
McGill University

School of Computer Science

Sable Research Group

Bytecode Testing Framework
for SableVM Code-copying Engine

Sable Technical Report No. 2007-9

Gregory B. Prokopski, Etienne M. Gagnon, Christian Arcand
Sable Research Group

School of Computer Science, McGill University
Montreal, Quebec, Canada

November 16, 2007

w w w . s a b l e . m c g i l l . c a

Abstract

Code-copying is a very attractive, simple-JIT, highly portable fast bytecode execution technique with
implementation costs close to a classical interpreter. Theidea is to reuse, at Virtual Machine (VM)
runtime, chunks of VM binary code, copy them, concatenate and execute together at a greater speed.
Unfortunatelly code-copying makes anwarranted assumptions about the code generated by the compiler
used to compile the VM. It is therefore necessary to find whichVM code chunks can be safely used
after being copied and which can not. Previously used manualtesting and assembly analysis were highly
ineffective and error prone. In this work we present a test suite, Bytecode Testing Framework (BTF) that
contains a comprehensive set of fine-grained Java assembly tests. These tests are then used in conjunction
with SableVM JVM testing mode to semi-automatically detectone-by-one which code chunks are safe
to use. With this techunique we ported SableVM’s code-copying engine to several architectures and had
external contributors with no VM knowledge port SableVM to new architectures within as little as one
hour. The presented Bytecode Testing Framework greatly improved reliability and ease of porting of
SableVM’s code-copying engine, thus its practical usability.

1 Introduction

Testing is a necessary part of any software development. The more advanced or complicated a system is the
more testing it tends to require. Depending on the type of a system and current stage of development testing
can be done by developers themselves, by designated specialists (also programmers), or, eventually, by end
users. Testing can be done either in an ad-hoc manner, where tester testssystem functionality case-by-case
with little or no support from pre-existing tools, or with support of these. Use of testing support tools favors
creation of sets of tests that can be executed automatically and report on findings.

In this work1 we are concerned with testing of a particular element of a larger system—copy-copying engine
as a part of Java Virtual Machine interpreter, SableVM [6]. Code-copying has been proposed as a VM inter-
preter implementation technique that improves performance, reducing the low costs vs. high performance
gap between interpreters and compilers [5, 9]. Depending on an application and other factors thecode-
copying2 technique can give from 1.15 to 2.14 times speedup [6] over thedirect-threading technique. While
the code-copying itself has its roots in interpreters it actually involves dynamiccreation of code, therefore it
can be viewed as a simple Just-In-Time compiler.

Unfortunately code-copying, comes with a serious issue. It makes optimistic and unwarranted assumptions
about the code generated by compiler used to compile the JVM. The core ideaof code-copying is to reuse,
at VM runtime, chunks of VM binary code corresponding to Java bytecodes. Thesecode chunks are copied
into a newly allocated place in memory, concatenated and executed together to achieve superior performance
while keeping the design very simple and largely architecture-agnostic, thusensuring high portability of the
VM. The problem arises because the C standard3 does not contain any semantics that would allow us to
express and impose necessary restrictions on selected parts of code. The labels placed before and after
the code chunks and used as start and end pointers during code copying do not guarantee contiguity of the
resulting binary code chunks, nor do they place restrictions on the use ofrelative addressing. These and other
closely related issues become more and more important as compilers use more aggressive optimizations.
Code chunks that are not functionally equivalent after being copied to anew location in memory can not be
used by code-copying engine and have to be executed in a slower manner, without being copied.

1The work described in this document was done in years 2002-2004, yet, for various reasons, it was not published at that time.
2Note that in the literature what we call code-copying is sometimes referredto asinlining or inline-threading [5]; these latter

terms, however, we find, suggest method or function inlining to most compiler developers and researchers.
3SableVM, as many system tools, is written in C.

1

It is therefore necessary to identify these problematic code chunks and bytecode instructions they corre-
spond to so that the rest of code chunks could be used to achieve higherspeed with code-copying. Initially
the implementations of code-copying we know of were tested manually, by trial-and-error, or by carefully
looking at the assembly of VM binary code, or used hand-written, unportable assembly. These methods do
not give satisfying results in terms of the knowledge required to use them, their time efficiency, resistance
to human error, general usability, and portability. For example on each different architecture every compiler
version can potentially compile code in a different manner, resulting in a different set of code chunks that
can be copied. With fully manual testing approach it is not feasible to test a VMwith every compiler version
change. SableVM, for example, uses internally over 300 bytecodes, which means over 300 code chunks that
can be potentially used by code-copying, but need to be deemed safe-to-copy before they are used. The goal
of this work is to give the testing results higher trust index and introduce as much automatization into the
testing process as possible.

With this work we make the following contributions:

• we identify problems arising from the use of highly optimizing compilers that undermine the assump-
tions necessary for code-copying engines to function,

• we present the design of a custom testing suite targeted at finding JVM codethat does not hold the
properties necessary for code used in code-copying,

• we present a semi-automatic method of testing code chunks that involves mixed-mode execution that
dynamically alternates between safe, simpler and slower direct-threading andfaster copy-copying.

The rest of this work is structured as follows. In the next section we describe the related work. In Section 3
we describe in more detail types of execution engines and give a broaderview of the problematic issues.
In Section 4 we present the design of our Bytecode Testing Framework followed by experimental results in
Section 6. We close with conclusions and future work description in Sections7 and 8.

2 Related work

In our work we are concerned with ensuring proper operation of VMs using the code-copying technique.
This technique originates from thedirect-threaded interpretation and was first described by Piumarta and
Riccardi in their work on, what they called,selective inlining [9]. Compilers used at that time did not use
too many aggressive optimizations that would make code-copying impossible, therefore testing was not of
such importance.

Gagnon was the first to use the code-copying technique in a Java interpreter [5, 6]. This implementation
solved some important problems specific to the interpretation of Java bytecode. As can be seen in Figure 1,
it also included three execution engines: simplest, plain Cswitch-based, direct-copying and code-copying
(a.k.a. inline-threaded). Interestingly, experiments done with a simple, non-optimizing portable JIT for
SableVM (SableJIT [1]) showed that such a JIT was only barely able to achieve speeds comparable to
the code-copying engine. This demonstrated once again that code-copying is a very attractive solution
performance-wise.

One of the important reasons why code-copying is significantly faster thanother interpretation techniques is
its positive influence on the success rate of branch predictors commonly used in today’s hardware contain-
ing branch target buffers (BTB). Ertl showed in his work on indirect branch prediction in interpreters [2, 4]

2

Figure 1: SableVM is a complete Java virtual machine featuring three execution engines: from most portable
switch-threaded to fastest code-copying (also known asinline-threaded).

that other solutions improving branch prediction, e.g. bytecode duplication,can also give significant per-
formance improvement. Speedup due to branch prediction improvements much outweighs other negative
effects such as increased instruction-cache misses.

A solution similar to code-copying engine is a JIT using code generated by a Ccompiler developed by
Ertl [3]. In this solution, however, the pieces of code were actually modified (patched) on the fly, so as to
contain immediate values and remove the need for the instruction counter. Due tothe patching architecture-
specific code was necessary. Interestingly Ertl’s solution did include automated tests to detect code chunks
that were definitely not usable for code-copying, but it was not guaranteed to find all such chunks.

A brief discussion of the initial work done within SableVM JVM on ensuring usability of its code-copying
engine was presented by Gagnon [7]. He touched on the main issues regarding conflicts between goals of
highly-optimizing compilers and the requirements for code used by code-copying engines.

There exist several Java-related testing suits. Mauve, a subproject of GNU Classpath, groups tests targeted
mainly at testing of equivalence of its class libraries with proprietary Java libraries. In this field the most
comprehensive testing is offered by Java Compatibility Kit available from Sun.Kaffe JVM also has its own
set of library tests, and more interestingly a subset of tests aiming to ensure itsJIT compiler is working
properly. Also GCJ (part of GNU Compiler Collection) has its own test suite. All these test suits target
specifically either Java libraries compatibility or general VM compiler saneness. As will become evident
later, they are all unsuitable for the fine-grained approach necessaryto test a code-copying engine.

Another class of tests are various Java benchmarks, like SPEC JVM98, CaffeineMark, SciMark 2 and many
others created mainly as tools for performance testing. While useful in general, these benchmarks are of
little help while testing a code-copying engine.

3

Virtual Machine

Interpreter Compiler

code-copying
direct-

threaded
switch-

threaded Ahead-Of-TimeJust-In-Time

Figure 2: The taxonomy of Virtual Machines execution engines.

Figure 3: Plain-C, switch-threaded interpreter incurs large runtime overhead.

3 Background

Interpreters have the advantage of simplicity, although improved performance is possible with different
design approaches. We illustrate the main designs on the left side of Figure 2to situate the code-copying
approach; these include a basicswitch-threaded interpreter, and adirect-threaded model.

A switch-threaded interpreter simulates a basic fetch, decode, execute cycle, reading the next bytecode to
execute and using a largeswitch-case statement to branch to the actual VM code appropriate for that byte-
code. This process is straightforward but if, such as in Java, bytecodes often encode only small operations
the overhead of fetching and decoding an instruction is proportionally high, making the overall design quite
inefficient, as shown in Figure 3.

A direct-threaded interpreter is a more advanced interpreter that minimizes decoding overhead. This kind
of interpreter requires an extension offered by some compilers known aslabels-as-values. Normally a C
program can containgotos only to labels. With the labels-as-values extension it is possible to take an
address of a label and store it in a variable. Later this variable can be used as an argument of acomputed
goto. In a direct-threaded interpreter a stream of bytecodes is thus replacedby a stream of addresses of

4

Figure 4: Direct-threaded interpreter translates stream of bytecodes intostream of addresses before execu-
tion and lowers the repetitive interpretation overhead.

labels. The labels themselves are placed at the start of code responsible for execution of operations encoded
by each bytecode. With this mechanism an interpreter can immediately execute acomputed goto jumping
directly to a chunk of code of the next instruction, as illustrated in Figure 4. Optimization is implied by
reducing the repeated decoding of instructions, trading repeated test-and-branch sequences for a one-time
preparatory action where a stream of bytecodes is translated into a streamof addresses.

In some sense, and as indicated in Figure 2, code-copying bridges interpreter and compiler-based VM im-
plementation approaches. Code-copying is a further optimization to interpreter design, but one which makes
relatively strong assumptions about compiler code generation. The basic idea of code-copying is to make
use of the compiler applied to the VM to generate binary code for matching bytecodes. Parts orchunks of
the VM code are used to implement the behavior of each bytecode. Those chunks of code are marked with
labels at their begin and end. At runtime, the interpreter copies the binary chunks corresponding to an input
stream of bytecodes and concatenates them into a new place in memory, as shown in Figure 5. Such a chain
of concatenated instructions is called a superinstruction and it can executeat a much greater speed than
using any of the other two formerly described techniques. Depending on an application and other factors the
code-copying technique can give from 1.15 to 2.14 times speedup [6] over the direct-threaded technique.

As numerous studies have shown the performance gains from using code-copying technique are clear [2,4–
6, 9]. However one of the biggest problems the implementators of code-copying interpreter engines face is
ensuring that the fragments of the code chunks copied to construct superinstructions are still fully functional
in their new locations and as a part of a superinstruction. In particular, to behave correctly a code chunk must
not contain relative jumps or calls to targets that would be outside of the chunk, and its control flow must
start at thetop and exit at thebottom. Chunks which do not possess these properties are not safe to copy and
execute. Unfortunately, the C standard does not contain any semantics that would allow us to express and
impose such restrictions on selected parts of code, therefore we need to resort to testing the code outputted
by the compiler.

Before the testing can happen, however, it is necessary to clearly identify what are the common problems
that need to be found by tests, how they manifest, and how they can be dealtwith.

• Basic blocks partitioning. Optimizing compilers, like GCC 3.2 and newer, divide basic blocks into
likely executed ones (hot) and not likely executed (cold). Blocks belonging to each group are put

5

ILOAD_0:

ILOAD_1:

IADD:

ISTORE_2:

ILOAD_0

ILOAD_1

IADD

ISTORE_2

. . .

. . .

. . .

. . .

ILOAD_1

ILOAD_0

IADD

ISTORE_2

in terpre ter main loop
(d i rec t - th readed)

single superinstruct ion
(code-copying)

super instruct ion
ILOAD1_ILOAD0_IADD_ISTORE2

Figure 5: A simplified comparison of direct-threaded and code-copying engines.

Figure 6: Optimizing compiler can relocate less likely executed code to the outsideof labels bracketing code
used by code-copying.

Figure 7: Execution of a superinstruction containing a code chunk with missing part or a call using relative
addressing might cause VM crash.

6

together, so as to improve cache efficiency. Unfortunately this optimization often moves a basic block
belonging to the internal control flow of a code chunk to the outside (usuallyfar away) from of the
bracketing labels of the code chunk thus making it unusable for code copying (see Figure 7). This
might reduce the number of bytecodes usable for code-copying to almost zero. GCC 3.3 introduced an
option to disable this optimization which is now used by SableVM by default to make code-copying
of a reasonable number of bytecodes possible again.

• Most often executed path optimization. As illustrated in Figure 6 an optimizing compiler can relocate
code that is less likely to be executed, like null pointer checks (common in many bytecodes) to the
outside of pair of labels bracketing the code chunk. If this happens, such code chunk can not be used
for code-copying. This is because the only code that is copied is the codebetween the two bracketing
labels. When such code chunk is used (see Figure 7) in code-copying and the less likely execution
path is encountered then the relocated part of code is missing from superinstruction an undefined
behavior will occur resulting most likely a segmentation fault.

SableVM features a special technique of trapping signals instead of explicit null pointer checks to
remove this problem in some cases. It is possible to allow VM to cause a segmentation fault and then
recover from it, which can serve as a costly way of handling an exceptional, thus rare, situation where
an explicit null pointer check would be used. By removing the check and its associated conditional
we removed the possibility that a compiler would relocate the less likely executed block (e.g. a null
pointer check) to the outside of the labels bracketing the code chunk 6. Theremoval of the rarely
needed check also has a generally positive effect on the performance??.

• Jumps using relative addressing. A regular Cgoto to a label can be translated by a compiler into an
instruction using a relative or absolute addressing. If a relative addressing method is used then such
bytecode is not suitable for code-copying, as the target of the jump is dependant on the position of
the code, and this position is changed when the code is copied. To force anabsolute jump SableVM
forces the compiler to use acomputed goto, which is part of the labels-as-values extension. This kind
of goto takes a pointer variable as its parameter and executes an absolute jumpto the specified target.
Note that this technique can and should only be used for Goths whose targets are outside of a code
chunk, which (in a Java VM) are mostly jumps to a signal handler. SableVM does make use of this
technique.

• Calls using relative addressing. On many popular architectures, e.g. on Intel, the target address of a
call is specified using address relative to the currently executed instruction. A code chunk containing
such call can not be used for code-copying for the same reasons as incase of a relative jump. It is
possible to change the call in a C program to use a call-by-value constructwhich also forces compiler
to use an absolute address. Unfortunately not all calls are visible in the source code. On some
architectures some math operations are performed via function calls, and not in place. Also on our
set of benchmarks we noted no measurable performance improvement from making these problematic
bytecodes usable for code-copying. SableVM, in its current version,makes no use of this workaround.

With all the above workarounds SableVM can only increase the likelihood ofan instruction being usable for
code-copying. The testing is still necessary to ensure to find out which instructions exactly can be used.

7

Figure 8: The architecture of Bytecode Testing Framework and Inlinability Testing Mode in SableVM

4 Bytecode Testing Framework design

The Bytecode Testing Framework (BTF) for SableVM has been created toensure that none of the disasters
described in the previous section happen. To that end we need to test every code chunk to ensure it will
work properly when copied in every possible situation, that is—on its everycontrol flow path. For every
bytecode we are interested in using for code-copying (and thus every corresponding code chunk) we analyze
the source code and find all control flow paths it contains. This is necessary to be able to create a series of
tests that will exercise every control flow path of each bytecode.

4.1 Issues with bytecode testing

There are three important issues with this approach. First, in the testing suite we need to have complete
control over what bytecodes are executed. We need to be sure that a method containing a test actually does
contain a certain bytecode (the one we want to test). A javac compiler has often much too much freedom in
choosing and optimizing Java code to give us the necessary control. Therefore we decided to write the tests
directly in Java assembly using Jasmin [8] as the Java assembler tool.

The second issue is that because initially it is not known which code chunksare safe to be copied and which
are not, then the JVM must be able to run without copying any code chunks.This is important, because
to execute even the simplest method a JVM needs to bootstrap first. The bootstrap process, according to
our measurements, means execution of several hundreds thousands ofbytecodes. We modified SableVM to
include a special compilation option calledbytecode testing mode, part of which is a mixed-mode execution
ability. When compiled with this option the code-copying is turned off for all bytecodes by default, and
all bytecodes are interpreted using direct-threading. Copying of the code is turned on highly selectively,
bytecode-at-a-time, and only for a single bytecode inside of each of the handcoded assembly test methods

8

of our test suite.

The last thing we need to keep in mind is that once the testing is complete the results need to be easily
usable during compilation of normal version of SableVM with code-copying engine. Because the results
vary depending on the compiler version and machine architecture we expect to end up with an extensive
database containing information pertaining to each bytecode. Because of the large number of internally
used bytecodes (several hundreds) and the support for multiple architectures we need to ensure a database
design that is practically usable.

4.2 Special bytecode testing mode and testing suite

We modified SableVM to support mixed-mode execution where it is possible to decide at runtime whether
to execute a bytecode using code-copying or direct-threading. When thetest suite is executed SableVM
recognizes special names of classes and methods containing the tests. In particular we made each test
method name contains the name of a single bytecode. This bytecode is the only one of the whole method
that will be executed using code-copying. This way execution of a method gives a clear answer on whether
a particular bytecode was executed properly or not.

In the testing mode SableVM holds a runtime database of bytecodes along with flags describing the status
of each bytecode:

• not copyable - do not even attempt to use it with code-copying, it is already known not to work,

• copyable - do attempt to use it with code-copying but it is not guaranteed to work, needs to be tested,

• failing - means a code chunk of this bytecode has been used with code-copying and failed one or more
tests,

• untested - needs to be tested, but has not been yet.

- initially set for all copyable bytecodes, cleared when the code chunk of this bytecode is used for
code-copying, so that at the end of testing we can find bytecodes that were not tested, for example
because test suite did not contain any tests for them.

Initially all bytecodes have eithernot copyable or copyable and untested flags set. Theuntested flag is
cleared just before the execution of a test pertaining this bytecode is attempted. Bytecodes executed suc-
cessfully by code-copying engine will have theircopyable flag set andfailing, untested flags cleared. Failed
bytecodes will have theirfailing flag set anduntested flag cleared.

Failure detection

Detection of improper execution of bytecodes uses two mechanisms. First, for each test method executed
the expected result is known and compared against the result returned.If a method returns a different result
then a test failure is reported. Second, more important detection method is meant to register code-copying
execution failures, such as segmentation faults, illegal instructions, and infinite loops. Segmentation faults
and illegal instruction execution attempt are detected by trapping UNIX OS signals. The infinite loops are
detected by setting a UNIX system alarm. The alarm is reset on every method entry and when not reset, e.g.
due to VM being stuck in an infinite loop, it times out also causing a signal. Together these two mechanisms
are prepared to detect all possible execution failures, whether coming from code-copying or other problems.

9

Failure registration

When a failure occurs the signal handler looks up the name of a method beingexecuted and from it derives
the name of the failing bytecode and sets itsfailing flag.

Failure recovery

After the failure is registered the VM attempts to restore the execution of bytecode by creating and throwing
a Java exception. This way, after the return from the signal handlers, the interpreter pops the Java stack
frame and thus makes the interpretation return to the caller method, which manages the test execution. The
latter method is prepared to handle the Java exception. To avoid interferences with the existing standard
Java exceptions system we use own, non-standard exception to signal acode-copying failure. In the extreme
cases recovery is not possible and the VM crashes when returning from the signal handler. To ensure that it
is still possible to extract test results about the bytecodes tested up to the moment of VM crash we modified
SableVM to produce debug output informing about failures as soon as each failure is identified.

4.2.1 Database of results

The usability of a code-chunk for code-copying engine is affected by the underlying platform, compiler
version and selected options. SableVM uses internally over 300 bytecodes, some of which we never expect
to be used for code-copying but at least half of these need to be tested and the results need to be stored.
Because of that the database of information about bytecodes that can orcan not be used for code copying for
various version of compilers and various architectures was expected to be too big to be directly embedded
into the JVM sources. The information stored in the database is optimized for human-readability and use.
Each row in the database contains information about one bytecode, each column corresponds to a single
architecture-and-compiler-version-and-options setup. We developeda set ofM4 preprocessor macros to
transform the information stored in the database into C language. These macros produce one.h file per
database column containing lines of#define constructs, one per bytecode.

5 Practical usage

This subsection is a concise how-to describing step by step the use of Bytecode Testing Framework and
SableVM’s Testing Mode.

5.1 Preparation

1. Open the inlinability.list file (the database) in an editor that supports ”horizontal split” so that you can
see two parts of the file at the same time.

2. Make the upper view few lines short and scroll the content to see the name of the architecture-compiler
being tested. Scroll the lower view down until the architecture-compiler name matches with one of
the column containing the data about bytecodes.

3. Clean up the column from old information by overwriting the data with spaces.Do not ever remove
the"," characters, also keep them in one column with other lines.

10

4. Save the file but do not close the close the editor as it will be useful later.

Important: When switching between using--enable-inlinability-testing and not using it it is
required to executemake distclean. Otherwise execution errors will appear that make no sense at all
and which might waste hours to debug. This is due to the fact that we changethe way somec files are gener-
ated byM4 preprocessor depending on this option, in particular whether a call tono inlining increment pc()
is generated into the source code or not.

5.2 Testing

1. Compile and install SableVM with these options:
--enable-inlinability-testing
--with-threading=inlined
--enable-signals-for-exceptions.

2. Run Bytecode Testing Framework on SableVM.

3. The end results will clearly indicate which bytecodes are failing. Put" NOT," in the column of your
architecture for each such bytecode, then save the file. An empty entry" ," indicates that a bytecode
can be used for code-copying.

4. Compile SableVM omitting the--enable-inlinability-testing option (or changing it
to --disable-inlinability-testing) and re-run Bytecode Testing Framework again to
ensure the tests caught all the problems. If not—repeat the previous stepuntil reaching the fixed-
point.

5. Follow the “5.2 Testing” instructions once more but this time compile SableVM using
--disable-signals-for-exceptions. Also this time put" SIG," into the database if a
bytecode fails withoutsignals-for-exception but not with them.

5.3 Final steps

When the testing is finished and SableVM works properly using code-copying we ask you to publish your
inlinability.list. Please do not usediff to show changes in the content, publish a complete file. Optionally
you can modify configure.ac and make your architecture use code-copying by default:

case \${}host in
alpha*-gnu) with_threading=inlined ;;

5.4 Troubleshooting

Be aware that whether a chunk of code can be used by code-copying depends on many factors, mainly on
the architecture, the compiler, and its version. For each new compiler version the testing should be repeated
to ensure VM robustness.

• During the tests SableVM has to deal with execution of random code and/or segmentation faults.
These are not reliable conditions for execution, thus it might severely crash during tests and you

11

won’t see the final table with results. As a remedy usegrep REGISTERING on the output to get
the list of the bytecodes that are failing before the crash and use that information to partially update
the inlinability.list file. Recompile SableVM and repeat the testing procedure. There are high chances
that your testing will progress further this time. Repeat until VM execution finishes properly with the
final table of results.

• If you experience failures or exceptions while testing on an instruction thatis either already marked
as not for use by code-copying or is in the list of the instructions that are expected to never be usable
by code-copying (at the bottom of inlinability.list) then it indicates a problem likelyunrelated to code-
copying. Recompile SableVM with one of the other execution engines and runBTF again.

• If with each run a substantial number (20-40 or more) of bytecodes fail (usually randomly) it probably
means that the data/instruction cache flush function in SableVM is not workingproperly for your
architecture.

• If SableVM has not been ported to your architecture at all then you should first ensure proper func-
tioning of switch and direct-threaded engines.

• If your class library lacksjava/lang/InliningException.class you will seesablevm:
cannot create vm error. Note that this error might occasionally happen for other reasons.

• If you compile with GCC older than 3.3 you might need to use the--disable-no-reorder-blocks
option, especially with GCC 2.95. Be warned that GCC 3.2 on some platforms generate many codes
not usable for code-copying while not providing options introduced in GCC 3.3 that help alleviate the
problem.

• Bytecode Testing Framework is also a regular testing suite. On some architectures it will for example
detect problems with finite and infinite divisions. These are most likely not relate to code-copying and
can be fixed while using switch or direct engine.

• Whensignals-for-exceptions are disabled SableVM might receive a signal not from byte-
code execution failing due to code-copying but because of some unusual behavior of hardware. A
good example is Intel’s hardware that responds with a floating point errorinterrupt when execution
the division:Integer.MIN VALUE / -1 . A bytecode executing such operation will be mislead-
ingly listed asfailing. When executed without the testing mode and withoutsignals-for-exceptions
a “Floating point exception” will be reported. We need to be aware of suchbehavior because it is pos-
sible that other architectures might have their own special cases.

6 Experimental results

The main reason for creation of Bytecode Testing Framework was to improvethe reliability of code-copying
engine and improve time efficiency of porting VMs using this kind of engine to new architectures and
compilers. Formerly the reliability testing and porting were done manually, which often meant days of
trial-and-error, sometimes including analysis of assembly code to understand and be able to avoid certain
issues.

Since the creation of BTF the SableVM project has seen external contributors (C programmers with no VM
knowledge) porting code-copying engine of SableVM to a completely new architecture within as little as

12

IASTORE ----------------------=> INLINED and WORKING (RECognizable)
LASTORE ----------------------=> INLINED and WORKING (RECognizable)
FASTORE ----------------------=> INLINED and WORKING (RECognizable)
DASTORE ----------------------=> INLINED and WORKING (RECognizable)
AASTORE ----------------------=> FAILING (RECognizable)
BASTORE ----------------------=> UNTESTED - NONILINABLE (NOT recognizable)
CASTORE ----------------------=> INLINED and WORKING (RECognizable)
SASTORE ----------------------=> INLINED and WORKING (RECognizable)
IADD -------------------------=> UNTESTED (NOT recognizable)
LADD -------------------------=> UNTESTED (NOT recognizable)
FADD -------------------------=> UNTESTED (NOT recognizable)
DADD -------------------------=> INLINED and WORKING (RECognizable)

Figure 9: Final results (fragment) as displayed by SableVM after an execution of BTF test suite on PowerPC
architecture.

UNTESTED - NOT COPYABLE = 123
UNTESTED = 0
FAILING = 0
COPIED and WORKING (NOT FAILING) = 209
UNDETERMINED = 0
TOTAL COPIED (FAILING OR NOT) = 209
RECOGNIZABLE METHOD/BCODE NAME = 228
NON-RECOGN. BY METHOD/BCODE NAME = 104

Figure 10: Test results summary as displayed by SableVM after an execution of BTF test suite on HPPA
architecture.

one hour. Most ports only took a few hours of work. For Linux 2.4 and GCC 3.3 we ported SableVM code-
copying engine to 6 architectures: Alpha, i386, IA64, PowerPC, Sparc, HPPA. Where making code-copying
work proved challenging we still used BTF to ensure proper execution ofdirect-threaded engine on m68k
and s390 architectures.

We attribute this success to the ease of use (see Figures 9 and 10) and the comprehensive nature of our
approach. This clearly shows the advantage of using specialized tools likeBTF and SableVM’s Testing
Mode to ease porting efforts and improve VM reliability in a variety of different environments.

7 Conclusions

Code-copying removes dispatch overhead and improves branch prediction delivering a much better perfor-
mance than the more standard direct-threading. Code-copying, however, requires ensuring that the copied
code will actually execute properly in all situations. We developed a test suitewith fine-grained, specialized
tests written in Java bytecode assembly used by Jasmin. The suite tests all control flows visible in chunks of
VM source code. In connection with special testing mode in SableVM it can beused to test code-copying
engine and automatically report on findings regarding proper execution of bytecodes by this fast engine.

We developed a set of m4 macros to avoid cluttering the VM sources and separated the VM sources from
the textual database containing information which bytecodes can be used for code-copying and which can
not, depending on architecture, compiler and its version. This database is easy to maintain and update thus
is an important improvement in practical usability of SableVM’s code-copyingengine.

13

Thanks to BTF testing SableVM’s code-copying engine has been greatly simplified. It still requires manual
execution and is an iterative (fixed-point) process, but, as we’ve seenin practice, with clear instructions even
a person with no VM knowledge can successfully use it to port SableVM’scode-copying engine to new
architectures.

8 Future work

Code-copying presents itself an interesting alternative to standard, slower interpretation methods. Given its
low implementation costs and exceptional performance the only issues that need to be addressed to enable it
wider adoption are safety and maintenance in the presence of new compiler versions. We see that there are
two main areas for improvement. One having to do with the VM itself (and its tools), and other being a new
area of improvement within the static compiler, GCC.

To ensure full SableVM robustness we would need to further improve Bytecode Testing Framework to in-
clude tests for other, currently untested bytecodes. Enabling more bytecodes to be used for code-copying is
expected to have a measurable positive influence on the VM performance by allowing for longer superin-
structions which will eliminate even more dispatch overhead.

From our experiences with multiple architectures we also realized that due to compiler optimizations the
correlation between the control flow paths in the source code and in the resulting binary is not full, therefore
there are limits to what BTF can accomplish as a testing tool. Because of that we believe that in a long-term
view a much better option would be to enhance a highly robust, optimizing static compiler like GCC with
the support necessary for code-copying. Such support could ensure the proper ordering of basic blocks
within code chunks or ensure the use of absolute addressing of jumps andcalls where necessary. Our future
work is therefore expected to be going towards improving the support forcode-copying in highly optimizing
compilers.

References

[1] David Bélanger. SableJIT: A retargetable just-in-time compiler. Master’s thesis, McGill University,
August 2004.

[2] M. Anton Ertl and David Gregg. Optimizing indirect branch prediction accuracy in virtual machine
interpreters. InSIGPLAN ’03 Conference on Programming Language Design and Implementation,
2003.

[3] M. Anton Ertl and David Gregg. Retargeting JIT compilers by using C-compiler generated executable
code. InParallel Architecture and Compilation Techniques (PACT’ 04), pages 41–50, 2004.

[4] M. Anton Ertl, Christian Thalinger, and Andreas Krall. Superinstructions and replication in the Cacao
JVM interpreter.Journal of .NET Technologies, 4:25–32, 2006. Journal papers from.NET Technologies
2006 conference.

[5] Etienne Gagnon and Laurie Hendren. SableVM: A research framework for the efficient execution of
Java bytecode. InJava Virtual Machine Research and Technology Symposium, 2001.

[6] Etienne M. Gagnon.A Portable Research Framework for the Execution of Java Bytecode. PhD thesis,
McGill University, 2002.

14

[7] Etienne M. Gagnon. Porting and tuning inline-threaded interpreters. In CASCON 2003 workshop
reports, 2003.

[8] Jonathan Meyer and Daniel Reynaud. Jasmin - an assembler for the java virtual machine.http:
//jasmin.sourceforge.net/.

[9] Ian Piumarta and Fabio Riccardi. Optimizing direct threaded code by selective inlining. In PLDI ’98:
Proceedings of the ACM SIGPLAN 1998 conference on Programming language design and implemen-
tation, pages 291–300, New York, NY, USA, 1998. ACM Press.

15

