
McGill University

School of Computer Science

Sable Research Group

Memory Abstractions for Speculative Multithreading

Sable Technical Report No. 2008-3

Christopher J.F. Pickett and Clark Verbrugge and Allan Kielstra
{cpicke,clump}@sable.mcgill.ca, kielstra@ca.ibm.com

September 25th, 2008

w w w . s a b l e . m c g i l l . c a



Abstract

Speculative multithreading is a promising technique for automatic parallelization. However, our experience
with a software implementation indicates that there is significant overhead involved in managing the heap
memory internal to the speculative system and significant complexity in correctly managing the call stack
memory used by speculative tasks. We first describe a specialized heap management system that allows the
data structures necessary to support speculation to be quickly recycled. We take advantage of constraints
imposed by our speculation model to reduce the complexity of this otherwise general producer/consumer
memory problem. We next provide a call stack abstraction that allows the localvariable requirements of
in-order and out-of-order nested method level speculation to be expressed and hence implemented in a
relatively simple fashion. We believe that heap and stack memory management issues are important to
efficient speculative system design. We also believe that abstractions such as ours help provide a framework
for understanding the requirements of different speculation models.

1 Introduction

Speculative multithreading (SpMT), also known asthread level speculation (TLS), is a dynamic paral-
lelization technique that depends on out-of-order execution, buffering, and rollback to achieve speedup of
single-threaded programs on multiprocessors. SpMT works by splitting offmultiple speculative child tasks
from a single non-speculative parent thread, each executing on its ownprocessor, and joining them at a later
time. Long studied in hardware, SpMT has recently shown promise in software designs [7,24]. Our work in
particular has focused onmethod level speculation for Java, wherein tasks are created and joined on method
invocation and return, and wherein call stacks are always well-behaved.

Software SpMT implementations have specific memory management requirements with respect to both
heap memory for internal data structures as well as call stack memory used for local variables within the
speculative tasks themselves. In the former case the main concern is efficiency: support for speculation
typically requires structures that grow in size, cross both processor and non-speculative/speculative runtime
code boundaries, and moreover get frequently allocated and discarded. Recycling such structures efficiently
for SpMT is non-trivial not only because of the high frequency of allocation, but also because the memory
migration between threads and processors creates a multithreaded and multiprocessr producer/consumer
problem. Stack data adds further complexity: in order to propagate local variables to and from speculative
tasks, stack frames must be copied between thread-specific call stacks.Although seemingly straightforward,
a flexible design that allows for relatively arbitrary speculative task creation can be difficult to describe
and implement. A clear expression of the requirements of different speculation models is important for
developing efficient and correct communication models for local data, andalso for understanding the trade-
offs between the improved potential parallelism and memory costs of different speculation models.

We present two designs: one for the efficient management of internal heap structures, and another for sat-
isfying stack copying requirements in a flexible manner. The first design takes advantage of the constraints
imposed by our speculation system. In particular, rather than develop a general multithreaded memory man-
ager, we assume an ownership model of data and use that to recycle the complex speculative child task
structures used in a typical SpMT system. The second design is more complex: it ensures that accesses to
local variables are propagated between non-speculative parent andspeculative child tasks safely and effi-
ciently, and it accomodates the requirements of different method level speculation models. We provide an
abstraction using a simple notation based on call stacks, and using this stack model we specify how local
variable data must be moved for two kinds of speculative task creation:in-order nesting, wherein a specu-

1



lative task can create a doubly-speculative task its own, andout-of-order nesting, wherein a single thread or
task creates multiple speculative tasks of its own, one per stack frame.

1.1 Contributions

• A simple solution for constrained producer/consumer memory management problems on multipro-
cessor systems that recycles complex, aggregate data structures.

• A multithreaded call stack abstraction for method level speculation that supports both in-order and
out-of-order speculation. We show that by using simple operations on callstacks, various models of
method level speculation can be described, understood, and implemented using a common framework.

2 A Simple Custom Ownership-Based Multithreaded Allocator

Our initial SpMT implementation allowed parent threads to allocate multiple child tasks,but not for child
tasks to create doubly-speculative child tasks of their own. Child tasks were enqueued on a concurrent
priority queue, and after execution by a helper/worker thread their parent would abort or commit them,
freeing their memory. Since each parent eventually freed all of its children, all system resources were
reclaimed and there was no malloc/free producer/consumer problem.

Figure 1: Runtime child data structure.

However, we were initially creating a new instance of the runtime child structureshown in Figure 1 for each
new child task. Since our speculation model allows for a high frequency oftask creation, up to once for
every non-speculative method invocation, and since each child structurehas 37 separately allocated sub-
components, this quickly led to a performance bottleneck with the otherwise suitable Lea allocator [16].

We realized that each child structure is anownership dominator tree [19] rooted by thechild sub-object,
such that all other sub-objects are only reachable through it, at least atallocation and deallocation time.
Since all child structure instances have the same shape, the introduction of anew child ‘reset’ operation on
allocation allowed us to give each parent thread a child structure freelist and avoid excessive calls to malloc
and free.

2



Later profiling for overhead [23] revealed that it would increase the exposed parallelism and thus benefit
speculation performance to allow a child task to create new child tasks of its own. Under our speculation
model, only a non-speculative parent thread can commit child tasks, and consequently it is the original
parent thread that ultimately frees the combined resources for both child generations. This creates a mul-
tithreaded and multiprocessor producer/consumer allocation pattern, because although allocation occurs in
either parent threads or helper/worker threads, deallocation only occurs in parent threads. If we now used
our simple per-parent thread freelists, child structure memory would pool up and not get reused. On the
other hand, if we used a drop-in multithreaded malloc replacement such as Hoard [2], we would need to
significantly alter our SpMT implementation so as not to call malloc and free 37 times more than required.

Figure 2: High level illustration of child malloc and free.

Our solution is to use a custom multithreaded memory allocator, as depicted in Figure 2. On the left a
child is freed to a local parent thread block of child pointers. If that blockbecomes full it is exchanged for
an empty one via global synchronization at the runtime level. The malloc process is exactly the inverse,
exchanging an empty block for a full one if necessary and then producing a child for the current parent or
helper/worker thread. Larger block sizes reduce the need for globalsynchronization, albeit at the expense
of extra memory consumption. Figure 3 provides an implementation where the onlyactual calls to malloc
are insideset create andchild create on lines 41 and 43.

This scheme has the following advantages: 1) functionality across a library–VM interface: our library calls
back into a JVM to create an appropriate thread context; 2) support for child sub-structure type opacity;
3) minimal initialization costs; 4) implementation simplicity; 5) support for dynamically resizable sub-
structures, here the buffer and stacks; 6) portability; 7) no external dependences; 8) no synchronization
operations in the common case, namely allocating or freeing a child task from orto a local thread block; 9)
memory consumption proportional to the maximum number of live tasks.

It also has disadvantages: 1) potential lack of locality between child sub-structures; 2) lack of locality be-
tween processors: an individual child task may visit 3 different cores,the allocating, executing, and freeing
ones; 3) no reclamation of excess child task memory; 4) lock-based synchronization in the uncommon
case, namely exchanging empty and full blocks between a thread and the global pool of blocks; 5) lack of
automation and general purpose applicability.

We believe that this particular producer/consumer pattern is important for flexible software SpMT, and
hence refinements to this scheme or completely different solutions are worth exploring. We also believe that
high-level memory management of ownership dominator trees may be a generally useful paradigm.

3



1 child_t * malloc_child (thread_t *thread) {
2 if (is_empty (thread->block))
3 thread->block = swap_empty_for_full
4 (thread->runtime, thread, thread->block);
5 return remove_child (thread->block);
6 }
7
8 void free_child (thread_t *thread,
9 child_t *child) {

10 add_child (thread->block, child);
11 if (is_full (thread->block))
12 thread->block = swap_full_for_empty
13 (thread->runtime, thread, thread->block);
14 }
15
16 set_t * swap_empty_for_full (runtime_t *runtime,
17 thread_t *thread,
18 set_t *empty) {
19 set_t *full;
20 acquire (runtime->blockset_lock, thread);
21 add_block (runtime->empty_blocks, empty);
22 full = (is_empty (runtime->full_blocks)) ?
23 block_create () :
24 remove_block (runtime->full_blocks);
25 release (runtime->blockset_lock, thread);
26 return full;
27 }
28
29 set_t * swap_full_for_empty (runtime_t *runtime,
30 thread_t *thread,
31 set_t *full) {
32 set_t *empty;
33 acquire (runtime->blockset_lock, thread);
34 add_block (runtime->full_blocks, full);
35 empty = remove_block (runtime->empty_blocks);
36 release (runtime->blockset_lock, thread);
37 return empty;
38 }
39
40 set_t * block_create (void) {
41 set_t *block = set_create ();
42 while (!is_full (block))
43 add_child (block, child_create ());
44 return block;
45 }

Figure 3: Source code for child malloc and free.

4



3 A Stack Abstraction for Method Level Speculation

The method level speculation model is based on the creation of a child speculative task at method invocation.
This child executes the ‘continuation’ code that follows the invocation, and gets joined when the creating
non-speculative parent returns from its call. The child executes in astrongly isolated fashion, such that it is
effectively sandboxed until the parent joins, validates, and decides to commit it. This model depends upon
return value predictors as well as dependence buffering of heap/staticreads and writes via some form of
transactional memory [24].

Assuming we are operating at the method granularity in a Java virtual machine,we can exploit Java’s well-
defined call stack behaviour for child task creation. In particular, a childtask can buffer an entire stack
frame at once from its parent, such that speculative accesses to local variables do not need further buffering.
Although there exists significant prior work on method level speculation, there is no in-depth exploration of
legal operations at the stack frame level of abstraction, which we now seek to provide.

Figure 4: Parent thread operations.

Figure 4 illustrates the actions a non-speculative parent threadP can take. In 4.1 and 4.2,P pushes and pops
stack frameb starting froma; note that unique frames are assigned unique names. These are the expected
stack operations from a sequential execution context. In 4.3P forks a new childC1, and henceC1 getsa’, a
private version ofP’s current stack framea. Barring exceptions, method invocations follow forks as shown
in 4.4. In 4.5P abortsC1 by simply deleting it. Aborts may occur for 4 reasons: 1)P returns to the fork point
and finds a misspeculation inC1; 2) references onP’s stack are altered by the garbage collector, in which
case the entire stack is scanned looking for children to abort; 3) an exception is thrown out of the frameP
pushed after forking; 4) an exception is thrown whileP tries to push a new frame. Aborts must occur before
executing an exception handler in case the handler attempts to fork a child. Finally in 4.6 P commitsC1,
copyinga’ overa. Commits are always preceded by a return from a successful method invocation.

Figure 5 illustrates the general actions a speculative child taskC1 can take. There are special restrictions
on these actions shown in Figures 6–8. In 5.1C1 pushesc, distinct fromb and following it in sequential
execution order. In 5.2c is popped;C1 is free to pop any frame that it has pushed. Upon returning to a
frame pre-existingC1, that frame must be copied fromP as shown in 5.3. This lazy copying allows for
relatively arbitrary speculation and is a critical performance optimization. 5.4showsC1 which copieda to
a’ and subsequently pushedd ande. Upon commit,P copies over the entire range of live stack frames from
C1 and resumes at the point where it stopped ine. If P were to commitC1 befored ande were pushed
the end result would bea’ alone forP. As a safety constraintC1 can never invoke nor return to a native or
synchronized method, althoughP is always free to.

5



Figure 5: Child task operations.

Figure 6: Out-of-order nesting: many children per parent.

6



The speculation model developed thus far only allows for one child per parent thread. Figure 6 extends it
to allow P to create one child per non-leaf stack frame, a kind ofout-of-order nested speculation. In 6.1
P already hasC1 in a when it createsC2 in b. Naturally, this does not inhibit the progress ofC1, which
pushesd at the same height asb in 6.2. However,C2 cannot return to a frame in whichP already has a
child; in 6.3C1 is anelder sibling of C2, andC2 simply popsb’ and stops execution. IfP were then to
commitC2 it would end up ina without copyingb’ . An implementation might support merging ofC1 and
C2, but a dynamic profiling system can instead record encounters with elder siblings and input this data to
fork heuristics to avoid creating children likely to collide. Finally, in 6.4P commitsC2, getting framesb’
andd, and this has no impact onC1. In general, for two framesx andy wherey has been pushed afterx,
everything reachable fromy happens before anything subsequently reachable fromx.

Figure 7: In-order nesting: children of children.

Out-of-order speculation provides extra parallelism, but thein-order nested speculation depicted in Figure 7
provides even more. In 7.1, childC1 createsC2 and entersc. HereC2 getsa” , its own local version of
C1’s a’. If C1 popsc then it must stop execution; compare with 6.3, the other case where speculative tasks
collide. 7.1 illustrates how method level speculation can subsume loop level speculation if a loop body is
extracted into a method call [5]:a could execute the start of the loop, forkC1 and immediately enterb to
execute the extracted body.C1 would then forkC2 and immediately enterc to execute the second iteration
of the extracted body. The recursive structure of in-order nesting requires that aborts be recursive as well.
In 7.2 P abortsC1, but before that process can complete it must find all ofC1’s children and abort them
first; thusC2 actually gets freed beforeC1. For deep enough aborts it may be worth offloading an abort task
to a separate processor to minimize the impact onP. Finally, in-order speculation introduces complexity
with respect to buffering pre-existing frames.C2 popsd’ in 7.3 and getsb” not fromb in P but fromb’ in
C1. This requires a backwards pointer fromC2 to C1 in the VM for efficient copying. Subsequently in 7.4
C2 popsb” to return toa’, which must be copied froma in C2’s grandparentP. This operation is always
deterministic, as lower frames on the stack execute later in program order, and in particular there is no way
for C1 to create a version ofa nor for P itself to modifya while C2 is still executing.

Figure 8 depicts the intricacies of commits under in-order nesting. In 8.1P commitsC1, inheriting all of
its stack frames as usual, but also inheritingC2 which is attached toc. Instead of freeingC1, P puts it on
a ‘garbage’ list for later collection when all ofC1’s children are dead. We need only one such backwards-
pointing list per parent. Each node on the list is kept until completion of a DFS over its child nodes. In 8.2P

7



Figure 8: In-order nesting: commit, and pop from garbage.

now commitsC2 and getsc’ . C2 has no children and is immediately freed, and now that all ofC1’s children
are deadC1 is also freed. The freelist scheme described in Section 2 was motivated by theneed to handle
C2’s memory:C1 allocatesC2 on processor 2, some helper/worker thread executesC2 on processor 3, and
finally P freesC2 on processor 1. The reasonC1 must be kept on a garbage list untilC2 is dead is illustrated
in 8.3. C2 popsc’ and getsa” from a’. However, the sourcea’ is always located inC1, even whenC1 has
been committed byP as in the figure. This eliminates a race condition whereC2 popsc’ and gets a pointer
to C1, P commits and freesC1, and thenC2 attempts to copy the memory fromC1. The alternative is to
synchronize on lazy frame copying which is too expensive.

Figure 9: In-order and out-of-order nesting combined.

Figure 9 uses multiple patterns from Figures 4–8 to illustrate a combination of in-order and out-of-order
nesting. The steps taken are 4.4, 7.1, 6.1, 5.1, 8.1, 6.4, 4.2, and 8.2. Not shown is that after 8.1C1 is kept on
a garbage list untilC3 andC2 are freed. We classify this speculation as havingnesting depth 2 andnesting
height 2 for its two levels each of in-order and out-of-order nesting respectively.

8



P C1 C2 C3
a() { ... X

b(); X
... // a’ X
c() { ... X

d(); X X
... // c’ X
e(); X X

... } X
... } // a’’ X X

Figure 10: Sequential execution order of Figure 9.

Figure 10 depicts the normal sequential execution order of the code executed in Figure 9 and its mapping to
non-speculative parent thread and speculative child tasks. An X in anyof P, C1, C2, or C3 indicates that the
corresponding portion of the execution was executed by that thread or task. Note that there may be an X in
P at the same time as any child, corresponding to a join, commit, and transfer of control in that stack frame.

4 Related Work

Speculative multithreading is relatively well-studied from a hardware perspective; Kejariwal and Nicolau
maintain an extensive bibliography [13]. A general problem in SpMT is deciding where to fork speculative
child tasks. Many systems operate at the loop level, some operate at the basicblock level, and a few
operate at the method level. We focus on creating child tasks at the method level for Java [21–25]. This
appears appropriate since short methods and frequent invocations are idiomatic in Java programs [5,11,28,
30]. However, we also believe that well-structured programs written in other languages could benefit from
method level speculation, and that our designs are not only applicable to Java. Method level speculation can
also subsume loop level speculation [5], as described for Figure 7.1, albeit with extra invocation overhead.

There is prior work on both in-order and out-of-order nested speculation. Renauet al. extend a model with
unlimited nestingdepth to allow unlimited nestingheight [26]. This contrasts with our work that began
with unlimited nesting height [24] and now supports unlimited nesting depth. Theypropose a hardware
architecture based on timestamps that is fairly complex and does not translate easily to software. Our model
is designed for software SpMT and exploits a nearly universal program structure—the call stack—to ensure
correctly ordered commits.

Our stack abstraction also provides a simple framework for understandingand unifying method level spec-
ulation approaches. For example, Whaley and Kozyrakis evaluate heuristics for Java method speculation,
claiming to allow speculative threads to create speculative threads, i.e. in-order nesting [30]. However, all
of their examples actually demonstrate out-of-order nesting. Goldsteinet al. provide an efficient implemen-
tation ofparallel call that uses a stack abstraction dual to the one presented here: the child taskexecutes the
method and the parent thread executes the continuation [9]. Pillar is a new language that supports this ab-
straction [1]. Although parallel call was not designed to be speculative,the speculation rules of our system
could nevertheless be translated straightforwardly. Zhai briefly describes stack management for specula-
tion [33], but does not provide details on the complexities of entering and exiting stack frames speculatively.
Zahran and Franklin examine return address prediction in a speculative multithreading environment [32],
and later consider entire trees of child tasks [31].

Osborne developed speculative computation for Multilisp [20]. The purpose of speculative execution in that

9



context is somewhat different: instead of aborting speculative computations because they are incorrect, the
computations are aborted because they are unnecessary, and the abortion is a way to reclaim computation
resources.

Mattson, Jr. found that speculative evaluation in Haskell can be supported with low overhead [17]. Ennals
and Peyton Jones present a similar optimistic execution system that works together with the lazy evaluation
model in Haskell [8]. Harris and Singh later used runtime feedback to drive speculation in Haskell with good
results [10]. All of these speculation models might benefit from being described using our stack abstraction,
and in turn our stack abstraction would become more robust if we extended itto accomodate them.

Our mechanism for recycling child task data structures is directly inspired bythe Hoard model [2], which
uses per-processor and global heaps to bound memory consumption andavoid false sharing. Michael later
provide a lock-free allocator based on Hoard that offers a significantimprovement [18], and Schneideret
al. demonstrate another recent scalable malloc implementation [27]. Dice and Garthwaite also provide a
mostly lock-free malloc that is 10 times faster than Hoard as originally published insome cases [6].

Somewhat heretically [3], we have created a specialized lightweight Hoard-like custom memory allocator
that differs in two ways from the original Hoard publication: it uses per-thread blocks, called superblocks,
rather than per-processor blocks, and it recycles entire ownership dominator trees, maintaining links across
a library interface. The key assumption we make is that there is one thread per processor. This is suitable
for our constrained speculation machinery which takes single threads andparallelizes them, and will not
speculate at all if all processors are occupied by non-speculative threads. Of course, the Hoard software has
since evolved to accomodate initial performance concerns, including in particular by supporting per-thread
sub-heaps. Thus the recycling of entire structures at once is expectedto be the only real advantage of our
system in a side-by-side comparison.

Boyapatiet al. combine user-specified ownership types with region-based memory management [4]. Lattner
and Adve later provide a system for automatic pool or region allocation that segregates the memory required
by an individual data structure into its own pool [15]. Mitchell subsequently examines the runtime structure
of object ownership for many large real-world applications, identifying many dominator trees [19]. Our
experience suggests it would be interesting to combine the different ideas from these works to create a
general purpose multiprocessor allocation system that returns usable pre-assembled data structures.

5 Conclusions & Future Work

The performance and correctness issues in speculative multithreading are all memory-based. Our first con-
tribution is a simple multithreaded custom allocator for child task data structures that relies on knowledge
about ownership dominator trees. Although it eliminates major performance bottlenecks in our system,
we have not actually experimented with state-of-the-art multithreaded allocators in a controlled compari-
son. Our intuition is that although the synchronization and memory locality in our scheme are probably
sub-optimal, the 37-fold reduction in calls to malloc and free more than compensates. We would be quite
excited to see recycling of aggregate data structures evolve into a general purpose memory management
paradigm.

Our second contribution is a clean, simple, and comprehensive stack based abstraction for method level
speculation. As future work, one alternative is to fork and join children atmethod entry and exit points
instead of at callsites [30]. Our model can accomodate this with minor modifications. Another issue is that
our model assumes references to stack variables cannot be passed to callee frames. Although definitely a
problem for C programs, JVMs are also permitted to allocate a Java object onthe stack and this can cause

10



synchronization errors. If some child copies a parent frame with a stack allocated object, the parent thread
modifies that object, and then the parent commits the child, this will erase the modification. As for potential
for compiler assistance, our implementation copies entire stack frames betweenprocessors, whereas only
those local variables live after invocation need copying. Furthermore, acompiler could pack the copied
locals together for efficiency.

Finally, we would like to provide a small-step operational semantics for our stack model and use it to
prove that a concurrent speculative multithreading algorithm operating onour abstraction satisfies various
correctness properties. We would also like to unify our abstraction with the parallel sequential call one
used by Pillar in order to transfer results. As more general challenges, speculation past monitor operations
introduces significant complexity [29], as does speculative object allocation [12] and broader reconciliation
with transactional execution [14].

We have built a prototype system consisting of SableSpMT [22–24] and libspmt [25] that supports every-
thing we describe for Java programs. However, the performance indications in this paper are qualitative and
await deeper characterization. We recently summarized our work on SpMTto date and major directions for
future work [21].

Acknowledgements

This research was funded by the IBM Toronto Centre for Advanced Studies and the Natural Sciences and
Engineering Research Council of Canada. This report was originally submitted to MSPC’08 in November
2007. We would like to thank the referees for their helpful comments, questions, and suggestions.

References

[1] T. Anderson, N. Glew, P. Guo, B. T. Lewis, W. Liu, Z. Liu, L. Petersen, M. Rajagopalan, J. M. Stich-
noth, G. Wu, and D. Zhang. Pillar: A parallel implementation language. InLCPC’07: Proceedings of
the 20th International Workshop on Languages and Compilers for Parallel Computing, volume 5234
of LNCS: Lecture Notes in Computer Science, pages 141–155, Oct. 2007.

[2] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson. Hoard: A scalable memory alloca-
tor for multithreaded applications. InASPLOS-IX: Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 117–128, Nov.
2000.

[3] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering custom memory allocation. InOOP-
SLA’02: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 1–12, Nov. 2002.

[4] C. Boyapati, A. Salcianu, J. William Beebee, and M. Rinard. Ownership types for safe region-based
memory management in real-time Java. InPLDI’03: Proceedings of the ACM SIGPLAN 2003 Con-
ference on Programming Language Design and Implementation, pages 324–337, June 2003.

[5] M. K. Chen and K. Olukotun. Exploiting method-level parallelism in single-threaded Java programs. In
PACT’98: Proceedings of the 7th International Conference on Parallel Architectures and Compilation
Techniques, pages 176–184, Oct. 1998.

11



[6] D. Dice and A. Garthwaite. Mostly lock-free malloc. InISMM’02: Proceedings of the 3rd Interna-
tional Symposium on Memory Management, pages 163–174, June 2002.

[7] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software behavior oriented paralleliza-
tion. In PLDI’07: Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 223–234, June 2007.

[8] R. Ennals and S. P. Jones. Optimistic evaluation: an adaptive evaluation strategy for non-strict pro-
grams. InICFP’03: Proceedings of the 8th ACM SIGPLAN International Conference on Functional
Programming, pages 287–298, Aug. 2003.

[9] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy threads: Implementing a fast parallel call.
JPDC: Journal of Parallel and Distributed Computing, 37(1):5–20, Aug. 1996.

[10] T. Harris and S. Singh. Feedback directed implicit parallelism. InICFP’07: Proceedings of the 2007
ACM SIGPLAN International Conference on Functional Programming, pages 251–264, Oct. 2007.

[11] S. Hu, R. Bhargava, and L. K. John. The role of return value prediction in exploiting speculative
method-level parallelism.JILP: Journal of Instruction-Level Parallelism, 5:1–21, Nov. 2003.

[12] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hertzberg. McRT-Malloc: a scalable transac-
tional memory allocator. InISMM’06: Proceedings of the 2006 International Symposium on Memory
Management, pages 74–83, June 2006.

[13] A. Kejariwal and A. Nicolau. Speculative execution reading list.http://www.ics.uci.edu/
∼akejariw/SpeculativeExecutionReadingList.pdf, 2007.

[14] J. R. Larus and R. Rajwar.Transactional Memory. Morgan & Claypool, Dec. 2006.

[15] C. Lattner and V. Adve. Automatic pool allocation: improving performance by controlling data struc-
ture layout in the heap. InPLDI’05: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 129–142, June 2005.

[16] D. Lea. A memory allocator.http://gee.cs.oswego.edu/dl/html/malloc, Apr. 2000. First
published in 1996.

[17] J. S. Mattson, Jr.An effective speculative evaluation technique for parallel supercombinator graph
reduction. PhD thesis, University of California at San Diego, La Jolla, California, USA, 1993.

[18] M. M. Michael. Scalable lock-free dynamic memory allocation. InPLDI’04: Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementation, pages 35–46,
June 2004.

[19] N. Mitchell. The runtime structure of object ownership. InECOOP’06: Proceedings of the 20th
European Conference on Object-Oriented Programming, volume 4067 ofLNCS: Lecture Notes in
Computer Science, pages 74–98, July 2006.

[20] R. B. Osborne. Speculative computation in Multilisp. InLFP’90: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, pages 198–208, June 1990.

[21] C. J. F. Pickett. Software speculative multithreading for Java. InOOPSLA’07 Companion: Companion
to the Proceedings of the 22nd ACM SIGPLAN Conference on Object Oriented Programming Systems
and Applications, pages 929–930, Oct. 2007.

12



[22] C. J. F. Pickett and C. Verbrugge. Return value prediction in a Java virtual machine. InVPW2:
Proceedings of the 2nd Value-Prediction and Value-Based Optimization Workshop, pages 40–47, Oct.
2004.

[23] C. J. F. Pickett and C. Verbrugge. SableSpMT: A software framework for analysing speculative mul-
tithreading in Java. InPASTE’05: Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pages 59–66, Sept. 2005.

[24] C. J. F. Pickett and C. Verbrugge. Software thread level speculation for the Java language and virtual
machine environment. InLCPC’05: Proceedings of the 18th International Workshop on Languages
and Compilers for Parallel Computing, volume 4339 ofLNCS: Lecture Notes in Computer Science,
pages 304–318, Oct. 2005.

[25] C. J. F. Pickett, C. Verbrugge, and A. Kielstra. libspmt: A library forspeculative multithreading.
Technical Report SABLE-TR-2007-1, Sable Research Group, School of Computer Science, McGill
University, Mar. 2007.

[26] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas. Tasking with out-of-order spawn in
TLS chip multiprocessors: Microarchitecture and compilation. InICS’05: Proceedings of the 19th
Annual International Conference on Supercomputing, pages 179–188, June 2005.

[27] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. Scalable locality-conscious multithreaded
memory allocation. InISMM’06: Proceedings of the 2006 International Symposium on Memory Man-
agement, pages 84–94, June 2006.

[28] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In OOPSLA’05: Proceedings of the
20th Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and
Applications, pages 439–453, Oct. 2005.

[29] A. Welc, S. Jagannathan, and A. L. Hosking. Revocation techniques for Java concurrency.CC:PE:
Concurrency and Computation: Practice and Experience, 18(12):1613–1656, Oct. 2006.

[30] J. Whaley and C. Kozyrakis. Heuristics for profile-driven method-level speculative parallelization. In
ICPP’05: Proceedings of the 2005 International Conference on Parallel Processing, pages 147–156,
June 2005.

[31] M. Zahran and M. Franklin. Dynamic thread resizing for speculative multithreaded processors. In
ICCD’03: Proceedings of the 21st International Conference on Computer Design, pages 313–318,
Oct. 2003.

[32] M. M. Zahran and M. Franklin. Return-address prediction in speculative multithreaded environments.
In HiPC’02: Proceedings of the 9th International Conference on High Performance Computing, pages
609–619, Dec. 2002.

[33] A. Zhai. Compiler optimization of value communication for thread-level speculation. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA, Jan. 2005.

13


