McGill University
School of Computer Science
Sable Research Group

Bytecode Testing Framework
for SableVM Code-copying Engine

Sable Technical Report No. 2007-9

Gregory B. Prokopski, Etienne M. Gagnon, Christian Arcand
Sable Research Group
School of Computer Science, McGill University
Montreal, Quebec, Canada

November 16, 2007

www.sable.mcgill. ca



Abstract

Code-copying is a very attractive, simple-JIT, highly portable fast lmytde execution technique with
implementation costs close to a classical interpreter. i@iba is to reuse, at Virtual Machine (VM)
runtime, chunks of VM binary code, copy them, concatenatk execute together at a greater speed.
Unfortunatelly code-copying makes anwarranted assumptdout the code generated by the compiler
used to compile the VM. It is therefore necessary to find whish code chunks can be safely used
after being copied and which can not. Previously used maegtihg and assembly analysis were highly
ineffective and error prone. In this work we present a tes¢ sBytecode Testing Framework (BTF) that
contains a comprehensive set of fine-grained Java assesshdy These tests are then used in conjunction
with SableVM JVM testing mode to semi-automatically detaue-by-one which code chunks are safe
to use. With this techunique we ported SableVM’s code-aagpgingine to several architectures and had
external contributors with no VM knowledge port SableVM ®@anarchitectures within as little as one
hour. The presented Bytecode Testing Framework greatlyawegl reliability and ease of porting of
SableVM’s code-copying engine, thus its practical usgpbili

1 Introduction

Testing is a necessary part of any software development. The monecadvar complicated a system is the
more testing it tends to require. Depending on the type of a system andtcstage of development testing
can be done by developers themselves, by designated specialists ¢agssmpmers), or, eventually, by end
users. Testing can be done either in an ad-hoc manner, where testeystsis functionality case-by-case
with little or no support from pre-existing tools, or with support of thesee bigesting support tools favors

creation of sets of tests that can be executed automatically and reportimgy$&n

In this work! we are concerned with testing of a particular element of a larger systemy-copying engine

as a part of Java Virtual Machine interpreter, SableVM [6]. Codestgphas been proposed as a VM inter-
preter implementation technique that improves performance, reducing the&is/\s. high performance
gap between interpreters and compilers [5, 9]. Depending on an applicatib other factors theode-
copying? technique can give from 1.15 to 2.14 times speedup [6] ovedlitieet-threading technique. While
the code-copying itself has its roots in interpreters it actually involves dynemeation of code, therefore it
can be viewed as a simple Just-In-Time compiler.

Unfortunately code-copying, comes with a serious issue. It makes optimistiaravarranted assumptions
about the code generated by compiler used to compile the JVM. The corefidede-copying is to reuse,
at VM runtime, chunks of VM binary code corresponding to Java byteso@iheseode chunks are copied
into a newly allocated place in memory, concatenated and executed togettigieteeasuperior performance
while keeping the design very simple and largely architecture-agnosticetisusing high portability of the
VM. The problem arises because the C stantldimks not contain any semantics that would allow us to
express and impose necessary restrictions on selected parts of coeldab€ls placed before and after
the code chunks and used as start and end pointers during codegdpymot guarantee contiguity of the
resulting binary code chunks, nor do they place restrictions on the uskatife addressing. These and other
closely related issues become more and more important as compilers use gress&g optimizations.
Code chunks that are not functionally equivalent after being copied&wdocation in memory can not be
used by code-copying engine and have to be executed in a slower maitheut being copied.

IThe work described in this document was done in years 2002-2004py&arious reasons, it was not published at that time.

2Note that in the literature what we call code-copying is sometimes referasginlining or inline-threading [5]; these latter
terms, however, we find, suggest method or function inlining to mospdendevelopers and researchers.

3SableVM, as many system tools, is written in C.



It is therefore necessary to identify these problematic code chunksyadode instructions they corre-
spond to so that the rest of code chunks could be used to achieve gzt with code-copying. Initially
the implementations of code-copying we know of were tested manually, by tiaeaor, or by carefully
looking at the assembly of VM binary code, or used hand-written, unipleresssembly. These methods do
not give satisfying results in terms of the knowledge required to use themfithe efficiency, resistance
to human error, general usability, and portability. For example on eadreliff architecture every compiler
version can potentially compile code in a different manner, resulting in aeliffeset of code chunks that
can be copied. With fully manual testing approach it is not feasible to test avitivevery compiler version
change. SableVM, for example, uses internally over 300 bytecodésh wieans over 300 code chunks that
can be potentially used by code-copying, but need to be deemed sadeytdrefore they are used. The goal
of this work is to give the testing results higher trust index and introduce ab swtomatization into the
testing process as possible.

With this work we make the following contributions:

¢ we identify problems arising from the use of highly optimizing compilers that umohe the assump-
tions necessary for code-copying engines to function,

e we present the design of a custom testing suite targeted at finding JVMlwatdgoes not hold the
properties necessary for code used in code-copying,

e We present a semi-automatic method of testing code chunks that involves modlexecution that
dynamically alternates between safe, simpler and slower direct-threadirigst@dcopy-copying.

The rest of this work is structured as follows. In the next section weribesthe related work. In Section 3
we describe in more detail types of execution engines and give a broageof the problematic issues.
In Section 4 we present the design of our Bytecode Testing Framewltwéal by experimental results in
Section 6. We close with conclusions and future work description in Sectiansl 8.

2 Related work

In our work we are concerned with ensuring proper operation of VMsguthe code-copying technique.
This technique originates from tldérect-threaded interpretation and was first described by Piumarta and
Riccardi in their work on, what they calledglective inlining [9]. Compilers used at that time did not use
too many aggressive optimizations that would make code-copying impossibtefdre testing was not of
such importance.

Gagnon was the first to use the code-copying technique in a Java iméerfi,e5]. This implementation
solved some important problems specific to the interpretation of Java bytesedan be seen in Figure 1,

it also included three execution engines: simplest, plaswich-based, direct-copying and code-copying
(a.k.a. inline-threaded). Interestingly, experiments done with a simple, non-optimizing portable JT fo
SableVM (SabledIT [1]) showed that such a JIT was only barely ableh@eee speeds comparable to
the code-copying engine. This demonstrated once again that codexgagya very attractive solution
performance-wise.

One of the important reasons why code-copying is significantly fasteratien interpretation techniques is
its positive influence on the success rate of branch predictors commadyirugoday’s hardware contain-
ing branch target buffers (BTB). Ertl showed in his work on indirgeirizh prediction in interpreters [2, 4]



7 N e N
N Class Loaders /j | Native Interface (JNI) |
g N

- Memory Manager

Execution Engine: Threaded Interpreter
Switch-threaded = Direct-threaded Inline-threaded
engine engine engine
:/- -\,
\ Services ‘
SableVM

s

Figure 1: SableVM is a complete Java virtual machine featuring three exeeutipnes: from most portable
switch-threaded to fastest code-copying (also knowimlaige-threaded).

that other solutions improving branch prediction, e.g. bytecode duplicat@onalso give significant per-
formance improvement. Speedup due to branch prediction improvements mwadighs other negative
effects such as increased instruction-cache misses.

A solution similar to code-copying engine is a JIT using code generated byga@piler developed by
Ertl [3]. In this solution, however, the pieces of code were actually mat{jiatched) on the fly, so as to
contain immediate values and remove the need for the instruction counter. wep@atching architecture-
specific code was necessary. Interestingly Ertl's solution did includereaiéal tests to detect code chunks
that were definitely not usable for code-copying, but it was not gueedl to find all such chunks.

A brief discussion of the initial work done within SableVM JVM on ensuringhibty of its code-copying
engine was presented by Gagnon [7]. He touched on the main issuedimggzonflicts between goals of
highly-optimizing compilers and the requirements for code used by codgrtpengines.

There exist several Java-related testing suits. Mauve, a subprbf@btld Classpath, groups tests targeted
mainly at testing of equivalence of its class libraries with proprietary Javarids. In this field the most
comprehensive testing is offered by Java Compatibility Kit available from Rafie JVM also has its own
set of library tests, and more interestingly a subset of tests aiming to ensut& itempiler is working
properly. Also GCJ (part of GNU Compiler Collection) has its own test suitk.th&se test suits target
specifically either Java libraries compatibility or general VM compiler sareenas will become evident
later, they are all unsuitable for the fine-grained approach necesst@st a code-copying engine.

Another class of tests are various Java benchmarks, like SPEC JVMfi8ineMark, SciMark 2 and many
others created mainly as tools for performance testing. While useful iragetigese benchmarks are of
little help while testing a code-copying engine.



Virtual Machine

g ~

Interpreter Compiler
A L4
A k4
A L4
. L4
A\ L4
A L4
\\ 'l
<4 |
switch- direct- ) ) )
threaded threaded code-copying Just-In-Time Ahead-Of-Time

Figure 2: The taxonomy of Virtual Machines execution engines.

[for G{|+——

bytecode = ...;
switch (bytecode) | {

case INSTRUCTIQN 1:[ .07

case INSTRUCTION_Z:

}

Figure 3: Plain-C, switch-threaded interpreter incurs large runtime egerh

3 Background

Interpreters have the advantage of simplicity, although improved perfoemanuossible with different
design approaches. We illustrate the main designs on the left side of Figorst@ate the code-copying
approach; these include a basigtch-threaded interpreter, and direct-threaded model.

A switch-threaded interpreter simulates a basic fetch, decode, execute cycle, readingxtheytecode to
execute and using a largaitch-case statement to branch to the actual VM code appropriate for that byte-
code. This process is straightforward but if, such as in Java, byesaaften encode only small operations
the overhead of fetching and decoding an instruction is proportionally higking the overall design quite
inefficient, as shown in Figure 3.

A direct-threaded interpreter is a more advanced interpreter that minimizes decoding overhie@adkind

of interpreter requires an extension offered by some compilers knowabes-as-values. Normally a C
program can contaigotos only to labels. With the labels-as-values extension it is possible to take an
address of a label and store it in a variable. Later this variable can beagsan argument of @mputed

goto. In a direct-threaded interpreter a stream of bytecodes is thus regigcactream of addresses of



void *code[] = {
&&INSTRUCTION_2 , &&INSTRUCTION_l, co. )
void **pc = code;

##define DISPATCH goto ** (pc++)

INSTRUCTION 1:
| DISPATCH; |we—0

INSTRUCTION 2: -
| DIsPATCH; ‘/

Figure 4. Direct-threaded interpreter translates stream of bytecodestrieton of addresses before execu-
tion and lowers the repetitive interpretation overhead.

labels. The labels themselves are placed at the start of code respoas#tedution of operations encoded
by each bytecode. With this mechanism an interpreter can immediately exemutpwied goto jumping
directly to a chunk of code of the next instruction, as illustrated in Figure gtin@zation is implied by
reducing the repeated decoding of instructions, trading repeated tesiramch sequences for a one-time
preparatory action where a stream of bytecodes is translated into a stfeadresses.

In some sense, and as indicated in Figure 2, code-copying bridges@tézrand compiler-based VM im-
plementation approaches. Code-copying is a further optimization to intergestign, but one which makes
relatively strong assumptions about compiler code generation. The baaiofdode-copying is to make
use of the compiler applied to the VM to generate binary code for matchingduldec Parts ochunks of
the VM code are used to implement the behavior of each bytecode. Thasksobf code are marked with
labels at their begin and end. At runtime, the interpreter copies the binanksttorresponding to an input
stream of bytecodes and concatenates them into a new place in memowasrskigure 5. Such a chain
of concatenated instructions is called a superinstruction and it can exacatmuch greater speed than
using any of the other two formerly described techniques. Depending ap@ication and other factors the
code-copying technique can give from 1.15 to 2.14 times speedup [6itwveirect-threaded technique.

As numerous studies have shown the performance gains from usingopyiag technique are clear [2,4—
6, 9]. However one of the biggest problems the implementators of codgncpimterpreter engines face is
ensuring that the fragments of the code chunks copied to construcirgipections are still fully functional

in their new locations and as a part of a superinstruction. In particulaghave correctly a code chunk must
not contain relative jumps or calls to targets that would be outside of the clhndkits control flow must
start at theop and exit at thdottom. Chunks which do not possess these properties are not safe torwbpy a
execute. Unfortunately, the C standard does not contain any semantiggotlid allow us to express and
impose such restrictions on selected parts of code, therefore we nesbtbto testing the code outputted
by the compiler.

Before the testing can happen, however, it is necessary to clearly ideiit are the common problems
that need to be found by tests, how they manifest, and how they can bevitbalt

e Basic blocks partitioning. Optimizing compilers, like GCC 3.2 and newer, divide basic blocks into
likely executed ones (hot) and not likely executed (cold). Blocks belgngireach group are put



interpreter main loop single superinstruction

(direct-threaded) (code-copying)
IADD:
IADD
ILOAD_1
ILOAD_O:
ILOAD_0 ILOAD_O
OAD_1: IADD
ILOAD_1
ISTORE_2
ISTORE_2: \
ISTORE_2 superinstruction
ILOAD1_ILOADO_IADD_ISTORE2

Figure 5: A simplified comparison of direct-threaded and code-copyigmes.

INSTRUCTION1_ BEGIN: INSTRUCTION1 BEGIN:
... head ... ... head ...
if (...) { beqg then_part

... then part . ... tail ...

... ' INSTRUCTIONI1_END:
} ... then part
... tail ... coc
INSTRUCTION1_END: jmp tail

Figure 6: Optimizing compiler can relocate less likely executed code to the oofdateels bracketing code
used by code-copying.

DISPATCH;

Figure 7: Execution of a superinstruction containing a code chunk with mgigsirt or a call using relative
addressing might cause VM crash.



together, so as to improve cache efficiency. Unfortunately this optimizatien ofoves a basic block
belonging to the internal control flow of a code chunk to the outside (ustallgway) from of the
bracketing labels of the code chunk thus making it unusable for codengpfsee Figure 7). This
might reduce the number of bytecodes usable for code-copying to alerost@CC 3.3 introduced an
option to disable this optimization which is now used by SableVM by default to madte-copying
of a reasonable number of bytecodes possible again.

e Most often executed path optimization. As illustrated in Figure 6 an optimizing compiler can relocate
code that is less likely to be executed, like null pointer checks (common in madagdales) to the
outside of pair of labels bracketing the code chunk. If this happenb,de chunk can not be used
for code-copying. This is because the only code that is copied is thebeddieen the two bracketing
labels. When such code chunk is used (see Figure 7) in code-copyihthe less likely execution
path is encountered then the relocated part of code is missing from ssipection an undefined
behavior will occur resulting most likely a segmentation fault.

SableVM features a special technique of trapping signals instead of iexpllcpointer checks to
remove this problem in some cases. It is possible to allow VM to cause a segjorefdalt and then
recover from it, which can serve as a costly way of handling an exceptithus rare, situation where
an explicit null pointer check would be used. By removing the check angdscéated conditional
we removed the possibility that a compiler would relocate the less likely execlaekl (@.g. a null
pointer check) to the outside of the labels bracketing the code chunk 6renteval of the rarely
needed check also has a generally positive effect on the perforrd@ance

e Jumps using relative addressing. A regular Cgot o to a label can be translated by a compiler into an
instruction using a relative or absolute addressing. If a relative asldgemethod is used then such
bytecode is not suitable for code-copying, as the target of the jump isxdepeon the position of
the code, and this position is changed when the code is copied. To foetesalute jump SableVM
forces the compiler to usecamputed goto, which is part of the labels-as-values extension. This kind
of goto takes a pointer variable as its parameter and executes an absolute jheppecified target.
Note that this technique can and should only be used for Goths whoststargeoutside of a code
chunk, which (in a Java VM) are mostly jumps to a signal handler. SableVi#s dwake use of this
technique.

e Callsusing relative addressing. On many popular architectures, e.g. on Intel, the target address of a
call is specified using address relative to the currently executed instiuétioode chunk containing
such call can not be used for code-copying for the same reasonsasdrof a relative jump. Itis
possible to change the call in a C program to use a call-by-value conaftniat also forces compiler
to use an absolute address. Unfortunately not all calls are visible in thieesoade. On some
architectures some math operations are performed via function calls, aimdpiace. Also on our
set of benchmarks we noted no measurable performance improvenramhiking these problematic
bytecodes usable for code-copying. SableVM, in its current vergiakes no use of this workaround.

With all the above workarounds SableVM can only increase the likelihoad @fstruction being usable for
code-copying. The testing is still necessary to ensure to find out whitluatisns exactly can be used.



"SableVM - JVM

Inlinability Defaults
INSTR1 => INLINABLE
INSTR2 => INLINABLE

_INSTR7 => NONINLINABLE

Inlinability Results table ' (Prepare_Code

INSTR1 => INLINED - check method name
INSTR2 => INLINED | FAILING | | - inline matching bcode
- register the fact

- set alarm()

. INSTR7 => UNTESTED )

C Bytecode Testing Framework )

Figure 8: The architecture of Bytecode Testing Framework and Inlinabiisgifig Mode in SableVM

4 Bytecode Testing Framework design

The Bytecode Testing Framework (BTF) for SableVM has been creatstare that none of the disasters
described in the previous section happen. To that end we need to tesicede chunk to ensure it will
work properly when copied in every possible situation, that is—on its evemyrol flow path. For every
bytecode we are interested in using for code-copying (and thus emegsponding code chunk) we analyze
the source code and find all control flow paths it contains. This is n@gessbe able to create a series of
tests that will exercise every control flow path of each bytecode.

4.1 Issues with bytecode testing

There are three important issues with this approach. First, in the testing suiteed to have complete
control over what bytecodes are executed. We need to be sure th#tt@dngentaining a test actually does
contain a certain bytecode (the one we want to test). A javac compiler hasnadieh too much freedom in
choosing and optimizing Java code to give us the necessary controéfdieewe decided to write the tests
directly in Java assembly using Jasmin [8] as the Java assembler tool.

The second issue is that because initially it is not known which code ctaualsafe to be copied and which
are not, then the JVM must be able to run without copying any code chuitks.is important, because
to execute even the simplest method a JVM needs to bootstrap first. The &p@sicess, according to
our measurements, means execution of several hundreds thouséytescotles. We modified SableVM to
include a special compilation option callbgtecode testing mode, part of which is a mixed-mode execution
ability. When compiled with this option the code-copying is turned off for all bgties by default, and
all bytecodes are interpreted using direct-threading. Copying of the isodirned on highly selectively,
bytecode-at-a-time, and only for a single bytecode inside of each of tiicbded assembly test methods



of our test suite.

The last thing we need to keep in mind is that once the testing is complete the resdt$onbe easily
usable during compilation of normal version of SableVM with code-copymgjree. Because the results
vary depending on the compiler version and machine architecture wetdrpered up with an extensive
database containing information pertaining to each bytecode. Because lafge number of internally
used bytecodes (several hundreds) and the support for multiplitesitanes we need to ensure a database
design that is practically usable.

4.2 Special bytecode testing mode and testing suite

We modified SableVM to support mixed-mode execution where it is possiblectdedat runtime whether
to execute a bytecode using code-copying or direct-threading. Wheeshsuite is executed SableVM
recognizes special names of classes and methods containing the testatidulgr we made each test
method name contains the name of a single bytecode. This bytecode is the erf/tbe whole method
that will be executed using code-copying. This way execution of a metived g clear answer on whether
a particular bytecode was executed properly or not.

In the testing mode SableVM holds a runtime database of bytecodes along w#fuéacribing the status
of each bytecode:

e not copyable - do not even attempt to use it with code-copying, it is already known nobté,w
e copyable - do attempt to use it with code-copying but it is not guaranteed to worklgteebe tested,

e failing - means a code chunk of this bytecode has been used with code-copglifeglad one or more
tests,

e untested - needs to be tested, but has not been yet.

- initially set for all copyable bytecodes, cleared when the code chunk of this bytecode is used for
code-copying, so that at the end of testing we can find bytecodes thatnettested, for example
because test suite did not contain any tests for them.

Initially all bytecodes have eithevot copyable or copyable and untested flags set. Theuntested flag is
cleared just before the execution of a test pertaining this bytecode is attentpteecodes executed suc-
cessfully by code-copying engine will have thedpyable flag set andailing, untested flags cleared. Failed
bytecodes will have thefailing flag set andintested flag cleared.

Failure detection

Detection of improper execution of bytecodes uses two mechanisms. Firsgdb test method executed
the expected result is known and compared against the result retlfraedethod returns a different result
then a test failure is reported. Second, more important detection method is tmeagister code-copying

execution failures, such as segmentation faults, illegal instructions, andeariiops. Segmentation faults
and illegal instruction execution attempt are detected by trapping UNIX O&lsigihe infinite loops are

detected by setting a UNIX system alarm. The alarm is reset on every metttgéaed when not reset, e.g.
due to VM being stuck in an infinite loop, it times out also causing a signal. Teg#tase two mechanisms
are prepared to detect all possible execution failures, whether comimgcfsde-copying or other problems.



Failure registration

When a failure occurs the signal handler looks up the name of a methodéa&iogted and from it derives
the name of the failing bytecode and setdditing flag.

Failure recovery

After the failure is registered the VM attempts to restore the execution of ljgdmpcreating and throwing
a Java exception. This way, after the return from the signal handlersntérpreter pops the Java stack
frame and thus makes the interpretation return to the caller method, which rsahagdest execution. The
latter method is prepared to handle the Java exception. To avoid intederaiitt the existing standard
Java exceptions system we use own, non-standard exception to sog-aopying failure. In the extreme
cases recovery is not possible and the VM crashes when returnmgHimsignal handler. To ensure that it
is still possible to extract test results about the bytecodes tested up to the tadd®hcrash we modified
SableVM to produce debug output informing about failures as soonchsfaiture is identified.

4.2.1 Database of results

The usability of a code-chunk for code-copying engine is affected éyutiderlying platform, compiler
version and selected options. SableVM uses internally over 300 byteczatae of which we never expect
to be used for code-copying but at least half of these need to be tesldtieresults need to be stored.
Because of that the database of information about bytecodes thatcam ot be used for code copying for
various version of compilers and various architectures was expectedttmlbig to be directly embedded
into the JVM sources. The information stored in the database is optimized fwarixteadability and use.
Each row in the database contains information about one bytecode, @aamccorresponds to a single
architecture-and-compiler-version-and-options setup. We develamed of M4 preprocessor macros to
transform the information stored in the database into C language. Thesesnpaoduce one h file per
database column containing linestafef i ne constructs, one per bytecode.

5 Practical usage

This subsection is a concise how-to describing step by step the use obBgtdesting Framework and
SableVM'’s Testing Mode.

5.1 Preparation

1. Open the inlinability.list file (the database) in an editor that supports "haidzeplit” so that you can
see two parts of the file at the same time.

2. Make the upper view few lines short and scroll the content to see the okthe architecture-compiler
being tested. Scroll the lower view down until the architecture-compiler nameheswith one of
the column containing the data about bytecodes.

3. Clean up the column from old information by overwriting the data with spdgesiot ever remove
the", " characters, also keep them in one column with other lines.

10



4. Save the file but do not close the close the editor as it will be useful later.

Important: When switching between using enabl e-i nl i nabi | i ty-testi ng and notusingititis
required to executemake di st cl ean. Otherwise execution errors will appear that make no sense at all
and which might waste hours to debug. This is due to the fact that we chiagay some files are gener-

ated byW4 preprocessor depending on this option, in particular whether a cadl.ionl i ni ng_i ncr enment _pc()
is generated into the source code or not.

5.2 Testing

1. Compile and install SableVM with these options:
--enable-inlinability-testing
--wi t h-t hreadi ng=i nl i ned
- - enabl e-si gnal s-for-exceptions.

2. Run Bytecode Testing Framework on SableVM.

3. The end results will clearly indicate which bytecodes are failing." PWOT, " in the column of your
architecture for each such bytecode, then save the file. An empty'enttyindicates that a bytecode
can be used for code-copying.

4. Compile SableVM omitting the - enabl e-i nl i nability-testing option (or changing it
to--disable-inlinability-testing) and re-run Bytecode Testing Framework again to
ensure the tests caught all the problems. If not—repeat the previousrgiepeaching the fixed-
point.

5. Follow the “5.2 Testing” instructions once more but this time compile SableVMyusin
--di sabl e-si gnal s-for-exceptions. Also this time put' SI G " into the database if a
bytecode fails withousi gnal s- f or - except i on but not with them.

5.3 Final steps

When the testing is finished and SableVM works properly using codetugppye ask you to publish your
inlinability.list. Please do not uss f f to show changes in the content, publish a complete file. Optionally
you can modify configure.ac and make your architecture use codercopy default:

case \${}host in
al pha*- gnu) wi t h\ _threadi ng=inlined ;;

5.4 Troubleshooting
Be aware that whether a chunk of code can be used by code-comjiegds on many factors, mainly on

the architecture, the compiler, and its version. For each new compiler néhgidesting should be repeated
to ensure VM robustness.

e During the tests SableVM has to deal with execution of random code arefjanentation faults.
These are not reliable conditions for execution, thus it might severeghataring tests and you

11



won't see the final table with results. As a remedy gsep REG STERI NGon the output to get

the list of the bytecodes that are failing before the crash and use thenation to partially update

the inlinability.list file. Recompile SableVM and repeat the testing procedurereldre high chances
that your testing will progress further this time. Repeat until VM executiaehas properly with the

final table of results.

If you experience failures or exceptions while testing on an instructionighether already marked

as not for use by code-copying or is in the list of the instructions thatgrected to never be usable
by code-copying (at the bottom of inlinability.list) then it indicates a problem likieielated to code-

copying. Recompile SableVM with one of the other execution engines anB8TEragain.

If with each run a substantial number (20-40 or more) of bytecodesilly randomly) it probably
means that the data/instruction cache flush function in SableVM is not wopgkioyerly for your
architecture.

If SableVM has not been ported to your architecture at all then youlgtiiost ensure proper func-
tioning of switch and direct-threaded engines.

If your class library lack$ ava/ | ang/ | nl i ni ngExcepti on. cl ass you will seesabl evm
cannot create vmerror. Note that this error might occasionally happen for other reasons

If you compile with GCC older than 3.3 you might need to use-thdi sabl e- no-r eor der - bl ocks
option, especially with GCC 2.95. Be warned that GCC 3.2 on some platfornesagenmany codes
not usable for code-copying while not providing options introduced iIC@A that help alleviate the
problem.

Bytecode Testing Framework is also a regular testing suite. On some arataeictill for example
detect problems with finite and infinite divisions. These are most likely naeredacode-copying and
can be fixed while using switch or direct engine.

Whensi gnal s-f or - excepti ons are disabled SableVM might receive a signal not from byte-
code execution failing due to code-copying but because of some Urhehevior of hardware. A
good example is Intel's hardware that responds with a floating point erienrupt when execution
the division:l nt eger . M N.VALUE / -1 . Abytecode executing such operation will be mislead-
ingly listed adailing. When executed without the testing mode and witlsawgnal s- f or - except i ons
a “Floating point exception” will be reported. We need to be aware of bablavior because it is pos-
sible that other architectures might have their own special cases.

6 Experimental results

The main reason for creation of Bytecode Testing Framework was to imgireveliability of code-copying

engine and improve time efficiency of porting VMs using this kind of engine t@ architectures and
compilers. Formerly the reliability testing and porting were done manually, whiem eaneant days of

trial-and-error, sometimes including analysis of assembly code to undestanbe able to avoid certain
issues.

Since the creation of BTF the SableVM project has seen external caotsiC programmers with no VM
knowledge) porting code-copying engine of SableVM to a completely nehitacture within as little as

12



| ASTORE -------------cmmmmm- => | NLI NED and WORKI NG ( RECogni zabl e)

LASTORE ---------------------- => | NLI NED and WORKI NG ( RECogni zabl e)
FASTORE ----------cmmmmmme o - => | NLI NED and WORKI NG ( RECogni zabl e)
DASTORE ---------------------- => | NLI NED and WORKI NG ( RECogni zabl e)
AASTORE -------------mmmmmm o - => FAI LI NG ( RECogni zabl e)

BASTORE ------------mmmmmmmm o => UNTESTED - NONI LI NABLE ( NOT recogni zabl e)
CASTORE ---------------------- => | NLI NED and WORKI NG ( RECogni zabl e)
SASTORE -------------mmmmm - => | NLI NED and WORKI NG ( RECogni zabl e)
[ADD -----cmmmmm e => UNTESTED (NOT recogni zabl e)

LADD -----------mmmmmmme oo => UNTESTED (NOT recogni zabl e)

FADD ---------mmmmmmm e - - => UNTESTED (NOT recogni zabl e)

DADD --------mmmmmmme i => | NLI NED and WORKI NG ( RECogni zabl e)

Figure 9: Final results (fragment) as displayed by SableVM after aruéracnf BTF test suite on PowerPC
architecture.

UNTESTED - NOT COPYABLE = 123
UNTESTED =0
FAI LI NG =0
COPI ED and WORKI NG (NOT FAILING = 209
UNDETERM NED =0
TOTAL COPIED  (FAILING OR NOT) = 209
RECOGNI ZABLE ~ METHOD/ BCODE NAME = 228
NON- RECOGN.  BY METHOD/ BCODE NAME = 104

Figure 10: Test results summary as displayed by SableVM after an execft®TF test suite on HPPA
architecture.

one hour. Most ports only took a few hours of work. For Linux 2.4 ai@3z3.3 we ported SableVM code-
copying engine to 6 architectures: Alpha, i386, IA64, PowerPC, Sp#PA. Where making code-copying
work proved challenging we still used BTF to ensure proper executialirett-threaded engine on m68k
and s390 architectures.

We attribute this success to the ease of use (see Figures 9 and 10) awdnfireltensive nature of our
approach. This clearly shows the advantage of using specialized tooBTikeand SableVM'’s Testing
Mode to ease porting efforts and improve VM reliability in a variety of différmvironments.

7 Conclusions

Code-copying removes dispatch overhead and improves branchtfmedielivering a much better perfor-
mance than the more standard direct-threading. Code-copying, howeyeires ensuring that the copied
code will actually execute properly in all situations. We developed a testwititdéine-grained, specialized
tests written in Java bytecode assembly used by Jasmin. The suite tests allftmmg visible in chunks of
VM source code. In connection with special testing mode in SableVM it carsbd to test code-copying
engine and automatically report on findings regarding proper executloytecodes by this fast engine.

We developed a set of m4 macros to avoid cluttering the VM sources anchtspehe VM sources from

the textual database containing information which bytecodes can be ussatitscopying and which can
not, depending on architecture, compiler and its version. This databaagyiscemaintain and update thus
is an important improvement in practical usability of SableVM'’s code-copgimgjne.

13



Thanks to BTF testing SableVM’s code-copying engine has been graagbifsed. It still requires manual
execution and is an iterative (fixed-point) process, but, as we'veisgeactice, with clear instructions even
a person with no VM knowledge can successfully use it to port Sable\¢dlie-copying engine to new
architectures.

8 Future work

Code-copying presents itself an interesting alternative to standard rstaempretation methods. Given its
low implementation costs and exceptional performance the only issues tabriseaddressed to enable it
wider adoption are safety and maintenance in the presence of new congpdems. We see that there are
two main areas for improvement. One having to do with the VM itself (and its toald)pther being a new
area of improvement within the static compiler, GCC.

To ensure full SableVM robustness we would need to further improvecBge Testing Framework to in-
clude tests for other, currently untested bytecodes. Enabling more betetmbe used for code-copying is
expected to have a measurable positive influence on the VM performgraitowing for longer superin-
structions which will eliminate even more dispatch overhead.

From our experiences with multiple architectures we also realized that duerpiler optimizations the
correlation between the control flow paths in the source code and in tiiéngsinary is not full, therefore
there are limits to what BTF can accomplish as a testing tool. Because of thatiexelithat in a long-term
view a much better option would be to enhance a highly robust, optimizing staticileotifle GCC with
the support necessary for code-copying. Such support couldestise proper ordering of basic blocks
within code chunks or ensure the use of absolute addressing of jumpslisahere necessary. Our future
work is therefore expected to be going towards improving the supparofie-copying in highly optimizing
compilers.

References

[1] David Bélanger. SableJIT: A retargetable just-in-time compiler. Master’s thesi§ilMdniversity,
August 2004.

[2] M. Anton Ertl and David Gregg. Optimizing indirect branch predictiorw@acy in virtual machine
interpreters. INSGPLAN '03 Conference on Programming Language Design and Implementation,
2003.

[3] M. Anton Ertl and David Gregg. Retargeting JIT compilers by usingoGipiler generated executable
code. InParallel Architecture and Compilation Techniques (PACT 04), pages 41-50, 2004.

[4] M. Anton Ertl, Christian Thalinger, and Andreas Krall. Superinstrutdiand replication in the Cacao
JVM interpreter.Journal of .NET Technologies, 4:25-32, 2006. Journal papers fradET Technologies
2006 conference.

[5] Etienne Gagnon and Laurie Hendren. SableVM: A research framefor the efficient execution of
Java bytecode. ldava Virtual Machine Research and Technology Symposium, 2001.

[6] Etienne M. GagnonA Portable Research Framework for the Execution of Java Bytecode. PhD thesis,
McGill University, 2002.

14



[7] Etienne M. Gagnon. Porting and tuning inline-threaded interpretensCASCON 2003 workshop
reports, 2003.

[8] Jonathan Meyer and Daniel Reynaud. Jasmin - an assembler forvéheijeual machineht t p:
//jasm n. sourceforge. net/.

[9] lan Piumarta and Fabio Riccardi. Optimizing direct threaded code bygtaadénlining. InPLDI '98:
Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and implemen-
tation, pages 291-300, New York, NY, USA, 1998. ACM Press.

15



