McGill University
School of Computer Science
Sable Research Group

Memory Abstractions for Speculative Multithreading

Sable Technical Report No. 2008-3

Christopher J.F. Pickett and Clark Verbrugge and Allan Kielstra
{cpi cke, cl unp}@abl e. ntgil | . ca, ki el stra@a. i bm com

September 25th, 2008

www.sable.mcgill. ca

Abstract

Speculative multithreading is a promising technique for automatic parallelizatmmevér, our experience
with a software implementation indicates that there is significant overhead éuolvmanaging the heap
memory internal to the speculative system and significant complexity in ¢lgrraanaging the call stack
memory used by speculative tasks. We first describe a specialized heagenzent system that allows the
data structures necessary to support speculation to be quickly recykedake advantage of constraints
imposed by our speculation model to reduce the complexity of this otherwisgalgroducer/consumer
memory problem. We next provide a call stack abstraction that allows thevadable requirements of
in-order and out-of-order nested method level speculation to be egqutend hence implemented in a
relatively simple fashion. We believe that heap and stack memory manageseed &sre important to
efficient speculative system design. We also believe that abstracticmaswurs help provide a framework
for understanding the requirements of different speculation models.

1 Introduction

Seculative multithreading (SpMT), also known ashread level speculation (TLS), is a dynamic paral-
lelization technique that depends on out-of-order execution, buffeaimg rollback to achieve speedup of
single-threaded programs on multiprocessors. SpMT works by splittinguffple speculative child tasks
from a single non-speculative parent thread, each executing on itpr@meassor, and joining them at a later
time. Long studied in hardware, SpMT has recently shown promise in sefttesigns [7,24]. Our work in
particular has focused anethod level speculation for Java, wherein tasks are created and joined on method
invocation and return, and wherein call stacks are always well-bdhave

Software SpMT implementations have specific memory management requirenigmtespect to both
heap memory for internal data structures as well as call stack memory arsletdl variables within the
speculative tasks themselves. In the former case the main concern iefficeupport for speculation
typically requires structures that grow in size, cross both procesgar@mspeculative/speculative runtime
code boundaries, and moreover get frequently allocated and didc&deycling such structures efficiently
for SpMT is non-trivial not only because of the high frequency of atammn, but also because the memory
migration between threads and processors creates a multithreaded andocestprproducer/consumer
problem. Stack data adds further complexity: in order to propagate lodables to and from speculative
tasks, stack frames must be copied between thread-specific call fdtblosigh seemingly straightforward,
a flexible design that allows for relatively arbitrary speculative tasktiocneaan be difficult to describe
and implement. A clear expression of the requirements of different sgigculaodels is important for
developing efficient and correct communication models for local dataasodor understanding the trade-
offs between the improved potential parallelism and memory costs of diffgpegulation models.

We present two designs: one for the efficient management of interapldteuctures, and another for sat-
isfying stack copying requirements in a flexible manner. The first desigs @aftvantage of the constraints
imposed by our speculation system. In particular, rather than developeeagetultithreaded memory man-
ager, we assume an ownership model of data and use that to recyclentpexspeculative child task
structures used in a typical SpMT system. The second design is more cortjgesures that accesses to
local variables are propagated between non-speculative parespandlative child tasks safely and effi-
ciently, and it accomodates the requirements of different method levallgtiea models. We provide an
abstraction using a simple notation based on call stacks, and using this stdekweospecify how local
variable data must be moved for two kinds of speculative task creatiamrder nesting, wherein a specu-

lative task can create a doubly-speculative task its ownpatidf-order nesting, wherein a single thread or
task creates multiple speculative tasks of its own, one per stack frame.

1.1 Contributions

e A simple solution for constrained producer/consumer memory managemdmémsoon multipro-
cessor systems that recycles complex, aggregate data structures.

e A multithreaded call stack abstraction for method level speculation that esppath in-order and
out-of-order speculation. We show that by using simple operations ostaaks, various models of
method level speculation can be described, understood, and implemeingd asmmon framework.

2 A Simple Custom Ownership-Based Multithreaded Allocator

Our initial SpMT implementation allowed parent threads to allocate multiple child tasksot for child
tasks to create doubly-speculative child tasks of their own. Child tasks amgueued on a concurrent
priority queue, and after execution by a helper/worker thread theinpareuld abort or commit them,
freeing their memory. Since each parent eventually freed all of its childikrsystem resources were
reclaimed and there was no malloc/free producer/consumer problem.

throwable [« JNIEnv » Java stack
Java virtual machine A
speculation library
timers (2) |« child > item
A 4
items[] buffer |« virtual » stack
A
A4 A/ Y
log < tables (2) profile frames|[]
A
keys[] values[] tagsl] timers (13)

Figure 1. Runtime child data structure.

However, we were initially creating a new instance of the runtime child strushoen in Figure 1 for each
new child task. Since our speculation model allows for a high frequentsgséf creation, up to once for
every non-speculative method invocation, and since each child struwsr87 separately allocated sub-
components, this quickly led to a performance bottleneck with the otherwisélsuit@a allocator [16].

We realized that each child structure is@imership dominator tree [19] rooted by thechi | d sub-object,
such that all other sub-objects are only reachable through it, at lealibeation and deallocation time.
Since all child structure instances have the same shape, the introductioewfchild ‘reset’ operation on
allocation allowed us to give each parent thread a child structure freetisivaid excessive calls to malloc
and free.

Later profiling for overhead [23] revealed that it would increase thms&d parallelism and thus benefit
speculation performance to allow a child task to create new child tasks of its @naer our speculation
model, only a non-speculative parent thread can commit child tasks, arsgéaqeoently it is the original
parent thread that ultimately frees the combined resources for both chniédtag®ns. This creates a mul-
tithreaded and multiprocessor producer/consumer allocation pattermseeaithough allocation occurs in
either parent threads or helper/worker threads, deallocation onlysoiatparent threads. If we now used
our simple per-parent thread freelists, child structure memory would goahd not get reused. On the
other hand, if we used a drop-in multithreaded malloc replacement suchaad [2), we would need to
significantly alter our SpMT implementation so as not to call malloc and free 37 timestiren required.

thread runtime
full empty A
block blocks blocks
RIEIN [S[a]u]s]

L1 s
=|1. add m - 2. remove =
&| child child N°1 child ©
> o
= oooo =

2. if (full) 1. if (empty)
swap full swap empty
for empt Cooo] [| for full

! Py L]

Figure 2: High level illustration of child malloc and free.

Our solution is to use a custom multithreaded memory allocator, as depicted ire Rgudn the left a
child is freed to a local parent thread block of child pointers. If that blee&omes full it is exchanged for
an empty one via global synchronization at the runtime level. The malloc maEexactly the inverse,
exchanging an empty block for a full one if necessary and then proglacahild for the current parent or
helper/worker thread. Larger block sizes reduce the need for gbybahronization, albeit at the expense
of extra memory consumption. Figure 3 provides an implementation where thacniy calls to malloc
are insideset _cr eat e andchi | d_cr eat e on lines 41 and 43.

This scheme has the following advantages: 1) functionality across a kfitynterface: our library calls
back into a JVM to create an appropriate thread context; 2) supporhiiol gub-structure type opacity;
3) minimal initialization costs; 4) implementation simplicity; 5) support for dynamicallizable sub-
structures, here the buffer and stacks; 6) portability; 7) no extemaéntlences; 8) no synchronization
operations in the common case, namely allocating or freeing a child task frimvadocal thread block; 9)
memory consumption proportional to the maximum number of live tasks.

It also has disadvantages: 1) potential lack of locality between child tsuttisres; 2) lack of locality be-
tween processors: an individual child task may visit 3 different cdhesallocating, executing, and freeing
ones; 3) no reclamation of excess child task memory; 4) lock-based reyrizétion in the uncommon
case, namely exchanging empty and full blocks between a thread and tfaé gbml of blocks; 5) lack of
automation and general purpose applicability.

We believe that this particular producer/consumer pattern is important fabl8esoftware SpMT, and
hence refinements to this scheme or completely different solutions are wpftiieg. We also believe that
high-level memory management of ownership dominator trees may be a lfjensedul paradigm.

child t » malloc_child (thread t *thread) {
if (is_enpty (thread->bl ock))
t hr ead- >bl ock = swap_enpty for_full
(thread->runtinme, thread, thread->block);
return renove_child (thread->bl ock);

}

void free_child (thread_t =thread,
child_t =child) {

© 0o ~NO O WNPRE

10 add_child (thread->block, child);

112 if (is_full (thread->block))

12 t hread- >bl ock = swap_full _for_enpty

13 (thread->runtinme, thread, thread->block);
14 }

15

16 set _t * swap_enpty for full (runtime_t =*runtine,
17 thread_t =thread,
18 set t xenpty) {

19 set t *full;
20 acquire (runtine->blockset |ock, thread);
21 add_bl ock (runtinme->enpty_bl ocks, enpty);

22 full = (is_enpty (runtinme->full _blocks)) ?
23 bl ock_create ()
24 remove_bl ock (runtinme->full_bl ocks);

25 release (runtinme->blockset_|ock, thread);
26 return full;

27}

28

29 set t » swap_full _for_enpty (runtinme_t =*runtine,
30 thread_t =thread,
31 set _t =full) {

32 set_t renpty;

33 acquire (runtine->blockset |ock, thread);
34 add_block (runtine->full_blocks, full);
35 enpty = renove_bl ock (runtine->enpty_ bl ocks);
36 release (runtine->blockset | ock, thread);
37 return enpty;

38}

39

40 set _t * block_create (void) {

41 set_t xblock = set_create ();

42 while (lis_full (block))

43 add_child (block, child create ());

44 return bl ock;

45 }

Figure 3: Source code for child malloc and free.

3 A Stack Abstraction for Method Level Speculation

The method level speculation model is based on the creation of a child sjpertdak at method invocation.
This child executes the ‘continuation’ code that follows the invocation, atsl jgined when the creating
non-speculative parent returns from its call. The child executestimiagly isolated fashion, such that it is

effectively sandboxed until the parent joins, validates, and decidesntand it. This model depends upon
return value predictors as well as dependence buffering of heap/istatis and writes via some form of
transactional memory [24].

Assuming we are operating at the method granularity in a Java virtual maeféregn exploit Java’s well-

defined call stack behaviour for child task creation. In particular, a ¢h8ll can buffer an entire stack
frame at once from its parent, such that speculative accesses todoiedlles do not need further buffering.
Although there exists significant prior work on method level speculationg iseno in-depth exploration of

legal operations at the stack frame level of abstraction, which we ndnte@eovide.

a|:| a a a|:| a|:| |:| |:|
P P P P P C1
1. piijé'h (P) 2. b’é’p’; (P) 3. f"é'r'k' (P)
b b

a|:| a a' a|:| a'|:| a|:| a a' a'|:|
P C1 P P C1l P
_____________________ > D 4

4, fork (P) push (P) 5. abort (P) 6. pop (P), commit (P)

Figure 4: Parent thread operations.

Figure 4 illustrates the actions a hon-speculative parent tiread take. In 4.1 and 4.2, pushes and pops
stack frameb starting froma; note that unique frames are assigned unique names. These are tbe@éxpe
stack operations from a sequential execution context. I1?4d8ks a new childC1, and henc&€1 getsa’, a
private version oP’s current stack frama. Barring exceptions, method invocations follow forks as shown
in4.4. In 4.5P abortsC1 by simply deleting it. Aborts may occur for 4 reasonsPXgturns to the fork point
and finds a misspeculation @i; 2) references oR’s stack are altered by the garbage collector, in which
case the entire stack is scanned looking for children to abort; 3) antextépthrown out of the frame
pushed after forking; 4) an exception is thrown witlé&ies to push a new frame. Aborts must occur before
executing an exception handler in case the handler attempts to fork a childlyFm4.6 P commitsC1,
copyinga’ overa. Commits are always preceded by a return from a successful methodiioroc

Figure 5 illustrates the general actions a speculative child@aséan take. There are special restrictions
on these actions shown in Figures 6—8. In 61lpushes, distinct fromb and following it in sequential
execution order. In 5.2 is popped;C1 is free to pop any frame that it has pushed. Upon returning to a
frame pre-existingC1, that frame must be copied fromas shown in 5.3. This lazy copying allows for
relatively arbitrary speculation and is a critical performance optimizationsttodsC1 which copieda to

a’ and subsequently pushddande. Upon commitP copies over the entire range of live stack frames from
C1 and resumes at the point where it stoppea.irif P were to commitC1 befored ande were pushed
the end result would be alone forP. As a safety constrair@1l can never invoke nor return to a native or
synchronized method, althoughis always free to.

a a a a
P C1 P C1
________________ Y
1. push (C1)
C C

3. pop(Cl)

________________ _Y
2. pop (C1)
e e
d d
a' a'
P C1 P
________________ Y

4. pop (P), commit (P)

Figure 5: Child task operations.

:H—;U |

3. pop (C2)

Vy o

a
1 C2 P Cl
>

4. pop (P), commit (P)

Figure 6: Out-of-order nesting: many children per parent.

C2

C1

The speculation model developed thus far only allows for one child penpérread. Figure 6 extends it
to allow P to create one child per non-leaf stack frame, a kin@ufof-order nested speculation. In 6.1

P already ha<C1 in a when it create2 in b. Naturally, this does not inhibit the progress@i, which
pushed at the same height dsin 6.2. HoweverC2 cannot return to a frame in whidh already has a
child; in 6.3C1 is anelder sibling of C2, andC2 simply popsb’ and stops execution. B were then to
commitC2 it would end up ina without copyingb’. An implementation might support merging ©1 and
C2, but a dynamic profiling system can instead record encounters with éidiegs and input this data to
fork heuristics to avoid creating children likely to collide. Finally, in ®4ommitsC2, getting frame$’
andd, and this has no impact ai. In general, for two frames andy wherey has been pushed aftey
everything reachable frojmhappens before anything subsequently reachablerom

P
-

3. pop (C2) 4. pop (C2)

Figure7: In-order nesting: children of children.

Out-of-order speculation provides extra parallelism, buitherder nested speculation depicted in Figure 7
provides even more. In 7.1, childl createsC2 and enters. HereC2 getsa”’, its own local version of
Cl's a'. If C1 popsc then it must stop execution; compare with 6.3, the other case where spectdaks
collide. 7.1 illustrates how method level speculation can subsume loop levallapen if a loop body is
extracted into a method call [5 could execute the start of the loop, fatik and immediately entes to
execute the extracted bodyl would then forkC2 and immediately entar to execute the second iteration
of the extracted body. The recursive structure of in-order nestiqgjnes that aborts be recursive as well.
In 7.2 P abortsC1, but before that process can complete it must find alto6 children and abort them
first; thusC2 actually gets freed befoi@l. For deep enough aborts it may be worth offloading an abort task
to a separate processor to minimize the impacPofinally, in-order speculation introduces complexity
with respect to buffering pre-existing frames2 popsd’ in 7.3 and get®” not fromb in P but fromb’ in
C1. This requires a backwards pointer fra@f to C1 in the VM for efficient copying. Subsequently in 7.4
C2 popsb” to return toa’, which must be copied frora in C2’'s grandparenP. This operation is always
deterministic, as lower frames on the stack execute later in program onden particular there is no way
for C1 to create a version &f nor for P itself to modifya while C2 is still executing.

Figure 8 depicts the intricacies of commits under in-order nesting. I®&AdmmitsC1, inheriting all of
its stack frames as usual, but also inherit@gywhich is attached te. Instead of freeingC1, P puts it on
a ‘garbage’ list for later collection when all @f1’s children are dead. We need only one such backwards-
pointing list per parent. Each node on the list is kept until completion of a St child nodes. In 8.2

3. pop (C2)

Figure8: In-order nesting: commit, and pop from garbage.

now commitsC2 and gets’. C2 has no children and is immediately freed, and now that atlig$ children
are deadC1 is also freed. The freelist scheme described in Section 2 was motivated bgetido handle
C2's memory:C1 allocatesC2 on processor 2, some helper/worker thread exeatemn processor 3, and
finally P freesC2 on processor 1. The reas6t must be kept on a garbage list urgi? is dead is illustrated
in 8.3. C2 popsc’ and getsa” from a’. However, the source’ is always located ii€1, even whercl has
been committed b as in the figure. This eliminates a race condition wi&2eopsc’ and gets a pointer
to C1, P commits and free€1, and thenC2 attempts to copy the memory frogl. The alternative is to
synchronize on lazy frame copying which is too expensive.

11

v
fork (P) fork (Cl) fork (C1)
push (P) push (C1) push (C1)

_____ R SO
2x pop (P) pop (P) pop (P)
commit (P) commit (P) commit (P)

Figure9: In-order and out-of-order nesting combined.

Figure 9 uses multiple patterns from Figures 4-8 to illustrate a combination efier-and out-of-order
nesting. The steps takenare 4.4,7.1,6.1,5.1, 8.1, 6.4, 4.2, and 8.hdMat is that after 8.€1 is kept on
a garbage list untiC3 andC2 are freed. We classify this speculation as hawiaging depth 2 andnesting
height 2 for its two levels each of in-order and out-of-order nesting respalgtiv

8

P (o1 2 3
a() { ... X
b(); X
oo DA X
c() { ... X
d(); X X
... 1 X
e(); X X
) X
Yy Ila X X

Figure 10: Sequential execution order of Figure 9.

Figure 10 depicts the normal sequential execution order of the codate”dn Figure 9 and its mapping to
non-speculative parent thread and speculative child tasks. An X infahyC1, C2, or C3 indicates that the
corresponding portion of the execution was executed by that threadkorNate that there may be an X in
P at the same time as any child, corresponding to a join, commit, and transfertoflda that stack frame.

4 Related Work

Speculative multithreading is relatively well-studied from a hardware pets; Kejariwal and Nicolau
maintain an extensive bibliography [13]. A general problem in SpMT isditeg where to fork speculative
child tasks. Many systems operate at the loop level, some operate at thebloagidevel, and a few
operate at the method level. We focus on creating child tasks at the methbtbledava [21-25]. This
appears appropriate since short methods and frequent invocatiitcanatic in Java programs [5,11, 28,
30]. However, we also believe that well-structured programs written irr édlnguages could benefit from
method level speculation, and that our designs are not only applicableastoMathod level speculation can
also subsume loop level speculation [5], as described for Figure 7€it ailth extra invocation overhead.

There is prior work on both in-order and out-of-order nested spgoolaRenatet al. extend a model with
unlimited nestingdepth to allow unlimited nestindieight [26]. This contrasts with our work that began
with unlimited nesting height [24] and now supports unlimited nesting depth. Phiyose a hardware
architecture based on timestamps that is fairly complex and does not trarsldyda@software. Our model
is designed for software SpMT and exploits a nearly universal pnogteucture—the call stack—to ensure
correctly ordered commits.

Our stack abstraction also provides a simple framework for understaadthgnifying method level spec-
ulation approaches. For example, Whaley and Kozyrakis evaluate tiesufte Java method speculation,
claiming to allow speculative threads to create speculative threads, i.eden+wgsting [30]. However, all
of their examples actually demonstrate out-of-order nesting. Goldsttainprovide an efficient implemen-
tation ofparallel call that uses a stack abstraction dual to the one presented here: the chigdestes the
method and the parent thread executes the continuation [9]. Pillar is a nguwatpathat supports this ab-
straction [1]. Although parallel call was not designed to be speculdtieespeculation rules of our system
could nevertheless be translated straightforwardly. Zhai briefly bescstack management for specula-
tion [33], but does not provide details on the complexities of entering aitidgstack frames speculatively.
Zahran and Franklin examine return address prediction in a speculatitithneading environment [32],
and later consider entire trees of child tasks [31].

Osborne developed speculative computation for Multilisp [20]. The mejd speculative execution in that

context is somewhat different: instead of aborting speculative compuddiEcause they are incorrect, the
computations are aborted because they are unnecessary, and tiemndb@ way to reclaim computation
resources.

Mattson, Jr. found that speculative evaluation in Haskell can be stggpwaith low overhead [17]. Ennals
and Peyton Jones present a similar optimistic execution system that workisetogéh the lazy evaluation
model in Haskell [8]. Harris and Singh later used runtime feedback te dpeculation in Haskell with good
results [10]. All of these speculation models might benefit from beingriestusing our stack abstraction,
and in turn our stack abstraction would become more robust if we extenttealdtomodate them.

Our mechanism for recycling child task data structures is directly inspiratdidoard model [2], which
uses per-processor and global heaps to bound memory consumptiamaadalse sharing. Michael later
provide a lock-free allocator based on Hoard that offers a significamtovement [18], and Schneidetr
al. demonstrate another recent scalable malloc implementation [27]. Dice andv@iéethlso provide a
mostly lock-free malloc that is 10 times faster than Hoard as originally publisheshire cases [6].

Somewhat heretically [3], we have created a specialized lightweight Hid@rdustom memory allocator
that differs in two ways from the original Hoard publication: it uses peedHd blocks, called superblocks,
rather than per-processor blocks, and it recycles entire ownershipdtor trees, maintaining links across
a library interface. The key assumption we make is that there is one thre@dogessor. This is suitable
for our constrained speculation machinery which takes single threadgaaatielizes them, and will not
speculate at all if all processors are occupied by non-speculateadsr Of course, the Hoard software has
since evolved to accomodate initial performance concerns, includingfticydar by supporting per-thread
sub-heaps. Thus the recycling of entire structures at once is exgedbedhe only real advantage of our
system in a side-by-side comparison.

Boyapatiet al. combine user-specified ownership types with region-based memory nmaeatjd]. Lattner
and Adve later provide a system for automatic pool or region allocationegatgates the memory required
by an individual data structure into its own pool [15]. Mitchell subsedjyezxamines the runtime structure
of object ownership for many large real-world applications, identifying yndominator trees [19]. Our
experience suggests it would be interesting to combine the different idmastifiese works to create a
general purpose multiprocessor allocation system that returns usekdsgegmbled data structures.

5 Conclusions & Future Work

The performance and correctness issues in speculative multithreadialy ememory-based. Our first con-
tribution is a simple multithreaded custom allocator for child task data structureeties on knowledge
about ownership dominator trees. Although it eliminates major performarttierierks in our system,
we have not actually experimented with state-of-the-art multithreaded allsdata controlled compari-
son. Our intuition is that although the synchronization and memory locality in chense are probably
sub-optimal, the 37-fold reduction in calls to malloc and free more than conesnd&/e would be quite
excited to see recycling of aggregate data structures evolve into a bpograse memory management
paradigm.

Our second contribution is a clean, simple, and comprehensive stadk &lastaction for method level
speculation. As future work, one alternative is to fork and join childremethod entry and exit points
instead of at callsites [30]. Our model can accomodate this with minor modifisatforother issue is that
our model assumes references to stack variables cannot be passéiddadrames. Although definitely a
problem for C programs, JVMs are also permitted to allocate a Java objdot atack and this can cause

10

synchronization errors. If some child copies a parent frame with a stldated object, the parent thread
modifies that object, and then the parent commits the child, this will erase the ratidificAs for potential
for compiler assistance, our implementation copies entire stack frames bgivemassors, whereas only
those local variables live after invocation need copying. Furthermocepgiler could pack the copied
locals together for efficiency.

Finally, we would like to provide a small-step operational semantics for ouk steadel and use it to
prove that a concurrent speculative multithreading algorithm operatirgipabstraction satisfies various
correctness properties. We would also like to unify our abstraction with d@ingllel sequential call one
used by Pillar in order to transfer results. As more general challengesilation past monitor operations
introduces significant complexity [29], as does speculative object &lhwcid 2] and broader reconciliation
with transactional execution [14].

We have built a prototype system consisting of SableSpMT [22—-24] anghtibi25] that supports every-

thing we describe for Java programs. However, the performance fimfisan this paper are qualitative and
await deeper characterization. We recently summarized our work on $p&lEte and major directions for
future work [21].

Acknowledgements

This research was funded by the IBM Toronto Centre for Advancedi&wand the Natural Sciences and
Engineering Research Council of Canada. This report was originabiynigted to MSPC’08 in November
2007. We would like to thank the referees for their helpful comments, questaoid suggestions.

References

[1] T. Anderson, N. Glew, P. Guo, B. T. Lewis, W. Liu, Z. Liu, L. Peten, M. Rajagopalan, J. M. Stich-
noth, G. Wu, and D. Zhang. Pillar: A parallel implementation languag&CRC’ 07: Proceedings of
the 20th International Workshop on Languages and Compilers for Parallel Computing, volume 5234
of LNCS: Lecture Notesin Computer Science, pages 141-155, Oct. 2007.

[2] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. HdaA scalable memory alloca-
tor for multithreaded applications. IWSPLOSIX: Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 117-128, Nowv.
2000.

[3] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsideringtous memory allocation. [®OOP-
S A'02: Proceedings of the 17th ACM SSGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 1-12, Nov. 2002.

[4] C. Boyapati, A. Salcianu, J. William Beebee, and M. Rinard. Owriprsipes for safe region-based
memory management in real-time Java.PlcDI’ 03: Proceedings of the ACM SSGPLAN 2003 Con-
ference on Programming Language Design and Implementation, pages 324-337, June 2003.

[5] M. K. Chen and K. Olukotun. Exploiting method-level parallelism in sintjieeaded Java programs. In
PACT 98: Proceedings of the 7th International Conference on Parallel Architectures and Compilation
Techniques, pages 176—184, Oct. 1998.

11

[6] D. Dice and A. Garthwaite. Mostly lock-free malloc. IBMM’02: Proceedings of the 3rd Interna-
tional Symposium on Memory Management, pages 163-174, June 2002.

[7] C.Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhandtv#e behavior oriented paralleliza-
tion. In PLDI’07: Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 223-234, June 2007.

[8] R. Ennals and S. P. Jones. Optimistic evaluation: an adaptive evalutébegy for non-strict pro-
grams. InICFP’03: Proceedings of the 8th ACM SIGPLAN International Conference on Functional
Programming, pages 287-298, Aug. 2003.

[9] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy threaagldmenting a fast parallel call.
JPDC: Journal of Parallel and Distributed Computing, 37(1):5-20, Aug. 1996.

[10] T. Harris and S. Singh. Feedback directed implicit parallelism ClP’ 07: Proceedings of the 2007
ACM S GPLAN International Conference on Functional Programming, pages 251-264, Oct. 2007.

[11] S. Hu, R. Bhargava, and L. K. John. The role of return valwedigtion in exploiting speculative
method-level parallelismJILP: Journal of Instruction-Level Parallelism, 5:1-21, Nov. 2003.

[12] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hergh&cRT-Malloc: a scalable transac-
tional memory allocator. IhRSMM’06: Proceedings of the 2006 International Symposium on Memory
Management, pages 74—83, June 2006.

[13] A. Kejariwal and A. Nicolau. Speculative execution reading listt t p: / / www. i ¢s. uci . edu/
~akej ari w/ Specul at i veExecut i onReadi ngLi st . pdf, 2007.

[14] J. R. Larus and R. RajwaTfransactional Memory. Morgan & Claypool, Dec. 2006.

[15] C. Lattner and V. Adve. Automatic pool allocation: improving perforgeby controlling data struc-
ture layout in the heap. IRLDI’05: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and I mplementation, pages 129-142, June 2005.

[16] D. Lea. A memory allocatorht t p: // gee. c¢s. oswego. edu/ dl / ht m / mal | oc, Apr. 2000. First
published in 1996.

[17] J. S. Mattson, JrAn effective speculative evaluation technique for parallel supercombinator graph
reduction. PhD thesis, University of California at San Diego, La Jolla, CalifornidAlJ1993.

[18] M. M. Michael. Scalable lock-free dynamic memory allocationPLDI’ 04: Proceedings of the ACM
S GPLAN 2004 Conference on Programming Language Design and Implementation, pages 35-46,
June 2004.

[19] N. Mitchell. The runtime structure of object ownership. ECOOP’06: Proceedings of the 20th
European Conference on Object-Oriented Programming, volume 4067 ofLNCS Lecture Notes in
Computer Science, pages 74-98, July 2006.

[20] R. B. Osborne. Speculative computation in Multilisp. URP’90: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, pages 198—-208, June 1990.

[21] C.J.F. Pickett. Software speculative multithreading for Jav@@®R3A 07 Companion: Companion
to the Proceedings of the 22nd ACM SIGPLAN Conference on Object Oriented Programming Systems
and Applications, pages 929-930, Oct. 2007.

12

[22] C. J. F. Pickett and C. Verbrugge. Return value prediction in a Jatwal machine. InvVPW2:
Proceedings of the 2nd Value-Prediction and Value-Based Optimization Workshop, pages 40-47, Oct.
2004.

[23] C. J. F. Pickett and C. Verbrugge. SableSpMT: A software fraonke for analysing speculative mul-
tithreading in Java. IfPASTE’05: Proceedings of the 6th ACM S GPLAN-S GSOFT Workshop on
Program Analysis for Software Tools and Engineering, pages 59-66, Sept. 2005.

[24] C. J. F. Pickett and C. Verbrugge. Software thread level dpgon for the Java language and virtual
machine environment. ThCPC 05 Proceedings of the 18th International Wbrkshop on Languages
and Compilers for Parallel Computing, volume 4339 oLNCS: Lecture Notes in Computer Science,
pages 304-318, Oct. 2005.

[25] C. J. F. Pickett, C. Verbrugge, and A. Kielstra. libspmt: A library $peculative multithreading.
Technical Report SABLE-TR-2007-1, Sable Research Groupp@af Computer Science, McGill
University, Mar. 2007.

[26] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Togellasking with out-of-order spawn in
TLS chip multiprocessors: Microarchitecture and compilation.|@8 05: Proceedings of the 19th
Annual International Conference on Supercomputing, pages 179-188, June 2005.

[27] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. ®talacality-conscious multithreaded
memory allocation. I"SMM’ 06: Proceedings of the 2006 International Symposium on Memory Man-
agement, pages 84-94, June 2006.

[28] A. Welc, S. Jagannathan, and A. Hosking. Safe futures far. JamMOOPSLA' 05: Proceedings of the
20th Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and
Applications, pages 439-453, Oct. 2005.

[29] A. Welc, S. Jagannathan, and A. L. Hosking. Revocation teclesidor Java concurrencyCC: PE:
Concurrency and Computation: Practice and Experience, 18(12):1613-1656, Oct. 2006.

[30] J. Whaley and C. Kozyrakis. Heuristics for profile-driven methaak| speculative parallelization. In
ICPP’05: Proceedings of the 2005 International Conference on Parallel Processing, pages 147-156,
June 2005.

[31] M. Zahran and M. Franklin. Dynamic thread resizing for specutatiwltithreaded processors. In
ICCD’03: Proceedings of the 21st International Conference on Computer Design, pages 313—-318,
Oct. 2003.

[32] M. M. Zahran and M. Franklin. Return-address prediction in gfsive multithreaded environments.
In HiPC' 02: Proceedings of the 9th International Conference on High Performance Computing, pages
609-619, Dec. 2002.

[33] A. Zhai. Compiler optimization of value communication for thread-level speculation. PhD thesis,
School of Computer Science, Carnegie Mellon University, PittsburghlJ&R, Jan. 2005.

13

