
McGill University
School of Computer Science

Sable Research Group

Enabling Static Analysis for Partial Java Programs

Sable Technical Report No. 2008-02

Barthélémy Dagenais and Laurie Hendren

April 9, 2008

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction and Motivation 3

2 Partial Object-Oriented Programs 5

3 Recovering Types in Partial Programs 6

3.1 Type Inference Strategies . 7

3.2 Inferring Method Bindings . 8

3.3 Inferring Type Members . 9

3.4 Combining Type Inference . 10

4 Ambiguous Syntax in Partial Programs 11

5 PPA Algorithm 14

6 Evaluation 17

6.1 Experimental Design . 17

6.2 Quality . 19

6.3 Analysis Input . 21

6.4 Inference Strategies . 22

6.5 Threats to Validity . 23

7 Related Work 24

8 Conclusions and Future Work 25

1

List of Figures

1 A partial program . 6

2 Inferring type facts . 7

3 Method binding . 9

4 Combining type facts . 10

5 Conflicting type direction . 11

6 Ambiguous fully qualified name . 13

7 Partial program analysis algorithm . 14

8 Sample program . 15

9 Unknown types distribution after the type inference and method binding passes . . . 20

List of Tables

I Type Inference Strategies . 8

II Ambiguous syntax constructs in Java . 12

III Target systems . 17

IV Partial program analysis results . 19

V Target systems versions . 21

VI Partial program analysis inputs . 22

VII Inference strategies results . 23

2

Abstract

Software engineering tools often deal with the source code of programs retrieved from the
web or source code repositories. Typically, these tools only have access to a subset of the
programs’ source code (one file or a subset of files) which makes it difficult to build a complete
and typed intermediate representation (IR). Indeed, for incomplete object-oriented programs,
it is not always possible to completely disambiguate the syntactic constructs and to recover the
declared type of certain expressions because the declaration of many types and class members
are not accessible.

We present a framework that performs partial type inference and uses heuristics to recover the
declared type of expressions and resolve ambiguities in partial Java programs. Our framework
produces a complete and typed IR suitable for further static analysis. We have implemented
this framework and used it in an empirical study on four large open source systems which shows
that our system recovers most declared types with a low error rate, even when only one class is
accessible.

1 Introduction and Motivation

Static program analysis is an important tool for software engineering research: techniques such as
bug detection [1] and feature location [16] heavily depend on static analyses to model a program’s
behavior and structure.

Compiler frameworks, with which many static analyses were developed, usually assume that the
complete program is available (either as source code or as a high-level binaries such as Java .class
files), even if only part of that program is to be analyzed. When the complete program is avail-
able, it is straightforward for the compiler to build a correct, typed, and complete intermediate
representation (IR) for the part of the program to be analyzed.

However, some methodologies used by software engineering techniques preclude the access to com-
plete programs. Indeed, source code retrieved from software versioning systems [3], web reposito-
ries [14], or bug reports [2], is typically difficult to compile: source folders and libraries required
to build a snippet of code may not be known or accessible, and the correct versions of those code
artifacts may be impossible to automatically determine (e.g., which version of log4j is needed to
compile Foo.java 1.4?).

The goal of this paper is to provide techniques that produce complete and typed intermediate
representations for the source code of partial Java programs, even when only part of the program
is accessible. The unavailability of many class declarations lead to two main challenges: (1) deal-
ing with syntactic ambiguities and (2) determining the correct types for expressions such as field
accesses and method calls.

Syntactic ambiguities arise when classes and members for other parts of the program are not
available. For example, consider the statement E.dothat();. Without the declaration for E, it is
not possible to determine if E is a class or a field. If E is a missing class, it could be a call to a
static method dothat() which is a member of the missing class E. Otherwise, if E is a missing field,
then this is a virtual method call, with receiver E.

Typing problems arise when a compiler/tool does not have access to the complete type hierarchy and
the signatures of fields/methods in classes that are directly or indirectly referenced by the program
under analysis. A Java compiler usually creates an intermediate representation (IR) such as an
abstract syntax tree, annotating the IR with the appropriate types, based on type declarations. For

3

example, given the following complete Java code snippet, the compiler would use the declaration
of class A at line 1 to find that the declared type of the expression a.p1 at line 8 is String. The
compiler would also use the declaration of class A to find that the method called at line 9 is the
method A.add(Object) declared at line 3.

1 class A {
2 String p1;
3 void add(Object o) {}
4 }
5
6 class B {
7 A a = new A();
8 a.p1 = ”hello”;
9 a.add(a.p1);

10 }

Software engineering tools that operate on partial programs may not have access to the complete
program and all of its declared types. For example, assume that a tool had access only to the
source code for class B (and not A). In this case, the tool cannot find the declared type of some
expressions in the incomplete program (e.g., what is the declared type of a.p1?). To deal with this
problem, these tools often fall back to syntactic analysis, which provides limited information. For
example, if only class B is available, a syntactic analysis will conclude that a method named add
with one parameter is called at line 9. This lack of precise type information is a problem for tools
like PARSEWeb [14] and SemDiff [3] that analyze partial programs to recommend to programmers
method calls from arbitrary frameworks. These tools require the types of the receiver and the
formal parameters in order for their recommendations to be useful (e.g., telling the user to call a
method named add is not helpful if many classes declare such method). PARSEWeb and SemDiff
have thus begun to perform partial type inference to get more information from the source code
of incomplete programs. For example, if only the declaration of class B was accessible, they would
conclude that at the third line, the method A.add(String) is called by looking at the assignment
of field p1. This information, although not strictly correct (there is no method A.add(String), but
there is a method A.add(Object)), is more precise than the one provided by syntactic analysis.

Software engineering techniques usually tolerate a certain level of imprecision and errors, as mea-
sured by precision and recall, so they can benefit from information that is often more precise, but
potentially incorrect. Thus, in designing our approach we traded some guarantees on correctness
for increased precision. This also implies that our approach is not suitable for situations where a
sound analysis is required, such as in program optimization.

In this paper, we propose a technique, Partial Program Analysis (PPA), which builds a typed IR of
incomplete Java programs’ source code. Our technique recovers the declared types by performing
partial type inference and resolves syntactic ambiguities inherent to incomplete programs using
heuristics. Although it is impossible to guarantee that the generated IR is correct with respect
to the result one would get given the complete program, we aim to generate an IR which: (1)
obeys the type constraints available in the partial program under analysis, (2) does not introduce
unknown program constructs, and (3) is suitable for use with other static analysis tools.

We implemented this approach in a prototype using Soot, a static analysis framework [15], and
Polyglot [10], an extensible compiler framework. Currently, our prototype transforms Java source
code from an incomplete program into a typed abstract syntax tree (AST) and into Jimple, a

4

typed three-address intermediate representation, because those representations are suitable for
most static analyses. We used an early version of the PPA prototype in SemDiff to analyze the
evolution of method calls in code retrieved from software repositories and to recommend precise
method invocation to adapt client programs that broke during framework evolution [3]. Our positive
experiences with that project gave us some confidence that PPA will be useful for developing other
software engineering analyses and tools.1

To validate to what extent our proposed PPA technique produces useful results, we performed
a quantitative study on four open source programs, three of them from the DaCapo benchmark
suite [13] for three common scenarios. We found that even for the hardest scenario, when the
source code of only one class is available, partial program analysis could generate an intermediate
representation that was on average 91% identical to the intermediate representation of the same
class analyzed with the whole program.

The contributions of this paper include: (1) the PPA techniques which allow us to analyze in-
complete Java programs, and which deal with both syntactic ambiguities and typing problems, (2)
the implementation of a tool based on PPA that produces an IR and AST representation of an
incomplete program, and (3) an empirical evaluation of our approach.

In the rest of this paper, we first introduce our problem and terminology in more detail in Section 2.
We then describe our approach to solving the typing problems in Section 3 and the ambiguous
syntax problems in Section 4. We put it all together in Section 5, where we describe our overall
algorithm. We then report on the results of the empirical evaluation of our technique (Section 6).
Finally, we discuss the related work in Section 7 and conclude in Section 8.

2 Partial Object-Oriented Programs

We consider a partial program to be a subset of a program’s source files. This definition is suitable
for current software engineering tools that can get as input complete source files and that require
more precise information than what syntactic analysis can provide.2 In a source file, we associate
a type fact with all references to declared types. For example, there are six type facts at line 6 in
Figure 1: the declared type of field1’s container (D), the declared type of field1 (int), the declared
return type of method m1 (short), the declared type of the method’s target (D), the declared type
of the method formal parameter (Object) and the declared type of the actual parameter (String).
To simplify our presentation, we will use the term type to refer to a declared type (as opposed to
a runtime type) in the remainder of this paper. For example, at line 9, the declared type of the
variable o is Object, but the type of this variable during runtime is String.

Given a partial program, the challenge is then to recover as many type facts as possible without
having access to the rest of the program, i.e., referenced source files, binaries or dependencies such
as libraries. For example, by analyzing only class D, we can infer two type facts at line 7: (1) the
type of the container holding field3 is A or one of its ancestors and (2) the type of field3 is a
String or one of its ancestors. Furthermore, we know at line 7 that the type of varA is A because
we have access to its declaration in method main. In the remainder of this paper, we will use static
fields in our examples (e.g., B.field3 at line 8) instead of instance fields to reduce the size of the

1The PPA implementation is available at http://www.sable.mcgill.ca/ppa.
2This definition of partial programs could even be relaxed to include any snippet of well-formed code. Although

our approach does not rely on a complete source file, the parser implementation that we currently use does.

5

1 class D {
2 int field1 ;
3 void main() {
4 A varA = new A();
5 String s = ”hello”;
6 field1 = m1(s);
7 varA.field3 = s;
8 varA.field3 = B.field3 ;
9 Object o = new String(”hello”);

10 }
11 short m1(Object o) {return 0;}
12 }

Figure 1: A partial program

examples. This is not a problem as the actual analysis considers each syntactically different field
access as a distinct field, for the type inference. For example, at line 8, PPA considers that there
are two distinct fields field3: the first is attached to the local variable varA and the second is
attached to the type B. In the text, we will also always refer to the field name without the qualifier
when it is unambiguous.

Having access to only a subset of the source files forces us to make an important assumption when
performing partial program analysis:

Compilable Program Assumption: The source files of a partial program compile without any error
given the required dependencies.

This is a reasonable assumption for code extracted from software versioning systems or web repos-
itories because a popular convention is to only commit source files if they compile. The absence of
class declarations makes it impossible to detect type-related errors such as calling a non-existing
method so we cannot assess the correctness of the code under analysis. The compilable program
assumption is thus necessary to infer type facts: in potentially uncompilable source code, every
inference made on type usage could be wrong.

In the remainder of this paper, we will focus on Java 1.4 which does not include features such
as generics and autoboxing, and we will also assume that the user has access to standard Java
types (either in a binary or source format) such as java.lang.Object. Again, this is a reasonable
assumption because those classes are required to execute any Java program.

3 Recovering Types in Partial Programs

When analyzing a partial Java program, it is possible to infer type facts by looking at how a type
is used in the program. For example, in Figure 2, we see that the program assigns an instance
of class B to field1 at line 3. Because of the Java type system, we know that field1 must be a
supertype of B.

To be more specific, we define the operator dt(x) which returns the declared type of the expression
x. For example, at line 4, dt(coll) = Collection. We also define the subtype operators, t1 <: t2,
which means that t1 is a subtype of t2, i.e., it is either t2 or a descendant of t2. The supertype

6

1 class E {
2 void main() {
3 A.field1 = new B(”hello”);
4 Collection coll = A.field2;
5 A.field1 .m2().m3();
6 }
7 }

Figure 2: Inferring type facts

operator, t1 :> t2, means that t1 is either t2 or an ancestor of t2 (e.g., dt(field1 :> B). For the last
two operators, we consider class extension and interface implementation and extension (through the
extends and implements keywords) to be the only generators of subtypes and supertypes. We use
the related type operator, t1 ∼ t2 when we know that two types are related, i.e, one is a subtype
of the other or they share a common ancestor or descendant.3 Finally, we define the operator
target(x) which returns the target’s type of a method x or the container’s type of a field x. For
example, target(field1) :> A.

When we try to infer a type fact, it sometimes happens that we cannot recover any information at
all. We thus define the following data structures to handle these cases:

The unknown type is used as a placeholder for any type that is referenced, but not explicitly named.
For example, in the following call chain, m2().m3(), the return type of the method m3 is unknown,
which denotes either a Java primitive, a Java class or void.

To fully qualify any type which has an ambiguous Fully Qualified Name (FQN), we define the
package p-unknown. This package is necessary to distinguish a type located in the default (empty)
package from a type that is located in an unknown package. The fully qualified name of the unknown

type is thus p-unknown.unknown even if for the sake of brevity, we will always use the short name
unknown.

Finally, we define a type fact as being a record containing the following attributes: (1) a typeable
expression (e.g., a reference to a field), (2) the type of the expression before the inference, and (3)
the type of the expression after the inference. For example, if we just found that the unknown field
field1 was a supertype of class B, we would have inferred the following type fact: {field1, unknown,
:> B}.

3.1 Type Inference Strategies

To infer type facts, we rely on several strategies based on the Java programming language type
system. These inference strategies are sound in the sense that the real declared types will always
respect the constraints of the inferred type facts. For example, if a strategy infers that the type
of an expression is a subtype of java.util.List, the real type is guaranteed to have this property.
Although the inference strategies can generate imprecise type facts such as {field1, unknown, <:
java.lang.Object}, we found during our evaluation that they generally recover the real type.

3In Java, because all reference types are a subtype of java.lang.Object, all reference types are related to each
other. The related type operator can still be used to distinguish reference types from primitives as they are not
related.

7

Inference Strategy Example Explanation

Assignment B.field1 = ”Hello World”;
C c = B.field2;

The type of an unknown expression
on the right-hand side is the sub-
type of a known left-hand side expres-
sion’s type and vice-versa, e.g., {field1,
unknown, :> java.lang.String} and
{field2, unknown, <: C}.

Return int m1() {
return B.method2();

}

The type of an unknown return expres-
sion is the subtype of the method’s de-
clared return type, e..g, {method2,unknown,
<: int}.

Method binding main() {
B.field3 = me(B.field4);

}

D m3(E p1) {...}

If we know the exact method binding, the
type of the actual parameters is a subtype
of the formal parameters’ type, and the ex-
pression to which the method is assigned to
is a supertype of the method’s return type,
e.g., {field3, unknown, :> D} and {field4,
unknown, <: E}.

Condition if (B.method4()) {
...

}

An expression used as a condition must
resolve to a boolean, e.g., {method4,
unknown, = boolean}.

Binary and unary operators int i = B.field7 − 10; Depending on the operands’ type and the
expected return type of a binary or unary
expression, it might be possible to infer the
primitive type of an expression by taking
into account implicit type promotion, e.g.,
{field7, unknown, <: int}.

Table I: Type Inference Strategies

Table I shows the strategies that we found to be the most useful in inferring type facts during our
empirical evaluation. The other strategies that we implemented but did not present because of the
space constraints are: array index, ternary operator, and switch condition inference. We plan to
devise additional inference strategies in future work.

3.2 Inferring Method Bindings

When an expression’s type has been inferred (e.g., using one of our inference strategies), it is
sometimes possible to determine a method binding that is ambiguous from a purely syntactic point
of view. Consider the call to method m1 at line 4 in Figure 3. Because there are two declarations of
a method m1 with one parameter, it is not possible to decide what method is called when looking
only at the syntax of the program. On the other hand, if we perform some type inference, we
know that dt(field1) :> B at line 3, and we are certain that we call the method m1(B) declared at
line 10. Once we know the exact method binding, we can then use our method binding inference
strategy. Unfortunately, there are cases like line 5 where we cannot identify the correct method
binding because the method is overloaded and the declared type of the parameter is unknown.

A class can also potentially overload a method declared in a supertype. For example, in class H,
we cannot soundly infer that the method called at line 17 is the one declared at line 20. Indeed,

8

1 class G {
2 void main() {
3 A.field1 = new B();
4 A.field4 = m1(A.field1);
5 A.field5 = m1(A.field2);
6 B.m2(2);
7 B.m2(A.field2);
8 }
9

10 D m1(B b) { ... }
11 E m1(int i) { ... }
12 }
13
14 class H extends I {
15 void main() {
16 A.field3 = new C();
17 m1(A.field3);
18 }
19
20 void m1(C c) { ... }
21 }

Figure 3: Method binding

we know from line 16 that dt(field3) :> C. Suppose that dt(field3) = Object (which respects the
type fact we inferred) and that the supertype of I defines a method m1(Object). It follows that the
method called at line 17, is I.m1(Object) and not H.m1(C). Determining a method binding is thus
an undecidable problem because of overloaded methods.

3.3 Inferring Type Members

Until now, we focused on inferring the type of an expression, but, at the same time, we need to
infer the existence and types of members (i.e., fields and methods). For example, in Figure 3, we
inferred at line 3 that there is a field named field1 that is declared in the type A or one of its
supertypes. When analyzing a complete program, we could check whether these members exist
and are accessible. Because we only have access to class G, we must rely on our assumption that
the underlying code compiles and that both members are accessible from the context of the calling
method G.main.

More specifically, when PPA encounters a reference to a type whose declaration is not available, it
creates an internal representation of the type. If a member is accessed from this type, we add the
member to the generated type declaration. For example, at line 3 in, PPA would generate the fact
that class A has a field called field1 whose type is :> B.

In adding missing members, fields and methods are treated differently. Since fields cannot be
overloaded, we only generate a missing field once and reuse this one if another occurrence of the
same field occurs. However, since methods can be overloaded, generated methods cannot be reused
like generated fields. For example, at line 6, we can infer that there is a method called m2 that
is in one of the supertypes of B and that takes as a parameter a supertype of int. At line 7, we

9

1 class F {
2 void main() {
3 Object o1 = A.field3;
4 String s1 = A.field3;
5 A.field4 = new Object();
6 String s2 = A.field4;
7 B b = A.field5;
8 C c = A.field5;
9 }

10 }

Figure 4: Combining type facts

cannot safely reuse this fact to infer the type of the actual parameter field2 because there might
be another method called m2 with a different parameter type. We thus infer that there is a method
called m2 that takes a parameter of type unknown.

Finally, inferred type members can be refined by type inference. For example, if we later find that
dt(field2) <: C, we will add a method m2(C) to B.

3.4 Combining Type Inference

Sometimes, we can infer two type facts related to the same expression. For example, in Figure 4,
at lines 3 and 4, we infer that dt(field3) <: Object and dt(field3) <: String. By definition of a
subtype, it is clear that dt(field3) <: String because String <: Object. We thus say that the two
inferred type facts are converging and we only keep the most precise type fact (<: String). On
the other hand, the type facts that we infer at lines 5 and 6 are erroneous: dt(field4) :> Object

and dt(field4) <: String cannot be true at the same time. Erroneous type facts contradict our
compilable program assumption, but this is one of the few cases where we can detect a compilation
error: in this case, PPA reports an error. Finally, the two last type facts at lines 7 and 8, dt(field5)
<: B and dt(field5) <: C, are conflicting : it is not possible to decide which of the two type facts is
the most precise because three type hierarchies can explain the code of lines 7 and 84:

1. B <: C, so dt(field5) <: B
2. C <: B, so dt(field5) <: C
3. There exists a type P which is a common descendant of B and C (either B or C must be an

interface). In that case, neither type fact is more precise.

In the case of the third possibility, even if we knew the whole type hierarchy of B and C, it would
still be impossible to determine the type of field5 because there might be more than one common
descendant P.

When we encounter two conflicting type facts, we first try to select the safest one, where we
determine that a type fact is safer than another using the total ordering: unknown < missing <
super missing < full, where each member of this ordering is defined as follows:

4The converse is also true if we have the two following type facts: dt(field5) :> B and dt(field5) :> C.

10

1 class Y {
2 int m1() {
3 A a1 = Z.field1;
4 Z. field1 = Z.field2 ;
5 A a2 = Z.field3;
6 Z. field4 = Z.field3 ;
7 }
8 }

Figure 5: Conflicting type direction

If the type of a fact is unknown, it is less safe than a fact whose type is known but whose declaration
is missing (e.g., we know that dt(x) = B, but we do not have access to the declaration of B). A
known type with a missing declaration is less safe than a known type whose declaration is accessible
but not all of its supertypes (e.g., we have access to the declaration of B, but one of its supertype’s
declaration is missing). Finally, the safest type, full, means that we have access to its declaration
and the declaration of all of its supertypes. If the two type facts are equally safe, we keep the
first type fact that we inferred. In all cases, the rejected type fact is added to a set of constraints
attached to the selected type fact. The rationale behind this scheme is that we only keep types
that allows us to work with safer (i.e., known) types. This is generally more precise than just
keeping the first inferred type fact and the constraints set can help find the exact type if more type
declarations become available in the future.

Finally, when combining type facts, the direction of the types, whether they are subtypes or super-
types, might conflict. In Figure 5, we can produce this inference chain at lines 3 and 4: dt(field2)
<: dt(field1) <: A. It is thus clear that dt(field2) <: A by transitivity. On the other hand, the
directions of the types at lines 5 and 6 conflict: dt(field4) :> dt(field3) <: A. We can thus only
say that dt(field4) ∼ A or in other words, that there is a path in the type hierarchy that links
field4 with A.5

4 Ambiguous Syntax in Partial Programs

The programming language syntax is a source of imprecision: Table II shows the main constructs
that are ambiguous in partial Java programs.

When we encounter such ambiguous syntax constructs, we can either (1) create an unknown node
in the AST representation, or (2) use an heuristic that guesses the real construct. The first strategy
is sound, in the sense that it doesn’t introduce a potentially wrong construct. However, it poten-
tially introduces many unknown parts of the code, losing potentially useful parts of the program.
Furthermore, it breaks the compatibility with client tools, which assume only valid Java constructs.
We thus relied on the use of heuristics that can produce wrong, but potentially more precise results.

Fully Qualified Name. When we encounter a reference to a simple type name (e.g., String), we
use the following heuristic to find the FQN of the ambiguous type:

5Unfortunately, in Java, this is true for any two given reference types because every type is a subtype of Object

so there is always a path from one type to another type that passes by Object. In a language like C++ which does
not have this concept of a universal supertype, related types would have a more precise meaning.

11

Syntax ambiguity Example Explanation

Fully Qualified Name Figure 6 The FQN of a type cannot always be
soundly inferred in a partial program be-
cause a programmer can use the import *

construct. For example, at line 9 in Fig-
ure 6, the FQN of C can either be: C (in
the default package), ca.mcgill.C (in the
package of A), or ppa.C (because of import
ppa.*).
Additionally, we cannot soundly infer the
FQN of a type contained in a known
package (e.g., java.util). For example,
at line 10, the Collection type might
be contained either in java.util or in
ca.mcgill. Line 11 gives a hint that
the latter FQN is the good one since the
java.util.Collection type does not de-
clare the method doThis.

Package or Class? Line 13 in Figure 6 It is not always possible to discriminate the
part in the FQN that relates to a type from
the part that relates to the package. For
example, at line 13, variable d might be of
type D or of type internal.D (an internal
class).

Field or Class? class B extends C {
void main() {

E.doThat();
E = new F();

}
}

An expression such as E in the first line
of the main method can be either a field
or a class. In the former case, we infer
that target(doThat) = unknown and in the
latter case, we infer that target(doThat) :>
E.
It is sometimes possible to resolve this am-
biguity by looking at other lines of code
(such as the assignment) that provide hint
that the expression is a field.

Super or This? class G extends H {
public void main() {

I i = new I() {
public void m1() {

f1 = 2;
...

It is not always possible to soundly infer
the container of a particular member in an
internal class because a reference to this

or super is implicit in Java. For example,
it is not clear whether target(f1) :> I or
if target(f1) :> H.

Overloaded opera-
tors

class J extends K {
void main() {

int i = 2 − f2;
String s = ”Hello”+(f3+2)+”World”;

}
}

Some operators are overloaded by the Java
language. For example, it is not clear
whether the + operator is the addition op-
erator or the String concatenation opera-
tor in the main method. In the latter case,
because a String can be concatenated with
an arbitrary type instance or a primitive,
it is still not possible to soundly infer the
type of the field f3.

Table II: Ambiguous syntax constructs in Java

12

1 package ca.mcgill;
2
3 import ppa.∗;
4 import java.util .∗;
5 import soot.Unit;
6
7 class A {
8 void main() {
9 C c = B.getC();

10 Collection coll = B.getCollection();
11 coll .doThis();
12 Unit u = B.getUnit();
13 ppa.internal .D d = B.getD();
14 }
15 }

Figure 6: Ambiguous fully qualified name

1. If the ambiguous type is fully qualified, we use that FQN (e.g., ppa.internal.D in Figure 6).
2. If there is an explicit import statement that ends with the ambiguous type name, we use the

FQN specified in the import statement (e.g., soot.Unit in Figure 6).
3. If we have access to the packages imported using a wildcard import statement (e.g., import

java.util.*) and we find a type whose name is the same as the ambiguous type name, we
use that FQN (e.g., java.util.Collection in Figure 6). If later on we realize that this type
is not adequate (e.g., we are calling a method that is not declared in this type), we rely on
the last two heuristics to determine its FQN.

4. If there is no wildcard import statement, we append the name of the ambiguous type to the
package of the analyzed type (e.g., ca.mgill.C).

5. If there is at least one wildcard import statement, we append the name of the ambiguous
type to the unknown package (e.g., p-unknown.C in Figure 6).

Rules #3 and #4 can lead to wrong fully qualified names because the type might be declared in the
default package. We expect most programs to avoid defining types in the default package because
this practice is discouraged and often impractical.

Package or Class? We always consider the last part of a fully qualified name (after the last dot)
to be the simple name of the type and the rest of the FQN to be the package. This can be a
false assumption if the FQN refers to an internal type. A false assumption has no impact on the
FQN (it is the same no matter if the type is internal) but it changes the type of node in the AST
representation. Thus, if at a later point we find that the initialization can only refer to an internal
type, we modify its AST representation.

Another strategy would be to use the Java naming convention (a type name and a package name
should respectively start with an uppercase and lowercase character) to determine which part of
the FQN is the package and which part is the type. We would still need to tune this heuristic on
a per project basis.

Field or Class? We consider any ambiguous reference (e.g., E.doThat()) to be a static method
call from a class. If we find a hint contradicting that assumption (such as the instantiation of the

13

// Seed pass
for each node in AST do

Disambiguate node
Infer type facts
Put and merge type facts into worklist

end for

// Type inference pass
while worklist is not empty do

for each node impacted by type fact do
Make node safer
Infer type facts
Put and merge type facts into worklist

end for
end while

// Method binding pass
for each ambiguous method call do

Select the first possible call binding
Infer type facts
Put and merge type facts into worklist

end for
while worklist is not empty do

for each node impacted by type fact do
Make node safer
Infer type facts
Put and merge type facts into worklist

end for
end while

Figure 7: Partial program analysis algorithm

ambiguous reference), we change the AST node accordingly. Like the previous heuristic, we could
also use the Java naming convention.

Super or This? Most of the time, an ambiguous reference to super or this in internal types is
impossible to resolve. We thus chose to always replace such ambiguous references by a reference to
this.

Overloaded operators. When we encounter an overloaded operator such as + or &, we always
consider that the type of the operands is unknown. We use the binary operator inference strategy
to decide the type of the operands when it is possible.

5 PPA Algorithm

Figure 7 shows an overview of the algorithm which consists of three passes. Although the general
techniques introduced in this paper could be used in other systems, we implemented our approach
using Polyglot [10] and Soot [15]. Polyglot is an extensible compiler that creates an AST repre-
sentation of a source file by applying various passes such as disambiguation, type checking and

14

1 class Y extends X {
2 int m1() {
3 System.out.println(Z. field1);
4 A a1 = Z.field1;
5 Z. field1 = Z.field2 ;
6 B b1 = Z.field1;
7 Z. field2 = Z.field3 ;
8 A.m1(Z.field1);
9 System.out.println(Z. field4);

10 m2(Z.field5);
11 }
12
13 void m2(C param1) {...}
14 }

Figure 8: Sample program

exception checking. Soot uses Polyglot as a frontend to parse Java source files and then transforms
the AST into a three-address intermediate representation called Jimple that can be used to perform
data flow analysis. Our algorithm mainly extends Polyglot and works at the AST level. We now
review the three main passes of the algorithm and then discuss the different modes in which the
algorithm can be executed, its termination property, and its time complexity.

Seed pass. The seed pass is performed while Polyglot builds the AST of a source file. First, Poly-
glot tries to disambiguate each AST node (e.g., it determines if the expression is a field reference,
a method call, a local variable reference, etc.). We thus modified Polyglot so it infers the missing
type members as described in Section 3.3 and uses the heuristics described in Section 4 to resolve
ambiguous syntax constructs.

Once the AST nodes are disambiguated, Polyglot performs various type checking operations on
each node to ensure that the source file conforms to the Java type system. This is at this stage
that we perform partial type inference: indeed, most type checking operations correspond to the
inference strategies we presented in Section 3.1. For example, Polyglot expects that at line 4 in
Figure 8, the type of the right side of the expression is a subtype of the left side. We thus infer the
following type fact: {field1, unknown, <: A}.

We visit each node of the AST in postfix order, generating type facts and appending them to a
worklist. When two type facts refer to the same expression (e.g., we can infer two type facts at
line 4 and 6 that are related to the field Z.field1), we merge them according to the combination
strategy we presented in Section 3.4.

During the seed pass, we only infer type facts and the unknown type is assigned to all unknown
expressions. If a complete and correct program was available, there would be no unknown types
at this point. However, partial programs often have some unknown types after the seed pass. For
example, in Figure 8, dt(field1) = unknown.

Type inference pass. Once the AST is built, we can use the type facts that we inferred to modify
the nodes of the AST (called Make node safer in Figure 7). When modifying the type of a node, we
keep the complete type fact in memory, but we can only assign a simple type to a node to simplify
the usage of the AST. For example, if we have the following type fact, {field1, unknown, <: A}, we

15

modify the declared type of the field nodes at lines 4, 5, 6, and 8 to be equal to A.

Finally, when we modify a node, it is possible that we can infer a new type fact. For example,
at line 5, when we modify the assignment node, we can infer that {field2, unknown, <: A}. The
inferred type facts are appended and merged into the worklist.

Method binding pass. When we build the AST and infer type facts, we can encounter ambiguous
method calls. For example, at line 9, we do not know which println method is called: it is an
overloaded method. During the seed pass and type inference pass, we only select a method binding
if there is no ambiguity to make sure that we do not introduce potentially erroneous or conflicting
type facts.

The method binding pass basically forces the compiler to select the first possible declaration of
method calls that remain ambiguous. Once the declaration is selected, this enables the inference of
new type facts that are appended and merged into the worklist. The worklist is then processed like
in the type inference pass. For example, if we executed this pass on the program listed in Figure 8,
we would find that two method calls remain ambiguous: the call to println at line 9 and the call
to m2 at line 10 (because Y extends X, the call might refer to a method declared in X). By forcing the
selection of a method declaration, we would conclude that the method println(boolean) is called
at line 9 and m2(C) at line 10, which would lead to the inference of the two following type facts:
{field4, unknown, = boolean} and {field5, unknown, <: C}.

Modes of execution. There are three main parameters that can be adjusted when using PPA.

The first parameter concerns the input of the analysis. Indeed, depending on the availability of
source files, PPA can be performed on one Java source file at a time or on a set of source files. In
the latter case, the worklist containing the inferred type facts is shared among all source files and
the type inference and the method binding passes are only executed once the seed pass has been
performed on each source file. This enables the sharing of inferred type facts which can lead to
more precise inference, but it can also propagate errors.

The second parameter allows the user to disable type inference effectively preventing the execution
of the type inference and the method binding pass. When type inference is disabled, all unknown
expressions are assigned to the unknown type. PPA still performs type member inference and uses
our heuristics to resolve ambiguous syntax constructs because those are needed to build the AST.

Finally, the third parameter enables the user to disable the method binding pass preventing the
selection of arbitrary method binding.

In Section 6 we use these parameters to examine the effectiveness of our approach in different
scenarios and to measure the added benefits of enabling the type inference and method binding
passes.

Termination. Our algorithm is ensured to always terminate. First, the number of AST nodes and
type facts in a given program is finite, so the first pass is always sure to complete. The second pass
also always complete because the number of times a type fact related to a particular expression
can be inferred is finite. As explained in Section 3.4, we only infer a new type fact related to an
expression if (1) it converges or (2) it conflicts with a previous type fact and is safer than a previous
type fact. The number of converging type facts that we can infer on an expression is bounded by
the depth of the type hierarchy and the number of conflicting type facts that we can infer on a
particular expression is bounded by 4 (from unknown to full). Finally, in the third pass, we select
the binding of ambiguous method calls, which has a finite number.

16

Target Version # Classes SLOC

Lucene 2.2.0 371 23937
JFreeChart 1.0.9 561 81538
Jython 2.2.1 995 83763
Spring 2.5.1 2011 98938

Table III: Target systems

Complexity. To analyze the time complexity of our algorithm, we consider each pass individually.
The complexity of the algorithm is bounded by n, the number of AST nodes in all source files,
fa, the number of type facts in all source files, r, the maximum number of nodes referring to a
type fact in all source files, fn, the maximum number of type facts that can be inferred on a node
(typically the maximum number of parameters in a method call), m, the maximum number of
ambiguous method calls, k, the constant time required to perform operations on a node such as
disambiguation, modification or method call binding selection, and h, the maximum depth of the
program’s type hierarchy. We consider that the selection of a method binding takes a constant
time because we always select the first binding. We can express the complexity of each pass with
the following formulas:

1st pass = nfnk = O(nfn)

2nd pass = h × farfnk = O(hfarfn)

3rd pass = mfnk + h × farfnk = O(mfn + hfarfn)

Although the cost to process the worklist is potentially high (O(hfafnr)), several factors reduce
the time complexity in practice. We found during our evaluation of partial program analysis that
h < 4 because most type facts related to the same expression were conflicting, and when they were
converging, they always converged fast. The number of nodes impacted by a type fact, r, was also
small: it was on average equal to 1.57 and always below 213. Finally, the number of inferred type
facts per node was low: fn < 4.

6 Evaluation

To validate the cost and benefits of partial program analysis, we performed an empirical study on
four open-source systems. We were mostly interested in evaluating the following criteria:

1. The quality of the results obtained by PPA as measured by the number of correct and erro-
neous type facts.

2. The impact of the input (i.e., size of the partial program) on PPA precision.
3. The contribution of the various inference strategies in producing more precise results.

6.1 Experimental Design

To evaluate the previous criteria, we performed partial program analysis on every single class, in-
cluding anonymous and internal classes, of four open-source systems. Table III shows the target

17

systems along with their version, the number of classes and the number of source lines of code
(SLOC) they have. We selected these systems because they are relatively complex, their version
history was available, they could be compiled with Java 1.4 and the programming language and
software engineering communities frequently analyze those programs. Indeed, the first three sys-
tems, Lucene6, JFreeChart7, and Jython8 are part of the DaCapo benchmark suite [13]. Because
the three first systems are self-contained, i.e., they do not require any other library outside the Java
standard library, we selected a fourth system, Spring9, which depends on 90 external jar files to
compile. This was to ensure that our results could be generalized to various kinds of Java programs.

In general, we wanted to assess the quality of the results obtained by partial program analysis
versus the results obtained when the complete program is available. To perform this comparison, we
executed PPA on each class separately, without any other classes, in the target system and obtained
an intermediate representation of each class in the form of a Jimple file. We also transformed every
class of the complete target system into Jimple. We thus obtained two Jimple representations for
each class, one from PPA and the other from the complete system, that we could compare. The
following example shows two Jimple statements, the first one from the partial program, the second
one from the complete program.

i = virtualinvoke $r1.<p-unknown.unknown: int length()>();

i = virtualinvoke $r1.<java.lang.String: int length()>();

When comparing the type facts referenced by two statements, there are four possible outcomes:

correct The two types are the same. For example, the return type of the method length is int

in both statements.

unknown The type of the partial program is unknown, which means that PPA could not infer
anything about this type. This is the case of the method’s target in the first statement.

hierarchy correct The type in the partial program is a supertype or a subtype of the type in the
complete program. For example, if dt($r1) = CharSequence at line 1 and dt($r1) = String at
line 2, we say that the two types are hierarchy correct.

erroneous All other cases. Erroneous types can be inferred when we combine conflicting type
facts or when we use certain syntax heuristics.

In this study, we only compared the short name of the types. Indeed, the ability to infer the fully
qualified name of a type solely depends on the project coding convention: if a project such as
Lucene or Jython allows the usage of wildcard import statements, most inferred types will have a
p-unknown package. Because a short name, given the context in which it is used, is often sufficient
to uniquely identify a type, we preferred to classify as correct, types with an unknown package that
matched the short name of a real type.

Finally, we chose to compare the Jimple intermediate representation of the partial program and
the complete program because (1) this is the typical representation used to perform data flow

6http://lucene.apache.org/
7http://www.object-refinery.com/jfreechart/
8http://www.jython.org
9http://www.springframework.org

18

Outcome Lucene JFreeChart Jython Spring

baseline % correct 89.20 89.23 81.20 87.16
% unknown 8.23 9.02 13.88 8.01
% h. correct 0.29 1.12 1.91 1.12
% erroneous 2.29 0.63 3.01 3.71

inf. % correct 93.48 94.12 87.94 90.78
no bind. % unknown 3.52 3.89 6.63 4.30

% h. correct 0.34 1.16 2.36 1.20
% erroneous 2.67 0.83 3.07 3.71

inf. % correct 93.80 94.40 88.22 90.97
bind. % unknown 2.46 3.56 6.21 4.07

% h. correct 0.38 1.19 2.44 1.24
% erroneous 2.71 0.85 3.13 3.72

Total Facts 87706 250155 312907 325641

Table IV: Partial program analysis results

analysis, (2) this provides a reasonable estimate of the results we would obtain if we performed
the comparison at the AST or bytecode level (the transformation from Jimple to AST or bytecode
is more straightforward than the transformation from AST to bytecode), and (3) there are fewer
statement types in Jimple than node types in a Polyglot AST which makes the comparison easier
and more robust.

6.2 Quality

To evaluate the quality of the results obtained by partial program analysis, we executed our imple-
mentation of partial program analysis on one class at a time without its dependencies, for all classes
in our four target systems. Table IV shows the results of PPA. There are three main sections in
the table corresponding to the three configurations we used to execute PPA: (1) our baseline con-
figuration (type inference and method binding disabled) 10, (2) type inference enabled and method
binding disabled, and (3) type inference and method binding enabled. For each of the configura-
tions, the percentage of type facts in the Jimple IR that correspond to one of the four possible
comparison outcomes is indicated below the target system. For example, when we disabled type
inference in Lucene, 89.20% of the type facts recovered by PPA were correct and 2.29% of the type
facts were erroneous. The last line reports the total number of type facts in each complete system.
For example, there were 250155 type facts in JFreeChart.

The first observation we can make is that our baseline configuration recovered most of the type facts
in the partial programs (up to 89.23% in JFreeChart). Thus, combining the declared types available
for the class under analysis with the syntax heuristics and type member inference works reasonably
well. However, this baseline configuration can be improved upon, and the results indicate that type
inference provides most of the remaining improvement. In the best case (Jython), type inference
enabled the recovery of 6.7% of correct type facts. Forcing method bindings had a much smaller

10Since our tool must build a properly constructed Polyglot AST in order to continue processing an entire class
file, this is the minimal configuration we can enable. It uses the declared types that are available inside the class
under analysis, plus syntax heuristics (Section 4) and it infers missing type members (Section 3.3).

19

Figure 9: Unknown types distribution after the type inference and method binding passes

impact on the precision of the results because in the best case (Lucene), it recovered only 0.32% of
correct type facts.

Syntax heuristics were the largest contributor of erroneous type facts. In the worst case (Spring),
3.71% of the inferred type facts were erroneous because of the syntax heuristics. These errors
are effectively unavoidable because most of the syntax construct ambiguities represent undecidable
problems. Still, as future work, we could validate the assumptions behind our syntax heuristics on
more systems to ensure that they are representative and minimize the potential for erroneous type
facts.

The number of unknown type facts decreased significantly when we enabled type inference and
method binding. Figure 9 shows the distribution of the unknown types once we enabled these
two parameters. On average, the type inference and method binding passes correctly recovered
52% of the types that were previously unknown. On average, only 1% of the unknown types were
erroneously inferred by these two passes. This provides evidence that performing type inference
and method binding is desirable.

Hierarchy correct type facts only accounted for a small portion of the total type facts. This suggests
that even if our heuristics and type inference strategies are theoretically imprecise (i.e., we often
infer that an the type of an expression is subtype or a supertype of a type T), in practice, they often
recover the exact type. The small number of hierarchy correct and erroneous type facts introduced
by type inference and method binding also indicates that conflicting type facts do not represent a
serious threat to the precision of the results.

20

Target From To # Revisions # Classes

Lucene 149000 616506 1017 4800
JFreeChart 1 712 185 924
Jython 1 4011 1267 20609
Spring 2003-08-01 2008-02-24 7299 31101

Table V: Target systems versions

6.3 Analysis Input

Partial program analysis can be performed on one class or on a set of classes. Having access
to multiple type declarations can potentially improve the precision of the analysis. Because the
accessibility to source files may vary from one technique to the other, we devised three scenarios
that are representative of current software engineering techniques. The first scenario assumes that
the user of partial program analysis only has access to one class: this is the same scenario as the
previous section. The second scenario assumes that the user has access to one class and all classes
that are directly referenced by this class. Approaches that mine code from web repositories would
typically have access to a subset of the direct dependencies. The third scenario assumes that the
user mines version histories and has thus access to all files that were modified in the same change
set.

To evaluate the second scenario, we took each class in a target system and computed their direct
dependencies using the complete target system. For each class, we provided the source files contain-
ing the class and the direct dependencies to our tool, but we did not provide any dependencies that
were contained in a jar file. We then compared the inferred type facts from the class in the partial
program with the type facts from the class in the complete program, but we did not compare the
type facts inferred in the direct dependencies.

For the third scenario, we first retrieved the change sets, i.e., files that were committed together,
from the Subversion repositories of Lucene, JFreeChart and Jython and we recovered the change
sets from the CVS repository of Spring using a standard change set inference technique [17]. For
each change set, we computed the list of classes that (1) were changed or modified, and (2) still
existed in the current version of the program. We thus obtained a collection of class sets taken
from the current version of the program that we provided as input to our tool. For each change
set, we compared the type facts inferred in all classes in the change set with the type facts from
the same classes in the complete program. Table V shows the range of versions we mined for each
target system, the number of change sets (revisions) containing Java source files related to the
target system and the total number of classes that we analyzed.

For each of the three scenarios, we executed PPA with the three configurations used in Section 6.2:
(1) baseline configuration, (2) type inference enabled and method binding disabled, and (3) type
inference and method binding enabled. Table VI shows the results of our analysis. The three main
sections represent the three scenarios we evaluated: single class (single), one class with all direct
dependencies (dep), and all classes in the same change set (cs). For each section, we report the
percentage of correct and erroneous type facts for the first (baseline) and third configurations (inf.)
of PPA.

In all cases, we omitted the results of the second configuration because there was no significant
difference between it and the third configuration. The results for the first configuration are the

21

Outcome Lucene JFreeChart Jython Spring

single baseline % correct 89.20 89.23 81.20 87.16
% erroneous 2.29 0.63 3.01 3.71

inf. % correct 93.80 94.40 88.22 90.97
% erroneous 2.70 0.85 3.13 3.72

dep baseline % correct 99.30 95.97 98.13 93.31
% erroneous 0.33 0.23 0.27 2.64

inf. % correct 99.56 98.39 98.92 95.00
% erroneous 0.26 0.29 0.29 2.67

cs baseline % correct 89.52 89.54 86.92 86.13
% erroneous 2.00 0.56 2.97 4.91

inf. % correct 93.88 94.82 90.68 90.34
% erroneous 2.62 0.72 3.24 4.91

Table VI: Partial program analysis inputs

same as Table IV.

Including the direct dependencies greatly increased the percentage of correct type facts PPA could
infer. This high precision actually left no room for improvement from type inference. We obtained
fewer correct type facts when analyzing Spring because a subset of the direct dependencies was
contained in jar files which were not supplied to the compiler. Overall, these results suggest that,
when possible, retrieving a subset of the dependencies might be highly beneficial since adding the
dependencies had a greater impact than type inference. Finally, because certain members were
declared in an ancestor and were thus not accessible, we still inferred erroneous and unknown type
facts.

Analyzing all classes in a change set did not significantly improve the precision of our results. On
average, only 34% of the direct dependencies of a class were in the same change set. Usually, even
if two related classes are in the same change set, the improvement might be minimal if we the
one class only access a few members in the other class. Still, further analysis of the change sets
results are required. For example, some files are changed more often than others: if the files that
are frequently changed are also the ones that gives the best (or the worst) results when analyzed
by our tool, the results will be highly biased toward these files. This could explain the decrease of
precision for Spring (90.97% for single class analysis versus 90.34% for change set analysis).

6.4 Inference Strategies

Since we showed that type inference was beneficial, we were interested in analyzing the contribution
of each inference strategy we devised and presented in Section 3.1. This information can be used
to determine which inference strategies are worth implementing if PPA needs to be implemented
in an existing technique. For each type fact that was processed in the worklist (see Figure 7),
we recorded the inference strategy that caused its insertion in the worklist which provided a good
estimation of the contribution of each strategy.

Table VII shows the percentage of type facts that each of the six most popular inference strategies
generated: the other inference strategies had a negligible contribution. Because the ordering and

22

Strategy Lucene JFreeChart Jython Spring

single % Assign. 45.59 61.06 36.73 38.37
inf. % Return 13.41 6.10 52.93 31.12
no bind. % Method 0.66 0.72 0.39 0.35

% Condition 8.73 5.10 1.38 16.50
% Binary 22.01 17.64 6.06 7.12
% Unary 3.48 8.75 0.91 3.55

Total facts 4571 6700 41521 14462

single % Assign. 41.95 57.31 29.52 36.29
inf. % Return 12.25 5.73 42.53 29.42
bind. % Method 8.55 6.64 19.93 5.72

% Condition 7.97 4.79 1.11 15.60
% Binary 20.28 16.73 4.87 6.77
% Unary 3.18 8.21 0.73 3.36

Total facts 5006 7138 51675 15297

Table VII: Inference strategies results

the proportion of the inference strategies were similar for each input scenario, we only report the
results when we analyzed one class at a time. The upper part of the table shows the proportion
of each inference strategy when performing type inference without method binding and the lower
part shows the results when performing type inference with method binding. The last line in
each part indicates the number of type facts that were processed in the worklist. For example,
when performing type inference and method binding on Lucene, the assignment inference strategy
generated 41.95% of the type facts.

The assignment inference strategy was the largest contributor of type facts in all target systems
except Jython. The return and binary inference strategies came second in two target systems each.
Those three strategies contributed to 90% of the type facts when disabling method binding and
76% when enabling method binding. Because a strategy can also trigger the use of another strategy
(e.g., we find the type of a field using the assignment strategy and then we use the method binding
strategy because a method uses this field as a parameter), we were interested in the inference chains
produced by our approach. We found the average inference chain length to be 1.02, meaning that
generally, an inference strategy does not trigger the use of another strategy and that there is no
significant correlation between any two inference strategies.

6.5 Threats to Validity

The external validity of this study is limited by the fact that we only studied four programs.
Because three of these programs are self-contained, i.e., they do not require external libraries, we
studied the Spring Framework which requires 90 jar files to ensure that our approach would give
similar results with programs requiring multiple dependencies. Our four target systems have a large
number of lines of code and their purposes are different enough to be representative of many Java
programs. The fact that the results were also relatively stable across all four programs suggests
that results obtained with different systems would be similar to ours.

Our unit of measurement was the number of correct type facts in the Jimple intermediate repre-
sentation. This unit is a good indicator for techniques that use partial program analysis to analyze

23

static type information, but it is not sufficient to evaluate the usefulness of our approach for client
static analyses that use the IR produced by PPA. Researchers in both our groups and others will be
able to do these sorts of experiments now that PPA is fully implemented and publically-available.

When we analyzed the change sets, we only used the latest version of the classes for each change set
as opposed to using the version of these classes at the time of the change set. We expect the results
of our analysis to be representative because the set of direct dependencies should be relatively
stable during the lifetime of a class.

7 Related Work

Static analysis tools typically assume that a complete and correct representation of the program
is available. Our work is quite different in that we assume that only part of the program is
available. To the best of our knowledge, we know no other research project, except the prototype
used in PARSEWeb [14], that performs type inference and resolves syntactic ambiguities with
such constraints. Unfortunately, it is not possible to provide a full evaluation of the PARSEWeb’s
prototype because it is not publically available and the paper only describes two inference strategies
the prototype used. Those strategies are equivalent to our return and method binding inference
strategies.

Still, there are several techniques that deal with the parsing of incomplete programs. Two such
examples include fuzzy parsers [8] which extract high level structures out of incomplete or syn-
tactically incorrect programs, and island grammars [9] which parse snippets of code into islands
(recognizable constructs of interest) and water (remaining parts). Knapen et. al. presented an ap-
proach for parsing C++ programs when missing some header files [7]. Their motivation was quite
similar to ours, since they wanted to deal with situations where not all the code was available.
They developed various semantic tests and heuristics, similar to ones we used in PPA, to determine
the nature of an ambiguous syntactic constructs. As opposed to PPA, (1) this C++ parser does
not try to infer the declared type of an AST node, and (2) it creates an unknown node when it
cannot soundly determine the nature of an expression. Finally, modern Integrated Development
Environments (IDE) often include tools to execute or analyze snippets of code. For example, the
Java parser 11 in Eclipse is able to generate an Abstract Syntax Tree for incomplete programs,
but it does not try to resolve syntax ambiguities and it does not provide any typing information
when the declaration of a type is missing. The Scrapbook editor12 tries to execute any snippet of
code even if it is not included in a Java class. Again, this tool reports an error if it encounters an
undeclared type.

In terms of inferring declared types for Java, Gagnon et. al. solved a related problem of finding
declared types of local variables when starting from Java bytecode [5]. Although their approach also
used type constraints to assign declared types, their setting is quite different since they have access
to the complete program and type hierarchy, and there are no syntactic ambiguities in bytecode.

Other work, less directly related, includes static analyses techniques that aim to analyze only
part of a program. These are often designed for software engineering applications, where it is
too expensive to analyze the whole program. These techniques use an intermediate representation
generated from the complete program where all type declarations are accessible. Examples of these

11www.eclipse.org/jdt/core/index.php
12www.eclipsezone.com/eclipse/forums/t61137.html

24

techniques include partial data flow analysis [4,6] which uses a demand-driven approach to analyze
only the relevant part of a whole program and fragment analysis [11,12] which does a full analysis
on a given fragment of the program, using summary information for the remainder.

8 Conclusions and Future Work

We presented Partial Program Analysis, a technique that builds a typed abstract syntax tree and
a typed three-address intermediate representation that software engineering tools can use to get
more precise type information than what syntactic analysis traditionally provides. We covered the
two main challenges when analyzing partial programs in Java, the ambiguous language constructs
and the determination of declared types, and we proposed type inference strategies and heuristics
to solve these problems.

We performed an empirical study on four open source programs and found that, on average, Partial
Program Analysis could uncover 91.2% of correct type facts when analyzing one class at a time
and only produced 2.7% of erroneous type facts. This high precision suggests that partial program
analysis is a viable approach to enable useful static analysis on incomplete Java programs.

Finally, the current implementation of our prototype is available online at http://www.sable.mcgill.ca/ppa.

Acknowledgements

The authors thank Eric Bodden and Ekwa Duala-Ekoko for their valuable comments on the paper.
This project was supported by the Natural Sciences and Engineering Research Council of Canada.

References

[1] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian Zhou.
Using findbugs on production software. In OOPSLA ’07: Companion to the 22nd ACM SIG-
PLAN conference on Object oriented programming systems and applications companion, pages
805–806, New York, NY, USA, 2007. ACM.

[2] Nicolas Bettenburg, Rahul Premraj, and Thomas Zimmermann. Extracting structural infor-
mation from bug reports. In To appear in Proceedings of the Fifth International Working
Conference on Mining Software Repositories, May 2008.

[3] Barthélémy Dagenais and Martin P. Robillard. Recommending adaptive changes for framework
evolution. In To appear in ICSE ’08: Proceedings of the 30th International Conference on
Software Engineering, page 10 pages, 2008.

[4] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A practical framework for demand-
driven interprocedural data flow analysis. ACM Trans. Program. Lang. Syst., 19(6):992–1030,
1997.

[5] Etienne Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient inference of static types
for java bytecode. In Static Analysis Symposium, pages 199–219, 2000.

25

[6] Rajiv Gupta and Mary Lou Soffa. A framework for partial data flow analysis. In ICSM ’94:
Proceedings of the International Conference on Software Maintenance, pages 4–13, Washing-
ton, DC, USA, 1994. IEEE Computer Society.

[7] Gregory Knapen, Bruno Laguë, Michel Dagenais, and Ettore Merlo. Parsing c++ despite
missing declarations. In IWPC ’99: Proceedings of the 7th International Workshop on Program
Comprehension, page 114, Washington, DC, USA, 1999. IEEE Computer Society.

[8] Rainer Koppler. A systematic approach to fuzzy parsing. Softw. Pract. Exper., 27(6):637–649,
1997.

[9] Leon Moonen. Generating robust parsers using island grammars. In WCRE ’01: Proceedings
of the Eighth Working Conference on Reverse Engineering, page 13, Washington, DC, USA,
2001. IEEE Computer Society.

[10] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An extensible
compiler framework for java. In Proc. of the 12th International Conference on Compiler
Construction, pages 138–152, 2003.

[11] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Fragment class analysis for testing of
polymorphism in java software. IEEE Transactions on Software Engineering, 30(6):372–387,
2004.

[12] Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow analysis of program frag-
ments. In ESEC/FSE-7: Proceedings of the 7th European Software Engineering Conference
held jointly with the 7th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 235–252, London, UK, 1999. Springer-Verlag.

[13] Stephen M. Blackburn et al. The dacapo benchmarks: java benchmarking development and
analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, pages 169–190, New York,
NY, USA, 2006. ACM.

[14] Suresh Thummalapenta and Tao Xie. Parseweb: a programmer assistant for reusing open
source code on the web. In ASE ’07: Proceedings of the twenty-second IEEE/ACM interna-
tional conference on Automated software engineering, pages 204–213, New York, NY, USA,
2007. ACM.

[15] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-
daresan. Soot - a java bytecode optimization framework. In CASCON ’99: Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative research, page 13. IBM
Press, 1999.

[16] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. Sniafl: Towards a static non-
interactive approach to feature location. ACM Trans. Softw. Eng. Methodol., 15(2):195–226,
2006.

[17] Thomas Zimmermann, Peter Weissgerber, Stephan Diehl, and Andreas Zeller. Mining version
histories to guide software changes. IEEE Transactions on Software Engineering, 31(6):429–
445, 2005.

26

