
McGill University

School of Computer Science

Sable Research Group

Adaptive Software Return Value Prediction

Sable Technical Report No. 2009-1

Christopher J.F. Pickett and Clark Verbrugge and Allan Kielstra
{cpicke,clump}@sable.mcgill.ca, kielstra@ca.ibm.com

June 5th, 2009

w w w . s a b l e . m c g i l l . c a

Adaptive Software Return Value Prediction

Christopher J. F. Pickett
Clark Verbrugge

School of Computer Science, McGill University
Montréal, Qúebec, Canada

{cpicke,clump }@sable.mcgill.ca

Allan Kielstra

IBM Toronto Lab
Markham, Ontario, Canada

kielstra@ca.ibm.com

Abstract
Return value prediction (RVP) is a useful technique that
enables a number of program optimizations and analyses.
Potentially high overhead, however, as well as a depen-
dence on novel hardware support remain significant barri-
ers to method level speculation and other applications that
depend on low cost, high accuracy RVP. Here we investi-
gate the feasibility of software-based RVP through a com-
prehensive software study of RVP behaviour. We develop a
structured framework for RVP design and use it to experi-
mentally analyze existing and novel predictors in the context
of non-trivial Java programs. As well as measuring accu-
racy, time, and memory overhead, we show that an object-
oriented adaptive hybrid predictor model can significantly
improve performance while maintaining high accuracy lev-
els. We consider the impact on speculative parallelism, and
show further application of RVP to program understanding.
Our results suggest that software return value prediction can
play a practical role in further program optimization and
analysis.

Categories and Subject DescriptorsD.3.3 [Programming
Languages]: Language Constructs and Features—Proce-
dures, functions, and subroutines; D.2.8 [Software En-
gineering]: Metrics—Complexity measures; Performance
measures; D.3.4 [Programming Languages]: Processors—
Code generation; Compilers; Interpreters; Optimization;
Run-time environments; D.4.1 [Operating Systems]: Pro-
cess Management—Concurrency; Threads

General Terms Design, Experimentation, Languages, Mea-
surement, Performance

Keywords adaptive optimization, memoization, method
level speculation, program understanding, return value pre-
diction

Submitted to OOPSLA’09 on March 23rd, 2009. Rejected on May 10th, 2009. Please
note that our experimental setup treated unconsumed callsites identified by thereturn
value use analysis described in SABLE-TR-2004-6 [32] as void for the purposesof
return value prediction. This was unintentional and it perturbed the results slightly.

1. Introduction
Return value prediction,(RVP) and the more general pur-
posevalue prediction,are techniques which allow a program
to guess the result of a method call or computation prior to
actual execution. A variety of speculative optimizations are
thus enabled, with their success and practical value depend-
ing on the accuracy and relative overhead of the prediction
system. Many approaches to (R)VP of varying complexity
and accuracy have been proposed; the majority, however,
focus on hardware designs as the primary means of reduc-
ing overhead costs, limiting application of RVP to novel
architectures. Software approaches to value prediction re-
move this barrier, allowing greater and more portable use
of value prediction data in optimization and analysis, but
require careful optimization and understanding of predictor
performance in order to ensure practical efficiency.

In this paper we perform a comprehensive study of soft-
ware RVP in a Java context. We first consider various kinds
of basic predictors presented in the literature, presenting
an organizational framework that suggests several further
novel predictor designs. This includes both simple, resource-
limited designs and more complex, table-based predictors
that have significant resource requirements. The behaviour
of these individual predictors gives a core understanding of
the (return value) predictability of non-trivial Java programs,
as well as the relative effectiveness, cost and accuracy of pre-
dictor types.

We use this data to justify the design of ahybrid predic-
tor [10], a composite predictor that adaptively applies and
selects individual sub-predictors for performance and accu-
racy. Either through offline profiles, or from actual runtime
adaptation, a hybrid can optimize RVP performance, dramat-
ically reducing overhead while maintaining a very high ac-
curacy. We show that accuracies of up to 80% can feasibly
be achieved on standard benchmarks, at a small fraction of
the cost of a non-adaptive hybrid model.

A deeper measure of success is in terms of the effect
on applications of RVP. Such applications include expos-
ing further speculation opportunities with concurrency con-
structs such as “safe” futures [48, 50], increasing the ac-

curacy of run-ahead prefetching [1], and aiding software
self-healing [26]. RVP may also contribute to profile ori-
ented non-speculative compiler optimizations. We consider
the effects on method level speculation and program under-
standing. Method level speculation is perhaps the most well-
known consumer of RVP data, and benefits from greater par-
allelism exposed by the longer thread lengths enabled by
successful prediction. For the latter application, predictor
selection correlates with program behaviour, with the dis-
tribution of ideal sub-predictors within an adapting hybrid
suggesting specific behaviours.

Our study takes advantage of and considers its software
context at several levels. The higher level of abstraction pro-
vided by a software approach simplifies the design of easily
composable, modular predictors, and this was in fact essen-
tial to designing an effective hybrid, as well as recognizing
the potential for our proposed, new predictors. Several of our
predictors also make use of the relatively abundant memory
resources available at the software level, improving accuracy
by reducing interference otherwise caused by resource shar-
ing. Although effective, resource-intensive predictors have
an obvious cost, and a deep understanding of experimental
behaviour in terms of cost and accuracy allows us to deter-
mine optimized trade-offs.

1.1 Contributions

We make the following specific contributions:

• A unification framework for relating predictors to each
other based on the patterns they capture, their math-
ematical expression as functions of inputs and value
sequences, and their implementation. This framework
shows how some predictors can be composed of others in
an object-oriented sense, which in turn further simplifies
understanding and implementation. We provide several
new predictors suggested by the unification framework.
The 2-delta last value and last N stride predictors are
logical counterparts of the previously reported 2-delta
stride and last N value predictors. We also provide a new
table-based memoization predictor that hashes together
function arguments, as well as memoization–stride and
memoization–finite context method predictors based on
it.

• An adaptive software hybrid predictor composed of many
sub-predictors that dynamically specializes to whichever
sub-predictor performs best. It is fast, accurate, memory-
efficient, and suitable for a dynamic compilation envi-
ronment. Although hardware hybrid predictors are well
studied, our object-oriented design and implementation
enables two unique optimizations. First, we allocate one
hybrid predictor object per prediction point, and there-
fore enable specialization at prediction point granularity,
eliminating false sharing and improving accuracy. Sec-
ond, we bypass the execution of unused sub-predictor
strategies and actually free their associated data struc-

tures during specialization, improving speed and reduc-
ing memory consumption.

• A software library implementation of return value predic-
tion. This library is open source, portable, modular, and
supported by unit tests. We use this library to perform a
set of experimental analyses with a range of benchmarks
that reveal the memory consumption, speed, and accu-
racy characteristics of individual sub-predictors as well
as the hybrid predictor. We then demonstrate application
of return value prediction to both method level specula-
tion and program understanding.

In the next section we present our main experimental sys-
tem design. Section 3 describes the basic predictors we in-
vestigate and gives experimental data on their behaviour.
Our hybrid design and experimentation is shown in Sec-
tion 4, and in Sections 5 and 6 we discuss results with respect
to method level speculation and understanding applications.
Finally, Section 7 describes related work, followed by con-
clusions and future work.

2. System Design and Environment
Our approach is based on a library implementation of return
value prediction. The library includes a variety of predictors,
as well as a clean interface to a client virtual machine. This
modular design allows for relatively easy experimentation,
and we explore RVP behaviour using an interpreter-based re-
search Java VM client. Below we describe the basic system
structure and client configuration, followed by initial analy-
sis of our benchmarks and overhead costs.

2.1 System

Figure 1. Client–library communication.

Figure 1 gives an overview of the general RVP library
structure and client–library communication process. At the
library’s core is a table of callsite objects, each of which has
a (hybrid) predictor, a spinlock to protect that predictor,a
method descriptor, identification information, and profiling
information. When a non-void callsite is first encountered
during code generation/preprocessing, the client registers the

callsite identification with the library, using the callsite ad-
dress in VM memory, class, method, program counter, and
target method descriptor. The library maintains a hashtable
of callsite objects, and either creates or returns a new ob-
ject representing the callsite to the client on registration. The
client will then use this object as context during runtime ex-
ecution of the associated callsite. The association of unique
predictor objects with each callsite eliminates false sharing
and simplifies predictor specialization decisions.

When non-void method calls are encountered during exe-
cution, the client transfers control and context information to
the RVP library code. This is generically performed through
bracketing library calls to two functions: apredict() func-
tion that performs the actual prediction, and anupdate()

function that updates predictor state after the actual return
value is known. Note that for performance, in neither case
is the Java Native Interface (JNI) call mechanism used—we
bypassed the JNI mechanism after carefully verifing that our
code does not violate any assumptions made by the client
JVM used for testing. More general and conservative ap-
proaches are possible,e.g.,through JNI-inlining [45].

Several predictors rely on method argument data for the
prediction and update steps. This includes explicit method
arguments as well as any implicit object reference for non-
static methods, the precise arrangement of which can vary
between clients. The library thus contains an argument pars-
ing module that reads arguments from the interpreter call
stack, zeroes out unused bytes, and arranges the arguments
contiguously in memory, based on the argument descriptor.
Although this is not the most efficient implementation, it is
the most portable, and we control for it in our experiments.

Finally, each actual predictor in our system is generically
contained within the hybrid predictor interface. The hybrid
design delegates to one or more sub-predictors as required,
and so this acts as a general wrapper for all of our predic-
tors. Once a prediction is made, the value is returned to the
client, and a subsequent call updates the predictor state. Hy-
brid specialization to specific sub-predictor strategies is also
performed, as described in Section 4.

The return value prediction framework is implemented as
part of libspmt, a library for speculative multithreading [36].
libspmt is written in an object-oriented fashion in the com-
mon subset of C and C++, compilable with GCC and XL
C/C++, and runnable under Linux and AIX on 64-bit Intel
and POWER machines. We use modern 64-bit Intel dual-
core machines in our experiments with 8GB of RAM.

2.2 VM Client

Our interpreter client is SableSpMT, a complete imple-
mentation of method level speculation in a Java virtual
machine [34]. SableSpMT is an extension of SableVM, a
portable Java bytecode interpreter designed as a research
framework [16], and was chosen to allow us to also eval-
uate application of return value prediction to method level
speculation.

2.3 Initial Analysis

The basic framework allows for exploration of program be-
haviour in a variety of ways that do not necessarily depend
on specific predictor designs. Below we describe our bench-
marks, their important structural properties, and generalsys-
tem overhead. Sections 3 and 4 provide more detailed exper-
imentation on the individual and hybrid predictors respec-
tively.

Benchmarks. We use the SPEC JVM98 benchmarks with
input set S100 for experimental evaluation [44]. Although
these benchmarks are not as complex or memory-intensive
as the more recent DaCapo benchmarks [2], they are faster
to execute, more cooperative with SableVM, and more
than sufficient to explore our contributions to software re-
turn value prediction. These results greatly extend previous,
hardware-specific work in the area, which used datasets sev-
eral orders of magnitude smaller in a more restricted con-
text [18].

benchmarkcomp db jack javac jess mpeg mtrt
methods 670 714 936 1.51K 1.15K 838 863
callsites 2.48K 2.79K 4.56K 7.20K 4.32K 2.94K 3.71K

invokes (V) 93.4M 54.4M 35.0M 39.9M 23.3M 45.2M 28.4M
invokes (NV) 133M 116M 62.9M 82.3M 102M 65.8M 259M
escapes (V) 0 0 608K 0 0 0 0
escapes (NV) 0 0 68 41.5K 0 0 0
returns (V) 93.4M 54.4M 34.4M 39.9M 23.3M 45.2M 28.4M
returns (NV) 133M 116M 62.9M 82.3M 102M 65.8M 259M
booleansZ 6.70K 11.1M 17.3M 19.5M 35.8M 13.2M 3.07M

bytesB 0 0 580K 39.3K 0 0 0
charsC 8.85K 25.2K 8.53M 3.80M 24.4K 6.96K 20.8K

shortsS 0 0 0 73.0K 0 18.0M 0
ints I 133M 48.1M 17.9M 35.9M 20.7M 34.6M 4.54M

longsJ 440 152K 1.23M 818K 100K 15.7K 2.07K
floatsF 102 704 296K 104 1.04K 7.82K 162M

doublesD 0 0 0 160 1.77M 56 214K
referencesR 17.0K 56.2M 17.0M 22.2M 43.5M 24.3K 89.6M

Table 1. Benchmark properties.V: void; NV: non-void; escapes:
escaping exceptions.

Table 1 presents various benchmark properties of inter-
est to our investigation. In the first section, the numbers
of methods and callsites in the dynamic call graph are pre-
sented. Predictors may in principle be associated with meth-
ods, callsites, or the invocation edges that join them. We
choose to associate predictors with callsites to limit the
scope of our experimental evaluation. An interesting area
for future exploration would involve associating predictors
with methods or invocation edges instead and studying the
differences.

In the second section, void and non-void invokes, es-
capes, and returns are presented. Void methods do not return
values and are excluded from our analysis, but we present
these data for the sake of completeness. Method invocation
can in general complete normally, updating the predictor as
described earlier, or abnormally through exceptional control

flow. In the latter case case there is no return value and the
predictor cannot be updated. Our experiments make predic-
tions on all non-void invocations, but only update the pre-
dictor on normal returns. Accuracy measures are thus only
reported over the total number of non-void returns. As the
data show, exceptions are relatively rare, even for supposedly
exception-heavy benchmarks such asjack , which means
that exceptions do not have a large impact in any case.

In the third section, the non-void returns are classified ac-
cording to the nine Java primitive types. Type information
is interesting because some types are inherently more pre-
dictable than other types, suggesting specialization and com-
pression strategies, and because it describes the behaviour of
the benchmarks to some extent.mtrt relies heavily on float
methods,mpegaudio uses a surprising number of methods
returning shorts,compress returns almost exclusively ints,
and the remaining benchmarks use more or less equal mixes
of int, boolean, and reference calls.

Communication overhead. Our design emphasizes mod-
ularity and ease of experimentation over performance. The
use of an external library, multiple calls, portable argument
parsing, and so forth has an obvious performance impact,
much of which could be ameliorated by incorporating the
RVP code directly into the VM, interleaving RVP code in
generated code, and generally optimizing its performance
along with other VM activities. We thus performed basic ex-
periments to isolate and measure the overhead of our frame-
work.

Figure 2 shows the slowdown due to communication
overhead with the predictor module of the library. These
data are gathered using a “null” predictor that simply re-
turns zero for every prediction, and performs no actual up-
date computation. In future experiments we control for this
overhead by using the null predictor performance results as
a baseline. The comparatively large slowdown formtrt is
mainly due to excessive contention in our simple predic-
tor locking strategy, combined with a relatively high num-
ber of method calls. Improved lock-based or even lock-free
designs would alleviate this problem and in general mul-
tithreaded predictor interactions are an interesting vector
for future work. We observed thatraytrace , the single-
threaded version ofmtrt , not included in SPEC JVM98,
itself has a slowdown of 4.25. In general, overhead scales
with the number of calls, and we expect downstream appli-
cations to tailor their use of RVP to the locations where it
can actually be useful.

3. Predictors
A wide variety of predictors have been proposed, and a ba-
sic organization and evaluation are essential to our study.It
is also the case that many predictors described in the litera-
ture are presented as hardware implementations, often using
circuit diagrams. This clearly expresses the design in terms
of feasibility, power and space efficiency, but many of these

1.0

2.0

3.0

4.0

5.0

6.0

7.0

sl
ow

do
w

n

benchmark

comp
db
jack
javac
jess
mpeg
mtrt

Figure 2. Null predictor slowdowns.

details can also obscure the intended algorithmic behaviour
of the predictor. In designing a software solution, we ab-
stracted the simplest implementation approach for each pre-
dictor, and so discovered many commonalities between pre-
dictors that we had not previously considered. Based on this
exploration, we developed a unification framework for value
predictors to clarify their intended behaviour and implemen-
tation and relate them to each other. This framework also
suggested several new predictors.

Tables 2, 3, and 4 give a structural presentation of a va-
riety of common predictors. These are organized as core
history-based predictor designs, extended predictors that
also consume argument state, and composite predictors that
contain sub-predictors. In each case we provide an ideal-
ized mathematical expression, an example if appropriate,
and the data and pseudo-code used to implement the ac-
tual predictor. Mathematical expression illustrates the pre-
dictor behaviour by showing how the current prediction
(vn) is derived from the previous history of actual return
values (vn−1, vn−2, . . .). Implementation details include ac-
tual state, with pseudo-code divided intopredict() and
update() methods according to our predictor interface.
The former may receive current method arguments, and re-
turns a new predicted value, while the latter receives the
actual return value in order to update its internal state. Note
that for brevity we have made use of several non-standard,
but self-explanatory functions in these descriptions.

In the following subsections we describe our logic in con-
structing Tables 2, 3, and 4 and give further detail on the
individual predictors. We follow this with an experimental
examination using our RVP framework, exploring the rela-
tive accuracy of different predictor designs, as well as their
memory and time costs.

Note that we do not include in the unification framework
predictors that are unsuitable for return value prediction,
nor predictors that are substantially equivalent to the ones
presented here.

3.1 History-based predictors

Table 2 contains the predictors that are based on only the
history of return values for the associated function. Predic-
tor names follow the names reported in the literature. On
the left of the table are predictors that derive their prediction
from the values directly, whereas on the right are predictors

that use the differences orstridesbetween values in the his-
tory. It is useful to think of the stride predictors as derivatives
of the value based predictors. The word “differential” cho-
sen by the authors of the differential finite context method
predictor study is expressing this relationship [17]. An orga-
nized division between base and derivative forms suggests
two new predictors here, the 2-delta last value and last N
stride.

Last value. The last value predictor is perhaps the simplest
useful predictor. It merely predicts that the return valuevn

will be the same as the last valuevn−1 returned by the
function. It has a single fieldlast that gets returned when
making a prediction and assigned to when the actual return
value is known. In the example, after seeing the sequence
1,2,3, a last value predictor would simply predict 3 as the
next output.

Stride. A stride predictor can be seen as a derivative of the
last value predictor, computing a prediction based on their
sum of the last difference and last value. For instance, seeing
1,2, then 3, it would predict 4 as the last value plus the dif-
ference between 2 and 3. While not completely comparable,
this captures most of the same patterns as the last value pre-
dictor as well as new ones. In particular, many loop indices
and other incrementing/decrementing sequences are easily
recognized. Disadvantages are that it takes an extra predic-
tion to warm up, the update and predict operations are some-
what slower, and there is an extra field of storage.

2-delta stride. The 2-delta stride predictor is similar to the
stride predictor, imposing the extra constraint that the stride
must be the same twice in a row before the predictor updates
the stride used to make the prediction. In the example, the
stride of 1 detected early in the history is still used to predict
4 even after seeing 3 twice, whereas a simple stride predictor
would predict 3 based on the last stride. This design reduces
mispredictions by being able to ignore single abberations in
a sequence, as can occur in the context of nested loop iter-
ations. In the hardware literature the 2-delta stride predictor
has an extra “hysteresis” bit to control this.

2-delta last value. The 2-delta last value predictor is a new
predictor that was suggested by the lack of a corresponding,
non-derivative form of the 2-delta stride predictor. A last
value approach is used, but the value stored is only updated
if the last value is the same twice in a row. Given a sequence
such as 1,1,2,3 for instance, the stored last value is not
updated during periods of change, and the predicted value
will be 1 until the return value again repeats.

In a general sense, the 2-delta pattern can be generalized
to arbitraryC-delta predictors, for arbitrary predictors and
constant or boundC. IncreasingC improves robustness, at a
cost of increased warm-up time and larger state.

Last N value. The last N value predictor maintains anN-
length history of the most recent return values, and uses that

list to search for matches to the previous return value. A
match results in a prediction of the next value in the his-
tory. This allows the last N value predictor to identify short
repeating sequences, capturing simple alternations such as
0,1,0,1,. . ., or more complex patterns such as 1,2,3,1,2,3,. . .,
neither of which are ideally predicted by the last value or
stride predictors. Our example illustrates the latter case,
where assumingN ≥ 3, a 1 is predicted based on the pre-
vious value of 3, and a history where in the past a 3 was
followed by a 1.

Last N value is a generalization of the last value predic-
tor, which may also be expressed as a last 1 value predictor.
In their analyses Burtscher and Zorn found thatN = 4 was
a reasonable tradeoff of accuracy against predictor complex-
ity [7], and so we use this configuration in our experiments.

Last N stride. The last N stride predictor is a new predic-
tor suggested by the lack of a corresponding predictor for
the last N value predictor. Structurally identical, it records
strides rather than value history, but also generates a predic-
tion by searching the history for previous repetition to guide
the prediction. It generalizes and subsumes the stride predic-
tor, which can then be considered a last 1 stride predictor.

The example shows a sequence with strides repeating in
the pattern 1,2,3. Given the last value of 13, the last stride
was 3, which historically was followed by a stride of 1.
Adding that to the last value gives the current prediction of
14. This example is obviously contrived, but repeating stride
patterns can occur in several ways, such as by accessing field
addresses that have identical offsets in in multiple objects.

Finite context method. To capture more complex histori-
cal patterns, the finite context method predictor hashes to-
gether a context, or recent history of return values of length
C. The hashed value is used as hashtable key to index the
corresponding return value. This allows for multiple, differ-
ent patterns to coexist, trading hashing and storage costs for
improved accuracy; in the example the pattern 2,3 is detected
as recurrent and used for the next prediction, despite the ex-
istence of other output behaviour before and since. In our
suggested implementation the key is stored as a predictor
field so that later updates do not have to recompute the hash
value, improving performance, although also potentially re-
ducing accuracy.

Hashtable management is a non-trivial concern here, and
as well as good hashing functions table size and growth
must be controlled. We allow hashtables to dynamically
expand up to a maximum table size, and use this design to
assess how accuracy and memory requirements interact. For
a context length we useC = 5 in our experiments, which
Sazeides and Smith also favoured in their study of finite
context method predictors [41].

Differential finite context method. Analogous to the finite
context method, the differential finite context method pre-
dictor hashes together a recent history of strides rather than

values. This is used to look up a stride in a hashtable for
adding to the last value in order to make its prediction. The
example shows a sequence containing the stride pattern 3,2,
which is recognized and used to predict the next value of 21.
DFCM has the potential to be more space efficient and faster
to warm up than the finite context method predictor.

3.2 Argument-based predictors

Accuracy can be also improved by taking into account
method inputs instead or as well as previous outputs when
making a prediction. Table 3 contains the predictors that ex-
ploit this information, again separated in terms of normal
and derivative forms. In each of these cases the predict func-
tion is expanded to receive the current method arguments as
input. In our implementation these predictors are all disabled
for methods that do not take any arguments.

Memoization. The memoization predictor is a new predic-
tor that behaves like the finite context method predictor but
hashes together method arguments instead of a recent history
of return values. The predictor name comes from the tradi-
tional functional programming technique known as memo-
ization or function caching that “skips” pure function exe-
cution when the arguments match previous recorded (argu-
ments, return value) table entries. In our example, the argu-
ment pattern of 1,2,3 is hashed together and the key found
existing in the hashtable, resulting in a prediction of 4 forthe
third invocation of f . Note that a key difference from tradi-
tional memoization approaches is that memoization based
predictions can be incorrect. This makes memoization appli-
cable to all functions that take arguments instead of only the
smaller subset of pure, side-effect free functions in a typical
object-oriented program.

Memoization stride. A similar memoization approach can
be applied to stride values. Memoization stride stores a stride
between return values in its hashtable instead of an actual
value, much like the differential finite context method pre-
dictor, and adds this value to the last value to make a pre-
diction. The example shows a stride of 3 associated with ar-
guments 1,2,3, resulting in a new prediction of 7 based on
the previous value of 4 and the stride found for that argu-
ment pattern. Unlike the differential finite context method
predictor, it is not necessarily more space efficient than its
non-derivative form, since the set of values used to compute
a hashtable key remains the same.

Memoization finite context method. The memoization fi-
nite context method predictor is a direct combination of the
memoization and finite context method predictors. It con-
catenates the recent history of return values with the function
arguments and uses the result to compute a hash value for
table lookup. This is significantly more expensive than ei-
ther memoization or finite context method predictors, but has
the potential to capture complicated patterns that depend on
both historical output and current input. The example shows

a context of length 2, recognizing the output sequence 5,6
followed by an argument of 3, and so predicting the previ-
ously seen value of 7. In comparison, a pure memoization
predictor would predict 9 here from the prior argument/re-
turn pair f (3) = 8, and a pure FCM predictor would return
8 due to the preceding output sequence of 5,6,8.

Parameter stride. The parameter stride predictor identifies
a constant difference between the return value and one pa-
rameter, and uses this to compute future predictions. A sim-
ple example of a function it captures is one that converts
lowercase ASCII character codes to alphabet positions. Al-
though the parameter stride predictor is in general subsumed
by the memoization predictor, parameter stride is simpler in
implementation, warms up very quickly, and requires only
constant storage.

3.3 Composite predictors

Table 4 contains predictors that are composites of one or
more sub-predictors. The hybrid predictor uses the other
predictors directly, whereas composite stride is in fact a
generalized pattern for creating other predictors.

Hybrid. The hybrid predictor is composed of one of each
kind of sub-predictor. To make a prediction, it first obtainsa
prediction from each sub-predictor and records this value.It
then returns the prediction of the predictor with the highest
accuracy. In our implementation we keep track of accuracy
over the lastn values, wheren is the number of bits in a
word. This allows sub-predictors with locally good but glob-
ally poor accuracies to be chosen by the hybrid. To update
the hybrid, for each such sub-predictor update() is called,the
actual return value is compared against the predicted return
value, and the accuracy histories are updated accordingly.

Composite stride. The composite stride predictor is not
an individual predictor but rather a pattern for construct-
ing stride predictors. A composite stride simply contains an-
other predictor that it will use to predict a stride value, and
adds that to the previous return value. Each predictor on the
right hand side of Table 2 as well as the memoization stride
predictor in Table 3, for instance, can be alternatively con-
structed as a composite stride predictor containing the corre-
sponding predictor on the left hand side. In our implementa-
tion we applied this pattern to implement all stride predictors
except the parameter stride predictor, which does not follow
this pattern because it predicts a constant difference between
return value and one parameter. This object-oriented simpli-
fication was only realized once we expressed the predictors
in this framework.

3.4 Runtime Behaviour

The above predictors were implemented within our frame-
work, and experimentally examined for individual accuracy
and efficiency. More complex predictors are expected to im-
prove accuracy, but at a cost of memory and computation,

Last Value [15]

vn = vn−1

e.g.:1, 2, 3 → 3
fields: last
predict():

return last;

update(value t rv):

last = rv;

Stride [15]

vn = vn−1 + (vn−1 − vn−2)

e.g.:1, 2, 3 → 4
fields: last, stride
predict():

return last + stride;

update(value t rv):
stride = rv - last;
last = rv;

2-Delta Last Value(new)

vn = vn−i , wherei is the mini s.t.
vn−i = vn−i−1
or vn−1 if no suchi exists

e.g.:1, 1, 2, 3 → 1
fields: last1, last2
predict():

return last 2;

update(value t rv):
if(rv != last 1) last 1 = rv :
else last 2 = rv;

2-Delta Stride [42]

vn = vn−1 + vn−i − vn−i−1, wherei is the mini
s.t.vn−i − vn−i−1 = vn−i−1 − vn−i−2
or vn−1 if no suchi exists

e.g.:1, 2, 3, 3 → 4
fields: last, stride1, stride2
predict():

return last + stride 2;

update(value t rv):
if(rv - last != stride 1)

stride 1 = rv - last;
else stride 2 = rv - last;
last = rv;

Last N Value [7,24]

vn = vn−i , wherei ≤ N is the mini
s.t.vn−1 = vn−i−1
or vn−1 if no suchi exists

e.g.:1, 2, 3, 1, 2, 3 → 1
fields: values[N], lastcorrectpos
predict():

return values[last correct pos];

update(value t rv):
last correct pos =

contains (values, rv) ?
index of (rv, values) : 1;

push(values,rv);

Last N Stride (new)

vn = vn−1 + (vn−i − vn−i−1), wherei ≤ N is the mini
s.t.vn−1 − vn−2 = vn−i−1 − vn−i−2
or vn−1 − vn−2 if no suchi exists

e.g.:1, 2, 4, 7, 8, 10, 13 → 14
fields: last, strides[N], lastcorrectpos
predict():

return last + strides[last correct pos];

update(value t rv):
last correct pos =

contains (strides, rv - last) ?
index of (rv - last, strides) : 1;

push(values,rv - last);

Finite Context Method [41,42]

vn = vn−i , wherei is the mini s.t.
vn−c = vn−i−c, for all c ≤ C
or 0 if no suchi exists

e.g.:1, 7, 2, 3, 8, 4, 7, 2 → 3 for C = 2
fields: key, context[C]
predict():

key = hash (context[]);
return lookup (key);

update(value t rv):
store (key, rv);
push(context,rv);

Differential Finite Context Method [17]

vn = vn−1 + (vn−i − vn−i−1), wherei is the mini s.t.
vn−c − vn−c−1 = vn−i−c − vn−i−c−1, for all c ≤ C
or 0 if no suchi exists

e.g.:1, 6, 9, 11, 16, 19 → 21 forC = 2
fields: last, key, context[C]
predict():

key = hash (context[]);
return last + lookup (key);

update(value t rv):
store (key, rv);
push(context,rv - last);

Table 2. History-based predictors.Hashing and searching functions are not shown; thepush function adds a new value to an array, shifting
all other elements down and removing the oldest element.

Memoization (new)

vn = vn−i , wherei is the mini s.t.
args(n) = args(n − i)
or 0 if no suchi exists

e.g.: f (1, 2, 3) = 4, f (4, 5, 6) = 7, f (1, 2, 3) → 4
fields: key
predict(value t args[]):

key = hash (args[]);
return lookup (key);

update(value t rv):

store (key, rv);

Memoization Stride (new)

vn = vn−1 + (vn−i − vn−i−1), wherei is the mini
s.t.args(n) = args(n − i)
or 0 if no suchi exists

e.g.: f (1, 2, 3) = 4, f (1, 2, 3) = 7, f (1, 2, 3) → 10
fields: key, last
predict(value t args[]):

key = hash (args[]);
return last + lookup (key);

update(value t rv):
store (key, rv);
last = rv;

Memoization Finite Context Method (new)

vn = vn−i , wherei is the mini s.t.
vn−C = vn−i−C, for all c ≤ C, and
args(n) = args(n − i)
or 0 if no suchi exists

e.g.: f (1)=5, f (2)=6, f (3)=7,

f (3)=9, f (1)=5, f (5)=6, f (5)=8,

f (1)=5, f (2)=6, f (3) → 7 for C = 2
fields: key, context[C]
predict(value t args[]):

key = hash (concat (args[],context[]));
return lookup (key);

update(value t rv):
store (key, rv);
push(context,rv);

Parameter Stride [18]

vn = args(n)[a] + (vn−i − args(n − i)[a]),
wherei is the mini s.t.
vn−i − args(n − i)[a] = vn−i−1 − args(n − i − 1)[a]
for some argument indexa, or 0 if no suchi exists

e.g.: f (‘r ’) = 17, f (‘v ’) = 21, f (‘ p’) → 15
fields: a = A, old args[A], strides[A]
predict(value t args[]):

old args[] = args[];
return a < A ?

args[a] + strides[a] : 0;

update(value t rv):
for (i = A-1; i ≥ 0; i- -)

if (rv - old args[i] == strides[i])
a = i;

strides[i] = rv - old args[i];

Table 3. Argument-based predictors.A differential version of the memoization finite context method predictor would naturally follow from
our framework; instead we investigate the parameter stride predictor.

Hybrid [10]

vn = f (v1, . . . , vn−1, args(n)),
where f is the best performing sub-predictor

fields: predictors[], accuracies[], predictions[]
predict(value t args[]):

predictions[] = predictors[].predict(args);
return predictions[indexOfMax (accuracies[])];

update(value t rv):
for (p = 0; p < P; p++)

predictors[p].update(rv);
if (rv == predictions[p])

accuracies[p]++;
else accuracies[p]--;

Composite Stride(new)

sn−i = vn−i − vn−i−1, ∀ 2 ≤ i < n
sn−1 = f (s1, . . . , sn−2, args(n − 1)),

where f is any sub-predictor
andvn = vn−1 + sn−1

fields: last, f
predict():

return last + f.predict();

update(value t rv):
f.update (rv - last);
last = rv;

Table 4. Composite predictors.Our particular hybrid design is new, although many structurally similar hardware designs have been
proposed. The composite stride predictor is a general implementation pattern for converting value predictions into stride predictions, rather
than a specific predictor.

and so it is important to determine which predictors are most
effective for a given time/memory budget.

Accuracy. Figure 3 shows basic prediction accuracies for
each predictor and for each benchmark. The benchmarks are
clustered in alphabetical order from left to right for each
predictor. The predictors are arranged in left-to-right top-to-
bottom order presented in Tables 2 and 3, with the hybrid
predictor last. This version of the hybrid uses every sub-
predictor on every call to predict() and update() and is very
expensive. For comparison we have also included as the first
predictor a null predictor that returns 0 for every prediction.
Accuracy is calculated as the number of correct predictions
over the number of calls that returned to the callsite.

The hybrid beats all sub-predictor accuracies combined
for every benchmark, as expected, because it allows sub-
predictors to complement each other. Predictor accuracy oth-
erwise roughly scales with complexity, at least for the non-
memoization predictors. A basic last value predictor signif-
icantly improves on a null predictor, is in turn improved on
by last N predictors, which themselves are overshadowed
by context-based designs. Interestingly the stride versions of
non-context predictors do not show significant differences
from the last value predictors, suggesting that extending the
predictors to higher level derivative forms does not improve
accuracy. Context clearly has a significant impact on accu-
racy. The finite context method and its differential form have
the highest individual predictor accuracies, and even memo-
ization is noticeably improved by context. Method argument
approaches are not as successful as context in general, al-
though as we show later memoization behaviour does some-
times complement context forms.

Interesting differences also show up in terms of bench-
mark behaviour.db, jack , javac , and jess respond well
overall, with even simple predictors reaching 40-60% ac-
curacy levels.mtrt and mpegaudio are more resilient to
prediction, likely due to their use of more irregular floating
point types.compress improves dramatically with greater
context (input or output), indicating longer term patterns
exist, even ifmpegaudio andcompress are naturally ex-
pected to be less predictable since they handle compressed
data.

Speed. Figure 4 shows slowdowns due to predictor over-
head for each predictor and for each benchmark. The graph
is structured similarly to Figure 3, although on a logarithmic
scale and without the null predictor. Slowdown is calculated
as the ratio of the program running with the particular pre-
dictor enabled to the program running with the null predictor
enabled, per the control experiment in Figure 2. As expected
predictor speeds vary with complexity, with the table-based
predictors being considerably slower than the fixed-space
predictors. The table-based predictors are expensive for two
reasons. First, hashing arguments or return value histories to
table lookup keys is a somewhat expensive operation. Sec-
ond, the memory requirements of the larger tables introduce

performance penalties due to memory hierarchy latencies.
The hybrid is unsuprisingly very slow, roughly representing
the summed cost of running all predictors.

Memory consumption. The memory consumption of each
predictor for each benchmark is shown in Table 5. The mem-
ory requirements of the fixed-space predictors are calculated
by summing the number of bytes used by each predictor
and multiplying by the number of callsites. The table-based
predictor memory requirements are calculated in the same
manner for the fixed-space fields, and then the actual final
sizes of the hashtables at individual callsites upon program
completion are used to calculate the variable-sized fields.
The main observation here is that the table-based predictors
can consume large amounts of memory, and that this effect
is compounded in the hybrid that has five table-based sub-
predictors at each callsite. These data also indicate a further
cause of individual benchmark and predictor slowdowns.
predictor comp db jack javac jess mpeg mtrt

N 4.67K 5.23K 10.5K 20.9K 10.1K 6.08K 11.0K
LV 9.34K 10.5K 21.0K 41.7K 20.2K 12.2K 21.9K

S 18.7K 20.9K 42.0K 83.4K 40.4K 24.3K 43.9K
2DLV 14.0K 15.7K 31.5K 62.6K 30.3K 18.2K 32.9K

2DS 23.4K 26.1K 52.5K 104K 50.5K 30.4K 54.8K
LNV 23.9K 26.8K 53.8K 107K 51.7K 31.2K 56.2K
LNS 33.3K 37.2K 74.8K 149K 71.9K 43.3K 78.2K
FCM 625M 0.97G 50.7M 205M 14.6M 1.61G 2.97G

DFCM 673M 784M 7.26M 197M 10.1M 1.60G 3.31G
M 6.81M 99M 7.75M 1.51M 4.03M 25.4M 7.19M

MS 6.82M 99M 7.77M 1.55M 4.05M 25.5M 7.21M
MFCM 31.1M 893M 16.6M 4.79M 13.4M 1.72G 80.6M

PS 12.4K 13.8K 29.5K 59.6K 26.9K 16.2K 28.0K
H 1.31G 2.80G 90.9M 411M 47.1M 4.98G 6.37G

Table 5. Memory consumption.

The data in Table 5 and Figures 3 and 4 assume hashtable
sizes are unbounded, and so the tables grow as necessary to
accomodate new values. This is obviously unrealistic, but if
the sizes are bounded then new values overwrite old values
once the maximum size is reached, and so may reduce over-
all accuracy if the old value is ever requested. Predictor ac-
curacy as a function of maximum table size is thus shown in
Figure 11. Here maximum table sizes are varied from 20 to
225 entries, one power of 2 larger than the largest any predic-
tor was observed to expand to naturally, and accuracy exam-
ined for each table predictor and benchmark combination.

In general, accuracy increases as table size increases, al-
though only up to a point. After this point, accuracy may be
constant, indicating no further impact from collisions, orin
some cases may actually decrease. We hypothesize that the
reductions are due to an interaction with garbage collection
at large heap sizes. Since many tables hold object references
that will be invalid after garbage collection, to prevent in-
valid references from causing unnecessary hashtable pollu-
tion, tables are are freed and reallocated at size 0 on each
collection. This simple solution is acceptable when garbage

0

20

40

60

80

100
ac

cu
ra

cy
 (

%
)

N LV S 2DLV 2DS LNV LNS FCM DFCM M MS MFCM PS H

comp
db
jack
javac
jess
mpeg
mtrt

Figure 3. Predictor accuracies for the null predictor and all predictors in Tables 2,3, and 4

1

1.5
2

3

5

7

sl
ow

do
w

n

LV S 2DLV 2DS LNV LNS FCM DFCM M MS MFCM PS H

comp
db
jack
javac
jess
mpeg
mtrt

Figure 4. Predictor slowdowns relative to the null predictor.

collection is infrequent or with small tables that accumu-
late less history, but at large table sizes collection frequency
tends increases, tables are more frequently rebuilt, and accu-
racy thus sometimes reduced. Improved interaction of RVP
structures with garbage collection is part of our future work.

Figure 11 also shows the complex interaction of individ-
ual predictors. For a given benchmark and table size indi-
vidual predictors often have different performance; memo-
ization may work well in some instances whereas the finite
context method works well in others. Interestingly, although
the context predictors usually have the highest accuracies,
the predictor complementation provided by the hybrid pre-
dictor can be seen in the shapes of the curves for individ-
ual benchmarks. The hybrid behaviour forcompress and
jess , for example, combines the better accuracy of memo-
ization designs at low table sizes with the higher accuracy of
(D)FCM at higher sizes.

4. Hybrid Adaptivity
Although the hybrid as presented so far achieves very high
accuracy, it consists of many sub-predictors, some of which
are quite complicated, and the overhead is simply too high.
Improvements are possible, however, by adaptively chang-
ing the hybrid so that each instance specializes to the best
predictor for the associated callsite. The intention is to main-
tain the high accuracy of the naı̈ve hybrid predictor in Ta-
ble 4 while optimizing for speed and memory consumption.

Here we investigate two approaches to specialization, an
oracle-based solution using ahead of time profile data and
an actual online adaptive model. The former allows us to de-
termine rough upper bounds on specialization performance,
while the latter provides a more practical design that does
not require pre-profiling runs. Comparison of these results
with our näıve, non-adaptive hybrid then shows the potential

speed and memory improvements offered by adaptivity, and
the extent to which accuracy is a trade-off.

A variety of parameters of course influence hybrid design,
and in particular the mechanism by which sub-predictors are
chosen. Our adaptive hybrid relies on a warm-up period to
prime predictors, and then selects the best performing sub-
predictor over the lastn predictions, favouring cheaper pre-
dictors in the case of ties. The length of the warm-up period
as well as accuracy confidence thresholds for specialization
and despecialization have the potential to change hybrid per-
formance and we thus assess a range of parameterizations.

Offline specialization. In our offline experiment the pro-
gram is run to completion, and the results analysed to de-
termine the “ideal” predictors—sub-predictors which per-
formed best at individual callsites over the course of the en-
tire program execution. In a second program run, these data
are passed via a configuration file to the library runtime, and
when the client registers a new callsite, the hybrid associated
with it immediately specializes to the predictor given in the
profile. No state for unused predictors is created, and space
and time overhead is minimized.

Figure 12 shows the distribution of ideal predictors for
each benchmark in terms of both reached callsites at runtime
and number of dynamic calls. From the perspective of call-
sites the majority of specializations are to the null predictor
or last value predictors. This is partially due to initialization
code, where infrequently executed methods are more eas-
ily specialized to simple predictors that depend on limited
history—the null predictor is the cheapest and fastest to spe-
cialize on a method returning only 0. It is also the case that
while many methods may be captured by simple predictors,
they are not the ones heavily exercised at runtime, and max-
imizing accuracy in general depends on advanced, complex

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24

ac
cu

ra
cy

 (
%

)

maximum per-callsite table size (bits)

compress
db

jack
javac

jess
mpegaudio

mtrt

Figure 5. Finite context method

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24

ac
cu

ra
cy

 (
%

)

maximum per-callsite table size (bits)

compress
db

jack
javac

jess
mpegaudio

mtrt

Figure 6. Differential finite context method

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24

ac
cu

ra
cy

 (
%

)

maximum per-callsite table size (bits)

compress
db

jack
javac

jess
mpegaudio

mtrt

Figure 7. Memoization

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24

ac
cu

ra
cy

 (
%

)

maximum per-callsite table size (bits)

compress
db

jack
javac

jess
mpegaudio

mtrt

Figure 8. Memoization stride

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24

ac
cu

ra
cy

 (
%

)

maximum per-callsite table size (bits)

compress
db

jack
javac

jess
mpegaudio

mtrt

Figure 9. Memoization finite context method

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24

ac
cu

ra
cy

 (
%

)

maximum per-callsite table size (bits)

compress
db

jack
javac

jess
mpegaudio

mtrt

Figure 10. Hybrid

Figure 11. Predictor accuracy vs. table size

predictors. Table-based predictors clearly dominate in terms
of actual calls.mpegaudio provides a notable exception to
the dominance of table predictors. It decodes an mp3 file,
and so its return values are mostly random. It has very low
overall predictability, and when there is repetition it is gen-
erally found in the last few values, and so these predictors
dominate.

0

20

40

60

80

100

pr
ed

ic
to

r
sp

ec
ia

liz
at

io
n

(%
)

comp
db

jack
javac

jess
mpeg

mtrt comp
db

jack
javac

jess
mpeg

mtrt

callsites calls

N

LV

S

2DLV

2DS

LNV

LNS

FCM

DFCM

M

MS

MFCM

PS

Figure 12. Ideal predictor distributions.

Online specialization. In online experiments, the system
attempts to determine ideal predictors dynamically, without
ahead of time profiling data. This simplifies practical appli-
cation of RVP, and may also better accommodate programs
in the case of phase-like behaviour, where the optimal choice
of predictor may not be constant throughout the program
run.

There are three basic parameters we considered in con-
structing our online specializing hybrid. The first is a warmup
period,w. A hybrid predictor will not specialize untilu ≥ w,
whereu is the number of predictor updates. The second is
a “disable” confidence threshold for specialization,d. For
the number of correct predictionsc over the lastn calls,
if c ≥ d ∧ u ≥ w then the hybrid specializes to the best
performing sub-predictor. We use a value ofn = 64, the
number of bits in a word on our machines. The third param-
eter is an “enable” confidence threshold for despecialization,
e. If c < eand the hybrid has already specialized, then it will
despecialize again. We did not experiment with resetting the
warmup period upon despecialization, although this could
be a useful technique.
for W in -1 .. 6

for D in 0 .. 8
for E in 0 .. D

w = (W == -1) ? 0 : 2ˆ(W * 3)
d = D * 8
e = E * 8

Figure 13. Configuration of online hybrid parameter sweep.

A parameter sweep overw, d, ewas performed with these
parameters varying according to Figure 13. This generated
360 different experiments. For each, the average accuracy
and total running time were computed. The average accura-
cies were rounded to the nearest integer, and the minimum
running time for each accuracy identified. These results are
shown in Figure 14.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

12 52 54 55 56 57 59 60 61 62 63 64 65 66 67 68 69 70 71 72

m
in

im
um

 ti
m

e
(s

)

average accuracy (%)

-1,8,0

3,2,0

Figure 14. Minimum time vs. average accuracy for online hybrid
parameter sweep.

From these data, we selected the point at accuracy 67%
with running time 566 seconds for use in future experiments.
This choice is 5% worse than the optimal accuracy of 72%.
At this point,{W, D, E} = {3, 2, 0}, which corresponds to
a warmup ofw = 512 returns, specialization threshold of
d = 16 correct predictions (25% accuracy), and a despecial-
ization threshold ofe = 0, meaning no despecialization will
occur. This configuration is only 35% slower than the cheap-
est configuration{−1, 0, 0} which only achieves an accuracy
of 12%, effectively specializing immediately to the null pre-
dictor. The data point at accuracy 61% with running time
727 seconds also stands out. The corresponding configura-
tion, {−1, 8, 0}, means thatw = 0, d = 64, ande = 0.
This predictor has no warmup, nor does it despecialize, and
is quite slow. It was selected by the optimization for that
data point partially because its high specialization threshold
did ultimately result in some good sub-predictor choices, but
also due to a lack of better performing configurations at that
accuracy level in our plot—the distribution of experiments
is not even along the abscissa, for most experiments cluster
near the upper range. Interestingly, in all but the top 3 most
accurate and slowest cases,e = 0. Accuracy benefits from
despecialization may exist, but certainly come with sharply
increasing costs.

Comparative performance. To determine the relative im-
provement offered by an adaptive hybrid we compare the
behaviour of offline and online designs with the naı̈ve, non-
adapative model. Predictor accuracies, slowdowns with re-
spect to a null predictor baseline, and memory consumption
for all three are shown in Figures 15 and 16 and Table 6 re-

spectively. These experiments use a maximum table size of
25, testing hybrid behaviour at maximal accuracy.

In terms of accuracy, the naı̈ve hybrid predictor without
specialization should act as an oracle. It behaves like the
online hybrid with an infinite warmup period. Data in Fig-
ure 15 shows that the offline adaptation is quite effective,
usually within a few percent of the naı̈ve version. In some
cases accuracy slightly increases over the oracle, presum-
ably because the continuing availability of all predictorsin
the näıve version occasionally allows suboptimal choices to
be made. The close match of offline and naı̈ve accuracy also
indicates that significant program phases are either rare orat
least not critical for RVP performance—the fixed choices of
the offline model clearly do not overly affect accuracy.

0

20

40

60

80

100

ac
cu

ra
cy

 (
%

)

comp db jack javac jess mpeg mtrt

naive
offline
online

Figure 15. Näıve vs. offline vs. online accuracies.

Accuracy is not significantly compromised in the on-
line version, and is within≈5-10% of offline for most
benchmarks.compress , however performs significantly
less well than the others. Deeper analysis shows that this
difference is due to different prediction strategies for a
few callsites, and in particular thegetbyte()I call in the
Compress.compress() method, exercised over 47 million
times. The offline version chooses a DFCM predictor with
79% accuracy, whereas the online version specializes too
early, selecting a null predictor that results in less than 10%
accuracy overall.

1

1.5
2

3

5

7

sl
ow

do
w

n

comp db jack javac jess mpeg mtrt

naive
offline
online

Figure 16. Näıve vs. offline vs. online slowdowns.

Time overhead is dramatically reduced by both offline
and online designs, as shown in Figure 16. Online improve-
ment actually exceeds offline for most benchmarks; the of-
fline tends to choose the more accurate but expensive table-
based predictors, while sub-optimal specialization in theon-
line version favours predictors with less state and thus less
warmup. This effect can also be seen in the memory con-
sumption data, shown in Table 6. Both offline and online
modes greatly reduce memory requirements, in the case of

offline mpegby over a factor 24. Online memory usage tends
to be smaller in general,db providing an extreme example
where online is orders of magnitude cheaper. The bottom
half of Table 6 shows further memory reductions possible
by eliminating common sources of potentially unnecessary
memory use in our experimental system.

predictor comp db jack javac jess mpeg mtrt
näıve 1.31G 2.80G 91.0M 412M 47.2M 4.98G 6.37G

offline 484M 771M 5.83M 190M 6.11M 206M 417M
online 197M 1.89M 5.56M 40.9M 5.23M 252M 252M

no logs 131M 1.41M 3.97M 27.6M 3.75M 168M 168M
32-bit keys 99M 1.22M 3.27M 21.1M 3.10M 127M 126M

type info 65.9M 1.00M 2.46M 14.5M 2.66M 84.7M 85.1M
perfectZ 65.9M 0.98M 2.42M 14.4M 2.63M 84.6M 85.1M

Table 6. Näıve vs. offline vs. online memory consumption.The
four additional rows indicate the cumulative memory consumption
benefits due to removing a backing log from hash tables, using 32-
bit table keys instead of 64-bit keys, using VM knowledge about
type widths, and using perfect hashing for booleans in the context-
based predictors. Perfect boolean hashing means that an order-5
context-based predictor only requires 5 bytes, 1 byte to hold the
5-bit context and 4 bytes to hold the 25 = 32 possible values.

5. Method Level Speculation
To better determine the value of RVP information and accu-
racy, we investigate the impact of return value prediction on
an RVP consumer, method level speculation (MLS). Accu-
rate RVP is quite important for MLS, allowing us to get a
more application driven view of accuracy levels and hybrid
performance. Below we give more detail on MLS and de-
scribe our experimental system, followed by measurements
of MLS performance changes due to inclusion of both naı̈ve
and online hybrid implementations.

Speculation model. Method level speculation is a runtime
optimization technique for automatic parallelization. Atvar-
ious points in the execution speculative threads are spawned
to execute portions of a program in parallel with the cur-
rent execution. Speculative threads execute in a safe and iso-
lated fashion, and must be validated before having a vis-
ible effect. In the case of MLS, speculation is performed
at method calls, creating speculative execution of a method
continuation concurrent with non-speculative execution of
the method itself. When the parent, non-speculative thread
returns from the method call it joins the speculative child,
validates the child state, and either commits and makes visi-
ble the child state or aborts the speculative execution accord-
ingly. Since method continuations often make immediate use
of method return values, and incorrect assumptions will re-
sult in a child failing to validate, RVP has a direct impact on
MLS performance measures.

Impact of RVP on MLS In automatic parallelization, per-
formance is improved and speedup is achieved when the use-
ful parallelism exposed outweighs the overhead incurred. A

number of measurements of impact due to RVP are thus pos-
sible. The lengths of speculative threads in terms of clock
cycles gives a good indication of speculative success, where
longer thread lengths enabled by better return prediction cor-
relate with more opportunity for parallel execution. A spec-
ulative coverage measure for the percentage of the original
non-speculative sequential program that could be success-
fully executed in parallel and committed also increases with
RVP support. We previously explored the impact of RVP on
these measures [34, 35]. At that time, the biggest concern
with respect to RVP was excessive overhead due to the cost
of näıve hybrid predictor updates, and this was in fact the
primary motivation for this study.

There are many possible configurations for the method
level speculation system, and our full system model is de-
scribed elsewhere [34, 35]. In these experiments, we allow
for one child thread to be created at every non-speculative
method invocation, void or non-void. However, we do not
allow speculative child threads to create even more specu-
lative child threads of their own. Our system supports this,
but it significantly complicates the understanding of the im-
pact of return value prediction, and it is better investigated
in a full study of child thread creation. Threads run for as
long possible, until joined by the parent returning to the call.
Speculative threads can enter and exit methods, allocate ob-
jects, and read from and write to the heap via a dependence
buffer that is a kind of software transactional memory [21].

1

1.5
2

3

5
7

10

15

sl
ow

do
w

n

db jack javac jess mpeg mtrt

without RVP
naive hybrid
online hybrid

Figure 17. Method level speculation slowdowns.compress is
excluded due to last-minute technical difficulties

Our speculation environment does not yet incorporate
fork heuristics for applying speculation judiciously, andin-
stead performs speculation at every opportunity. This ex-
tremal strategy provides an abundance of data for analysis,
but also results in slowdowns in terms of absolute perfor-
mance, as can be seen in Figure 17. The addition of a hybrid
RVP component increases this load further, particularly in
the case of the full naı̈ve version. The online hybrid adap-
tation, however, eliminates most of the extra overhead pro-
vided by RVP, and in many cases matches the performance
without RVP. Several benchmarks still experience significant
slowdowns, suggesting that further individual tuning of the
accuracy / performance trade-off may be worthwhile, but the
large overhead reductions provided by the online adaptive
system are encouraging, and indicate that overhead is not an
inherent limit on application of software RVP.

6. Program Understanding
Another interesting application of return value prediction is
in understanding the behaviour of programs. The relative
success and failure of prediction in general and different pre-
diction designs reveals various aspects of predictabilityfor a
given callsite, exposing a variety of properties accordingto
the prediction strategy under consideration. Here we discuss
general insights inspired by close analysis of RVP perfor-
mance. This includes table-based input/output characteriza-
tion, identification of simple behaviours, and higher levelap-
plication to program understanding with an example based
on reverse engineering.

Table-based input/output characterization.Table size is
important for accuracy in advanced predictors, and heuristi-
cally correlates with predictability. If the most accuratepre-
dictions require large tables, then data is necessarily more
diverse. This can be further divided according to whether the
predictor focuses on input or output data. A large memoiza-
tion hashtable means that the callsite consumes highly vari-
able data, whereas a large finite context method hashtable
means that the callsite produces highly variable data. In Fig-
ures 18 and 19 the final distributions of predictor hashtables
according to size are shown for the differential finite context
method and memoization predictors. These sizes are gath-
ered from experiments where specialization does not occur.

0

1

10

100

1000

2000

 0 2 4 6 8 10 12 14 16 18 20 22 24

nu
m

be
r

of
 c

al
ls

ite
s

table size (bits)

compress
db

jack
javac
jess

mpegaudio
mtrt

Figure 18. Differential finite context method size distribution.

Most hashtables are very small, with many not expanding
beyond the initial size. Even when expansion does occur, ap-
proximately 90% of tables never expand beyond 8 bits. Ta-
bles that reach large sizes thus indicate significant variability
in method input or output state. If predictors retain accuracy
this further indicates a pattern in the return value data, char-
acteristic of calculations that are not easily captured by sim-
ple predictors, but which in practice return bounded or repet-
itive values. In our benchmark suite the largest and most suc-

0

1

10

100

1000

2000

 0 2 4 6 8 10 12 14 16 18 20 22 24

nu
m

be
r

of
 c

al
ls

ite
s

table size (bits)

compress
db

jack
javac
jess

mpegaudio
mtrt

Figure 19. Memoization size distribution.

cessful (>75% accuracy) table predictors are DFCM predic-
tors attached to hash table lookups in thecompress bench-
mark and Vector component getter methods at certain points
in mtrt . In the former case high accuracy in the DFCM pre-
dictor and not in the memoization predictor derives from a
compact hashtable with a limited set of possible content. In
the latter, the behaviour indicates a sparsely populated and
more regular data space at that particular state of computa-
tion, unsurprising in a simple raytracing application.

Calls where memoization is best applied correspond to
situations where strong input/output relations exist, butout-
put otherwise have little pattern. Non-trivial use ofequals

(Object,Object)Z , for instance, is specialized to mem-
oization indb, as are some of the other Vector component
getters inmtrt , and size/field getters injess . Overall, and
despite the flexibility of memoization in a speculative con-
text, use of non-input state in a method call tends to overly
perturb the input/output mapping, and the hybrid specializes
to memoization primarily for pure, side-effect free methods.
This does, however, allow easy identification of experimen-
tally side-effect free methods. Preliminary experiments indi-
cate that GC plays a significant role in the accuracy of mem-
oization predictors, many of which take an implicitthis
object reference as input.

Simple behaviours. The presence of simpler predictors
also provides useful understanding. A callsite that is well-
predicted by the null predictor, for example, reveals code
where runtime constants exist and control flow is constant.
This tends to identify callsites with error return codes, which
are typically 0, but also places with invariant boolean re-
turns, such as calls toisReadOnly in ByteBuffer.-

hasArray() in jess , many calls toisType in Node.-

convert() in javac , and so forth. Invariant computa-
tions represent useful opportunities for many code opti-

mizations, such as basic block straightening, specialization,
and dead code elimination. The call toGetChild()I in the
OctNode.Copy(OctNode) method ofmtrt shows a par-
ticularly useful application. This code copies one node in
a tree into another, including a loop to individually copy
each of 8 child nodes in an array. A 100% accuracy for the
null predictor at the method call toGetChild()I implies
that the target node in the copy operation is invariably a
leaf node, with no children. Replication of the child array
contents could thus be simplified or eliminated altogether.

Reverse engineering. More complex behaviours can also
be exposed by analyzing RVP data.mpegaudio , for in-
stance, is a good example for program understanding be-
cause it is an obfuscated program with poor prediction accu-
racy. Presumably this is because it decodes an mp3 file and
the floating point data are highly irregular. We looked for
callsites with many calls and poor predictability and found
that there are 4 callsites withinq.l([SI)I that callj(F)S

approximately 4 million times each and that the predictor
accuracy is only 3%. The float to short conversion ofj(F)S

indicates some kind of data processing, and the fact that the
callsites are in close proximity, are each invoked the same
number of times, and are frequently invoked (hot) indicates
that they are either part of a larger data conversion within
the same loop or perhaps are the result of manual loop un-
rolling. Given the knowledge about what mpegaudio does
at a high level, we can combine all of these data to make
an educated guess that these callsites are in the loop where
the mp3 file gets decoded. RVP is not intended as a decom-
pilation tool of course, but it is interesting that prediction
success can be correlated with fundamental algorithm prop-
erties, and so help reveal the behaviour of even intentionally
obfuscated programs.

7. Related Work
Return value prediction is a form of the more general prob-
lem of value prediction, which has been researched for well
over a decade, although primarily in the context of hard-
ware designs and constraints. A wide variety of value pre-
dictors have been proposed and examined, including simple
computational predictors, more complex table-based predic-
tors, machine learning techniques, and hybrid implementa-
tions. Our work here extends existing investigations of RVP
in a Java context [18,33], considering practical accuracy and
performance in an adaptive, dynamic software-only environ-
ment.

Burtscheret al. provides a good overview of basic value
prediction techniques [6]. As a general rule, accommodating
more patterns and using more historical information can
improve prediction accuracy, and generalizations of simple
predictors, such as lastN value prediction, have been studied
by a number of groups [7, 24, 47]. LastN value prediction
allows for short, repetitive sequences to be captured, and
can yield good results; Burtscher and Zorn, for example,

show a space-efficient last 4 value predictor can outperform
other more complex designs [7]. Most predictors can be
further improved by incorporating statistical measures such
as formal confidence estimates into the prediction process,
although this also adds extra complexity [4,8].

Gabbay introduced the stride predictor and last value pre-
dictor, as well as several more specialized predictors, such
as the sign-exponent-fraction (SEF) predictor, and register-
file predictor [15]. Specialized predictor designs providefur-
ther ways to exploit value prediction where more general ap-
proaches work poorly. The SEF predictor, for instance, pre-
dicts the sign, exponent, and fraction parts of a floating point
number separately. Although the sign and exponent are of-
ten highly predictable, the fraction is not, usually resulting in
poor performance of basic approaches to floating point data.
Tullsen and Seng extended Gabbay’s register-file predictor
to a more general register value predictor. It predicts whether
the value to be loaded by an instruction into a register is al-
ready present in that register [46]. For our purposes it may be
worth considering a simple stack top predictor that is a reg-
ister value predictor specialized for return values. Pointer-
specific prediction is also possible; Mutluet al. introduced
address-value delta (AVD) prediction. It predicts whetherfor
a given pointer load instruction the difference between the
address and the value at that address is stable [30]. Unfortu-
nately, this predictor is not useful for return value prediction
in an object-oriented context. Marcuelloet al., propose an
increment-based value predictor [28,29] for value prediction
within a speculative multithreading architecture. The incre-
ment predictor is like the 2-delta stride load value predictor,
but is further differentiated by computing the storage loca-
tion value stride between two different instruction address
contexts.

Sazeides and Smith examine the predictability of data
values produced by different instructions. They consider
hardware implementations of last value, stride, and context
predictors showing the limits of predicability and the relative
performance of context and computational predictors [42].
Subsequent work considers the practical impact of hardware
resource (table-size) constraints on predictability [41]. Goe-
man et al. proposed thedifferential finite context method
predictor [17] as a way of further improving prediction ac-
curacy. Burtscher later suggested an improved DFCM index
or hash function that makes better use of the table struc-
tures [5]. We use Jenkins’ fast hash to compute hash values
because it is appropriate for software [20].

Hybrid designs allow predictors to be combined, comple-
menting and in some cases reinforcing the behaviour of indi-
vidual sub-predictors. Wang and Franklin use a MIPS-based
simulation to show that a hybrid value predictor achieves
higher accuracy than its component sub-predictors in iso-
lation [47]. The interaction of sub-predictors can be com-
plex, though, and Burtscher and Zorn show that resource
sharing as well as the impact of how the hybrid selects

the best sub-predictor can significantly affect hybrid per-
formance [10]. Designs have thus been proposed to reduce
hybrid storage requirements [9], and to use selection mech-
anisms that reduce inappropriate bias, such as cycling be-
tween sub-predictors [39], or use of improved confidence
estimators [19]. Optimal hybrid design of course maximizes
the efficiency of the applications using the predictions, and
Sam and Burtscher argue that complex value predictors are
not always neccessary [38].

Software value prediction, while less common, has also
been investigated. Liet al., for instance, use static program
analysis to identify value dependencies that may affect spec-
ulative execution of loop bodies, and apply selective pro-
filing to monitor the behaviour of these variables at run-
time [22]. The resulting profile is used to customize pre-
dictor code generation for an optimized, subsequent execu-
tion [13, 23]. Liu et al. incorporated software value predic-
tion in their POSH compiler for speculative multithreading
and found a beneficial impact on performance [25]. The pre-
dictors are similar to those used by Liet al. [22], and handle
return values, loop induction variables, and some loop vari-
ables. Hybrid approaches have also been proposed, combin-
ing software with simplified hardware components in order
to reduce hardware costs [3, 14]. Performance can also be
improved through software analysis, such as by statically es-
timating predictability [6].

Return value prediction is a basic component of method
level speculation, and even simple value and stride predic-
tors have a large impact on speculative performance [11,31].
Hu et al. introduced the parameter stride predictor as part
of their study of Java traces, and use simulated hardware to
make a strong case for the importance of return value predic-
tion in MLS [18]. Our own work here is largely inspired by
the RVP requirements of software-based method level spec-
ulation [34, 36], and this study extends an earlier workshop
paper that gave preliminary data on RVP behaviour [33].
Theoretical limits on RVP have also been considered: Singer
and Brown applied information theory to analyse the pred-
icatabilty of return values, independent of any specific pre-
dictor design [43].

Our inclusion of data type information in considering
RVP behaviour follows existing work on using types in
value prediction. Sato and Arita show that data value widths
can be exploited to reduce predictor size; by focusing on
only smaller bit-width values accuracy is preserved at less
cost [40]. Loh demonstrates both memory and power savings
by using data width information [27], although in a hardware
context, and with the additional need to heuristically dis-
cover high level type knowledge. Sam and Burtscher later
showed that hardware type information can be efficiently
used to reduce predictor size [37]. They also demonstrated
that more complex and hence more accurate predictors have
a worse energy-performance tradeoff than simpler predictors
and are thus unlikely to be implemented in hardware [38].

Several of the new predictor designs here are based on
memoization. Memoization is obviously a well known tech-
nique, and effective memoization based compiler and run-
time optimizations have been described [12]. Our interest
in memoization approaches in RVP is partly based on their
ability to be applied to the large proportion of “impure”
methods found in an object-oriented language [49].

8. Conclusions and Future Work
Return value prediction is useful in a variety of contexts,
and software approaches to RVP have the great advantage of
immediacy and flexibility. Overhead is non-trivial, however,
and a good understanding of overhead and accuracy trade-
offs, as well as optimized predictor designs allows RVP to
be applied appropriately. We have shown that an adaptive
hybrid predictor can be efficiently implemented, maintain-
ing accuracy levels comparable to non-adaptive designs at a
fraction of the cost. This has a direct impact on consumer ap-
plications such as method level speculation, and also reveals
interesting program understanding information. Our object-
oriented, software interpretation of hardware predictor im-
plementations also exposed the potential for several new pre-
dictor designs, including different stride and value variants
as well as memoization approaches. This further fills out the
space of predictors, and allows us to investigate a much more
extensive hybrid design than is typically possible in hard-
ware.

Our study suggests several possible routes to further im-
proving RVP, both in terms of accuracy and overhead. At
its simplest, performance can certainly be improved through
tighter integration of predictor and VM environments. Our
library separation facilitates experimentation, but callouts to
the RVP library are expensive, and most predictor actions
could be easily inlined with normal execution. We are cur-
rently investigating JIT integration where predictor codecan
be woven into the internal intermediate program representa-
tion with the rest of program code, allowing the full gamut of
JIT optimizations to be applied. Further benefit would also
be realized by making GC more aware of RVP data, allowing
predictor tables to persist through GC.

Other authors have used proposed static program analy-
ses to improve RVP, such as by estimating the better can-
didates for prediction [6]. There are many opportunities for
analysis design, and we are developing several analyses that
should reduce overhead and increase accuracy. A parameter
dependence analysis, for example, determines which param-
eters actually affect the return value. This aids argument-
based predictors by eliminating unnecessary state, improv-
ing memory consumption, hashtable sharing, and speed. A
similar approach can be applied to method outputs. Not all
return values are consumed, nor do they all need precise val-
ues, and we are investigating a return value use analysis to
find return values that do not need prediction, or for which
prediction can be less precise.

We have focused on software prediction for current avail-
ability and general flexibility. Hybrid software/hardwarede-
signs, however, are an obvious strategy for reducing over-
head. Predictor virtualization, for instance, while intended
more to reduce hardware predictor complexity, exposes
some elements of hardware predictor state to software [3].
With suitable mechanisms for controlling hardware pre-
dictor activity, the benefits of software selection and high
level choices can be combined with hardware speed. Hard-
ware hashing components are part of many predictor de-
signs [5, 42], but even a general hardware hash function
instruction that combined a message of arbitrary length into
a single word, would greatly reduce a significant source of
RVP overhead.

Finally, in exploring the application of return value pre-
diction, there are likely many other predictors that could
be beneficial. These are easy to implement in our software
framework, and they can improve the generality of our pre-
dictor unification framework. As explored in this paper, spe-
cific program location predictor accuracies, state, and be-
haviour can help with understanding program behaviour.
More variety in predictor designs may reveal even further
interesting program properties.

Acknowledgments
This research was supported by the IBM Toronto Centre for
Advanced Studies and the Natural Sciences and Engineering
Research Council of Canada.

References
[1] Enhancing memory-level parallelism via recovery-free value

prediction. IEEE Transactions on Computers, 54(7):897–
912, July 2005. Huiyang Zhou and Thomas M. Conte.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis.
In OOPSLA’06: Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 169–190, Oct.
2006.

[3] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi.
Predictor virtualization. InASPLOS XIII: Proceedings of
the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
157–167, Mar. 2008.

[4] M. Burtscher. Improving Context-Based Load Value Predic-
tion. PhD thesis, Department of Computer Science, Univer-
sity of Colorado at Boulder, Boulder, Colorado, USA, Apr.
2000.

[5] M. Burtscher. An improved index function for (D)FCM
predictors. ACM SIGARCH Computer Architecture News,
30(3):19–24, June 2002.

[6] M. Burtscher, A. Diwan, and M. Hauswirth. Static load
classification for improving the value predictability of
data-cache misses. InPLDI’02: Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language
Design and Implementation, pages 222–233, June 2002.

[7] M. Burtscher and B. G. Zorn. Exploring last n value
prediction. InPACT’99: Proceedings of the 8th International
Conference on Parallel Architectures and Compilation
Techniques, pages 66–77, Oct. 1999.

[8] M. Burtscher and B. G. Zorn. Prediction outcome history-
based confidence estimation for load value prediction.JILP:
Journal of Instruction-Level Parallelism, 1:1–25, May 1999.

[9] M. Burtscher and B. G. Zorn. Hybridizing and coalescing
load value predictors. InICCD’00: Proceedings of the 2000
IEEE International Conference on Computer Design: VLSI
in Computers & Processors, pages 81–92, Sept. 2000.

[10] M. Burtscher and B. G. Zorn. Hybrid load-value predictors.
TC: IEEE Transactions on Computers, 51(7):759–774, July
2002.

[11] M. K. Chen and K. Olukotun. Exploiting method-level
parallelism in single-threaded Java programs. InPACT’98:
Proceedings of the 7th International Conference on Parallel
Architectures and Compilation Techniques, pages 176–184,
Oct. 1998.

[12] Y. Ding and Z. Li. A compiler scheme for reusing
intermediate computation results. InCGO’04: Proceedings
of the International Symposium on Code Generation and
Optimization, page 279. IEEE Computer Society, Mar. 2004.

[13] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F.
Ngai. A cost-driven compilation framework for speculative
parallelization of sequential programs. InPLDI’04: Proceed-
ings of the ACM SIGPLAN 2004 Conference on Program-
ming Language Design and Implementation, pages 71–81,
June 2004.

[14] C.-Y. Fu. Compiler-Driven Value Speculation Scheduling.
PhD thesis, Department of Electrical and Computer Engi-
neering, North Carolina State University, Raleigh, North
Carolina, USA, May 2001.

[15] F. Gabbay. Speculative execution based on value prediction.
Technical Report 1080, Electrical Engineering Department,
Technion – Israel Institute of Technology, Haifa, Israel, Nov.
1996.

[16] E. M. Gagnon. A Portable Research Framework for the
Execution of Java Bytecode. PhD thesis, School of Computer
Science, McGill University, Montŕeal, Qúebec, Canada, Dec.
2002.http://sablevm.org .

[17] B. Goeman, H. Vandierendonck, and K. de Bosschere.
Differential FCM: Increasing value prediction accuracy by
improving table usage efficiency. InHPCA’01: Proceedings
of the 7th International Symposium on High-Performance
Computer Architecture, pages 207–216, Jan. 2001.

[18] S. Hu, R. Bhargava, and L. K. John. The role of return value
prediction in exploiting speculative method-level parallelism.
JILP: Journal of Instruction-Level Parallelism, 5:1–21, Nov.
2003.

[19] S. J. Jackson and M. Burtscher. Self optimizing finite
state machines for confidence estimators. InWISA’06:
Proceedings of First Workshop on Introspective Architecture,
Feb. 2006.

[20] B. Jenkins. A hash function for hash table lookup.Dr. Dobb’s
Journal, Sept. 1997.

[21] J. R. Larus and R. Rajwar.Transactional Memory. Morgan
& Claypool, Dec. 2006.

[22] X.-F. Li, Z.-H. Du, Q. Zhao, , and T.-F. Ngai. Software value
prediction for speculative parallel threaded computations. In
VPW1: Proceedings of the 1st Value-Prediction Workshop,
pages 18–25, San Diego, CA, June 2003.

[23] X.-F. Li, C. Yang, Z.-H. Du, and T.-F. Ngai. Exploiting
thread-level speculative parallelism with software value
prediction. InACSAC’05: Proceedings of the 10th Asia-
Pacific Computer Systems Architecture Conference, volume
3740 ofLNCS: Lecture Notes in Computer Science, pages
367–388, Oct. 2005.

[24] M. H. Lipasti and J. P. Shen. Exceeding the dataflow
limit via value prediction. InMICRO 29: Proceedings of
the 29th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 226–237, Dec. 1996.

[25] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau,
and J. Torrellas. POSH: A TLS compiler that exploits
program structure. InPPoPP’06: Proceedings of the 11th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 158–167, Mar. 2006.

[26] M. E. Locasto, A. Stavrou, G. F. Cretu, A. D. Keromytis,
and S. J. Stolfo. Return value predictability profiles for
self-healing. InIWSEC’08: Advances in Information
and Computer Security: Third International Workshop on
Security, volume 5312 ofLNCS: Lecture Notes in Computer
Science, pages 152–166, Nov. 2008.

[27] G. H. Loh. Width-partitioned load value predictors.JILP:
Journal of Instruction-Level Parallelism, 5:1–23, Nov. 2003.

[28] P. Marcuello, A. Gonźalez, and J. Tubella. Thread partition-
ing and value prediction for exploiting speculative thread-
level parallelism. TC: IEEE Transactions on Computers,
53(2):114–125, Feb. 2004.

[29] P. Marcuello, J. Tubella, and A. González. Value prediction
for speculative multithreaded architectures. InMICRO 32:
Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture, pages 230–236, Nov. 1999.

[30] O. Mutlu, H. Kim, and Y. N. Patt. Address-value delta
(AVD) prediction: A hardware technique for efficiently
parallelizing dependent cache misses.TC: IEEE Transactions
on Computers, 55(12):1491–1508, Dec. 2006.

[31] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of spec-
ulative thread-level parallelism. InPACT’99: Proceedings of
the 1999 International Conference on Parallel Architectures
and Compilation Techniques, pages 303–313, Oct. 1999.

[32] C. J. F. Pickett and C. Verbrugge. Compiler analyses for
improved return value prediction. Technical Report SABLE-
TR-2004-6, Sable Research Group, School of Computer
Science, McGill University, Oct. 2004.

[33] C. J. F. Pickett and C. Verbrugge. Return value prediction
in a Java virtual machine. InVPW2: Proceedings of the 2nd
Value-Prediction and Value-Based Optimization Workshop,
pages 40–47, Oct. 2004.

[34] C. J. F. Pickett and C. Verbrugge. SableSpMT: A software
framework for analysing speculative multithreading in Java.
In PASTE’05: Proceedings of the 6th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pages 59–66, Sept. 2005.

[35] C. J. F. Pickett and C. Verbrugge. Software thread level
speculation for the Java language and virtual machine envi-
ronment. InLCPC’05: Proceedings of the 18th International
Workshop on Languages and Compilers for Parallel Com-
puting, volume 4339 ofLNCS: Lecture Notes in Computer
Science, pages 304–318, Oct. 2005.

[36] C. J. F. Pickett, C. Verbrugge, and A. Kielstra. libspmt: A
library for speculative multithreading. Technical Report
SABLE-TR-2007-1, Sable Research Group, School of
Computer Science, McGill University, Mar. 2007.

[37] N. B. Sam and M. Burtscher. Exploiting type information
in load-value predictors. InVPW2: Proceedings of the 2nd
Value-Prediction and Value-Based Optimization Workshop,
pages 32–39, Oct. 2004.

[38] N. B. Sam and M. Burtscher. Complex load-value predictors:
Why we need not bother. InWDDD’05: Fourth Annual
Workshop on Duplicating, Deconstructing, and Debunking,
pages 16–24, June 2005.

[39] N. B. Sam and M. Burtscher. Improving memory system
performance with energy-efficient value speculation.CAN:
SIGARCH Computer Architecture News, 33(4):121–127,
Sept. 2005.

[40] T. Sato and I. Arita. Table size reduction for data value
predictors by exploiting narrow width values. InICS’00:
Proceedings of the 14th International Conference on Super-
computing, pages 196–205, May 2000.

[41] Y. Sazeides and J. E. Smith. Implementations of context-
based value predictors. Technical Report TR ECE-97-8,
University of Wisconsin–Madison, Dec. 1997.

[42] Y. Sazeides and J. E. Smith. The predictability of data values.
In MICRO 30: Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, pages 248–
258, Dec. 1997.

[43] J. Singer and G. Brown. Return value prediction meets
information theory. InQAPL’06: Proceedings of the
4th International Workshop on Quantitative Aspects of
Programming Languages, volume 164 ofENTCS: Electronic
Notes in Theoretical Computer Science, pages 137–151, Oct.
2006.

[44] Standard Performance Evaluation Corporation. SPEC
JVM Client98 benchmark suite, June 1998.http:
//www.spec.org/jvm98/ .

[45] L. Stepanian, A. D. Brown, A. Kielstra, G. Koblents, and
K. Stoodley. Inlining Java native calls at runtime. In
VEE’05: Proceedings of the 1st ACM/USENIX International
Conference on Virtual Execution Environments, pages 121–

131, June 2005.

[46] D. M. Tullsen and J. S. Seng. Storageless value prediction
using prior register values. InISCA’99: Proceedings of
the 26th Annual International Symposium on Computer
Architecture, pages 270–279, May 1999.

[47] K. Wang and M. Franklin. Highly accurate data value pre-
diction using hybrid predictors. InMICRO 30: Proceedings
of the 30th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 281–290, Dec. 1997.

[48] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for
Java. InOOPSLA’05: Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object Oriented Programming,
Systems, Languages, and Applications, pages 439–453, Oct.
2005.

[49] H. Xu, C. J. F. Pickett, and C. Verbrugge. Dynamic purity
analysis for Java programs. InPASTE’07: Proceedings of
the 7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 75–82,
June 2007.

[50] L. Zhang, C. Krintz, and P. Nagpurkar. Language and virtual
machine support for efficient fine-grained futures in Java. In
PACT’07: Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques, pages
130–139, Sept. 2007.

