact on general GCC development to insertion of few well-stepbphases: addi-
tional data gathering (at the beginning of compilation), some data recaratyinal verification.

e Our work provides an attractive, single-compiler solution for a varietyiftéreént programming lan-
guages and virtual machines. This takes advantage of the ubiquity atiduows development of a
major compiler framework such as GCC.



In the next section we give related work on code-copying and othepiatier optimization techniques. Sec-
tion 3 then gives background on code-copying techniques and remgrits. Our design and GCC modifica-
tions are detailed in Section 4, and Section 5 provides some experimenttd fisu our implementation.

2 Related Work

In our work we are concerned with optimizing interpreter-based VMs lapkemg them to practically and
safely use theode-copying technique. This technique originates fralimect-threaded interpretation and
was first described by Piumarta and Riccardi in their work on, what tha#gd; selective inlining [16].
Compilers used at that time did not use too many optimizations that would makecopyierg impossible,
but their solution also did not give safety guarantees.

Gagnon was the first to use the code-copying technique in a Java inéef@;8]. While this implementation
solved some important problems specific to the interpretation of Java bytdatodede-copying engine
required manual tuning that could not give guarantees of safe exeeurttbtherefore could not be regarded
as a production-ready solution. Interestingly, experiments done with a singaieoptimizing portable JIT
for SableVM (SableJIT [1]) showed that such a JIT was only barely thachieve speeds comparable to
the code-copying engine. This demonstrated once again that codeg @y very attractive solution, save
only for its lack of safety.

One of the important reasons why code-copying is significantly fastertan interpretation techniques is
its positive influence on the success rate of branch predictors commayruoday’s hardware containing
branch target buffers (BTB). As Ertl showed in his work on indireetrich prediction in interpreters [3, 6]
other solution that improve branch prediction, like bytecode duplicationatsamgive significant perfor-

mance improvement. Speedup due to branch prediction improvements mucligbgtatner negative ef-

fects such as increased i-cache misses.

A solution similar to code copying engine is a JIT using code generated by@an@iler developed by

Ertl [4]. In this solution, however, the pieces of code were actually matl{fimtched) on the fly, so as to
contain immediate values and remove the need for the instruction counter. wegatching architecture-
specific code was necessary. Ertl’'s solution did include automated testtetd dede chunks that were
definitely not copyable, but it was not guaranteed to find all such chan# thus did not ensure safety.

Of course there exist several popular Virtual Machines for Javadigaificantly differ in their design.
JikesRVM [12] is written in an extended Java, does not make use of amprieter, but employs a JIT
compiler with 3 levels of optimizations. Its focus is on delivering high perfortear\ different approach
has been taken by the architects of Kaffe [13], which offers a stdrdileact-threaded interpreter on many
architectures, and employs a good optimizing JIT compiler on selected fewodhe limited resources
of the project. The design of the IBM’s Java VM [11] employs an interpratel a highly optimizing JIT
compiler used only for frequently executed code.

Specialized interpreters are another route to optimized performance. IleVthg VM system can be
trained on a set of programs to detect the most often occurring smallrsmrsuef bytecodes and then
modify the source of the interpreter to combine these sequences into stiptions, optimized the next
time the interpreter is recompiled [5]. While the speed benefits of this solutiomaisgputable, it still
requires non-automated training, selection of the set of training prognadnsterpreter recompilation.

Another optimization based on exploitation of frequently occurring bytesedpiences were shown by
Stephenson under the namenadlticode substitution [17]. He showed that to limit the total number of in-
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Figure 1: The taxonomy of Virtual Machines execution engines.

structions (including those created by the optimization itself) such approastimeombined with careful
selection of sequences based on how well a sequence of bytecodas cptimized.

A completely different approach to execution of bytecode was taken hy[@JGand LLVM [14]. GCJ is
a GCC-based Ahead-Of-Time compiler, including also a direct-threadagiater for dynamically loaded
code. GCJ takes as its input either Java source or Java bytecodefi{elsjsand compiles them to an
architecture-specific executable. LLVM is a compilation framework crefatetifelong program analysis
that features its own code representation, own compiler and other toolsm#ékat it very extendable and
reusable.

3 VM Execution and Code-Copying

Our optimized design focode-copying is within the context of a VM interpreter. Figure 1 shows a rough
taxonomy of the different kinds of execution engines used by Virtualhifees; in general this is through
an interpreter or compiler, though mixed designs are also possible [15]th@©right side of Figure 1
compiler approaches translate streams of bytecodes into native machineitber Ahead-Of-Time, where
the compiled code is stored and made ready for multiple, repeated executiois{-in-Time, compiling the
code just prior to execution and (typically) discarding the result afterrbgram is completed. Compilation
is desirable for performance, but implies a very non-trivial resousocangitment not always available to VM
designers.

Interpreters have the advantage of simplicity, although improved perfoemanmossible with different
design approaches. We illustrate the main designs on the left side of Figorgtliate the code-copying
approach; these include a basigtch-threaded interpreter, and direct-threaded model.

A switch-threaded interpreter simulates a basic fetch, decode, execute cycle, readingxtheytexode to
execute and using a largeitch-case statement to branch to the actual VM code appropriate for that byte-
code. This process is straightforward but if, such as in Java, bygeaaften encode only small operations
the overhead of fetching and decoding an instruction is proportionally higking the overall design quite
inefficient.

A direct-threaded interpreter is a more advanced interpreter that minimizes decoding overhiisdkind



of interpreter requires an extension offered by some compilers knowabes-as-values. Normally a ¢
program can contaigotos only to labels. With the labels-as-values extension itis possible to take sesadd
of a label and store it in a variable. Later this variable can be used agamant of a goto. In a direct-
threaded interpreter a stream of bytecodes is thus replaced by a streaddresses of labels. The labels
themselves are placed at the start of the code responsible for the eraemfutiperations encoded by each
bytecode. With this mechanism the interpreter can immediately execute agtitetd the right chunk of
code. Optimization is implied by reducing the repeated decoding of instructiadigrrepeated test-and-
branch sequences for a one-time preparatory action where a strégiteoddes is translated into a stream
of addresses.

It is important to notice that the speed advantage of a direct-threadedrétgrpver a switch-threaded
interpreter already comes with the requirement of additional, specializgdidpm the compiler used to
compile the interpreter.

3.1 Code-copying technique

In some sense, and as indicated in Figure 1, code-copyirigges interpreter and compiler-based VM
implementation approaches. Code-copying is a further optimization to interpleteyn, but one which
makes relatively strong assumptions about compiler code generation.a$teeidea of code-copying is to
make use of the compiler applied to the VM to generate binary code for matcytiecploles. Parts @hunks

of the VM code are used to implement the behaviour of each bytecodee Thasks of code are marked
with labels at their begin and end. At runtime, the interpreter copies the lthanks corresponding to an
input stream of bytecodes and concatenates them into a new place in massigwn in Figure 2. Such a
set of concatenated instructions is called a superinstruction and it camtex# a much greater speed than
using any of the other two formerly described techniques.

Depending on an application and other factors the code-copying teehcéaugive from 20% to 200% per-
formance gain over the direct-threaded technique. There are two maonsetor this large improvement:

e Reduction of the number of dispatches. With the code-copying technigreeighenly one dispatch
per superinstruction instead of one dispatch per instruction. This useatigpues about 70% of the
dispatches in superinstructions [7].

e Improvement in branch prediction. In a code-copying interpreter therenaltiple copies of each
instruction, each copy being a part of one of many superinstructiondirdnt-threaded or switch-
threaded interpreters there usually is only one copy of each instructemauBe of that the branches
to the next instruction have a highly variable target, making branch mispredicites extremely
high [3].

In this way the code-copying technique removes a vast amount of digsadctd mispredicted dispatches
that are especially costly on modern, highly pipelined processors.

IThe C language (and its close derivatives) is the most popular languaggch operating systems and their related tools,
including compilers, are written. Many virtual machines are also written iau€work thus focuses on virtual machines written
mainly in the C language.

2Note that in the literature what we call code-copying is sometimes referasginlining or inline-threading [7]; these latter
terms, however, we find, suggest method or function inlining to mospdendevelopers and researchers.
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Figure 2: A simplified comparison of direct-threaded and code-copyigmes.

3.2 Safety

As numerous studies have shown the performance gains from usingopgiag technique are clear [3, 6—
8,16]. However one of the biggest problems the implementators of cqugnrcpinterpreter engines face is
ensuring that the fragments of the code chunks copied to constructrsipections are still fully functional

in their new locations and as a part of a superinstruction. In particulagheve correctly a code chunk
must not contain relative jumps or calls to targets that would be outside of thmkcand its control flow

must start at théop and exit at théoottom. Chunks which do not possess these properties cannot guarantee
safety at runtime.

Unfortunately, the C standard does not contain any semantics that wouldwalto express and impose
such restrictions on selected parts of code. The labels placed befbraftan the code chunks do not
guarantee contiguity of the resulting binary code chunks, nor do theg patrictions on the use of relative
addressing. Even with the sub-optimal property of disabling optimizationstselly for code chunks
(let alone the entire VM) to our best knowledge there is no productiofitggalution that would ensure
creation of code chunks that can be safely copied and executed.

Without guaranteed safety in code-copying an interpreter canndiqathyg reliably make use of this useful
technique. Previous results used hand-done examination, trial-astd-drrand manual porting combined
with specialized test suitésn attempt to ensure safety. The large effort required, and the lack ufya f
verified result motivates our design in the next section.

3Based on unpublished research within the SableVM framework.
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Figure 3: To produce copyable code with minimal changes to the internakwgteuof the compiler we
inserted several well isolated special passes.

4 Design

For VM designers our approach requires the additional use of simpléfidesabracketing copyable code.
We make use of the well-know#pragma operator to surround and thus help identify copyable chunks. The
bulk of our design effort is in ensuring safety for code copying, altggiaranteed by a small set of well-
specified passes within GCC. Below we first detail requirements for cdaerébocatable and thus suitable

for code-copying, followed by a description of the GCC modifications, tliolgithe final verification phase.

4.1 Generation of safely copyable code

There are specific requirements that a chunk of code has to meet stdibeoccopied to another location in
memory, concatenated with other chunks and safely executed. If a ofiaokied code does not mimic the
functionality of the original it cannot be safely copied. We thus defineunkiof codeC to becopyable if

all of the following conditions are true:

e C occupies a single contiguous space in memory that starts and ends with twotdistie labels
specified by a programmer.

e Natural control flow enter€ only at its “top” and exits only at its “bottom.”
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e Any jump from inside ofC to code outside of (e.g. to an exception handler) uses an absolute target
address.

e Any jump from the inside o€ to another place insidé uses a relative target address.

e Any function call from inside ofZ uses an absolute target address.

If any of the above requirements is not met then a particular chunk ofisau® copyable. Our goal was
to modify a highly optimizing C compiler, such as GNU C Compiler 4.0, so it couldge®énput chunk
requests and selectively generate code that meets these requirements.

4.2 GCC modifications

To compile a single function GCC executes several dozens of optimizatisagpahese passes modify the
code in ways that are usually supposed to improve the speed of the resoldiagor its other parameters.
It is not feasible to modify, and maintain, all of these passes to selectivebrgi®e code conforming to our

requirements. Instead we modify the compiler to:

e preserve the information about which parts of the code have to be trgeeidiby—from the moment
the source code is parsed to the moment the final assembly is generated

e allow (almost) all of the optimizations to execute without modifications and thenr@iceselected
points of the compilation process use specially crafted passes that modifgdbénca manner that
makes selected code chunks copyable.

The overall set of modifications is divided into separate passes thatto@lgdrack or restore information
throughout the whole compilation process; a general description is simoligure 3. Depending on the
representation of the code at each stage of compilation this information isdrachk different form. In the
source code it exists a#pragma lines, then as special flags of selected AST elements, later we attach it to
basic blocks andomputed goto’s, and eventually it is inserted in a form nbtes into the assembly. Tracking

this information turned out to be the most difficult part of our work. It isdese of all the aggressive
optimizations that might duplicate, remove, and move parts of the code in whicrevimterested that
ensuring copyable code is non-trivial.

Phase I: Code parser pragma hook

The information about copyable areas originates from the source sodeis necessary to start tracking
this information from the moment the source code is parsed. We plugpoagma handler into the standard
GCC mechanism for parsing pragmas to register the locatiomspytble pragmas in the source code.

Figure 4 illustrates a fragment of interpreter source code for a single dughk. The first part of the code
performs the initialization necessary for the code-copying engine. Tdendepart is the actual chunk or
body of a bytecode instruction. The code is surrounded by the spepigble #pragma statements that

mark the beginning and end of the copyable chunk.

GCC contains generic code for handling pragmas, so we only had to add@oaG@unction that is called
when this#pragma is encountered. This function records the positio#whgmas in the source code which
are the beginning and ending positions that encompassoepgable area. At this stage the compiler also
performs sanity checks and warns about doubly started or openlde@raas.
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case SVM | NSTRUCTI ON_LCWVP:
{ I* instruction initialization =/
vm >i nstructions[instr].paramcount = 0;
vm >i nstructions[instr].copyabl e_code = &COPYABLE START_LCMP;
env->vm >i nstructions[instr].copyable_size =
((char *) & END LCWP) - ((char *) &&COPYABLE_START_LCWP);
br eak;

}

#pragma copyabl e begin
COPYABLE_START_LCWP:
{ /= instruction body =/
jlong valuel = =((jlong *) (void *) &stack[stack_size - 4]);
jlong value2 = «((jlong *) (void *) &stack[stack_size - 2]);
stack[ (stack_size -=3) - 1].jint =
(valuel > value2) - (valuel < value2);
}
#pragma copyabl e end
END_LCWVP:

Figure 4: Pragma directives are placed around the code that will béoysmaie-copying engine at runtime.

Original source code:

#pragnma copyabl e end
END_LCWP:

Is changed into:

__volatile_ __asm__ ("":::"menory");
END_LCMP:
_volatile__ __asm _ ("":::"menory");

Figure 5: Volatile statements are inserted aroundetitblabel to ensure that théarget basic block will
remain intact throughout optimizations.

In GCC inlining of functions is done very early, soon after the parsing ispteted. The result of parsing
is a stream of statements describing the parsed function and does nan @oicianation aboutpragmas.
However each statement has attached information about the source catitendrom which it was created.
Integrating our previously gathered information on the locatio#ipphgmas allows us to identify the code
of copyable areas within the stream of statements.

Phase II: Scan the tree (1)

To ensure chunks are properly identified and separated an initial ppesfaismed to check starting and
ending conditions. Each location #pragma copyable begin andend registered during parsing is checked
to ensure it is followed by a label. Thesart andend labels have then their specibrt andend flags set
accordingly. Finally the code is modified by artificially inserting into the streasstatements two empty
volatile assembly instructions around thend label, as shown in Figure 5.



Original code within a copyable area:
goto | abel X; /+ where | abel X is outside of the copyable area */

Is replaced with:

{

voi d raddress = &l abel X;

[+ this assenbly clains to read and nodi fy address
* and in this way prevents constant propagation */
_asm_ __volatile__ ("" : "=r" (address) : "0" (address) : "nmenory");

goto raddress; /* conmputed goto uses absol ute addressing */

Figure 6: To ensure absolute addressingpto to outside of a copyable area is replaced with a specially
craftedcomputed goto.

The volatile assembly code acts as a barrier to code movement, and is usggrotba basic blocks directly
following areas, thdarget blocks, are preserved and act as the sole and unique exits of the ratutrall
flow from a copyable area. Our tests showed that otherwise some optimgatmnid attempt to remove
or mergetarget blocks. In principle a similar concern applies to the first basic block of gadulp area, the
starting block. However in our tests the compiler would never try to remove or datglitis block. We did
not investigate it further, but if it did it could always be handled the sameasantarget blocks.

Phase II: Scan the tree (2)

In most architectures control flow jumps can figkative or absolute. Relative jumps have the advantage

of being (usually) smaller instructions, but having a machine-specific limitatiartbe distance for which

they are useful. Absolute jumps are often longer instruction sequenaesthim complete target address
must be encoded, not just the relative displacement. As mentioned in Sedtifum dontrol flow that goes
outside of the copyable ar@hsolute jumps are required to ensure the code behaves the same once copied.
Similarly, jumps within a copyable region must use relative addressing torgeara copy will behave in a
similar fashion.

Our second phase thus includes a pass to convert control flow statehegrgs outside of a copyable area
(and not to thearget block) to use absolute addresses for their targets. There are two case$ absirol

flow: a goto and a function call, both complicated by the fact that GCC itself dmégproduce the final
binary code, rather it uses an external, platform-specific assemblgrrapno It is in fact the assembler’s
role to choose the addressing mode for each call or jump; typically the shaddressing mode to reach
the target is chosen, but there is no general and relatively platformstigmvay to specify in the assembler
input that a jump or a call is to use absolute addressing. Below we desombe/dé ensure absolute jumps
are used through the useafmputed gotos, and then how we process the code chunk to ensure control flow
is safe for copying.

To force selected jumps and calls to use absolute addressing we modifgltheftbese instructions to make
jumps and calls via a register. As shown in Figure 6, in C these instructioms@esented respectively by
a computed goto and a function call using function pointer. A computed goto is a special feature of the
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labels-as-values extension of GCC used by direct-threaded engine. Igat@awhose argument is not a label
but a variable containing the address of a label (or any other addtésiny a register to hold the destination
address may have a negative impact on the performance that will vanydiiatform to platform, or even
CPU type. Here the benefits of maintainability and safety are paramountsamelaill show in Section 5
our solution is efficient in practice. Nevertheless, more portable waygpmessing absolute addressing
could improve performance further.

Our pass scans each copyable areagfiips having as their targets a label outside that area; a similar
process is applied to function calls. As shown in the Figure 6, eachgatotis replaced with a stream of
statements that force the compiler to usmmaiputed goto, and therefore an absolute addressing mode. First
a declaration of a variable is inserted into the stream of statements. At runtinvatiailsle will contain the
address of the target. Then an empty volatile assembly statement is inseriedtaiément claims to use
and modify the value of the variable. Then a ngsto is created to replace the existing one. The target of
the newgoto is the address stored in the variable. We do not concern ourselves eAdxistingcomputed
gotos as these already use absolute addresses.

Our current system assumes that instructions are small enough thatpéezawill use optimal, relative
jumps within the code of instructions found in a region, and so does not atterapsure intra-area jumps
are not absolute. Violations to this assumption, however, will be detected finalverification phase.

Phase Ill: Mark and ensure areas are solid

Rather than modifying a large part of GCC to ensure properties of ctggale regions are preserved at
all subsequent compilation stages, by all compilation passes, we instedddrse additional passes. The
first pass modifies the code in a way that ensures the minimal information edgoyeible code regions is

always preserved. The second (reusable) pass uses this inforrmatios capable of finding all the basic
blocks belonging to copyable areas after arbitrary optimizations.

After the source code is parsed into the stream of statements the compilesadeacriptions of basic
blocks. Each such description contains pointers to the first and the lagtiien that a basic block contains.
We found that a basic block is a convenient unit to carry the additionahr&tion about the copyable code.
It gives an easy access to smaller components of the code, like eachilpaitistruction, while also being
easily accessible via higher-level structures like the control flow graph.extended the data structure
describing a basic block to store the unique id of the copyable area a ldtarkgs to and to store a field of
utility flags.

The initial marking of basic blocks is straightforward. We scan the streastatéments for labels earlier
marked asstart and end, and mark basic blocks with corresponding flags. Note that the initial marking
as shown in Figure 7 might not be preserved by the optimizations performezddaich might split, join,
duplicate, and delete basic blocks. It is therefore necessary to havthadhod restoring the marking after
the optimizations, if we are to be able to detect which basic blocks belong toyaldeparea.

In general optimizations can create new basic blocks, move or split existesy @ne of the possible results
is that some basic blocks that functionally are part of a copyable area nagjahymore be placed between
the start andtarget basic blocks of this area and might not carry the initial marking. An exampleoiss

in Figure 8 where the last basic blodRE6), even though placed far after thrt andtarget basic blocks,
clearly belongs to the control flow of this copyable area.

To recover marking after optimizations we rely on the preservation oftdr¢ andtarget blocks. Area
marking restoration can then be done through simple propagation alongrttreldow graph, from the

11



Statements stream Basic blocks

/* Code before the area */ _
area=0
#pragma copyabl e start
COPYABLE_| CVP_START: TR =h
flags = START
area=5
/* Copyabl e code */
area=5
area=5
#pragma copyabl e end flags = TARGET
| CMP_END: > area =0
/* Code after the area */

Figure 7: Initial marking of basic blocks right after parsing.

oo 3:;2 - :TART BBl 2;22 i :TART BB1 :;ZZ § SSTART
v
BB2 3;32 - '?ARGET BB2 ::;z :iARGET BBa 1770
ez %% 70 BB3 arej: 0 - arej: 5
v
v
BB5 area=0 8BS area =0 553 area = 0
v
BB6 area =0 BB6 area = 5 BB5 area =0

Figure 8: From the marking of only two basic blockkart andtarget, the complete marking can be restored
by following the edges of the control flow graph. Once the marking is redtibis possible to rearrange the
basic blocks of a marked copyable area.
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start block of each area until thtarget block and jumps via computed gotos. It is critical that the compiler
had earlier modified all the jumps to outside of copyable areas to use compmittexd grhis way it is
possible to always find the limits of copyable areas. Importantly, our appm@es not use a heuristic
and is guaranteed to either properly restore the list of blocks belongingdpyable area or fail explicitly
(which is reported as an internal compiler error).

During the marking restoration process the compiler performs sever&y shecks. It ensures that both
start andtarget blocks exist for all initially existing copyable areas. It detects an attempt t& emaasic
block twice, from two different areas. Each of these problems is reppatean internal compiler error, as
that kind of situation should never arise because the lists of basic bloksgb®y to copyable areas can
never intersect or overlap.

There currently exists one optimization performed by the compiler that hasdisdiged for a function that
uses copyable areas. This optimization, in GCC, is calless-jump. It attempts to find parts of code within
a function that are identical and then share a single copy of the code atidhg places in the function
where this code is used, mainly reducing overall code size. This optimiza¢iariycconflicts with the need
of the code-copying engine to use self-contained code chunks arnddraefore always been useless in this
context. We trivially modified the pass controller in GCC so that this optimizationta@@atically disabled
for functions that use copyable areas. This selective approacmdbebange the way all the rest of code
of Virtual Machine is compiled.

Phase IV: Fix basic blocks ordering

Our initial marking pass ensured that the minimal information about the copsiedds is always preserved
or recovered. However, physical ordering of blocks is not neségguaranteed—blocks belonging to an
area may not be all located within tetart andtarget blocks of this area after optimizations are complete.
A further pass is thus applied to reorder basic blocks and ensure thabetonging to an area is contained
within its start andtarget blocks.

The main reason for basic block reordering is an optimization performedQy By default,basic block
partitioning. This pass does two things. It divides the set of basic blocks of a fumictio those that are ex-
pected to be executed frequently (hot blocks) and those that aretedpede executed rarely (cold blocks).
In the final assembly all the hot blocks of each function are located cantidy in the upper part of the
function, and the cold blocks are located below the hot blocks. This optinizalso reorders basic blocks
to ensure that the fall-thru edges are used for the most often encalinteriol flow. These are heuristic
techniques for improving instruction cache hit rate and simplifying contral, femd this optimization can
in practice improve the performance of a virtual machine by several pierce

It is of course possible to disable this optimization on a per-function basis.wids deemed unsatisfactory
for two reasons. First, we perceive the fall-thru edges optimization ascnved attempt to improve the
quality of the resulting code later used for code-copying. Secondlyawe to be aware that there are other
optimization passes that can also relocate basic blocks. With or without bdotittqming we had to create
a solution that would be able to deal with any kind of relocation of basic blocks

For a chunk of code to be copyable the compiler has to restore the orflasiafblocks so that the code
is self-contained. In this case the goal is to move basic blocks to ensurihétsirt basic block of the
copyable area is followed by all other blocks belonging to it, which are tbkowied by thetarget basic
block of the same copyable area. After the marking of basic blocks belpngiall areas is restored (as
described in the previous section) it is relatively easy to move all basic bloelonging to an area into the
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wanted positions, as illustrated in Figure 8. Positions of other basic blookiselonging to copyable areas,
are left unchanged.

4.3 Phase V and VI: RTL markers and final verification

The additional passes described above modify the structure of the esdd bn up to date information
about the boundaries of basic blocks, construction of the control ftephg and other data. During the last
compilation passes the GCC compiler discards some of this information or dblesamoit up to date. Our
copyable region data is therefore again out of date for these finagdssour tests we found that these last
optimization passes do not change the structure of the code enough todtevdltid properties of copyable
code. Nonetheless, this was not sufficient for the strong safety mpeasawe required and another solution
was needed. We therefore added two passes.

Not long before the information about basic blocks and control flowlykagromes unavailable a special
pass inserts into the program representati®riL(stream) speciatotes that mark the start and end of copy-
able areas, including the ID of an area.

The second pass is then a simple verification pass that uses only a minimurorofatibn. It is executed
just before the final assembly is sent to the external assembler. Withoteeinserted by the previous
special pass it is possible to verify all the necessary properties ohbtmgreas when the code is final. The
verification algorithm takes each instruction from the instruction stream mswres that:

e all copyable areas are present
e copyable areas do not interleave with one another

e jumps from a copyable areaare either to a target withiA or to this area’s target label (the label that
begins the target basic block). Note that it is also necessary to ensuadl foenps within A are also
within the allowable range of a relative jurhp

e jumps to the outside of an area are made via register and not a symbol @ralssatute)

e all calls from within areas are made via register and not a symbol (thubsodute).

A verification error at this point is uncorrectable and is treated as an atltesmpiler error. This guarantees
that if a code compiles properly then the copyable chunks of code will fleete@opy and execute in the
code-copying engine. In our experience we have not yet encaahgecase where the verification pass
would fail when all the former passes executed properly.

5 Experimental Results

To examine practicality of our design we modified a Java Virtual MachindeSab[8], to use our modified
GCC and mark code chunks with czgpyable #pragma. Code-copying was already supported in SableVM,
but required globally disabling block reordering in GCC and did not pmwgafety guarantees. The goal
of our experiments was thus to demonstrate that our new approach alloasd&eopying strategy to be
realistically and more reliably used while maintaining or improving performance.

4This check has not been implemented in our current system.
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Figure 9: Comparison of the performance of SableVM with direct-threadgahe, unreliable code-copying
engine and code-copying engine using the GCC copyable-code extensio
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Table 1: Metrics of code modified and added to GCC
| Metric | #]
Data structures modified 4
Fields added to existing data structures 6
Data structures added 3
Functions added to existing GCC files 4
Function calls/hooks inserted into the existing cade 8
Code lines added to or modified in the existing files139
Code lines in new files 1500

The results shown in Figure 9 have been gathered using a machine witRémtaim 1V at 3GHz, 512MB
RAM. The SPEC benchmarks were run with their default settings, andrpasthce is shown normalized to
the speed of the direct-threaded engine as a baseline for comparison.

The benefits of code-copying are clear. More surprising perhapatitd performance of SableVM version
1.13 modified to use our GCC extensions actually improved over the manwakopging design in most
cases. We attribute the general improvement to the fact that previoudgA3alnad to globally disable
basic block reordering for the code-copying engine to work at all. Withattded GCC support for code-
copying this useful optimization was enabled. We also note that the perfoenohitwo SPEC benchmarks
that benefit the most from code-copying, as wellSast slightly decreased, about 2-3%. We suspect that
this effect is caused by the memory barriers inserted into the code in pléeze e speciatpragma is
used. These barriers might be inhibiting some of the optimizations. OveraleMaoythe effect is clear, our
modifications efficiently enable code-copying as a safe technique for Wvireter design.

Reliably measuring the performance differences between differesionsrof the same virtual machine does
not at first seem a big issue. Gu et al. [9, 10], however, note thaigesao the executable code placement
without actual changes to the functioning of a VM can cause a tremencoiasiee (up to almost 10%)
in the VM performance. More detailed analysis of performance gains asgdois thus warranted, but
certainly the magnitude of improvement and correlation in Figure 9 is suffitbedemonstrate the general
success of our compiler-facilitated approach.

Interestingly enough, in other series of experiments, where we attemptealite €ode-copying for as many
bytecodes as possible (mainly Java bytecodes of conditionals), we tioatntiaking many more bytecodes
copyable actually slightly decreased the overall performance of theamueng engine. This may be due
to lower i-cache hit rate caused by bigger number of superinstructioreggain due to increased use of
barriers and indirect jumping. We intend to further investigate this as neaefwork.

One of our goals was to minimize impact of our changes to GCC on the GCC mainéeriable 1 contains
the results of our impact measurements. We did not modify any existing datéusérin a way that would
require changes to existing code. We only added several fields to exdstiagtructures and created a few
utility data structures used solely by the code we added. The functiond adgte utility functions that are
routinely created in order to insert new passes into the list of passeyrGC@ pass controller and can
therefore be viewed more as non-invasive hooks. We had to addakewveditionals to the existing code
in places where our added code would be run conditionally, only whenitogp function that uses our
extension. Finally, the actual code of the extension has been written imeagefile containing only about
1500 lines of code. In a truly large project such as a GCC we see theg®ensias indicators that our exten-
sion has minimal impact on the existing GCC code and its maintenance, validaticigiouthat a relatively
simple compiler modification can help improve the performance of dynamic largragronments.
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6 Conclusions and Future Work

For a variety of reasons, including simplicity and dynamic support, many mdaeguages are based on
virtual machine (VM) designs. Efficiency and ease of design are kayifes for rapidly evolving languages
and associated execution environments.

Code-copying interpreters offer a good trade-offs between performance and maitenbut were previ-
ously limited by the lack of critical safety guarantees, as well maintenanaeowwith respect to the VM
compiler itself. Copyable code must behave functionally the same when ¢@piddvhile conceptually
trivial these strong guarantees are simply not provided by currentitensipr C language extensions. Our
approach and implementation demonstrates the viability of our technique amsl Bbw it can be relatively
easily integrated with a modern C compiler like GCC. Our work shows how tle¢ysarfoperties essential to
code-copying can be practically guaranteed in the standard GCC comyiller keeping changes relatively
isolated and making only limited assumptions about GCC behaviour. The cHaitany key elements of
our design is in fact driven by the need to ensure that maintainability of G@€lapment is well separated
from our modifications.

As well as deeper performance analysis, further determining the sofioze gains over hand-done code-
copying, our immediate future work is in the application of our technique to ativearchitectures and
other hardware architectures. Simplified use of code-copying couldleenavariety of predominantly in-
terpreted languages, and we hope to show greater generality of agin tdgsreplicating the code-copying
technique in other environments.
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