
McGill University

School of Computer Science

Sable Research Group

Understanding Method Level Speculation

Sable Technical Report No. 2009-2

Christopher J.F. Pickett and Clark Verbrugge and Allan Kielstra
{cpicke,clump}@sable.mcgill.ca, kielstra@ca.ibm.com

September 19th, 2009

w w w . s a b l e . m c g i l l . c a



Understanding Method Level Speculation

Christopher J. F. Pickett Clark Verbrugge
School of Computer Science, McGill University

Montréal, Qúebec, Canada
{cpicke,clump}@sable.mcgill.ca

Allan Kielstra
IBM Toronto Lab

Markham, Ontario, Canada
kielstra@ca.ibm.com

Abstract
Method level speculation (MLS) is an optimistic technique for par-
allelizing imperative programs, for which a variety of MLS systems
and optimizations have been proposed. However, runtime perfor-
mance strongly depends on the interaction between program struc-
ture and MLS system design choices, making it difficult to com-
pare approaches or understand in a general way how programs be-
have under MLS. Here we develop an abstract list-based model of
speculative execution that encompasses several MLS designs, and
a concrete stack-based model that is suitable for implementations.
Using our abstract model, we show equivalence and correctness for
a variety of MLS designs, unifying in-order and out-of-order exe-
cution models. Using our concrete model, we directly explore the
execution behaviour of simple imperative programs, and show how
specific parallelization patterns are induced by combining common
programming idioms with precise speculation decisions. This basic
groundwork establishes a common basis for understanding MLS
designs, and suggests more formal directions for optimizing MLS
behaviour and application.

1. Introduction
Method level speculation (MLS) is an optimistic execution tech-
nique for parallelizing sequential programs. Under MLS, when a
non-speculative “parent” thread reaches a method invocation, it
can fork a speculative “child” thread that begins executing at the
method continuation, as if the method has already returned. Chil-
dren execute in an isolated fashion, and upon returning from the
method call, if there were no memory dependence violations be-
tween the child and the parent, the child state is committed to
memory, and the parent resumes execution where the child left
off. Given low enough overheads, the resultant parallelism is then
a source of speedup on multiprocessor machines.

Performance of MLS strongly depends on the choice of fork
points, as well as the basic model of MLS execution. MLS designs
may permit parents to have multiple children (out-of-ordernest-
ing), or for children to fork further children (in-ordernesting), with
significant variance in subsequent behaviour. In Figure 1, for in-
stance, the initial creation of a speculative child at the call toa()
followed by out-of-order nesting creates parallelism between be-
tweenb() and X but not betweenc() and Y, whereas with in-
order nesting the situation is reversed. Lack of understanding of
such fundamental differences makes both the choice of appropriate
fork heuristics and comparison of different MLS models difficult.
a() { // parent creates child 1 here

b(); // can parent create child 2 to execute X?
X;

} // child 1 begins execution here
c(); // can child 1 create child 3 to execute Y?
Y;

Figure 1. MLS choices.Assuming execution ofa() does not complete
beforec() is started, with out-of-order nestingb(), X, andc()Y are
parallelized. With in-order nestingb()X, c(), andY execute concurrently.

To better understand the behaviour of programs under MLS, we
develop two models of MLS. We describe an abstract, list-based
model that represents a broad variety of MLS designs, and use it
to demonstrate correctness in terms of sequential equivalence. Our
model is general and flexible enough to include in-order, out-of-
order, mixed, and even non-MLS designs. We relate this model to a
more concrete, stack-based representation that provides detail suit-
able for implementation, while exposing the program stack manip-
ulations that underly different MLS strategies. From this formalism
we show how simple differences in coding idioms produce widely
varying parallel execution patterns, which implies that runtime ef-
ficiency strongly depends on the exact MLS strategy. The technical
complexity inherent in MLS implementation tends to require that
individual studies commit to a specific speculation model; our ap-
proach can be used to further explain the performance character-
istics of any such study, and to facilitate deeper exploration of the
impact of fundamental MLS design decisions.

1.1 Contributions

We make the following specific contributions:

• Using a novel, list-based abstraction of general speculation we
show correctness in both sequential and multithreaded con-
texts for in-order and out-of-order MLS, as well as non-method
based techniques such as loop-level speculation or even arbi-
trary speculation.

• We propose a stack operation semantics as a concrete model,
suitable for both implementation and direct visualization of how
and when speculative code may execute under MLS. Beyond
basic fork/commit matching, previous work has not considered
a descriptive semantics of stack buffering, instead relying on
general dependence buffering or transactional memory support.

• By examining a number of common coding idioms in relation
to our stack formalism, we are able to show how speculative
execution can map to various specific forms of parallelism
depending on code layout and precise speculation choices.

The following section describes our core list-based model, in-
cluding a proof of correctness for several MLS designs. This is fol-
lowed in Section 3 by our stack formalism, which we then use to
show relevant code behaviours in Section 4. Related work is pre-
sented in Section 5, followed by conclusions and future work.

2. List Abstraction
Although designs that support in-order nesting clearly differ from
out-of-order, and hybrid models of increasing complexity are possi-
ble, basic componentry is similar. The list-based model we present
here takes advantage of these basic similarities to produce a com-
mon abstraction, encompassing not only arbitrary nesting choices,
but also speculative designs beyond pure method level parallelism.
Here we first define and apply our abstraction to sequential pro-
grams, and then extend the result to multithreaded contexts.



Our proof of sequentiality assumes a programP is composed
of one or more program threadst each executing individual code
P t (where the thread is clear we useP ). At each point in execution
the thread operating on codeP computes the result ofPa|n, where
a is the code index of the start of computation andn is the number
of operations performed.

Speculative execution may be initiated at any method invoca-
tion (although the model easily extends to arbitrary speculation
points), with speculative code executing until signaled to terminate
by the return of its parent thread, or until it encounters anunsafe
operation—I/O, synchronization or other operations that may not
be safely executed speculatively. Once terminated and joined with
its parent, a speculative thread is validated to ensure correct execu-
tion was performed and either committed or (eventually) aborted.
We now argue that the computation ofP in both sequential and par-
allel contexts is equivalent with or without MLS. Throughout this
proof we make the basic assumption that speculative execution is
strongly isolated, having no direct impact on actual program output
until committed by a non-speculative thread.

2.1 Sequential Programs

Proving speculative computation matches sequential requires show-
ing that the committed results of speculation always produce an ex-
ecution trace equivalent to some sequential execution. This reduces
to demonstrating the following properties:

1. Committed speculative computation always begins with correct
input.

2. Commits are performed in an order that respects sequential
execution.

3. Committed and non-speculative execution represents a com-
plete trace without gaps.

Prior to any frame push a speculative thread may be forked, and
at the corresponding pop a speculative thread may be committed;
threads may be aborted at any point. At any point during execution
the speculative child hierarchy forms a tree with a well defined or-
der of computation between threads. We use the precedence inher-
ent in this structure in order to inductively show the correspondence
between speculative execution and sequential execution. The basic
representation will then be as a list, generated as a threading of the
speculative heirarchy:

Definition 2.1. A speculation listis a tuple(V, R, α, δ, ω), where
V is a linked list of threads,R : V × V is the transitive reduction
of a total ordering relation, and functionsα : V → (Code× Env),
δ : V → (N × Code× Env) andω : V → (Code× Env) all map
threads to partial or full execution states—initial assumptions, full
current state (including count of operations executed), and ending
state respectively.

If r is the first node in the list thenr is a non-speculative thread,
while all otherv ∈ V, v 6= r are speculative.

Speculation lists are constructed dynamically during a program
execution. The list begins consisting of a singleton noder and
mappingsα(r) = (0, I), δ(r) = (0, 0, ∅), ω(r) = (EOF, ∅),
where 0 is the program counter at entry,I is the initial environment,
and EOF indicates program termination. Since only one thread
exists initially ordering is also trivial:R = ∅.

As operations are performed a new speculation listL is con-
structed based on the previousL′ and current instructioni exe-
cuted by a given threadt. To simplify notation where not otherwise
indicated elements ofL are the same asL′. Figure 2 shows the
rules applied to each possible operation and below we further de-
scribe each step. The operation JoinPoint: Code× Env → Env
defines the subset of the given environment that identifies reaching
the specified code location in the same stack frame.

OP If i is a basic computation,i : Code×Env→ Code×Env, then
the current state must be appropriately advanced. This includes
an increment to the count of operations executed. Operationi
is isolated except for reading heap values, which if they are not
found in the heap ofδ′(t) or in existing assumptions must be
predicted, speculatively retrieved from the parent environment,
or otherwise derived. Any such assumptions are recorded by
adding the variable and value read to the input state for later
comparison during commit validation.

FORK In method-level speculation forks are performed only at
method calls; lety be the code point immediately corresponding
to the method return associated with fork operationi.

A new speculative threads is created so as to begin execution
after the method returns, at code pointy, starting in the current
state oft and inheritingt’s stack. No initial assumptions about
input state have been made (α(s) = (y, ∅)), although this could
be populated with predicted values. The termination of threadt
is also adjusted to ensure it stops whens starts.

Not shown in theFORK rule of Figure 2 is thats is added to
the speculative list as a new immediate successor tot: V =
V ′ ∪ {s}, R = R′\{(t, v)} ∪ {(t, s), (s, v)}.

Note that this effectively partitions the designated execution of
p ([α′(p), ω′(p))) into [α′(p), α(s)) followed by[α(s), ω′(p)).

ABORT, COMMIT Let i be an abort or commit of threads. Ter-
minating a thread requires it be removed from the specula-
tive list, undoing the effect of its insertion. We do not abort
or join the root, non-speculative thread, so assume a prede-
cessorp exists: (p, s) ∈ R′. List operations not shown in
Figure 2 for ABORT and COMMIT consist ofV = V ′\{s},
R = R′\{(p, s), (s, v)} ∪ {(p, v)}.

Once removed the thread’s predecessor becomes responsible
for completing any remainder of the the child’s execution:
ω(p) = ω′(s). In the case of an abort this completes the opera-
tion, giving the simpleABORT rule in Figure 2. Note that aborts
can be issued at any time,

A successful commit is performed only by an immediate prede-
cessor, which has reached its termination point. Validation re-
quires that the termination state match the input assumptions of
the speculative thread. If so the child speculative state is merged
into the parent state, overwriting the parent’s stack, and causing
the parent to inherit any new assumptions. Heap state in child
threads is only partial, and so a commit requires merging parent
and speculative heap states, giving child bindings preference.
These commits are captured by a non-associative binary merge
operator,⊔, defined as follows:

H1 ⊔ H2 = H1 ∪ {(x, v) ∈ H2| (x, w) 6∈ H1 for anyw}

Our proof of the equivalence of MLS to (some) sequential
execution first demonstrates the equivalence for single-threaded
programs under MLS, and then argues for the case of multithreaded
programs. For this we rely on the following two simple lemmas,
presented without proofs:

Lemma 2.2. Let H be an environment inδ(s) for somes. There
does not exist a variablev and distinct valuesm1 6= m2 such that
(v, m1) ∈ H and(v, m2) ∈ H.

Lemma 2.3. Let s be such that(s, t) 6∈ R for any t. Then
ω(s) = (EOF, ∅).

The above lemmas establish that environments do not have mul-
tiple mappings for the same variable/memory-location (Lemma 2.2),
and that the final thread in the speculation list is responsible for
completing execution (Lemma 2.3). Both properties are invariants
of every transformation.



ABORT
(p, s) ∈ R′

ω(p) = ω′(s)
FORK

s = new y = c + 1
δ′(t) = (n, c, H) JoinPoint(H, y) = S

α(s) = (y, ∅), δ(s) = (0, y, ∅), ω(s) = ω′(t), ω(t) = (y, S)

OP

safe(i) ∨ (∗, t) 6∈ R′

δ′(t) = (n, c, Hδ) α′(t) = (j, Hα)
ω′(t) 6= JoinPoint(c, Hδ) i(c, Hδ) = (d, H ′

δ)
readheap(i, c, H ′

δ) − Hδ = rH

δ(t) = (n + 1, d, H ′
δ), α(t) = (j, Hα ∪ rH)

COMMIT

(p, s) ∈ R′ δ′(s) = (n, x, Hs)
ω′(p) = (y, Sp) δ′(p) = (m, y, Hp) JoinPoint(Hp, y) = Sp

α′(p) = (r, Hpα) α′(s) = (y, Hsα) Hsα ⊆ Hp

δ(p) = (n + m, x, Hs ⊔ Hp), ω(p) = ω′(s), α(p) = (r, Hpα ⊔ Hsα)

Figure 2. Rules used in constructing the speculation list. List operations and identity relations are excluded for simplicity.

The proof proceeds by showing that a given thread computation
is a correct execution of the program, at least given its presumed in-
puts. The following lemma shows this property is preserved under
all transformations,

Lemma 2.4. For all s ∈ V , if α(s) = (a, Hα) and δ(s) =
(n, b, Hδ), then s has performed the computation and derived
correct result:(b, Hδ) = Pa|n(Hα).

Proof. This property is true initially.FORK initializes this property
for speculative threads, and bothFORK and ABORT operations
trivially preserve it.

OP A regular operation composes a functioni onto the existing
computation; assuming the computation prior to application
wasPa|n−1 this constructsi ◦ (Pa|n−1) = Pa|n. The property
thus holds provided the input toi is correct. The existing output
of Pa|n−1 is correct by assumption, so a contrary argument
implies that following anOP there exists a pair(w, v) such that
Pa|n(α(s)⊔ {(w, v)}) 6= Pa|nα(s). Such a(w, v) could only
have an impact on the input ofi if it was not already found in
either (the state of)δ′(s) or in the existing input stateα′(s).
By construction, however,α(s) = α′(s) ∪ rH whererH are
exactly such reads, forming a contradiction.

COMMIT Inductively, p computesPr|m(Hpα) and s computes
Py|n(Hsα). Assume that after theCOMMIT δ(p) 6= Pr|m+n(Hpα).
In order for this to be true the input tos, Hsα, must represent
a different environment from that found inδ′(p). Our contrary
assumption then becomes thatHsα ⊔ Hp 6= Hp ⊔ Hsα. Let
(v, ms) and (v, mp), ms 6= mp be pairs inHsα andHp re-
spectively. By construction in ruleCOMMIT Hsα ⊆ Hp, and so
both(v, ms), (v, mp) ∈ Hp. This contradicts Lemma 2.2.

The property is thus an invariant under all rule operations.

From Lemma 2.4 it is relatively easy to show that the computa-
tion of a single thread corresponds to sequential computation of the
same code, given the same inputs.

Lemma 2.5. Let P be the code executed under speculative exe-
cution, started by non-speculative user threadr at code position0
and begun in (fully specified) stateI. Oncer cannot apply any of
the rules in Figure 2r has computedP0|x(I), for x maximal.

Proof. SinceI is fully specifiedrH is always empty forr, and
α(r) = (0, I) for the root non-speculative threadr is trivially
preserved by every transformation. By Lemma 2.4r always com-
putesP0|n(I) for somen. Since theABORT rule can be applied
to any speculative thread at any time, the inability ofr to ap-
ply any rules means no other threads exist. Thus by Lemma 2.3
ω(r) = (EOF, ∅), Sincer cannotFORK or OP r has completed as
many operations as it can, andm is maximal.

From this it is straightfoward to establish an equivalence be-
tween sequential and MLS execution.

Theorem 2.6. Let P be a sequential program. Execution ofP
under MLS is equivalent to sequential execution.

Proof. This follows immediately from Lemma 2.5. SinceABORT
may be invoked immediately afterFORK, effectively generating a
sequential execution, all MLS executions ofP are equivalent to
sequential.

2.2 Multithreaded Programs

When executing a program that is already multithreaded each non-
speculative thread may have its own speculative thread hierarchy;
MLS execution of a multithreaded programs is thus easily modeled
in our formalism by a set of independent speculation lists. The use
of shared data and thread communication primitives, however, adds
additional complexity. For each such unsafe primitive theOP rule
of Figure 2 must be extended to explicitly describe how shared
data is propagated to other non-speculative threads, and naturally
strongly depends on the underlying thread communication and
shared memory consistency models.

Following recent memory models specifications for Java [16]
and C++ [4], here we show correctness for the most useful model
of correctly synchronizedprograms, ones guaranteed free of race
conditions and which may thus demonstrate only sequentially con-
sistent behaviours. For this we also assume that all operations that
imply direct communication between non-speculative threads are
unsafe operations—this includes explicit thread control and syn-
chronization, as well as access to shared variables outside of syn-
chronization (volatiledata). Note that we assumeOP has been suit-
ably extended to correctly define any such communication prim-
itives, and if support for speculative commits is desired, suitable
mutual exclusion between concurrentCOMMIT and/orABORT op-
erations on the same thread. Speculative list operations are assumed
atomic in all cases.

In such a context the equivalence of MLS to non-MLS execution
is conceptually straightforward, building on the observation that
speculation within one thread is always confined to segments of
code that have no visibility to other non-speculative threads.

Lemma 2.7. LetP be a correctly synchronized program executing
under method-level speculation, and lets be a speculative thread
in the speculation list of non-speculative threadr. Let w:x=v be
a variable write performed bys. If t is a non-speculative thread
t 6= r thent cannot observew until afters is fully committed byr.

Proof. Assume to the contrary; writes ofs are fully buffered until
commit, and thus the observation can only occur during the actual
commit of s by r. By Lemma 2.5 the computation ofs properly
composes withr as a continuation of the code and input tor. Since
s executes no unsafe operations, including thread communication
of any form, ifs performsw thenw is reachable without encounter-
ing synchronization in an execution ofr without speculation. If this
is possible then a scheduling ofr, t exists that would produce a race
condition betweent andr, contradicting the presumed property of
P being correctly synchronized.



Lemma 2.7 establishes that speculation does not induce race
conditions where none exist. Combined with Theorem 2.6 this
allows us to conclude the equivalence also exists for multithreaded
programs.

Theorem 2.8. Let P be a correctly synchronized program, ex-
ecuted under MLS. An observable execution state ofP is a set
of non-speculative thread states prior to any partially completed
COMMIT operations. IfH is an observable state ofP started with
inputI, then a non-MLS execution exists for the same inputI reach-
ing the same stateH.

Proof. Assume to the contrary and letH be first observable
state generated by MLS execution that is not reachable as some
non-MLS state. Observable state consists of threads, their code-
positions and heaps/stacks, and assuming sequentially consistent
execution,H is generated by applying some rule to a stateH ′. The
ABORT andFORK rules do not affect non-speculative state, andOP
actions change state deterministically. By Lemma 2.7COMMITs
are invisible to other threads, and by Theorem 2.6 speculative ex-
ecution correctly performs single-threaded execution. ACOMMIT
by a non-speculative thread is visible to itself, creating intermediate
execution states different from those that would be generated by the
expected program order, but in the absence of committing unsafe
operations these operations affect only the committing thread, and
partial commit states are excluded by assumption. ThusH could
only not be reachable from a non-MLS execution ifH ′ is an un-
reachable state. This contradicts the assumption thatH is the first
such unreachable state.

2.3 Discussion

The speculation list model supports a variety of MLS model param-
eters, unifying several potential implementation strategies for both
method-level and more broadly-defined thread speculation. By al-
lowing FORK operations by arbitrary threads the basic model de-
scribes fundamental approaches to both in-order and out-of-order
MLS: speculative threads can start further speculation, and all
threads can have multiple speculative children, respectively.

Implementation of either strategy is typically simplified by al-
lowing only non-speculative threads toCOMMIT or ABORT. This is
particularly simple in out-of-order designs, whereFORK is already
specialized to only non-speculative threads. In this case no extra
synchronization is required by MLS other than suspension of the
speculative thread while it is actually committed (and protection of
internal MLS data structures) [19]. In-order strategies bring a minor
additional complexity in the potential for overlappingCOMMIT and
FORK operations. If speculativeCOMMITs (andABORTs) are per-
mitted, however, synchronization is further required between the
multiple COMMIT, FORK andABORT operations that may be per-
formed on the same thread. The greater synchronization overhead
of speculative commit/abort should in practice be balanced with the
benefit provided by offloading actual commit operations to other-
wise idle speculative threads, as well as any improvement brought
by different speculative execution patterns (see Section 4). Note
that, as shown in Lemma 2.7, in all cases the actual writes issued
by aCOMMIT need not be atomic.

MLS designs also vary in how input data required by specula-
tive threads is retrieved. Speculative input may be retrieved opti-
mistically from a parent or global environment, more pessimisti-
cally by arranging synchronization between speculative child and
parent to correctly propagate data [24], or through (return) value
prediction [14]. Our design supports a flexible validation approach,
and so is independent of how speculative input data are gathered.
Data acquired optimistically are verified as part of theCOMMIT
rule in Figure 2. Data acquired pessimistically are certainly cor-

rect and thus may be modeled by omitting or assuming the clause
Hsα ⊆ Hp in rule COMMIT is always true.

In our formalism we use the JoinPoint operator to specify
matching execution points (states) between parent termination and
speculative child start. For MLS, and assuming method invoca-
tions may access only local and global scopes, matching execution
points are easily identified by comparing stack pointer values: once
a parent thread returns to the frame in which the child was forked
the matching join point has been reached. The JoinPoint operator
is in fact easily extended to allow loop-based [23] and arbitrary [3]
thread speculation models. For loop-based speculation JoinPoints
are defined as loop index and stack pointer values, and the code
offset of the loop header. Arbitrary speculation may require more
complex state depending on the model, although basic intra-method
speculation requires only code and stack pointer values.

The list structure used in our formalism implies each thread
has only one speculative successor at any one time. If CPUs are
available and thread validation uncertain, it may be advantageous
to instead fork multiple speculative threads at the same time, each
evaluating different scenarios, and thus increasing the likelihood of
a valid commit. This can be modeled by providing aFORKn rule
that creates multiple speculative threads from the same fork point,
along with extending our speculation list structure to a DAG. Other
operations,COMMIT, ABORT andOP, continue to apply unaltered.

3. Stack Abstraction
In the previous section both speculative heap and stack states were
abstracted by the same state variable. Here we present a stack ab-
straction that directly exposes the call stack manipulations cen-
tral to MLS designs. This abstraction is flexible and supports in-
order nesting, out-of-order nesting, in-order speculative commits,
and any combination thereof. Specific models that implement these
features using our abstraction are developed in Section 3.2.

In addition toFORK, COMMIT, andABORT operations from the
previous section, the stack also supportsPUSHandPOPoperations
to allow for method entry and exit. As in non-speculative programs,
these new operations manipulate frames on the stack, such that
a given frame contains the local variables of a method. Register
values are assumed to be spillable to a frame on demand. Under
this abstraction,FORK can be called instead ofPUSH, pushing a
frame and creating a new child thread, and upon returnCOMMIT
or ABORT will be called to match theFORK instead ofPOP. Note
that we assume stack operations complete atomically. Non-stack
operations are not explicitly modelled and are assumed to be freely
interleaved with stack operations on running threads. Speculative
accesses to global variables are also handled externally.

The model has two unique features that separate it from naı̈ve
speculation where all reads and writes go through a dependence
buffer or transactional memory subsystem. First, child threads
buffer stack frames from their less-speculative parents, such that
all local variable accesses go directly through a local frame. This
is intended to reduce the load on the dependence tracking system.
Second, stack frames are buffered as lazily as possible: on forking,
only the frame of the current method is copied to the child. If the
child ever needs lower down frames from some parent thread, these
will be retrieved and copied on demand. This lazy copying intro-
duces significant complexity: thePOPoperation may need to buffer
a frame, and theCOMMIT operation needs to copy back only the
range of live frames from the child thread stack. We include it as
a practical measure intended to make our abstraction useful, based
on our experience with implementing MLS that indicates a steep
performance penalty for copying entire thread stacks.

The main abstraction is described via its operational semantics
in Figure 3. It has seven publicly available operations, each marked
with [∗]. These in turn use a number of internal operations, both for



purposes of clarity and for logic reuse. A summary of the public
operations and their observable behaviour follows:

START(): create a new non-speculative thread with an empty stack.

STOP(t): destroy non-speculative threadt with an empty stack.

PUSH(t, f): add a new frame with unique namef to the stack of
threadt.

POP(t): remove the top frame from the stack of threadt. The
matching operation must be aPUSH, and for speculative threads
there must be a frame to pop to.

FORK(t, f): fork a new child thread that starts executing the
method continuation in the current frame of threadt and then
executePUSH(t, f). Cannot be issued on an empty stack.

ABORT(t): executePOP(t) and then abort the child thread attached
to the frame underneath, recursively aborting all of its children.
The matching operation must be aFORK.

COMMIT(t): executePOP(t) and then commit the child thread at-
tached to the frame underneath, copying all of its live stack
frames and any associated child pointers. Committed children
with children of their own are kept on a list attached tot until
no references to them exist, lest another speculative thread at-
tempt to copy a stack frame from freed memory. The matching
operation must be aFORK.

3.1 Detailed description

We now provide sufficient detail to understand the operations in
Figure 3. We model threads as unique integers, and maintain several
thread sets:T is the set of all threads,Tl represents live threads,
Tn andTs are non-speculative and speculative threads respectively,
andTc is the set of committed threads that may still be referenced
by somet ∈ Ts. Some invariants apply to these sets:Tn∪Ts ⊇ Tl,
Tn∩Ts = ∅, Tn 6= ∅, Tc∩Tl = ∅, andTc∪Tn∪Ts = T . Elements
are never removed fromT , such that each new thread gets a unique
ID based on the current size ofT , namely|T |. Stack frames are
modeled by a set of unique framesF .

In addition to these sets, there are several functions that maintain
mappings between them.stack(t ∈ T ) mapst to a thread stack,
child(f ∈ F ) mapsf to a speculative child threadu, parent(u ∈
Ts) mapsu to thet ∈ T that forked it, andcommits(t ∈ T ) maps
t to a list of threads inTc. Initially all mappings and sets are empty.

Our rules make use of a few specific operators and conventions.
The use of exclusive or (⊕) indicates a choice between one rule
and another or one set of premises and another, and we useS⊎{s}
(or S \= {s}) to indicate set additions (or removals). Given a
framef ′, f is the less-speculative version of the same frame in a
parent thread. Finally,ν is the greatest fixed point operator from
the µ-calculus that maximizes its operand starting from⊤ given
some terminating condition.ν is used to find the greatest, or “most
speculative,” threadp in POP, and to find the longest sub-listδ
without child dependences inPURGE COMMITS.

Lastly, we give a brief description of each rule.CREATE ini-
tializes a new threadu, adds it toTl, T , andTn or Ts depend-
ing on whether the thread is speculative or not, as given byTp,
and initializes the stack ofu to σ. DESTROY conversely removes
u from Tl and eitherTn or Ts. Note that after destroy, committed
threads will move toTc, from which they are later removed only
by PURGE COMMITS. START simply callsCREATE to make a new
non-speculative threadu, andSTOPcallsDESTROY to remove it.

PUSHtakes a freshf and appends it tostack(t), wheret is live,
also addingf to F . BUFFERtakes either a live or committed thread,
the name of a framee in its stack, and provided there is no child
attached toe createse′ for use by its caller, which is eitherFORK
or POP. FORK first callsPUSH, bufferse′ from e, createsu, and sets
u ase’s child andt asu’s parent.

CREATE(Tp, σ)
Tp = Tn ⊕ Tp = Ts

u = |T |, T ⊎ {u}, Tl ⊎ {u}, Tp ⊎ {u}, stack(u) = σ

DESTROY(u)
Tp ⊆ T . u ∈ Tp Tp = Tn ⊕ Tp = Ts

Tl \= {u}, Tp \= {u}

[∗]START()
CREATE(Tn, ∅)

[∗]STOP(u)
u ∈ Tn stack(u) = ∅

DESTROY(u)

[∗]PUSH(t, f)
t ∈ Tl f /∈ F σ = stack(t)

stack(t) = σ : f, F ⊎ {f}

BUFFER(t, e)
t ∈ Tl ∪ Tc e ∈ stack(t) e ∈ F child(e) /∈ Ts

e′ = e, F ⊎ {e′}

[∗]FORK(t, f)

PUSH(t, f)

σ : e : f = stack(t),BUFFER(t, e) CREATE(Ts, e
′)

parent(u) = t, child(e) = u

[∗]POP(t)

t ∈ Tl σ : e′ : f ′ = stack(t) f ′ ∈ F child(e′) /∈ Tl

t ∈ Tn

e′ ∈ F ⊕ e′ /∈ F
⊕

t ∈ Ts

e′ ∈ F ⊕ νpp≥0 . BUFFER(p, e)

stack(t) = σ : e′

JOIN(t)
t ∈ Tl σ : e : f = stack(t) e, f ∈ F child(e) ∈ Tl

stack(t) = σ : e, u = child(e)

MERGE STACKS(t, u)

d′ : ρ = stack(u)

d ∈ stack(t)

σ : d : π : e = stack(t)
⊕

d /∈ stack(t)

σ = ∅

stack(t) = σ : d′ : ρ

MERGE COMMITS(t, u)
γ = commits(t) δ = commits(u)

commits(t) = γ : u : δ, Tc ⊎ {u}

PURGE COMMITS(t)

γ : δ = commits(t) . δ = νδδ⊇∅ .
∀c ∈ δ ∀f ∈ stack(c), child(f) /∈ Tl

commits(t) = γ, Tc \= {δ}

CLEANUP(t, u)
DESTROY(u)

PURGE COMMITS(t)

[∗]COMMIT(t)

JOIN(t) MERGE STACKS(t, u)
MERGE COMMITS(t, u)

CLEANUP(t, u)

ABORT ALL (t)

∀f ∈ stack(t) . u = child(f) ∈ Tl

ABORT ALL (u)

CLEANUP(t, u)

[∗]ABORT(t)
JOIN(t) ABORT ALL (u)

CLEANUP(t, u)

Figure 3. Stack operations.Externally available operations are
marked with [∗]. START and STOP create and destroy non-
speculative threads,PUSH, POP, FORK, COMMIT, andABORT op-
erate on existing threads, and all other operations are internal.



POP takes the stack oft, and checks that the top framef ′ is
valid and there is no child attached to the framee′ underneath. Ift
is non-speculative, it does not matter ife′ exists, we can always pop
f . If the t is speculative, eithere′ exists and is found instack(t), or
due to our lazy stack copying approach it needs to be retrieved and
buffered from the most speculative parent threadp that containse.
JOIN has similar conditions toPOP, except that heree must exist
and also have a speculative child.

MERGE STACKS is called byCOMMIT, and is used to unify the
(partial set of) frames copied into a child with those found in a
parent thread. It takes the stack ofu and looks for a less-speculative
versiond of its bottom framed′ in its parent. If found, then framesd
throughe in t are replaced with the child stack, otherwise the entire
parent stack is replaced. Note thatd will always be found ift ∈ Tn,
since non-speculative threads have full stacks.MERGE COMMITS,
as called byCOMMIT, takes the commit listγ from the parent
and appends the childu and the child commit listδ, and addsu
to Tc. PURGE COMMITS is called every timeCLEANUP is called,
and it removes threads without child dependences from the most
speculative end of a commit list until either all committed threads
have been purged or it encounters a dependency.

CLEANUP simply destroysu and then purgest, and is called af-
ter anyCOMMIT or ABORT operation, and internally fromABORT -
ALL . It contains the common logic that follows commits and aborts,
whereasJOIN contains the common logic that precedes them.COM-
MIT is just a composite operation that joinst, merges stacks and
commit lists usingu from JOIN, and then cleans up.ABORT has
a similar structure, callingABORT ALL internally, which performs
a depth-first search looking for live children, and destroying them
post-order. In any real implementation that uses this stack abstrac-
tion, child threads must be stopped before they can be committed
or aborted.

3.2 Structural operational semantics

Using the stack abstraction from Figure 3, we now develop a series
of progressively more flexible behaviour models, shown individu-
ally in Figures 4–10. We then use these rules in Section 4 to explore
and understand the behaviour of various code idioms under specu-
lation.

In these models, each rule is named, possibly with symbols
for PUSH (↓), POP (↑), FORK (≺), COMMIT (≻), andABORT (⊁).
Above the inference line is the corresponding[∗] command from
Figure 3, followed by restrictions on behaviour and local variable
mappings. Below the line is a visual depiction of the transition
from one stack state to the next. Threads are named in increasing
order byτ , α, β, γ, δ, such thatτ ∈ Tn and{α,. . . ,δ} ⊆ Ts,
except in ruleI↑⊥ from Figure 8, whereτ may be inTs. Shown
for each threadt is the value ofstack(t), which grows upwards,
the value ofcommits(t), which grows left-to-right starting att,
and for eachf ∈ stack(t) a horizontal line to the child thread if
child(f) ∈ Tl. As in Figure 3, variablesd, e, f and derivatives
are given to concrete frames, whereasσ, ρ, π, ω, ϕ, υ range over
frames. A valid speculation for a given program is described and
can be visualized by a sequence of rule applications, each of which
acts atomically.

Figure 4 contains a simple structured non-speculative stack
model common to many languages. Non-speculatives threads can
START andSTOP, delimiting the computation. InN↓, a new frame
can be pushed, whereσ ⊆ F and so may be∅. N↑ and N↑⊥,
match the two casese ∈ stack(τ) ande /∈ stack(τ) of POP(t)
in Figure 3, the latter being the penultimate operation on a thread,
followed bySTOP.

Figure 5 contains the simplest MLS stack model, one that ex-
tends Figure 4 to allow non-speculative threads to fork and join
a single child at a time. In this model, speculative threads cannot

perform any operations, including simple method entry and exit.
For N≺, there is a restriction on children being attached to prior
stack frames, which prevents out-of-order speculation.N≻ is the
simplestCOMMIT(t) possible, with the child stack containing only
one frame, andN⊁ is similarly simple with no recursion required
in ABORT(τ). Finally, the restrictionτ ∈ Tn in N↓ andN≺ is suffi-
cient to prevent speculative child threads from doing anything other
than local computation in the buffered framee′: N≻ andN⊁ must
match withN≺, N↑ must matchN↓, andN↑⊥ is precluded for spec-
ulative threads becauseBUFFER(τ, e) will not complete.

The model in Figure 6 extends Figure 5 to allow speculative
children to enter and exit methods. A speculative pushS↓ simply
creates a new frame forα, specifying thatπ′ is linked toπ via some
framee′ at the bottom ofπ′ to the correspondinge ∈ π. S↑ takes
the left-hand case inPOP(t) wheree′ ∈ F , whereasS↑⊥ takes the
right-hand case and so buffere′ from its parent. Finally, this model
updatesN≻ andN⊁ to handle situations where the child may have
left e′ via S↑⊥, represents the child thread stack byϕ′.

The next model in Figure 7 simply adds one operation to al-
low out-of-order nesting in non-speculative threads,O≺. This rule
specifies that if there is some lower stack framed in π with a child
attached, a new thread can be forked frome, complementingN≺ in
Figure 5 which prohibits this. All other existing operations continue
to work as expected in this model. As an implementation note, this
model is relatively straightforward to implement in software, but
offers significantly limited parallelism [19].

After out-of-order nesting comes in-order nesting in Figure 8.
I≺ allows speculative threadα to createβ independently of its par-
ent. N⊁ will recursively abort these threads without modification,
but I≻ is required to allow a parent thread to commit child threadα
with a grandchildβ, maintaining the link toβ and mergingα onto
the commit list of the parent. Afterβ gets committed viaN≻, α
will be freed, assuming there are no more children.I↑⊥ is yet more
complex, specifying that in order to buffer framee′, parent threads
will be searched backwards starting from the grandparent untile
is found. Here; indicates that there is a path of buffered frames
from π′ backwards toπ. This rule is an extended version ofS↑⊥,
which only handles buffering from the immediate parent.S↑ works
nicely as is with in-order speculation, andS↑⊥ works not only in
the simple case above but also in the case where the buffered frame
is in some committed threadc ∈ Tc.

In Figure 9, speculative commits are now permitted. There are
two simple rules,S≻ and SI≻, which complementN≻ and I≻
respectively. In the formerβ is purged fromcommits(α), whereas
in the latter it is kept because of dependencyγ. [I≻MERGE] is
implied by I≻, and so adds nothing, and only shown to illustrate
the full process of merging committed thread lists, whereα andγ
were already committed andβ gets added between them.

Finally, in Figure 10, the last restrictions are removed so that
all of the features in the main abstraction in Figure 3 are available.
In this case, it suffices to provideIO≺, which allows speculative
threads to create child threads out-of-order. This was formerly pro-
hibited byO≺, which only applied to non-speculative threads. The
other two rules are again shown only for purposes of illustration:
[IO⊁] shows a recursive abort on a thread with both in- and out-of-
order nesting, and[OI≺] shows in-order nesting after out-of-order
nesting has taken place, as already allowed byO≺ followed by I≺.

The above models illustrate the behaviour of common specu-
lation strategies. In the next section, we explore a series of stack
evolutions that rely upon this final combined stack model for their
behaviour.

4. Speculation Idioms
Simple changes to the structure of input programs and decisions
regarding when to speculate can dramatically affect the dynamic



START
START() τ = u

→
τ

STOP
STOP(τ)

τ
→

N↓
PUSH(τ, f) τ ∈ Tn

τ
σ →

τ
σ
f

N↑

POP(τ) e ∈ stack(τ)
e = e′ f = f ′

τ
σ
e
f

→
τ
σ
e

N↑⊥

POP(τ) e /∈ stack(τ)
e = e′ f = f ′

τ

f →
τ

Figure 4. Adults-only model.No speculation.

N≺

FORK(τ, f) τ ∈ Tn

∀d ∈ σ, child(d) /∈ Tl

τ
σ
e

→
τ
σ
e
f

α

e′
N≻

COMMIT(τ)
ρ = ∅

d = e d′ = e′

τ
σ
e
f

α

e′
→

τ
σ
e′

N⊁
ABORT(τ)

τ
σ
e
f

α

e′
→

τ
σ
e

Figure 5. Totalitarian model.One speculative child allowed, but
only non-speculative threads can perform stack operations.

S↓

PUSH(α, f)
π′ = σ ω 6= ∅

e′ = car(π′) . e ∈ π

τ
π
ω

α
π′→

τ
π
ω

α
π′
f

S↑

POP(α) f = f ′

π′ = σ : e′ ω 6= ∅
d′ = car(π′) . d ∈ π

τ
π
ω

α
π′
f

→
τ
π
ω

α
π′

S↑⊥

POP(α) π′ = f ′

∅ = σ : e′ ω 6= ∅
f = car(π)

τ

ϕ
e
π
ω

α

π′

→
τ

ϕ
e
π
ω

α

e′

N≻

COMMIT(τ)
ϕ′ = d′ : ρ

ϕ = d : π : e

τ
σ
ϕ
f

α

ϕ′

→
τ
σ
ϕ′

N⊁

ABORT(τ)
σ : ϕ = σ : e

τ
σ
ϕ
f

α

ϕ′

→
τ
σ
ϕ

Figure 6. Kid-friendly model.Allows PUSH and POP actions on
speculative threads, overridingN≻ andN⊁ to accomodate.

O≺

FORK(τ, f) τ ∈ Tn

d′ = car(π′) . d = car(π)

τ
σ
π
e

α

π′

→
τ
σ
π
e
f

β

e′

α

π′

Figure 7. Catholic model.Provides out-of-order nesting viaO≺
to allow an arbitrary number of speculative children for non-
speculative threads

structure of the speculative call stack. In this section we explore
several common code idioms and their behaviour under MLS us-
ing our stack abstraction from Section 3. We examine straight-line
code, simple if-then conditionals, and finally explore basic iteration
and recursion in-depth, with a view towards discovering idiomatic
code structures and speculation decisions that yield interesting par-
allel execution behaviours.

In the examples that follow, we assume that useful computation
can be represented by calls to awork function whose running time
is both constant and far in excess of the running time of all non-
work computation. Thus we can reason that if a thread is executing

I≺

FORK(α, f)
π′ = σ ω 6= ∅

d′ = car(π′) . d ∈ π

τ
π
ω

α
π′
e

→
τ
π
ω

α
π′
e
f

β

e′
I≻

COMMIT(τ) τ ∈ Tn

ω 6= ∅ ϕ′ : ω = d′ : ρ
ϕ = d : π : e

τ
σ
ϕ
f

α

ϕ′ω

β

ϕ′′

→
τ
σ
ϕ′ω

α β

ϕ′′

I↑⊥

POP(β) π′′ = f ′ ∅ = σ : e′ ω, υ 6= ∅
f = car(π′) car(π′) ; car(π)

τ = νpp≥0 . BUFFER(p, e)

τ

ϕ
e
π
ω

α

π′
υ

β

π′′...

→
τ

ϕ
e
π
ω

α

π′
υ

β

e′
...

Figure 8. One big happy model.Provides in-order nesting viaI≺
to allow speculative children of speculative threads.

S≻

COMMIT(α) ω 6= ∅
ϕ′′ = d′ : ρ

ϕ′ = d : π : e

τ
σ
ϕ
ω

α

ϕ′
f

β

ϕ′′

→
τ
σ
ϕ
ω

α

ϕ′′

SI≻

COMMIT(α) ω, υ 6= ∅
ϕ′′ : υ = d′ : ρ
ϕ′ = d : π : e

τ
σ
ϕ
ω

α

ϕ′
f

β

ϕ′′υ

γ

ϕ′′′

→
τ
σ
ϕ
ω

α

ϕ′′υ

β γ

ϕ′′′

[I≻MERGE]

COMMIT(τ) ω 6= ∅
ϕ′′′ : ω = d′ : ρ ϕ′ = d : π : e

τ
σ
ϕ′
f

α β

ϕ′′′ω

γ δ

ϕ′′′′

→
τ
σ
ϕ′′′ω

α β γ δ

ϕ′′′′

Figure 9. Nuclear model.Allows speculative threads to commit
their own children.[I≻MERGE]’s behaviour is provided byI≻.

IO≺

FORK(α, f) ω 6= ∅
d′ = car(π′) . d = car(π)

τ
σ
π
ω

α

π′
e

β

π′′

→
τ
σ
π
ω

α

π′
e
f

γ

e′

β

π′′

[IO⊁]

ABORT(τ) ω 6= ∅
σ : ϕ = σ : e

τ
σ
ϕ
f

α

ϕ′π
ω

γ

π′

β

ϕ′′

→
τ
σ
ϕ

[OI≺]

FORK(β, f) π′ = σ ω 6= ∅
d′ = car(π′) . d ∈ π

τ

ϕ
π
ω

β

π′
e

α

ϕ′
→

τ

ϕ
π
ω

β

π′
e
f

γ

e′

α

ϕ′

Figure 10. Libertarian model.Allows both in-order and out-of-
order nesting.[IO⊁] and[OI≺] are provided byN⊁ andI≺.

a work function, it will not return from that function until all other
computations possible before its return have completed. This rea-
soning will guide the stack evolutions in cases where more than one
operation is possible. Although our execution timing assumptions
are simplistic, the behaviour is still complex and interesting, and it
provides a basis for understanding more complex situations.

4.1 Straight-line Code

The simplest code idiom in imperative programs is straight-line
code, where one statement executes after the next without branch-
ing. In Figure 11, two sequential calls towork are shown, and the



straightline () {
work (1);
work (2);

}

Figure 11. Straight-line code.

τ
→

τ
s →

τ
s
w1

→
τ
s →

τ
s
w2

→
τ
s →

τ

Figure 12. Straight-line: do not speculate.

τ
→

τ
s →

τ
s
w1

α
s’ →

τ
s
w1

α
s’
w2

β
s” →

τ
s’
w2

α β
s” →

τ
s” →

τ

Figure 13. Straight-line: speculate on all calls towork.

straightline () { stop () {
work (1); /* unsafe */
work (2); }
stop ();
work (3);

}

Figure 14. Speculation barrier code.

τ
→

τ
s →

τ
s
w1

α
s’ →

τ
s
w1

α
s’
w2

β
s” →

τ
s
w1

α
s’
w2

β
s”
st

→
τ
s’
w2

α β
s”
st

→
τ
s”
st

→
τ
s” →

τ
s”
w3

γ
s”’→

τ
s”’→

τ

Figure 15. Speculation barrier: speculate on all calls towork.

non-speculative stack evolution is shown Figure 12. In Figure 13,
speculation occurs on all calls towork: the parent threadτ exe-
cuteswork(1), α executeswork(2), andβ executes a continua-
tion which does nothing useful.τ returns from w1 and commitsα,
then returns from w2 and commitsβ, and finally pops s” to exit the
program.

Even in this simple example, choices about whether to usePUSH
or FORK clearly affect which threads execute which regions of
code, and whether all speculative threads have useful work to do. In
Figure 14, a functionstop is introduced that contains an unsafe op-
eration that will act as a speculation barrier. The result in Figure 15
is that w3 is not executed speculatively. Again, although simple, the
impact of unsafe instructions on speculative parallelism is impor-
tant to consider; in some cases, artificial speculation barriers may
even be helpful.

4.2 Conditional branching

Another simple code idiom is conditional branching. If the value
of the conditional is speculative, then particular code paths fol-
lowed depending on the value themselves become speculative. In
Figures 16–22, speculating on the call towork(1), it is necessary
to predict a boolean return value. If the speculation is correct, as in
Figures 19 and 20, then the speculative work w2 or w3 respectively
ends up being committed, otherwise aborted.

For this speculation idiom to be useful, the function producing
the return value should take a long time to execute. Further, ex-
tensions to the basic list and stack speculation models could allow
for multiple predicted return values, with one speculative thread
each. This would provide a kind of speculative hedging, and may
be worthwhile given excess resources. Nested ifs have similar be-
haviour to this example, although the prediction for the outer test
is more important than the inner test in terms of limiting wasted
computation, since the inner speculation is under its control.

if_then () {
if (work (1)) {
work (2);

}
work (3);

}

Figure 16. If-then code.

τ
→

τ
i →

τ
i
w1

→
τ
i →

τ
i
w2

→
τ
i →

τ
i
w3

→
τ
i →

τ

Figure 17. If-then: do not speculate,work(1) returns true.

τ
→

τ
i →

τ
i
w1

→
τ
i →

τ
i
w3

→
τ
i →

τ

Figure 18. If-then: do not speculate,work(1) returns false.

τ
→

τ
i →

τ
i
w1

α
i’ →

τ
i
w1

α
i’
w2

→
τ
i’
w2

→
τ
i’ →

τ
i’
w3

→
τ
i’ →

τ

Figure 19. If-then: speculate onwork(1), predict true correctly.

τ
→

τ
i →

τ
i
w1

α
i’ →

τ
i
w1

α
i’
w3

→
τ
i’
w3

→
τ
i’ →

τ

Figure 20. If-then: speculate onwork(1), predict false correctly.

τ
→

τ
i →

τ
i
w1

α
i’ →

τ
i
w1

α
i’
w2

→
τ
i →

τ
i
w3

→
τ
i →

τ

Figure 21. If-then: speculate onwork(1), predict true incorrectly.

τ
→

τ
i →

τ
i
w1

α
i’ →

τ
i
w1

α
i’
w3

→
τ
i →

τ
i
w2

→
τ
i →

τ
i
w3

→
τ
i →

τ

Figure 22. If-then: speculate onwork(1), predict false incor-
rectly.

4.3 Iteration

The most common code idiom considered for speculation is loop
iteration. Chen & Olukotun [5] demonstrated that if a loop body
is extracted into a method call, then method level speculation can
subsume loop level speculation. We explore an example loop under
different speculation assumptions in Figures 23–29 to better un-
derstand the behaviour. Speculating on all calls towork, the loop is
quickly divided up into one iteration per thread, for as many threads
as there are iterations.

In many cases loop bodies may be small, and speculating on
everym in n calls/iterations may be more appropriate. In Figure 26
speculation is performed on every 1 in 2 calls. In this case the stack
evolves to a point where both w1 and w2 are executing concurrently
and no other stack operations are possible. From then on, although
there are a number of possible intermediate evolutions they all lead
to the same w3/w4 state. Effectively, the loop is parallelized into
two threads, each executing one iteration at a time. Speculating on
every 1 in 3 calls, a similar pattern emerges, except that a non-
parallel execution of w3 is interjected. Speculating on every 2 in 3
calls, w1, w2, and w3 execute in parallel, and once they complete
the stack evolves until w4, w5, and w6 execute in parallel.

A general rule for iteration under MLS then is that speculating
on everyn − 1 in n calls towork will parallelize the loop across
n threads, each executing one iteration. To support multiple subse-
quent iterations executing in the same thread, there are two options:
1) passi + 2when speculating, which is not directly possible with
our stack model; 2) unroll the loop and push multiple iterations into
the loop body, as in Figure 29.



iterate (n) {
for (i = 1; i <= n; i++) {
work (i);

}
}

Figure 23. Iteration code.

τ
→

τ
i →

τ
i
w1

→
τ
i →

τ
i
w2

→
τ
i →

τ
i
w3

→ . . .

Figure 24. Iteration: do not speculate.

τ
→

τ
i →

τ
i
w1

α
i’ →

τ
i
w1

α
i’
w2

β
i” →

τ
i
w1

α
i’
w2

β
i”
w3

γ
i”’ → . . .

Figure 25. Iteration: speculate on all calls towork.

τ
→

τ
i →

τ
i
w1

α
i’ →

τ
i
w1

α
i’
w2

→
τ
i’
w2

→
τ
i’ →

τ
i’
w3

β
i” →

τ
i’
w3

β
i”
w4

→ . . .

Figure 26. Iteration: speculate on 1 in 2 calls towork.

τ
→

τ
i →

τ
i
w1

α
i’ →

τ
i
w1

α
i’
w2

→
τ
i’
w2

→
τ
i’ →

τ
i’
w3

→
τ
i’ →

τ
i’
w4

β
i”

→
τ
i’
w4

β
i”
w5

→ . . .

Figure 27. Iteration: speculate on 1 in 3 calls towork.

τ
→

τ
i →

τ
i
w1

α
i’ →

τ
i
w1

α
i’
w2

β
i” →

τ
i
w1

α
i’
w2

β
i”
w3

→
τ
i’
w2

α β
i”
w3

→
τ
i”
w3

→
τ
i” →

τ
i”
w4

γ
i”’ →

τ
i”
w4

γ
i”’
w5

δ
i””→

τ
i”
w4

γ
i”’
w5

δ
i””
w6

→ . . .

Figure 28. Iteration: speculate on 2 in 3 calls towork.

iterate (n) { unrolled (i) {
i = 1; work (i);
while (i <= n) { i++;
unrolled (i); work (i);

} i++;
} }

Figure 29. Unrolled iteration code.

4.4 Tail Recursion

Tail recursion is explored in Figure 30–37. It is well known that tail
recursion can be efficiently converted to iteration, and we see the
same behaviour in these examples. Speculating on bothrecurse
andwork does populate the stack with successive calls towork, but
it also creates just as many useless threads that will only ever fall
out of the recursion, although they will stop almost immediately as
they encounter elder siblings. Speculating on justwork is good, and
yields a stack structure identical to that produced by speculating on
all calls in iteration, as in Figure 25, once the interleavingrecurse
frames are removed. On the contrary, speculating on justrecurse
is bad, such that calls towork are never parallelized.

Speculating on 1 in 2 calls towork yields again a structure di-
rectly comparable to iteration, where w1/w2 will execute in paral-
lel before the stack evolves to w3/w4. Speculating on 1 in 2 calls
to work andrecurse is similar but more wasteful. Speculating on
1 in 2 calls torecurse is bad, but yields an interesting behaviour
where the speculative children unwind the stack by one frame be-
fore stopping.

recurse (i, n) {
work (i);
if (i < n) {
recurse (i + 1, n);

}
}

Figure 30. Tail recursion code.

τ
→

τ
r1→

τ
r1
w1

→
τ
r1→

τ
r1
r2

→
τ
r1
r2
w2

→ . . .

Figure 31. Tail recursion: do not speculate.

τ
→

τ
r1→

τ
r1
w1

α
r1’→

τ
r1
w1

α
r1’
r2

β
r1”→

τ
r1
w1

α
r1’
r2
w2

γ

r2’

β
r1”→ . . .

Figure 32. Tail recursion: speculate on all calls (inefficient).

τ
→

τ
r1→

τ
r1
w1

α
r1’→

τ
r1
w1

α
r1’
r2

→
τ
r1
w1

α
r1’
r2
w2

β

r2’
→ . . .

Figure 33. Tail recursion: speculate on all calls towork (good).

τ
→

τ
r1→

τ
r1
w1

→
τ
r1→

τ
r1
r2

α
r1’→

τ
r1
r2
w2

α
r1’→ . . .

Figure 34. Tail recursion: speculate on all calls torecurse (bad).

τ
→

τ
r1→

τ
r1
w1

α
r1’→

τ
r1
w1

α
r1’
r2

→
τ
r1
w1

α
r1’
r2
w2

→
τ
r1’
r2
w2

→
τ
r1’
r2

→
τ
r1’
r2
r3

β

r2’

→
τ
r1’
r2
r3

β
r1”→

τ
r1’
r2
r3
w3

γ

r3’

β
r1”→

τ
r1’
r2
r3
w3

γ

r3’
r4

β
r1”→

τ
r1’
r2
r3
w3

γ

r3’
r4
w4

β
r1”→ . . .

Figure 35. Tail recursion: speculate on 1 in 2 calls towork and
recurse (inefficient).

τ
→

τ
r1→

τ
r1
w1

α
r1’→

τ
r1
w1

α
r1’
r2

→
τ
r1
w1

α
r1’
r2
w2

→
τ
r1’
r2
w2

→
τ
r1’
r2

→
τ
r1’
r2
r3

→
τ
r1’
r2
r3
w3

β

r3’

→
τ
r1’
r2
r3
w3

β

r3’
r4

→
τ
r1’
r2
r3
w3

β

r3’
r4
w4

→ . . .

Figure 36. Tail recursion: speculate on 1 in 2 calls towork (good).

τ
→

τ
r1→

τ
r1
w1

→
τ
r1→

τ
r1
r2

→
τ
r1
r2
w2

→
τ
r1
r2

→
τ
r1
r2
r3

α

r2’
→

τ
r1
r2
r3
w3

α

r2’

→
τ
r1
r2
r3
w3

α
r1’→

τ
r1
r2
r3

α
r1’→

τ
r1
r2
r3
r4

α
r1’→

τ
r1
r2
r3
r4
w4

α
r1’→

τ
r1
r2
r3
r4

α
r1’→

τ
r1
r2
r3
r4
r5

β

r4’

α
r1’

→
τ
r1
r2
r3
r4
r5
w5

β

r4’

α
r1’→

τ
r1
r2
r3
r4
r5
w5

β

r3’

α
r1’→ . . .

Figure 37. Tail recursion: speculate on 1 in 2 calls torecurse
(bad).



recurse (i, n) {
if (i < n) {
recurse (i + 1, n);

}
work (i);

}

Figure 38. Head recursion code.

τ
→

τ
r1→

τ
r1
:

→
τ
r1
:
rm

→
τ
r1
:
rm
rn

→
τ
r1
:
rm
rn
wn

→
τ
r1
:
rm
rn

→
τ
r1
:
rm

→
τ
r1
:
rm
wm

→ . . .

Figure 39. Head recursion: do not speculate.

τ
→

τ
r1→

τ
r1
r2

α
r1’→

τ
r1
r2

α
r1’
w1

β
r1”→

τ
r1
r2
r3

γ

r2’

α
r1’
w1

β
r1”

→
τ
r1
r2
r3

γ

r2’
w2

δ

r2”

α
r1’
w1

β
r1”→ . . .

Figure 40. Head recursion: speculate on all calls (inefficient).

τ
→

τ
r1→

τ
r1
r2

α
r1’→

τ
r1
r2

α
r1’
w1

→
τ
r1
r2
r3

β

r2’

α
r1’
w1

→
τ
r1
r2
r3

β

r2’
w2

α
r1’
w1

→ . . .

Figure 41. Head recursion: speculate on all calls torecurse
(good).

τ
→

τ
r1→

τ
r1
:

→
τ
r1
:
rm

→
τ
r1
:
rm
rn

→
τ
r1
:
rm
rn
wn

α

rn’

→
τ
r1
:
rm
rn
wn

α

rm’

→
τ
r1
:
rm
rn
wn

α

rm’
wm

β

rm”

→ . . .

Figure 42. Head recursion: speculate on all calls towork (good).

τ
→

τ
r1→

τ
r1
r2

→
τ
r1
r2
r3

α

r2’
→

τ
r1
r2
r3

α

r2’
w2

β

r2”
→

τ
r1
r2
r3
:

α

r2’
w2

β

r2”

→
τ
r1
r2
r3
:

α

r2’
w2

β
r1’→

τ
r1
r2
r3
:

α

r2’
w2

β
r1’
w1

→ . . .

Figure 43. Head recursion: speculate on 1 in 2 calls torecurse
andwork (unbounded parallelism).

τ
→

τ
r1→

τ
r1
:

→
τ
r1
:
rk

→
τ
r1
:
rk
rl

→
τ
r1
:
rk
rl
rm

→
τ
r1
:
rk
rl
rm
rn

→
τ
r1
:
rk
rl
rm
rn
wn

α

rn’

→
τ
r1
:
rk
rl
rm
rn
wn

α

rm’

→
τ
r1
:
rk
rl
rm
rn
wn

α

rm’
wm

→
τ
r1
:
rk
rl
rm
rn
wn

α

rm’

→
τ
r1
:
rk
rl
rm
rn
wn

α

rl’

→
τ
r1
:
rk
rl
rm
rn
wn

α

rl’
wl

β

rl”

→
τ
r1
:
rk
rl
rm
rn
wn

α

rl’
wl

β

rk’

→
τ
r1
:
rk
rl
rm
rn
wn

α

rl’
wl

β

rk’
wk

→
τ
r1
:
rk
rl’
wl

α β

rk’
wk

→ . . .

Figure 44. Head recursion: speculate on 1 in 2 calls towork
(compare with Figure 36).

τ
→

τ
r1→

τ
r1
r2

→
τ
r1
r2
r3

α

r2’
→

τ
r1
r2
r3

α

r2’
w2

→
τ
r1
r2
r3
:

α

r2’
w2

→
τ
r1
r2
r3
:

α

r2’
→

τ
r1
r2
r3
:

α
r1’

→
τ
r1
r2
r3
:

α
r1’
w1

→
τ
r1
r2
r3
:

α
r1’→ . . .

Figure 45. Head recursion: speculate on 1 in 2 calls torecurse
(loop unrolling).

4.5 Head Recursion

Head recursion is considered in Figures 38–45. Here the call to
work comes after the call torecurse instead of before. Specu-
lating on all calls is inefficient, just as for tail recursion, whereas
speculating on justrecurse is good, allowing for calls towork to
be executed out-of-order. This is expected given that head recursion
is seen as dual to tail recursion. However, surprisingly, speculating
on justwork is also good: the stack gets unwound in-order. For
head recursion, the support for in-order nesting and out-of-order
nesting support in our stack model helps ensure that parallelism is
obtained.

Speculating on 1 in 2 calls torecurse andwork yields un-
bounded parallelism, where pairs of two calls are unwound in-order
within a pair, and out-of-order between pairs. Speculating on 1 in 2
calls towork yields a bounded parallelism structure comparable to
iteration, where first wn and wm will execute in parallel, and then
the stack will evolve so that wl and wk execute in parallel.

We were again surprised by speculating on 1 in 2 calls to
recurse: α executes w2, and after returning the stack evolves
until it is executing w1. This pattern is strikingly similar to loop
unrolling, where two successive calls execute in the same thread.
This particular example is unbounded, however, because nothing
prevents the growth ofτ up the stack, such that every two calls to
work will start all together, and then be unrolled all together. In
general, calls to work can be divided into batches of sizeb = n/t
and distributed evenly across threads by choosing to speculate on
every 1 inb calls torecurse. The unrolling within a given batch
is in-order, but the creation of batches themselves is out-of-order.

4.6 Mixed Head and Tail Recursion

Finally, we experimented with a mix of head and tail recursion, as
in Figures 46–49. Given the interesting behaviours seen in isolation
in Sections 4.4 and 4.5, it seemed reasonable that a combination
might yield even more interesting results. Tail recursion has two
distinguishing properties under speculation: it provides in-order
distribution across threads, and it prevents the calling thread from
proceeding immediately to the top of the stack because useful work
must be done first. On the other hand, head recursion is able to
provide behaviour comparable to loop unrolling in a single thread.
However, head recursion is uncapped and will always proceed
immediately to the top of the stack.

Figures 46 and 48 constitute a minimal example that uses head
recursion to provide batch processing and tail recursion to limit
stack growth. In Figure 48, the repeating pattern is two head recur-
sive calls followed by two tail recursive calls, such that speculation
only occurs on the first of the two tail recursive calls. This creates a
threadα that executes the first two calls towork out-of-order, while
the parent threadτ executes the second two calls towork in-order.
Except during brief periods of stack state evolution, there will only
ever two threads actively executing code.

We can use this pattern to schedule batches of sizeb across
t threads when the depth of the recursion is unknown or when
only b × t calls should be scheduled at once. We need a pattern



head1 (i, n) { tail1 (i, n) {
head2 (i, n); work (i);
work (i); tail2 (i, n);

} }

head2 (i, n) { tail2 (i, n) {
tail1 (i, n); work (i);
work (i); head1 (i, n);

} }

Figure 46. Two head then two tail code.

τ
→

τ
h1→

τ
h1
h2

→
τ
h1
h2
t1

→
τ
h1
h2
t1
w3

→
τ
h1
h2
t1

→
τ
h1
h2
t1
t2

→
τ
h1
h2
t1
t2
w4

→
τ
h1
h2
t1
t2

→ . . .

Figure 47. Two head then two tail: do not speculate.

τ
→

τ
h1→

τ
h1
h2

→
τ
h1
h2
t1

α

h2’
→

τ
h1
h2
t1
w3

α

h2’
→

τ
h1
h2
t1
w3

α

h2’
w2

→
τ
h1
h2
t1

α

h2’
w2

→
τ
h1
h2
t1
t2

α

h2’
w2

→
τ
h1
h2
t1
t2
w4

α

h2’
w2

→
τ
h1
h2
t1
t2
w4

α

h2’
→

τ
h1
h2
t1
t2
w4

α
h1’→

τ
h1
h2
t1
t2
w4

α
h1’
w1

→ . . .

Figure 48. Two head then two tail: callhead1(1,n) and specu-
late ontail1 in head2 (creates two batches of two calls each).

recurse (i, n, b, t) {
if (i < n && (i - 1) % (b * t) < b * (t - 1)) {
if (i % b == 1 && i % (b * t) > b) {

spec recurse (i + 1, n, b, t);
} else {

recurse (i + 1, n, b, t);
}

}
work (i);
if (i < n && (i - 1) % (b * t) >= b * (t - 1)) {
if (i % b == 1 && i % (b * t) > b) {

spec recurse (i + 1, n, b, t);
} else {

recurse (i + 1, n, b, t);
}

}
}

Figure 49. Mixed head and tail recursion code.To split work
into multiple threads, callrecurse (1,n,b,t), wheren is the
number of calls towork, b is the batch size, andt is the number of
threads. Speculation points are indicated by thespec keyword.

of b× (t−1) head recursive calls followed byb tail recursive calls,
speculating on the first tail recursive call in the pattern and on every
(cb+1)th head recursive call forc ∈ N1. For example, to distribute
work in batches of size 3 across 4 threads, use a pattern of 9 head
recursive calls followed by 3 tail recursive calls, and speculate on
the4th and7th head recursive calls and the first tail recursive call. A
general function that provides this behaviour is shown in Figure 49.

4.7 Discussion

We can see from these examples that the dynamic parallelization
behaviour induced by method level speculation is not obvious, and
there are surely more interesting patterns to be found. We cannot
take ordinary programs with call and return semantics, provide a set
of parallelization operations that significantly perturbs the normal
execution order, and expect to obtain dramatic performance results,
especially if we do not understand the underlying behaviour. We
can however use investigations of sequential program behaviour

under our stack model to derive generalizations about program
structure and the correlation with performance or lack thereof.

Method level speculation is a powerful system for automatic
parallelization, particularly when relatively arbitrary speculation
choices are permitted. The challenge is to restructure sequential
code so that any inherent parallelism can be fully exploited. In gen-
eral, parallel programming is an optimization, and thus cannot be
divorced from knowledge of what different code structures imply
for the runtime system if performance is to be maximed. Just as tail-
recursion is favoured in sequential programs for its efficient conver-
sion to iteration, so should other idioms in sequential programms
be for their efficient conversion to parallel code. Of course, the end
goal is for a compiler to remove this optimization burden from the
programmer wherever possible via automation.

5. Related Work
We have proposed multiple abstractions of MLS in order to show
correctness, equivalence, and precise implementation behaviour.
These properties are naturally addressed in various approaches to
speculative parallelism, with roots in models of parallel functional
languages, and more recently in the context of proving correctness
and performance of transactional memory.

The focus on method calls as a means to achieve parallelism in
MLS suggests an affinity for functional language contexts, where
the lack (or at least greater control) of method side-effects re-
duces implementation complexity. Functional MLS designs have
been shown, e.g. in Haskell [13], although abstractions have more
typically focused on other techniques, such as lazy evaluation, fu-
tures [26], and other optimistic methods [6]. Griener and Blel-
loch [9], for example, define aparallel speculativeλ-calculusto
help model performance and prove time efficiency, and equivalence
of parallel lazy evaluation to sequential is shown by Baker-Finchet
al. [2].

The strong isolation properties assumed by speculative threads
also suggest asoftware transactional memory(STM) approach [22].
As with MLS, transactional designs differ in key choices as to
when concurrent operations may be performed, how they may be
nested, and visibility of intermediate calculations.Transactional
Featherweight Java, for instance, is used to show serializability of
both versioning and two-phase locking approaches to transaction
control [15]. Other major differences exist in terms of transac-
tion nesting and hence available parallelism. Harriset al.,provide
a composable abstraction for Haskell, including support for one
form of nested transactions, although with limited parallelism [12].
Moore & Grossman also use a small-step semantic approach, to
investigate different nesting forms, showing equivalence between
weaker models that enable greater parallelism, and using a type
system to verify correctness in terms of progress of transactional
substeps [17]. Abadiet al., have a similar goal, also building a
type-based approach to prove correctness. They develop a special-
ized calculus of automatic mutual exclusion, and use it to examine
the impact of weak atomicity models. Guerraoui and Kapalka ar-
gue thatopacity is a fundamental serialization criterion, and use
that to show correctness, as well as complexity bounds [10]. MLS
of course has fundamental differences from STM—speculative ex-
ecution is not user-specified, and is potentially unbounded. Nesting
models, however, have some similarity, and the correspondence
between different MLS nesting strategies and weak transactional
nesting would be interesting to explore.

5.1 MLS

MLS itself is a form of speculative multithreading (SpMT), which
has been relatively well-studied from a hardware perspective and
has been a subject of research for well over a decade. Garzaranet al.
reviewed and classified most of the core approaches [7]. A primary



problem in SpMT is deciding where to fork speculative child tasks,
with systems proposed that operate at the loop level [23], basic-
block level [3], and of course at the method level [5].

According to Chen & Olukotun [5], Oplingeret al.were the first
to propose the concept of MLS in a limit study for C programs that
sought to identify the maximum amounts of loop and method level
parallelism available [18]. Hammond, Willey, and Olukotun later
designed the Hydra chip multiprocessor for thread level specula-
tion that included support for method level speculation [11]. Chen
& Olukotun concurrently described a more realistic method level
speculation system for Java, which combined a modified version
of the Kaffe JVM and JIT compiler running on the Hydra archi-
tecture [5]. They found encouraging amounts of speculative paral-
lelism in JIT-compiled code, and noticed that method level specula-
tion can subsume loop-level speculation if loop bodies are extracted
into method calls. Thread level speculation in general must balance
overhead costs with potential parallelization, and can benefit from
a variety of optimizations [25], and in particular the design of ef-
fective forking heuristics [27]. MLS brings the additional need for
return value prediction, which reduces misspeculation costs due to
common dependencies between method return values and continu-
ations [14].

Our effort to unify several MLS models is largely motivated by
the difficulty in comparing disparate proposals and in understand-
ing the performance impact of design choices. While out-of-order
execution has been argued critical to achieving good speculative
performance [21], in-order, and out-order designs also have poten-
tial to complement each other, and some authors allow full specu-
lative hierarchies [28]. The limited parallelism exposed by a purely
out-of-order design in our own experimental work has further indi-
cated that the choice of technique can greatly impact performance
and parallelism characteristics [19, 20]. Higher level abstractions,
as we offer in this work, provide an essential basis for developing
optimized designs.

6. Conclusions and Future Work
MLS implementations face a number of design choices, and fun-
damental among them is whether and how to support speculative
nesting. We presented a list abstraction showing that various MLS
nesting designs, and even non-method-based speculative designs
can be uniformly modeled and shown correct. Future work here in-
cludes developing an associated cost model, which can then be used
to compare the performance impact of MLS nesting approaches.

MLS behaviour, as evidenced by our stack abstraction, can
strongly depend on the specific selection of fork points. Although
this is a fairly trivial observation, a detailed, high-level understand-
ing of how and why parallelism is achieved is important to an ef-
ficient implementation. Our stack abstraction and analysis demon-
strates that high-level parallelization strategies can be induced by
specific speculation decisions. This gives insight on the source of
performance and indicates useful directions for further optimiza-
tion, either by using code transformations to rearrange code so as to
produce specific prallelization patterns, or as in other fork heuris-
tic designs by generating runtime hints to better control fork de-
cisions. Our stack abstraction also suggests application to under-
standing other stack-based parallelism models, such as found in
parallel call [8] and languages such as Pillar [1]. Parallel call was
not designed to be speculative, but a translation of the speculation
rules of our system would be straightforward.

Acknowledgments
This research was supported by the IBM Toronto Centre for Ad-
vanced Studies and the Natural Sciences and Engineering Research
Council of Canada.

References
[1] T. Anderson, N. Glew, P. Guo, B. T. Lewis, W. Liu, Z. Liu, L.Petersen,

M. Rajagopalan, J. M. Stichnoth, G. Wu, and D. Zhang. Pillar:A
parallel implementation language. InLCPC’07, volume 5234 of
LNCS, pages 141–155, Oct. 2007.

[2] C. Baker-Finch, D. J. King, and P. Trinder. An operational semantics
for parallel lazy evaluation. InICFP ’00, pages 162–173, New York,
NY, USA, 2000. ACM.

[3] A. Bhowmik and M. Franklin. A general compiler framework for
speculative multithreading. InSPAA, pages 99–108, New York, NY,
USA, Aug. 2002. ACM Press.

[4] H. J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. InPLDI ’08, pages 68–78. ACM, 2008.

[5] M. K. Chen and K. Olukotun. Exploiting method-level parallelism
in single-threaded Java programs. InPACT’98, pages 176–184, Oct.
1998.

[6] R. Ennals and S. P. Jones. Optimistic evaluation: an adaptive
evaluation strategy for non-strict programs. InICFP’03, pages
287–298, Aug. 2003.

[7] M. J. Garzaŕan, M. Prvulovic, J. M. Llaberı́a, V. Viñals, L. Rauch-
werger, and J. Torrellas. Tradeoffs in buffering speculative mem-
ory state for thread-level speculation in multiprocessors.TACO,
2(3):247–279, Sept. 2005.

[8] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy threads:
Implementing a fast parallel call.JPDC, 37(1):5–20, Aug. 1996.

[9] J. Greiner and G. E. Blelloch. A provably time-efficient parallel
implementation of full speculation.TOPLAS, 21(2):240–285, 1999.

[10] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. InPPoPP’08, pages 175–184, Feb. 2008.

[11] L. Hammond, M. Willey, and K. Olukotun. Data speculation support
for a chip multiprocessor. InASPLOS-VIII, pages 58–69, Oct. 1998.

[12] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable
memory transactions. InPPoPP, pages 48–60, 2005.

[13] T. Harris and S. Singh. Feedback directed implicit parallelism. In
ICFP’07, pages 251–264, Oct. 2007.

[14] S. Hu, R. Bhargava, and L. K. John. The role of return value prediction
in exploiting speculative method-level parallelism.JILP, 5:1–21,
Nov. 2003.

[15] S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A transactional
object calculus.Sci. Comput. Program., 57(2):164–186, 2005.

[16] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In
POPL’05, pages 378–391, Jan. 2005.

[17] K. F. Moore and D. Grossman. High-level small-step operational
semantics for transactions. InPOPL’08, pages 51–62, Jan. 2008.

[18] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of speculative
thread-level parallelism. InPACT’99, pages 303–313, Oct. 1999.

[19] C. J. F. Pickett and C. Verbrugge. SableSpMT: A softwareframework
for analysing speculative multithreading in Java. InPASTE’05, pages
59–66, Sept. 2005.

[20] C. J. F. Pickett and C. Verbrugge. Software thread levelspeculation
for the Java language and virtual machine environment. InLCPC’05,
volume 4339 ofLNCS, pages 304–318, Oct. 2005.

[21] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas.
Tasking with out-of-order spawn in TLS chip multiprocessors:
Microarchitecture and compilation. InICS’05, pages 179–188, 2005.

[22] N. Shavit and D. Touitou. Software transactional memory.In
PODC’95, pages 204–213, Aug. 1995.

[23] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede
approach to thread-level speculation.TOCS, 23(3):253–300, Aug.
2005.

[24] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. Improving
value communication for thread-level speculation. InHPCA ’02,
pages 65–75, Washington, DC, USA, 2002. IEEE.

[25] F. Warg.Techniques to Reduce Thread-Level Speculation Overhead.
PhD thesis, Dept. of CSE, Chalmers U. of Tech., Göteborg, Sweden,
May 2006.

[26] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In
OOPSLA’05, pages 439–453, Oct. 2005.

[27] J. Whaley and C. Kozyrakis. Heuristics for profile-driven method-
level speculative parallelization. InICPP’05, pages 147–156, 2005.

[28] M. Zahran and M. Franklin. Dynamic thread resizing for speculative
multithreaded processors. InICCD’03, pages 313–318, Oct. 2003.


