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Abstract

Method level speculation (MLS) is an optimistic technique for par-
allelizing imperative programs, for which a variety of MLS systems
and optimizations have been proposed. However, runtime perfor-
mance strongly depends on the interaction between program struc
ture and MLS system design choices, making it difficult to com-

pare approaches or understand in a general way how programs be

have under MLS. Here we develop an abstract list-based model of
speculative execution that encompasses several MLS designs, an

a concrete stack-based model that is suitable for implementations.
r

Using our abstract model, we show equivalence and correctness fo
a variety of MLS designs, unifying in-order and out-of-order exe-
cution models. Using our concrete model, we directly explore the
execution behaviour of simple imperative programs, and show how
specific parallelization patterns are induced by combining common
programming idioms with precise speculation decisions. This basic
groundwork establishes a common basis for understanding MLS
designs, and suggests more formal directions for optimizing MLS
behaviour and application.

1. Introduction

Method level speculation (MLS) is an optimistic execution tech-
nique for parallelizing sequential programs. Under MLS, when a
non-speculative “parent” thread reaches a method invocation, it
can fork a speculative “child” thread that begins executing at the
method continuation, as if the method has already returned. Chil-
dren execute in an isolated fashion, and upon returning from the
method call, if there were no memory dependence violations be-
tween the child and the parent, the child state is committed to
memory, and the parent resumes execution where the child left
off. Given low enough overheads, the resultant parallelism is then
a source of speedup on multiprocessor machines.

Performance of MLS strongly depends on the choice of fork
points, as well as the basic model of MLS execution. MLS designs
may permit parents to have multiple childresut-of-ordernest-
ing), or for children to fork further childrenr{-order nesting), with
significant variance in subsequent behaviour. In Figure 1, for in-
stance, the initial creation of a speculative child at the cadi(tp
followed by out-of-order nesting creates parallelism between be-
tweenb() and X but not betweerc() andY, whereas with in-
order nesting the situation is reversed. Lack of understanding of
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To better understand the behaviour of programs under MLS, we
develop two models of MLS. We describe an abstract, list-based
model that represents a broad variety of MLS designs, and use it
to demonstrate correctness in terms of sequential equivalence. Our
model is general and flexible enough to include in-order, out-of-
order, mixed, and even non-MLS designs. We relate this model to a
more concrete, stack-based representation that provides detail suit-
able for implementation, while exposing the program stack manip-

ylations that underly different MLS strategies. From this formalism

we show how simple differences in coding idioms produce widely
varying parallel execution patterns, which implies that runtime ef-
ficiency strongly depends on the exact MLS strategy. The technical
complexity inherent in MLS implementation tends to require that
individual studies commit to a specific speculation model; our ap-
proach can be used to further explain the performance character-
istics of any such study, and to facilitate deeper exploration of the

impact of fundamental MLS design decisions.

1.1 Contributions
We make the following specific contributions:

e Using a novel, list-based abstraction of general speculation we
show correctness in both sequential and multithreaded con-
texts for in-order and out-of-order MLS, as well as non-method
based techniques such as loop-level speculation or even arbi-
trary speculation.

e We propose a stack operation semantics as a concrete model,
suitable for both implementation and direct visualization of how
and when speculative code may execute under MLS. Beyond
basic fork/commit matching, previous work has not considered
a descriptive semantics of stack buffering, instead relying on
general dependence buffering or transactional memory support.

e By examining a number of common coding idioms in relation
to our stack formalism, we are able to show how speculative
execution can map to various specific forms of parallelism
depending on code layout and precise speculation choices.

The following section describes our core list-based model, in-
cluding a proof of correctness for several MLS designs. This is fol-
lowed in Section 3 by our stack formalism, which we then use to
show relevant code behaviours in Section 4. Related work is pre-
sented in Section 5, followed by conclusions and future work.

such fundamental differences makes both the choice of appropriate

fork heuristics and comparison of different MLS models difficult.

a() { [// parent creates child 1 here
b(); // can parent create child 2 to execute X?
X

/1 child 1 begins execution here

c(); /1 can child 1 create child 3 to execute Y?
Y;

Figure 1. MLS choicesAssuming execution o&() does not complete
beforec() is started, with out-of-order nestirtg( ) , X, andc() Y are
parallelized. With in-order nestirtg( ) X, c() , andY execute concurrently.

2. List Abstraction

Although designs that support in-order nesting clearly differ from
out-of-order, and hybrid models of increasing complexity are possi-
ble, basic componentry is similar. The list-based model we present
here takes advantage of these basic similarities to produce a com-
mon abstraction, encompassing not only arbitrary nesting choices,
but also speculative designs beyond pure method level parallelism.
Here we first define and apply our abstraction to sequential pro-
grams, and then extend the result to multithreaded contexts.



Our proof of sequentiality assumes a progr&nis composed
of one or more program threadsach executing individual code
P* (where the thread is clear we uB. At each point in execution
the thread operating on cod&computes the result d?, |,,, where
a is the code index of the start of computation anid the number
of operations performed.

Speculative execution may be initiated at any method invoca-
tion (although the model easily extends to arbitrary speculation
points), with speculative code executing until signaled to terminate
by the return of its parent thread, or until it encountersiasafe
operation—I/O, synchronization or other operations that may not
be safely executed speculatively. Once terminated and joined with
its parent, a speculative thread is validated to ensure correct execu-
tion was performed and either committed or (eventually) aborted.
We now argue that the computation/@fin both sequential and par-
allel contexts is equivalent with or without MLS. Throughout this
proof we make the basic assumption that speculative execution is
strongly isolated, having no direct impact on actual program output
until committed by a non-speculative thread.

2.1 Sequential Programs

Proving speculative computation matches sequential requires show-
ing that the committed results of speculation always produce an ex-

ecution trace equivalent to some sequential execution. This reduces
to demonstrating the following properties:

1. Committed speculative computation always begins with correct
input.

2. Commits are performed in an order that respects sequential
execution.

3. Committed and non-speculative execution represents a com-
plete trace without gaps.

Prior to any frame push a speculative thread may be forked, and
at the corresponding pop a speculative thread may be committed,;
threads may be aborted at any point. At any point during execution
the speculative child hierarchy forms a tree with a well defined or-
der of computation between threads. We use the precedence inher-
entin this structure in order to inductively show the correspondence
between speculative execution and sequential execution. The basic
representation will then be as a list, generated as a threading of the
speculative heirarchy:

Definition 2.1. A speculation lists a tuple(V, R, «, 6, w), where
V is a linked list of threadsR : V' x V' is the transitive reduction
of a total ordering relation, and functions : V' — (Codex Env),
§:V — (N x Codex Env) andw : V — (Codex Env) all map
threads to partial or full execution states—initial assumptions, full
current state (including count of operations executed), and ending
state respectively.

If r is the first node in the list thenis a non-speculative thread,
while all otherv € V, v # r are speculative.

Speculation lists are constructed dynamically during a program
execution. The list begins consisting of a singleton nedend
mappingsa(r) = (0,1), 5(r) = (0,0,0), w(r) = (EOF,0),
where 0 is the program counter at enffys the initial environment,

oP If i is a basic computatior,: Codex Env — Codex Env, then

the current state must be appropriately advanced. This includes
an increment to the count of operations executed. Operation
is isolated except for reading heap values, which if they are not
found in the heap of’(¢) or in existing assumptions must be
predicted, speculatively retrieved from the parent environment,
or otherwise derived. Any such assumptions are recorded by
adding the variable and value read to the input state for later
comparison during commit validation.

FORK In method-level speculation forks are performed only at

method calls; ley be the code pointimmediately corresponding
to the method return associated with fork operation

A new speculative threaglis created so as to begin execution
after the method returns, at code pajnstarting in the current
state oft and inheritingt’s stack. No initial assumptions about
input state have been made(§) = (y, 0)), although this could
be populated with predicted values. The termination of thread
is also adjusted to ensure it stops whestarts.

Not shown in theFORK rule of Figure 2 is thas is added to
the speculative list as a new immediate successer 16 =
V'U{s} R=R\{(t,v)} U{(ts),(s,v)}.

Note that this effectively partitions the designated execution of
p([o/(p),w'(p))) into [o (p), a(s)) followed by[a(s), ' (p)).

ABORT, COMMIT Let 7 be an abort or commit of threa¢l Ter-

minating a thread requires it be removed from the specula-
tive list, undoing the effect of its insertion. We do not abort
or join the root, non-speculative thread, so assume a prede-
cessorp exists: (p,s) € R’. List operations not shown in
Figure 2 forABORT and commIT consist of V' = V'\{s},

R = R/\{(p, s), (577})} U {(p7 ’U)}

Once removed the thread’s predecessor becomes responsible
for completing any remainder of the the child’s execution:
w(p) = w'(s). In the case of an abort this completes the opera-
tion, giving the simplenBORT rule in Figure 2. Note that aborts
can be issued at any time,

A successful commit is performed only by an immediate prede-
cessor, which has reached its termination point. Validation re-
quires that the termination state match the input assumptions of
the speculative thread. If so the child speculative state is merged
into the parent state, overwriting the parent’s stack, and causing
the parent to inherit any new assumptions. Heap state in child
threads is only partial, and so a commit requires merging parent
and speculative heap states, giving child bindings preference.
These commits are captured by a non-associative binary merge
operatorlJ, defined as follows:

Hy U Hy = HiU{(z,v) € Ha| (z,w) ¢ Hy foranyw}

Our proof of the equivalence of MLS to (some) sequential
execution first demonstrates the equivalence for single-threaded
programs under MLS, and then argues for the case of multithreaded
programs. For this we rely on the following two simple lemmas,
presented without proofs:

Lemma 2.2. Let H be an environment id(s) for somes. There

and EOF indicates program termination. Since only one thread does not exist a variable and distinct valuesn, # m» such that

exists initially ordering is also trivialR = 0.

As operations are performed a new speculationlliss con-
structed based on the previoli$ and current instruction exe-
cuted by a given thread To simplify notation where not otherwise
indicated elements of, are the same ag’. Figure 2 shows the

(v,m1) € H and(v,m2) € H.

Lemma 2.3. Let s be such that(s,t) ¢ R for any ¢t. Then
w(s) = (EOF, 0).

The above lemmas establish that environments do not have mul-

rules applied to each possible operation and below we further de-tiple mappings for the same variable/memory-location (Lemma 2.2),

scribe each step. The operation JoinPoir@ode x Env — Env

and that the final thread in the speculation list is responsible for

defines the subset of the given environment that identifies reachingcompleting execution (Lemma 2.3). Both properties are invariants

the specified code location in the same stack frame.

of every transformation.



s = new y==Cc+1
(p,s) € R 8'(t) = (n,c, H) JoinPointH,y) = S
ABORT——————— FORK
w(p) = w'(s) a(s) = (y,0), 3(s) = (0,9,0), w(s) = w'(t), w(t) = (y,5)
safei) vV (,t) € R
§(t) = (n, C,.H(;) o' (t) = (4, Ha) (p,s) e R 8'(s) = (nzz,HS)
W' (t) # JoinPoinfc, Hs) i(c, Hs) = (d, Hy) W'(p) = (y,Sp) & (p) = (m,y, Hy) JoinPointH,,y) =S5,
readheagi, c, H5) — Hs = rg o' (p) = (r, Hpa) o (s) = (y, Hsa) H;, C Hy,

OP COMMIT

5(t) = (n+1,d,Hy), a(t) = (j,Ha Urn)

3(p) =

(n+mvm7HS U HP)7 w(p) = UJ,(S), O‘(p) = (7‘7 Hpa U HSOé)

Figure 2. Rules used in constructing the speculation list. List operations and identitipnslare excluded for simplicity.

The proof proceeds by showing that a given thread computation Theorem 2.6. Let P be a sequential program. Execution &f

is a correct execution of the program, at least given its presumed in-

puts. The following lemma shows this property is preserved under
all transformations,

Lemma 2.4. For all s € V, if a(s) (a, Hy) and 46(s)
(n,b, Hs), then s has performed the computation and derived
correct result:(b, Hs) = Pa|n(Ha).

Proof. This property is true initiallyFORK initializes this property
for speculative threads, and boHDRK and ABORT operations
trivially preserve it.

OP A regular operation composes a functidronto the existing
computation; assuming the computation prior to application
was Pq|n—1 this constructs o (P, |n—1) = Pa|n. The property
thus holds provided the input tas correct. The existing output
of P,|,—1 is correct by assumption, so a contrary argument
implies that following arop there exists a paifw, v) such that
Paln(a(s) U {(w,v)}) # Pa|na(s). Such &aw, v) could only
have an impact on the input ofif it was not already found in
either (the state ofy’(s) or in the existing input state’(s).

By construction, howevery(s) = o'(s) U rg wherery are
exactly such reads, forming a contradiction.

COMMIT Inductively, p computesP,|.(Hpo) and s computes
Py|n(Hsa). Assume that after theoMMIT 6(p) # Pr|m4n(Hpa)-
In order for this to be true the input t9 H., must represent
a different environment from that found #(p). Our contrary
assumption then becomes thdt, LI H, # H, Ll Hs,. Let
(v,ms) and (v, mp), ms # m, be pairs inHs, and H, re-
spectively. By construction in ruleommIT Hso C Hp, and so
both (v, ms), (v,m,) € Hp. This contradicts Lemma 2.2.

The property is thus an invariant under all rule operations. [l

From Lemma 2.4 it is relatively easy to show that the computa-

under MLS is equivalent to sequential execution.

Proof. This follows immediately from Lemma 2.5. Sine@ORT
may be invoked immediately aft@ioRK, effectively generating a
sequential execution, all MLS executions Bfare equivalent to
sequential. O

2.2  Multithreaded Programs

When executing a program that is already multithreaded each non-
speculative thread may have its own speculative thread hierarchy;
MLS execution of a multithreaded programs is thus easily modeled
in our formalism by a set of independent speculation lists. The use
of shared data and thread communication primitives, however, adds
additional complexity. For each such unsafe primitive drerule

of Figure 2 must be extended to explicitly describe how shared
data is propagated to other non-speculative threads, and naturally
strongly depends on the underlying thread communication and
shared memory consistency models.

Following recent memory models specifications for Java [16]
and C++ [4], here we show correctness for the most useful model
of correctly synchronizegirograms, ones guaranteed free of race
conditions and which may thus demonstrate only sequentially con-
sistent behaviours. For this we also assume that all operations that
imply direct communication between non-speculative threads are
unsafe operations—this includes explicit thread control and syn-
chronization, as well as access to shared variables outside of syn-
chronization yolatile data). Note that we assun® has been suit-
ably extended to correctly define any such communication prim-
itives, and if support for speculative commits is desired, suitable
mutual exclusion between concurrexdMMmIT and/orABORT op-
erations on the same thread. Speculative list operations are assumed
atomic in all cases.

In such a context the equivalence of MLS to non-MLS execution
is conceptually straightforward, building on the observation that

tion of a single thread corresponds to sequential computation of the speculation within one thread is always confined to segments of

same code, given the same inputs.

Lemma 2.5. Let P be the code executed under speculative exe-
cution, started by non-speculative user threaat code positiord

and begun in (fully specified) stafe Oncer cannot apply any of
the rules in Figure 2 has computed|. (1), for x maximal.

Proof. Since I is fully specifiedr is always empty forr, and
a(r) = (0,I) for the root non-speculative threadis trivially
preserved by every transformation. By Lemma 2 dlways com-
putesPy|.(I) for somen. Since theABORT rule can be applied
to any speculative thread at any time, the inabilityrofo ap-

code that have no visibility to other non-speculative threads.

Lemma 2.7. LetP be a correctly synchronized program executing
under method-level speculation, and lebe a speculative thread
in the speculation list of non-speculative threadLet w:x=v be

a variable write performed by. If ¢ is a non-speculative thread
t # r thent cannot observev until after s is fully committed by-.

Proof. Assume to the contrary; writes efare fully buffered until
commit, and thus the observation can only occur during the actual
commit of s by . By Lemma 2.5 the computation afproperly
composes withr as a continuation of the code and inputt®ince

ply any rules means no other threads exist. Thus by Lemma 2.3 s executes no unsafe operations, including thread communication

w(r) = (EOF, @), Sincer cannotFORK or OP r has completed as
many operations as it can, andis maximal. O

From this it is straightfoward to establish an equivalence be-
tween sequential and MLS execution.

of any form, if s performsw thenw is reachable without encounter-
ing synchronization in an executionofvithout speculation. If this
is possible then a schedulingoft exists that would produce a race
condition between andr, contradicting the presumed property of
‘P being correctly synchronized.



Lemma 2.7 establishes that speculation does not induce racerect and thus may be modeled by omitting or assuming the clause
conditions where none exist. Combined with Theorem 2.6 this H., C Hj in rule COMMIT is always true.
allows us to conclude the equivalence also exists for multithreaded  In our formalism we use the JoinPoint operator to specify
programs. matching execution points (states) between parent termination and
speculative child start. For MLS, and assuming method invoca-
tions may access only local and global scopes, matching execution
points are easily identified by comparing stack pointer values: once
a parent thread returns to the frame in which the child was forked
the matching join point has been reached. The JoinPoint operator
is in fact easily extended to allow loop-based [23] and arbitrary [3]
thread speculation models. For loop-based speculation JoinPoints
are defined as loop index and stack pointer values, and the code
Proof. Assume to the contrary and el be first observable offset of the loop header. Arbitrary speculation may require more
state generated by MLS execution that is not reachable as somecomplex state depending on the model, although basic intra-method
non-MLS state. Observable state consists of threads, their code-speculation requires only code and stack pointer values.
positions and heaps/stacks, and assuming sequentially consistent The list structure used in our formalism implies each thread

Theorem 2.8. Let P be a correctly synchronized program, ex-
ecuted under MLS. An observable execution stat® o a set

of non-speculative thread states prior to any partially completed
COMMIT operations. IfH is an observable state @ started with
input7, then a non-MLS execution exists for the same idpeach-

ing the same staté#.

execution,H is generated by applying some rule to a s#te The has only one speculative successor at any one time. If CPUs are
ABORT andrFoRK rules do not affect non-speculative state, amd available and thread validation uncertain, it may be advantageous
actions change state deterministically. By Lemma @oMMITS to instead fork multiple speculative threads at the same time, each
are invisible to other threads, and by Theorem 2.6 speculative ex-evaluating different scenarios, and thus increasing the likelihood of
ecution correctly performs single-threaded executiorcgMmIT a valid commit. This can be modeled by providing@rx,, rule

by a non-speculative thread is visible to itself, creating intermediate that creates multiple speculative threads from the same fork point,
execution states different from those that would be generated by thealong with extending our speculation list structure to a DAG. Other
expected program order, but in the absence of committing unsafeoperationscOMMIT, ABORT andOP, continue to apply unaltered.
operations these operations affect only the committing thread, and

partial commit states are excluded by assumption. ‘!Husould 3. Stack Abstraction

only not be reachable from a non-MLS executiorfif is an un-

reachable state. This contradicts the assumptionfhit the first In the previous section both speculative heap and stack states were
such unreachable state. O abstracted by the same state variable. Here we present a stack ab-
straction that directly exposes the call stack manipulations cen-

. . tral to MLS designs. This abstraction is flexible and supports in-
2.3 Discussion order nesting, out-of-order nesting, in-order speculative commits,
The speculation list model supports a variety of MLS model param- and any combination thereof. Specific models that implement these
eters, unifying several potential implementation strategies for both features using our abstraction are developed in Section 3.2.
method-level and more broadly-defined thread speculation. By al- In addition toFORK, COMMIT, andABORT operations from the
lowing FORK operations by arbitrary threads the basic model de- previous section, the stack also suppetsHandpPoPoperations
scribes fundamental approaches to both in-order and out-of-orderto allow for method entry and exit. As in non-speculative programs,
MLS: speculative threads can start further speculation, and all these new operations manipulate frames on the stack, such that

threads can have multiple speculative children, respectively. a given frame contains the local variables of a method. Register
Implementation of either strategy is typically simplified by al- values are assumed to be spillable to a frame on demand. Under
lowing only non-speculative threads¢@MMmIT or ABORT. This is this abstractionFORK can be called instead @fusH, pushing a

particularly simple in out-of-order designs, whe&®@Rk is already frame and creating a new child thread, and upon reaomMmIT
specialized to only non-speculative threads. In this case no extraor ABORT will be called to match th&oRrk instead ofPOP. Note
synchronization is required by MLS other than suspension of the that we assume stack operations complete atomically. Non-stack
speculative thread while it is actually committed (and protection of operations are not explicitly modelled and are assumed to be freely
internal MLS data structures) [19]. In-order strategies bring a minor interleaved with stack operations on running threads. Speculative
additional complexity in the potential for overlappino@mmIT and accesses to global variables are also handled externally.
FORK operations. If speculativeoMMITs (andABORTS) are per- The model has two unique features that separate it froivena
mitted, however, synchronization is further required between the speculation where all reads and writes go through a dependence
multiple coMMIT, FORK and ABORT operations that may be per-  buffer or transactional memory subsystem. First, child threads
formed on the same thread. The greater synchronization overheadouffer stack frames from their less-speculative parents, such that
of speculative commit/abort should in practice be balanced with the all local variable accesses go directly through a local frame. This
benefit provided by offloading actual commit operations to other- is intended to reduce the load on the dependence tracking system.
wise idle speculative threads, as well as any improvement brought Second, stack frames are buffered as lazily as possible: on forking,
by different speculative execution patterns (see Section 4). Note only the frame of the current method is copied to the child. If the
that, as shown in Lemma 2.7, in all cases the actual writes issuedchild ever needs lower down frames from some parent thread, these
by acomMmIT need not be atomic. will be retrieved and copied on demand. This lazy copying intro-
MLS designs also vary in how input data required by specula- duces significant complexity: tiroPoperation may need to buffer
tive threads is retrieved. Speculative input may be retrieved opti- a frame, and theommIT operation needs to copy back only the
mistically from a parent or global environment, more pessimisti- range of live frames from the child thread stack. We include it as
cally by arranging synchronization between speculative child and a practical measure intended to make our abstraction useful, based
parent to correctly propagate data [24], or through (return) value on our experience with implementing MLS that indicates a steep
prediction [14]. Our design supports a flexible validation approach, performance penalty for copying entire thread stacks.
and so is independent of how speculative input data are gathered. The main abstraction is described via its operational semantics
Data acquired optimistically are verified as part of themmIT in Figure 3. It has seven publicly available operations, each marked
rule in Figure 2. Data acquired pessimistically are certainly cor- with [«]. These in turn use a number of internal operations, both for



purposes of clarity and for logic reuse. A summary of the public
operations and their observable behaviour follows:

START(): create a new non-speculative thread with an empty stack.

STOR(t): destroy non-speculative threawvith an empty stack.

PUSH(t, f): add a new frame with unique nanfeto the stack of
threadt.

PORt): remove the top frame from the stack of threadThe
matching operation must berassH, and for speculative threads
there must be a frame to pop to.

FORK(t, f): fork a new child thread that starts executing the
method continuation in the current frame of threaahd then
executePUsH(t, f). Cannot be issued on an empty stack.

ABORT(t): executePORt) and then abort the child thread attached
to the frame underneath, recursively aborting all of its children.
The matching operation must beark.

COMMIT (t): executePOR(t) and then commit the child thread at-
tached to the frame underneath, copying all of its live stack

frames and any associated child pointers. Committed children

with children of their own are kept on a list attached: tontil

no references to them exist, lest another speculative thread at-[+]FORK(t, f)

tempt to copy a stack frame from freed memory. The matching
operation must be BORK.

3.1 Detailed description
We now provide sufficient detail to understand the operations in

Figure 3. We model threads as unique integers, and maintain several«|PoR(t)

thread setsT is the set of all threadd; represents live threads,

T, andTs are non-speculative and speculative threads respectively,

andT. is the set of committed threads that may still be referenced
by somel € Ts. Some invariants apply to these séftsUTs D Ty,
T.NTs =0, T, #0,T.nT; = 0, andT.UT,UTs = T. Elements
are never removed froffi, such that each new thread gets a unique
ID based on the current size @f, namely|T’|. Stack frames are
modeled by a set of unique framés

In addition to these sets, there are several functions that maintain

mappings between themtack(t € T') mapst to a thread stack,
child(f € F) mapsf to a speculative child thread parent(u €
Ts) mapsu to thet € T that forked it, andcommits(t € T') maps

t to a list of threads ifT... Initially all mappings and sets are empty.

Our rules make use of a few specific operators and conventions.

The use of exclusive org) indicates a choice between one rule
and another or one set of premises and another, and wgw$e}

(or S \= {s}) to indicate set additions (or removals). Given a
frame f’, f is the less-speculative version of the same frame in a
parent thread. Finallyy is the greatest fixed point operator from
the p-calculus that maximizes its operand starting frdngiven
some terminating conditiom. is used to find the greatest, or “most
speculative,” threagh in POPR, and to find the longest sub-list
without child dependences FURGE.COMMITS.

Lastly, we give a brief description of each ruleREATE ini-
tializes a new thread, adds it to7;, 7', andT,, or T depend-
ing on whether the thread is speculative or not, as gived by
and initializes the stack af to o. DESTROY conversely removes
u from T; and eitherT,, or Ts. Note that after destroy, committed
threads will move tdl., from which they are later removed only
by PURGE.COMMITS. START simply callsCREATE to make a new
non-speculative thread, andsTopcallsDESTROYto remove it.

pPUsHtakes a frestf and appends it tetack(t), wheret is live,
also addingf to F'. BUFFERtakes either a live or committed thread,
the name of a frame in its stack, and provided there is no child
attached te: createse’ for use by its caller, which is eithetork
or POP. FORK first callsPusH, bufferse’ from e, creates:, and sets
u ase’s child andt asu’s parent.

T, =T ®T, =T
= |T|7 Ty {U}, ﬂ w {u}aTP @ {u}7 StaCk(u) =

CREATE(T}, 0)
u

T,CT.ueT, T,=T,®T,="T,
Ti\= {u}, Tp \= {u}

DESTROY(u)

[<ISTARTO CREATE(T, 0)
u €T, stack(u)=10

[x]sToRw) DESTROY(u)

teT, f¢F o=stack(t)
stack(t) = o : f, FW{f}

teiuT,

[+JPusH(, f)

e € stack(t) ec F
e =e Fu{e}

child(e) ¢ T.

BUFFER(t, €)

PUSH(t, f)
te: f = stack(t),BUFFER(t,e) CREATE(TS,¢’)
parent(u) = t, child(e) =

teT, o:€:f =stack(t) f'€F childe)¢T,
teT, tel,
€ eF®e ¢F ¢ €F®uvpp>o. BUFFER(p, )

stack(t) = o : €

teT; o:e:f=stack(t) e, feF childle) €T

stack(t) = o : e,u = child(e)

JOIN(t)

d' : p = stack(u)
d € stack(t) d ¢ stack(t)
o:d:m:e= stack(t) o=10
stack(t)=c:d :p

MERGE_STACKS(¢, u)

v = commits(t) § = commits(u)

MERGE.COMMITS(t, u) -
commits(t) =~ :u:6,T. W {u}

v 10 = commits(t) . § = vdsop .
Ve € §Vf € stack(c), child(f) ¢ T,
commits(t) =, T. \= {d}

PURGE.COMMITS(t)

DESTROY(u)

CLEANUP(t, u)
PURGE.COMMITS(t)

JOIN(t) MERGE.STACKS(t, u)
MERGE_.COMMITS(¢, u)

[¥]commIT (¢) CLEANUP(t, u)

Vf € stack(t) . u = child(f) € T
ABORT.ALL (u)
CLEANUP(t,u)

ABORT_ALL (t)

JOIN(t) ABORT-ALL (u)
CLEANUP(t, u)

[*]ABORT(¢)

Figure 3. Stack operationsExternally available operations are
marked with [x]. START and STop create and destroy non-
speculative thread®USH, POP, FORK, COMMIT, and ABORT Op-
erate on existing threads, and all other operations are internal.



PoP takes the stack of, and checks that the top fram@ is
valid and there is no child attached to the fraeh@nderneath. If
is non-speculative, it does not matteeifexists, we can always pop
f- Ifthet is speculative, either’ exists and is found intack(t), or

perform any operations, including simple method entry and exit.
For N=<, there is a restriction on children being attached to prior
stack frames, which prevents out-of-order speculation.is the
simplestcoMMIT (¢) possible, with the child stack containing only

due to our lazy stack copying approach it needs to be retrieved andone frame, andiy is similarly simple with no recursion required
buffered from the most speculative parent thrpdtat containg. in ABORT(7). Finally, the restriction- € T, in N| andN< is suffi-
JOIN has similar conditions t@OP, except that here must exist cient to prevent speculative child threads from doing anything other
and also have a speculative child. than local computation in the buffered framfe N>~ andNy must
MERGE_STACKSIs called bycommIT, and is used to unify the match withN<, NT must matchv |, andnT L is precluded for spec-
(partial set of) frames copied into a child with those found in a ulative threads becaus®FreR(T, e) will not complete.
parent thread. It takes the stackwond looks for a less-speculative The model in Figure 6 extends Figure 5 to allow speculative
versiond of its bottom framel’ in its parent. If found, then frameks children to enter and exit methods. A speculative psisisimply
throughe in ¢ are replaced with the child stack, otherwise the entire creates a new frame far, specifying thatr’ is linked tor via some
parent stack is replaced. Note thawill always be found ift € T, framee’ at the bottom oft’ to the corresponding € . S| takes
since non-speculative threads have full sStacsksRGE_COMMITS, the left-hand case iROR(t) wheree’ € F', whereass| L takes the
as called bycommiT, takes the commit listy from the parent right-hand case and so bufférfrom its parent. Finally, this model
and appends the child and the child commit list, and addsu updatesv> andNy to handle situations where the child may have
to T.. PURGE.COMMITS is called every timecLEANUP is called, left ¢’ via sT_L, represents the child thread stackysy
and it removes threads without child dependences from the most  The next model in Figure 7 simply adds one operation to al-
speculative end of a commit list until either all committed threads low out-of-order nesting in non-speculative threaols,. This rule
have been purged or it encounters a dependency. specifies that if there is some lower stack fradria 7 with a child
CLEANUP simply destroys: and then purges and is called af- attached, a new thread can be forked fraroomplementingi< in
ter anycOMMIT or ABORT operation, and internally fromBORT_- Figure 5 which prohibits this. All other existing operations continue
ALL. It contains the common logic that follows commits and aborts, to work as expected in this model. As an implementation note, this
whereagoIN contains the common logic that precedes theow- model is relatively straightforward to implement in software, but
MIT is just a composite operation that joifismerges stacks and  offers significantly limited parallelism [19].
commit lists usingu from JoIN, and then cleans URBORT has After out-of-order nesting comes in-order nesting in Figure 8.
a similar structure, callingBoRT_ALL internally, which performs 1< allows speculative threadto create3 independently of its par-
a depth-first search looking for live children, and destroying them ent. Ny will recursively abort these threads without modification,
post-order. In any real implementation that uses this stack abstrac-buti:- is required to allow a parent thread to commit child thread
tion, child threads must be stopped before they can be committedwith a grandchild3, maintaining the link tg3 and mergingy onto
or aborted. the commit list of the parent. Aftef gets committed viav>-, a
will be freed, assuming there are no more childrén. is yet more
complex, specifying that in order to buffer frarde parent threads
will be searched backwards starting from the grandparent entil
Using the stack abstraction from Figure 3, we now develop a seriesis found. Here~ indicates that there is a path of buffered frames
of progressively more flexible behaviour models, shown individu- from =’ backwards tar. This rule is an extended version sf L,
ally in Figures 4-10. We then use these rules in Section 4 to explore which only handles buffering from the immediate paresitworks
and understand the behaviour of various code idioms under specu-icely as is with in-order speculation, asgi.L works not only in
lation. the simple case above but also in the case where the buffered frame
In these models, each rule is named, possibly with symbols is in some committed threade T...
for PUSH(]), POP(T), FORK (<), COMMIT (>), andABORT (3#). In Figure 9, speculative commits are now permitted. There are
Above the inference line is the correspondirggycommand from two simple rules,s> and si>, which complemeni>- and 1~
Figure 3, followed by restrictions on behaviour and local variable respectively. In the forme# is purged fromeommits(a), whereas
mappings. Below the line is a visual depiction of the transition in the latter it is kept because of dependency[I-MERGH is
from one stack state to the next. Threads are named in increasingmplied by 1>, and so adds nothing, and only shown to illustrate
order by, «, 3, v, d, such thatr € T,, and{a,...0} C T, the full process of merging committed thread lists, wherandy
except in rulelT_L from Figure 8, where- may be inT,. Shown were already committed ar@igets added between them.
for each thread is the value ofstack(t), which grows upwards, Finally, in Figure 10, the last restrictions are removed so that
the value ofcommits(t), which grows left-to-right starting at, all of the features in the main abstraction in Figure 3 are available.
and for eachf € stack(t) a horizontal line to the child thread if  In this case, it suffices to provide<, which allows speculative
child(f) € T;. As in Figure 3, variabled, e, f and derivatives threads to create child threads out-of-order. This was formerly pro-
are given to concrete frames, wherea, 7, w, p, v range over hibited byo=, which only applied to non-speculative threads. The
frames. A valid speculation for a given program is described and other two rules are again shown only for purposes of illustration:
can be visualized by a sequence of rule applications, each of which[103] shows a recursive abort on a thread with both in- and out-of-
acts atomically. order nesting, anfbi<] shows in-order nesting after out-of-order
Figure 4 contains a simple structured non-speculative stack nesting has taken place, as already allowedbyfollowed by <.
model common to many languages. Non-speculatives threads can The above models illustrate the behaviour of common specu-
START andsTOR, delimiting the computation. In|, a new frame lation strategies. In the next section, we explore a series of stack
can be pushed, where C F and so may bd). NT andNT L, evolutions that rely upon this final combined stack model for their
match the two cases € stack(r) ande ¢ stack(r) of PORt) behaviour.
in Figure 3, the latter being the penultimate operation on a thread,
followed by sTor. . .
Figure 5 contains the simplest MLS stack model, one that ex- 4. Speculation Idioms
tends Figure 4 to allow non-speculative threads to fork and join Simple changes to the structure of input programs and decisions
a single child at a time. In this model, speculative threads cannot regarding when to speculate can dramatically affect the dynamic

3.2 Structural operational semantics



STORT) PUSH(T,f) T€T,

f

e ¢ stack(r)
f=r

POHA(T)

e=¢
f -

T

NT L

T

Figure 4. Adults-only modelNo speculation.

COMMIT(T)
FORK(T, f) 7€T, p=10
vd hild(d) ¢ T — (— ABORT
N € o,child(d) ¢ Ty N>_dfe d =e Ny ()
f ! f / / f !
(& e—e e—e € e—e €
g — O g — 0 g — 0
T T O T « T T « T

Figure 5. Totalitarian model.One speculative child allowed, but
only non-speculative threads can perform stack operations.

PUSH(«, f) POR(a) f=f
=0 w#D m=0c:¢ w#
e =car(r’) . eem d =car(n').den
sl sT
w w f/ w f, w o,
T—7 — 7T T—n — T—m
T o« T o« T « T «
PORa) 7' = f COMMIT(7)
D=0c:c w#0D o =d:p ABORT(T)
= car(mw =d:7: =0
STl f (m) e P Te N%J p=o0:¢
w , w f / / f ’
T—T — p—p ¥ p—p ¥
e e e o — 0o o — 0o
¥ - ¥ T « T T « T
T « T «

Figure 6. Kid-friendly model.Allows pusH and POP actions on
speculative threads, overriding- andNy to accomodate.

FORK(T, f) TeT,
d = car(n') . d = car(r)

f

/
/ e—e /
T ™

— O
T [ «
Figure 7. Catholic model Provides out-of-order nesting via<
to allow an arbitrary number of speculative children for non-
speculative threads

o<

(&
m—T
g

T «

structure of the speculative call stack. In this section we explore
several common code idioms and their behaviour under MLS us-
ing our stack abstraction from Section 3. We examine straight-line
code, simple if-then conditionals, and finally explore basic iteration
and recursion in-depth, with a view towards discovering idiomatic

code structures and speculation decisions that yield interesting par

allel execution behaviours.

In the examples that follow, we assume that useful computation
can be represented by calls te@ k function whose running time
is both constant and far in excess of the running time of all non-

FORK(a, f) COMMIT(T) T€T,
djr’_:a /wd;éfl) w;é@_cp’:.w*d"p
=car(n').dem p=d:m:e

1< f |>f
w w
w e, w e—é p—pl " ¢ ¢"
m—mT — T—T g — O
T o T a f T o f T—a f
PORB) 7" =f O=0:¢ wuv#0
f = car(r") car(n") ~ car(m)
L T = Upp>0 - BUFFER(p, €)
w v, o, w v,
T T— 1T T T—
e e e
14 — ¥
T a f T a f

Figure 8. One big happy modeProvides in-order nesting via
to allow speculative children of speculative threads.

COMMIT(a) w # ) coMMIT(a) w,v# 0
(p// — d/ . p (p// U= d/ . p
"=d:m:e '=d:m:e

s=—2 U SI- 2 i

w fo, w w frv, o ow v, "

el " oy p—pl " o

o — o — o

T a (8 T « T a B 7 T a—f3 7

COMMIT(T) w0
"iw=d": '=d:7:
[I>-MERGE Lt p_@ e
9.};/ %/// e Wy L,DNN
a — O
T—a [—7 § T—oa—p[F—7 §

Figure 9. Nuclear model Allows speculative threads to commit
their own children]i-MERGH's behaviour is provided by>-.

FORK(a, f) w#D ABORT(T) w #0
oz d = car(n') . d ? car(m) 0% cip=0:e€
we, , we—€e f -,
T—T—T T—TT s — ¥
o — o o — o
T a f T a 7 B T a Y B T
FORK(B, f) =0 w#0
d =car(n’).den
[o1<] 7
w e, w e—e
T / T—T /
- Y — P ¥
T [ «@ T [ 7 «

Figure 10. Libertarian model.Allows both in-order and out-of-
order nesting[ioy] and[o1<] are provided by andi<.

a work function, it will not return from that function until all other
computations possible before its return have completed. This rea-
soning will guide the stack evolutions in cases where more than one
operation is possible. Although our execution timing assumptions
are simplistic, the behaviour is still complex and interesting, and it

“provides a basis for understanding more complex situations.

4.1 Straight-line Code
The simplest code idiom in imperative programs is straight-line

work computation. Thus we can reason that if a thread is executing ¢ode, where one statement executes after the next without branch-

ing. In Figure 11, two sequential calls wor k are shown, and the



straightline () { if_then () {
work (1); if (work (1)) {
work (2); work (2);
} }
wor k (3)
Figure 11. Straight-line code.
1 2 :
s \év s — \év .5 — Figure 16. If-then code.
T T T T T T T | YVl | \|N2 | \INS |
Figure 12. Straight-line: do not speculate. . . r r r - - - -

wl  owlw2 w2 ., ., Figure 17. If-then: do not speculateyr k(1) returns true.
—8S —»S—S — S—S—S — S S— S —
T T T « T o 3 T—a 3 T T . wl w3
. . . -1 =1 =1 =1 —1 —
Figure 13. Straight-line: speculate on all calls teor k.
T T T T T T T
straightline () { stop () Figure 18. If-then: do not speculateyr k(1) returns false.
work (1); [+ unsafe */
work (2); } . wl wiw2 w2 w3
stop (); -1 =i —" == =0 =1 =1 =1 —
} work (3); T T T « T « T T T T T
Figure 19. If-then: speculate omor k( 1) , predict true correctly.
Figure 14. Speculation barrier code. wil wlw3 w3
wil wl w2 wiw2st w2 st I
—-8S —S$S—8§ — s—s—s"— s—s—s"— g s” T T T & - T T T
T T T @ T a f3 T a f3 T—a f3 Figure 20. If-then: speculate omor k(1) , predict false correctly.
st o W3 - wli_o— owlw2 w3
— 8" — §"— s—-s"— "~ e e e B e e N B
T T T 7 T T T T T « T « T T T T

Figure 15. Speculation barrier: speculate on all calls or k.

non-speculative stack evolution is shown Figure 12. In Figure 13,
speculation occurs on all calls tor k: the parent thread exe-
cuteswor k(1) , o executesaor k(2) , and3 executes a continua-
tion which does nothing usefut.returns from w1l and commits,

Figure 21. If-then: speculate omor k( 1) , predict true incorrectly.

w3
— | — 1

wl wl w3 w2

-0 == =i—1" =1 =1 —
T T T o T o T T T T T T
Figure 22. If-then: speculate omor k(1) , predict false incor-
rectly.

—

then returns from w2 and commits and finally pops s” to exit the
program.

Even in this simple example, choices about whether terusa

: : : 4.3
or FORK clearly affect which threads execute which regions of
code, and whether all speculative threads have useful work to do. InThe most common code idiom considered for speculation is loop
Figure 14, a functiost op is introduced that contains an unsafe op- iteration. Chen & Olukotun [5] demonstrated that if a loop body
eration that will act as a speculation barrier. The result in Figure 15 is extracted into a method call, then method level speculation can
is that w3 is not executed speculatively. Again, although simple, the subsume loop level speculation. We explore an example loop under
impact of unsafe instructions on speculative parallelism is impor- different speculation assumptions in Figures 23-29 to better un-
tant to consider; in some cases, artificial speculation barriers may derstand the behaviour. Speculating on all callsook, the loop is
even be helpful. quickly divided up into one iteration per thread, for as many threads
as there are iterations.

In many cases loop bodies may be small, and speculating on
everym in n calls/iterations may be more appropriate. In Figure 26
speculation is performed on every 1 in 2 calls. In this case the stack
Another simple code idiom is conditional branching. If the value €VOIVes toapointwhere bothwl and w2 are executing concurrently

and no other stack operations are possible. From then on, although

of the conditional is speculative, then particular code paths fol- L2 X X
lowed depending on the value themselves become speculative. inthere are a number of possible intermediate evolutions they all lead

Figures 16-22, speculating on the callter k(1) , it is necessary  (© the same w3/w4 state. Effectively, the loop is parallelized into
to predict a boolean return value. If the speculation is correct, as in WO thréads, each executing one iteration at a time. Speculating on

Figures 19 and 20, then the speculative work w2 or w3 respectively €V€ry 1 in 3 calls, a similar pattern emerges, except that a non-
ends up being committed, otherwise aborted. parallel execution of w3 is interjected. Speculating on every 2 in 3

For this speculation idiom to be useful, the function producing €2lls: W1, w2, and w3 execute in parallel, and once they complete
the return value should take a long time to execute. Further, ex- 1€ Stack evolves until w4, ws, and w6 execute in parallel.
tensions to the basic list and stack speculation models could allow A general rule for iteration under MLS then is that speculating
for multiple predicted return values, with one speculative thread O €veryn — 1 in n calls towor k will parallelize the loop across
each. This would provide a kind of speculative hedging, and may " thréads, each executing one iteration. To support multiple subse-
be worthwhile given excess resources. Nested ifs have similar be-dUent iterations executing in the same thread, there are two options:
haviour to this example, although the prediction for the outer test ) Pass + 2when speculating, which is not directly possible with
is more important than the inner test in terms of limiting wasted our stack model; 2) unroll the loop and push multiple iterations into

computation, since the inner speculation is under its control. the loop body, as in Figure 29.

Iteration

4.2 Conditional branching



iterate (n) { recurse (i, n) {

for (i =1; i <=n; i++) { work (i);
work (i); if (i <n) {
} recurse (i + 1, n);
}
}
Figure 23. Iteration code. - - -
wil w2 w3 Figure 30. Tail recursion code.
-0 =i =i =i =1 —=1—... wi 5 v\éZ
r r
L _T 2 T_ 4 & a —-rMN—-rn—-rl—rl—rl— ...
Figure 24. Iteration: do not speculate. r - - - - -
) wl wlw2 wlw2ws Figure 31. Tail recursion: do not speculate.
=i =01 — =1 —0"—="—=i—0"="=i"—= ... )
w
T Ta_TaB T a B wil wl r2 wl r2—r2’
Figure 25. Iteration: speculate on all calls taor k. — rl— rk=rl'— rk=rr1"— rk—rk——-rl"—
T T T« T o (3 T o Y B
' wl wiw2 w2 w3 w3 wa Figure 32. Tail recursion: speculate on all calls (inefficient).
-0 =2i—0" =1—0" =20 =7 =1="=>i—i"—= w2
T T T« T« T T T B T B wl wlr2  wlr2-r2
Figure 26. Iteration: speculate on 1 in 2 calls teor k. — M- rk=rl'— rk=rl'— rk=rl’  — ...
T T T « T « T o 3
S0 = Y"i, R }NE}NZ% YV2_> P ¥V3_) - }Nil Figure 33. Tail recursion: speculate on all calls teor k (good).
T T T « T « T T T T T B w2
wil r2 r2
wa w5 — - rl=rn— rkrl'— rkrl'— ...
- ITilﬁ o T T T T T @ T«
Figure 27. Iteration: speculate on 1 in 3 calls teor k. Figure 34. Tail recursion: speculate on all calls teecur se (bad).
w2 w2 r3
. wl wiw2 =~ wlw2w3 w2 w3 wl wir2 wlr2 2 12  r2-r2
e e e e e e e e e | I — 11— rkrl"— rkrl'— rk—rl'— rl'— rl'— rl’
T T T o T a T a f3 T—a f3 T T T « T « T @ T T T B
\ : w4 w4 wS w4 w5 w6 w4
-1 =" = 1" = """ = "—1"—=0"— ... w3 w3 r4 w3 r4
T T T T v 6 T Y 5 r?i r&r3 ro&r3’ r;)#r?;’
Figure 28. Iteration: speculate on 2 in 3 calls teor k. BT TIN rl‘ s 1T s 1T s
iterate (n) { unrol led (i) { T g Ty B T B TP
=1 V\Drk (i); Figure 35. Tail recursion: speculate on 1 in 2 calls t@r k and
while (i <= n) { P4t recur se (inefficient).
unrolled (i); work (i);
AR w2 w2 r3
} } wil wir2 wilr2 r2 r2 r2
— 11— rt—rl'— rtrl'— rt—rl'— rl'— r1I'— rl’
Figure 29. Unrolled iteration code. T T T o T T T T T
) . w4
4.4 Tail Recursion vg\’i 3 vgrésl vg?irél
. o - . . r3—r r3-r r3—r
Tail recursion is explored in Figure 30-37. It is well known that tail r2, r2, r2,
recursion can be efficiently converted to iteration, and we see the— 11’ — 11’ —rl" — ...
same behaviour in these examples. Speculating onrmathr se T 8 T T 3
andwor k does populate the stack with successive cali®td, but Figure 36. Tail recursion: speculate on 1in 2 callster k (good).
it also creates just as many useless threads that will only ever fall 3
out of the recursion, although they will stop almost immediately as w2 r3 b
they encounter elder siblings. Speculating onywstk is good, and wl 2 r2 r2 r2-r2 r2-r2
yields a stack structure identical to that produced by speculatngon — M1—rmn—rl—rl—-rl—-rl—-rl —rl
all calls in iteration, as in Figure 25, once the interleaviegur se T T T T T T T T o T &
frames are removed. On the contrary, speculating o pusir se wé 5
is bad, such that calls teor k are never parallelized. w3 r4 r4 r4 r4—r4’
Speculating on 1 in 2 calls teor k yields again a structure di- r?:} rS} ri ri ri ¥32
rectly comparable to iteration, where wl/w2 will execute in paral- _—, T r1'— r1 r1'— r1 r1'— r1 rI'— r1 r1'— rl ry’

lel before the stack evolves to w3/w4. Speculating on 1 in 2 calls T a Ta T a T a Ta T8 «
towor k andr ecur se is similar but more wasteful. Speculating on

1in 2 calls tor ecur se is bad, but yields an interesting behaviour ‘%5 ‘%5
where the speculative children unwind the stack by one frame be- (42— 4’ rd—
fore stopping. r3 r3 r3
r2z—— r2——
—rl rI'— rl rl'— ...
T B « T B «

Figure 37. Tail recursion: speculate on 1 in 2 calls tecur se
(bad).



recurse (i, n) {
if (i <n {
recurse (I + 1, n);

work (i);

Figure 38. Head recursion code.
wn
m rm m wm
rm rm rm rm rm rm
- rMn-rmn-rn-rmn-rmn-rn-rn-rlo...
T T T T T T T T T
Figure 39. Head recursion: do not speculate.

r3
r2 r2 wil r2—-r2’ wl
—r1rl— rkrl'— rkrtrl— rk——rt-rl”
T T T « T a f T 7 o
r3 w2
r2—r2-r2" wl

— r—-rtrl>— ...
T Y § a

Figure 40. Head recursion: speculate on all calls (inefficient).

r3 r3 w2
rz - r2wl r2-r22wl r2-r2’ wl
— 1l— rkrl'— rkrl'— rk rI'— rk r’'— ...
T T T « T T 3 « T B «
Figure 41. Head recursion: speculate on all calls tcecur se
(good). wn wn wn
m m-rm’  rn— rm—wm
rm rm rm rmrm’ rm rm-rm”
—rmn—-rl—-rl—rl-rl —rl —rl — ...
T T T T T T « T « T o B

Figure 42. Head recursion: speculate on all calls ¢@r k (good).

r3 r3 w2 r3 w2
r2 r2—-r2"  r2-r2-r2" r2-r2-r2"

—rl—rl—rl — rl — rl
T T T T « T a f T a f
r3 w2 r3 w2
r2—r2- r2—r2-wl
—rl rI'— rl rI’'— ...
T o B T o B

Figure 43. Head recursion: speculate on 1 in 2 callsttecur se
andwor k (unbounded parallelism).

wn wn
m m-rm’ m—

rm rm rm rmrm’
rl rl rl rl r
rk rk rk rk rk rk
—rmn-rn-rmn-rn-rmn—-rn-r —rl
T T T T T T T T « T «
wn wn wn wn wn
rm-wm rn— m— - rn—
rmrm’ rmrm’  rm rm wi rm wi
rl r rlrl’ rlrl—rl” rlri—
rk rk rk rk rk rk’
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T « T « T « T a f T a f
wn
m—
rm wi wi

1

rlrl—wk 1l wk

rk k' rk rk’
—rl —rl — ...

T o (3 T—a (3
Figure 44. Head recursion: speculate on 1 in 2 calls tor k
(compare with Figure 36).

3 w2 r3 r3

r3 r3 w2
r2 2-r2"  r2-r2° r2-r2' r2-r2" r2—

—r1rl—-rl—rl —rl —rl —rl — 1l rl
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r3 r3

r2z-wl rz2—
— 1l rI'—rl rlI'— ...

T « T (0]

Figure 45. Head recursion: speculate on 1 in 2 callsttecur se
(loop unrolling).

4.5 Head Recursion

Head recursion is considered in Figures 38—-45. Here the call to
wor k comes after the call toecur se instead of before. Specu-
lating on all calls is inefficient, just as for tail recursion, whereas
speculating on justecur se is good, allowing for calls towr k to

be executed out-of-order. This is expected given that head reaursio
is seen as dual to tail recursion. However, surprisingly, speculating
on justwor k is also good: the stack gets unwound in-order. For
head recursion, the support for in-order nesting and out-of-order
nesting support in our stack model helps ensure that parallelism is
obtained.

Speculating on 1 in 2 calls toecur se andwor k yields un-
bounded parallelism, where pairs of two calls are unwound in-order
within a pair, and out-of-order between pairs. Speculating on 1 in 2
calls towor k yields a bounded parallelism structure comparable to
iteration, where first wn and wm will execute in parallel, and then
the stack will evolve so that wl and wk execute in parallel.

We were again surprised by speculating on 1 in 2 calls to
recurse: « executes w2, and after returning the stack evolves
until it is executing wl. This pattern is strikingly similar to loop
unrolling, where two successive calls execute in the same thread.
This particular example is unbounded, however, because nothing
prevents the growth of up the stack, such that every two calls to
wor k will start all together, and then be unrolled all together. In
general, calls to work can be divided into batches of size n/t
and distributed evenly across threads by choosing to speculate on
every 1 inb calls tor ecur se. The unrolling within a given batch
is in-order, but the creation of batches themselves is out-of-order.

4.6 Mixed Head and Tail Recursion

Finally, we experimented with a mix of head and tail recursion, as
in Figures 46-49. Given the interesting behaviours seen in isolation
in Sections 4.4 and 4.5, it seemed reasonable that a combination
might yield even more interesting results. Tail recursion has two
distinguishing properties under speculation: it provides in-order
distribution across threads, and it prevents the calling thread from
proceeding immediately to the top of the stack because useful work
must be done first. On the other hand, head recursion is able to
provide behaviour comparable to loop unrolling in a single thread.
However, head recursion is uncapped and will always proceed
immediately to the top of the stack.

Figures 46 and 48 constitute a minimal example that uses head
recursion to provide batch processing and tail recursion to limit
stack growth. In Figure 48, the repeating pattern is two head recur-
sive calls followed by two tail recursive calls, such that speculation
only occurs on the first of the two tail recursive calls. This creates a
threado that executes the first two callswor k out-of-order, while
the parent thread executes the second two callsvior k in-order.
Except during brief periods of stack state evolution, there will only
ever two threads actively executing code.

We can use this pattern to schedule batches of iaeross
t threads when the depth of the recursion is unknown or when
only b x t calls should be scheduled at once. We need a pattern



headl (i, n) { taill (i, n) {
head2 (i, n); work (i);
work (i); tail2 (1, n);
head2 (i, n) { tail2 (i, n) {
taill (i, n); work (i);
work (i); headl (i, n);
}
Figure 46. Two head then two tail code.
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Figure 47. Two head then two tail: do not speculate.
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Figure 48. Two head then two tail: calhead1(1, n) and specu-
late ont ai | 1 in head2 (creates two batches of two calls each).

recurse (i, n, b, t) {
if (i <n& (i - 1) %(b+*1t) <b=x (t - 1)) {
if (i %b==18&%i % (b * t) >b) {
spec recurse (i + 1, n, b, t);
} else {
recurse (i + 1, n, b, t);
work (i);
if (i <n & (i - 1) %(b=x*xt) >b* (t - 1)) {
if (i %b==18&% i % (b * t) > b) {
spec recurse (i + 1, n, b, t);
} else {
recurse (i + 1, n, b, t);
}
}

Figure 49. Mixed head and tail recursion coddo split work
into multiple threads, caltecurse (1,n, b, t), wheren is the
number of calls tawor k, b is the batch size, andis the number of
threads. Speculation points are indicated bysthec keyword.

of b x (t—1) head recursive calls followed fytail recursive calls,
speculating on the first tail recursive call in the pattern and on every
(cb+1)™ head recursive call far € N;. For example, to distribute

under our stack model to derive generalizations about program
structure and the correlation with performance or lack thereof.

Method level speculation is a powerful system for automatic
parallelization, particularly when relatively arbitrary speculation
choices are permitted. The challenge is to restructure sequential
code so that any inherent parallelism can be fully exploited. In gen-
eral, parallel programming is an optimization, and thus cannot be
divorced from knowledge of what different code structures imply
for the runtime system if performance is to be maximed. Just as tail-
recursion is favoured in sequential programs for its efficient cenver
sion to iteration, so should other idioms in sequential programms
be for their efficient conversion to parallel code. Of course, the end
goal is for a compiler to remove this optimization burden from the
programmer wherever possible via automation.

5. Related Work

We have proposed multiple abstractions of MLS in order to show
correctness, equivalence, and precise implementation behaviour.
These properties are naturally addressed in various approaches to
speculative parallelism, with roots in models of parallel functional
languages, and more recently in the context of proving correctness
and performance of transactional memory.

The focus on method calls as a means to achieve parallelism in
MLS suggests an affinity for functional language contexts, where
the lack (or at least greater control) of method side-effects re-
duces implementation complexity. Functional MLS designs have
been shown, e.g. in Haskell [13], although abstractions have more
typically focused on other techniques, such as lazy evaluation, fu-
tures [26], and other optimistic methods [6]. Griener and Blel-
loch [9], for example, define parallel speculative\-calculusto
help model performance and prove time efficiency, and equivalence
of parallel lazy evaluation to sequential is shown by Baker-Fetch
al. [2].

The strong isolation properties assumed by speculative threads
also suggest software transactional memo($TM) approach [22].

As with MLS, transactional designs differ in key choices as to
when concurrent operations may be performed, how they may be
nested, and visibility of intermediate calculatioisansactional
Featherweight Jav&or instance, is used to show serializability of
both versioning and two-phase locking approaches to transaction
control [15]. Other major differences exist in terms of transac-
tion nesting and hence available parallelism. Haetigl., provide

a composable abstraction for Haskell, including support for one
form of nested transactions, although with limited parallelism [12].
Moore & Grossman also use a small-step semantic approach, to
investigate different nesting forms, showing equivalence between
weaker models that enable greater parallelism, and using a type
system to verify correctness in terms of progress of transactional
substeps [17]. Abadet al., have a similar goal, also building a
type-based approach to prove correctness. They develop a special-

work in batches of size 3 across 4 threads, use a pattern of 9 head’zed calculus of automatic mutual exclusion, and use it to examine

recursive calls followed by 3 tail recursive calls, and speculate on
the4" and7" head recursive calls and the first tail recursive call. A
general function that provides this behaviour is shown in Figure 49.

4.7 Discussion

We can see from these examples that the dynamic parallelization
behaviour induced by method level speculation is not obvious, and
there are surely more interesting patterns to be found. We cannot
take ordinary programs with call and return semantics, provide a set
of parallelization operations that significantly perturbs the normal

execution order, and expect to obtain dramatic performance results,
especially if we do not understand the underlying behaviour. We

can however use investigations of sequential program behaviour

the impact of weak atomicity models. Guerraoui and Kapalka ar-
gue thatopacityis a fundamental serialization criterion, and use
that to show correctness, as well as complexity bounds [10]. MLS
of course has fundamental differences from STM—speculative ex-
ecution is not user-specified, and is potentially unbounded. Nesting
models, however, have some similarity, and the correspondence
between different MLS nesting strategies and weak transactional
nesting would be interesting to explore.

5.1 MLS

MLS itself is a form of speculative multithreading (SpMT), which
has been relatively well-studied from a hardware perspective and
has been a subject of research for well over a decade. Gaetaabin
reviewed and classified most of the core approaches [7]. A primary
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