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Abstract

This paper introduces a new aspect-oriented programming language, AspectMatlab. MAT-
LAB is a dynamic scientific programming language that is commonly used by scientists because of
its convenient and high-level syntax for arrays, the fact that type declarations are not required,
and the availability of a rich set of application libraries.

AspectMatlab introduces key aspect-oriented features in a way that is both accessible to
scientists and where the aspect-oriented features concentrate on array accesses and loops, the
core computation elements in scientific programs.

Introducing aspects into a dynamic language such as MATLAB also provides some new chal-
lenges. In particular, it is difficult to statically determine precisely where patterns match,
resulting in many dynamic checks in the woven code. Our compiler includes flow analyses which
are used to eliminate many of those dynamic checks.

This paper reports on the language design of AspectMatlab, the amc compiler implementa-
tion and related optimizations, and also provides an overview of use cases that are specific to
scientific programming.

1 Introduction

MATLAB is a programming language that provides scientists with an interactive development loop,
high-level array operations and a rich collection of built-in and library functions. MATLAB is also
a very dynamic language in which variable types are not declared, and in which new functions and
scripts are loaded dynamically. Although MATLAB recently incorporated object-oriented program-
ming features, there are currently no aspect-oriented features.

Our challenge was to define and implement a new aspect-oriented programming language that was
a natural extension of MATLAB. We wanted to build upon the successes of languages such as
AspectJ [?,7?], but at the same time tailor our approach to the needs of the scientific programmer.
In particular, we wanted to introduce new language features for matching array and loop operations,
both of which are central to scientific programming. We also wanted to introduce aspect-oriented
programming in a way that was a natural extension to the MATLAB language and so that it would
be understood and adopted by the scientific programmers.

We have defined an extension of MATLAB, AspectMatlab, which supports the notions of patterns
(pointcuts in AspectJ terminology), and named actions (advice in AspectJ terminology). An aspect
in AspectMatlab looks very much like a class in the object-oriented part of MATLAB. Just like
classes, an aspect can have properties (fields) and methods. However, in addition, the programmer
can specify patterns (pointcuts) and before, after and around actions (advice). Each action is
declared with a name (unlike advice in AspectJ, which do not have names).

AspectMatlab supports traditional patterns (pointcuts) such as call and execution, but we have
also concentrated on an effective design for get and set patterns which naturally deal with arrays.
Loops are key control structures in scientific programs and we have developed a collection of patterns
which allow one to match on loops in a variety of ways. We have also been inspired by AspectCobol
[?] in that we expose join point context information via selectors that are associated with actions.

In order to motivate our new patterns, we have developed a collection of use cases which we believe
illustrates uses that are specific to scientific programming.

We have implemented the amc compiler which translates AspectMatlab source files to pure MATLAB
source files. The generated code can be run using any MATLAB system. The overall structure of



the compiler was inspired from the abc [?,?] system and is built as an extension of the McLab!
MATLAB front-end. In implementing the compiler it became clear to us that weaving into MATLAB
code offers new challenges that are different from weaving into more statically-typed, traditional
languages such as Java. As one example, the expression a(i) may be either a call to function a or
a get of the i’th element of array a. Even worse, the precise rules for looking up names differs for
functions, inner functions and scripts. Thus, a naive weaving strategy for MATLAB requires a lot
of dynamic checks to determine if an expression matches.

To deal with the special challenges of weaving in MATLAB, we have implemented some intra-
procedural flow analyses using our new McLab analysis framework which enable us to statically
determine whether names correspond to variables or functions. Applying these analyses before
weaving allows us to greatly reduce the number of dynamic checks required.

The main contributions of this paper are: (1) the AspectMatlab language definition (see Section 2)
and compiler (see Section 4), (2) new scientific patterns (pointcuts) and use cases (see Section 3)
and (3) optimizations to reduce dynamic checks (see Section 5). We also provide a discussion of
related work in Section 6 and give conclusions and future work in Section 7.

2 AspectMatlab Language

Although AspectMatlab’s design is mostly inspired by AspectJ, there are distinctive features of our
language which are based upon two driving principles: (1) the ability to crosscut the multidimen-
sional MATLAB arrays accesses and loops, and (2) the ability to bind the context information from
the join point shadow as part of the action declaration. While designing the syntax for the aspect
constructs, we focused on achieving a couple of goals. First, enriching the patterns structure for
enhanced selective matching and secondly, not to deviate from the existing language constructs for
the sake of better accessibility for existing MATLAB programmers.

In AspectMatlab, aspects are defined using a syntax similar to MATLAB classes. A MATLAB class
typically contains properties, methods and events. So taking advantage of the class structure, an
aspect retains the properties and methods, while adding two aspect-related constructs: patterns and
actions. Patterns are formally known as pointcuts in AspectJ and of course, AspectMatlab actions
correspond to AspectJ advice. This choice of terminology was intended to convey that patterns
specify where to match and actions specify what to do. An example of a complete AspectMatlab
aspect is given in Figure 1.

2.1 Patterns and Actions

Just like any other aspect-oriented language, AspectMatlab provides a variety of patterns that
can be used to match basic language constructs. In addition to standard patterns such as those
supported by AspectJ, a scientific programming language like MATLAB possesses other important
cross-cutting concerns. In MATLAB, array constructs are heavily used and programs are written in
the form of large functions or scripts containing many loops. While providing the basic function-
related patterns like call and execution, we also introduce two new sets of patterns: (1) get/set
patterns, enabling the facility to capture the array-related operation along with useful context
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exposure; and (2) loop patterns, which will help programmers to handle the loop iteration space
and details of loop-intensive computation.

An example of a simple call pattern and a corresponding named action is shown below.

patterns
pCallFoo : call(foo);
end

actions
aCountCall : before pCallFoo

end
end

We present examples of function patterns in section 2.4, while the rest of the patterns are explained
in detail in Section 3. A list of patterns support by AspectMatlab is given in Table I.

Table I: List of Patterns

call captures all calls to functions/scripts
execution captures the execution of function bodies
get captures array accesses

set captures array sets

loop captures execution of all loops

loophead  captures the header of the loop
loopbody captures the body of the loop

An aspect can contain many actions, and as in other aspect-oriented languages, there are before,
around and after actions. Since multiple actions can be triggered at the same join point, if more
than one of such actions are of the same type, we need default precedence rules for the actions.

e Around actions are woven first. Multiple around actions are woven around the join point in
the exact order in which actions are defined in source code. So the outer-most of the around
actions will be the one appearing first in the woven code and it will go around the next around
action encountered, or the actual join point if there are no more around actions.

e Next, before actions are woven just before the join point. In case of multiple before actions,
the order of the woven advice follows the exact order in which the actions were defined in
source code.

e Last, after actions are woven just after the join point. In the case of multiple after actions,
the order of the woven advice follows the exact order in which the actions were defined in the
source code.

An important point to notice here is that the default ordering rules of AspectMatlab are simpler
and more restrictive than the precedence rules of AspectJ [?]. However, our action weaving strategy
avoids complicated dependency rules, will not lead to any dependency cycles between actions, and
is easy to comprehend from a scientific programmer’s point of view. Since our actions have names,
it would also be simple for us to introduce a declaration to over-ride the default ordering within
each of the around, before and after groups.



2.2 Selective matching

As shown in the example below, pattern call2args will match all calls, but only the ones made
with two or more arguments. This enriched pattern syntax allows selective matching, because in
MATLAB a function call does not necessarily have to provide exactly as many arguments as specified
in function signature.

patterns
call2args : call (x(x, .. ));

end

Also, the syntax for accessing the arrays and cellarrays is the same as of calling a function. So
this selective matching is available on a range of patterns, which we shall describe in the following
sections.

AspectJ also provides this facility of selective matching, but it uses separate notations for different
pointcuts. The MATLAB syntax allows us to come up with a general matching notation applicable
for both call/execution and get/set patterns. A list of possible use cases of such matching for the
call pattern is given in Table II.

Table II: Selective Pattern Matching

call(foo) matches all calls to foo

call(foo()) matches calls with no arguments

call(foo(*)) matches calls with exactly one argument

call(foo(..))  matches calls with 1 or more arguments

call(foo(*,..)) matches calls with 2 or more arguments
...and so on

2.3 Context exposure

When it comes to the context capture, AspectCobol’s [?] design doesn’t rely on the use of reflection
inside the advice code, as it is performed in AspectJ [?]. Rather, it suggests that join point
reflection on the static shadow should be a part of the pointcut. The extraction of the context-
specific information is described as part of the pointcut designator. We extend the idea of binding
the results of desired context variables for subsequent use in the action code.

In AspectMatlab, access to the static program context that belongs to the join point is selector
based. These selectors are specified along with an action definition, because an action corresponds
directly to the static join point shadow. In the example below, the action actcall will fetch the
name and args of the function call from the join point shadow.

actcall : before call2args : (name, args)
disp ([ ' calling ', name, ' with arguments(', args , ')"]);

end




Of course, a selector is only applicable depending upon the join point type. For example, the
counter selector is only meaningful when used on a loop join point. A list of context selectors and
their meaning with different join points is given in Table III.

Table III: Context Selectors for different join point types

‘ ‘ get ‘ set ‘ execution ‘ call ‘ loop ‘ loopbody ‘ loophead
args indices arguments passed - ‘ - ‘ -
obj variable | variable before set - function handle loop iterator variable
new Val - new array - - - - range expres
counter - - - - - current iteration -
line line number in the source code
loc enclosing function/script name
name name of the entity matched ‘ - ‘ - -
‘ varargout cell array variable used to return data from around action

In Figure 1, we present example of an aspect, which counts all the function calls made with at least
two arguments. To do so, we need to have a call pattern to capture all such calls. The execution
pattern is used to display the number of calls made at the end of the program.

2.4 Small Example

To demonstrate the application of the aspect from Figure 1, consider a small base program consisting
of the simple MATLAB function given in Figure 2. This function first generates some random-sized
vectors, then calls several MATLAB functions to generate a histogram, and finally computes some
basic statistics.

Once compiled along with the aspect presented in Figure 1, pattern call2args finds only three
matching join points (at lines 5, 6 and 9) where the function calls carry two arguments each. So,
corresponding action function calls will be woven only at those program points. Note that the
function calls with a single input argument (at lines 11, 12 and 13) not match. Moreover, the
action actexecution is an after action, so it will be woven at the end of the function. The woven
code generated by the compiler is shown in Figure 6. It will be easier to follow the output after we
explain how different phases of the compiler work in Section 4.

3 Scientific Patterns and Use Cases

Scientific programs heavily rely on arrays (i.e. matrices) and loops when performing computations.
One of the main goals of AspectMatlab is to expose these language constructs to aspect-oriented
programming in order to make it appropriate for use in the scientific computing domain. In the
following we show some non-trivial use cases of some typical MATLAB programs that were extended
using AspectMatlab. Thus we want to illustrate both the usefulness of aspects in the numerical
computing domain in general and the special patterns in particular.



1 aspect myAspect

2

3 properties

4 count=0;

5 end

6

7 methods

s function out = getCount(this)

9 out = this.count;

10 end

11 function incCount(this)

12 this.count = this.count + 1;

13 end

14 end

15

16 patterns

17 call2args : call (x(x, .. ));

15 executionMain : execution(histo);
19 end

20

21 actions

22 actcall : around call2args : (name, args)
23 this.incCount ();

24 disp ([' calling ', name, 'with parameters(', args , ')"]);
25 proceed();

26 end

27 actexecution : after executionMain

28 count = this.getCount();

29 disp ([ ' total calls: ', num2str(count)]);
30 end

31 end

33 end

Figure 1: An aspect to count all calls made with at least 2 arguments

function [m, s, d] = histo(n)

1
2
3
4
5 x1 = (randn(n,1) x5 ) + 100;
6 x2=05+rand(n,l)* (15 —-5);
7y =x2."2./ x1;

8

9

hist (y,50);

11 m = mean(y);
12 s = std(y);

13 d = median(y);
14 end

Figure 2: MATLAB function



All examples can be found online at http://sable.mcgill.ca/mclab/aspectmatlab/examples.
They all include the aspects and the programs that are modified, as well as woven code generated by
amc (i.e. the compiler is not needed to check the benchmarks). In general, we consider two possible
use cases: (1) profiling programs, and (2) annotating data to variables in a running program to
extend functionality.

Profiling programs is particulary interesting for scientific programs, which are usually computa-
tionaly intensive. Having knowledge about what exactly is going on during execution can help
increase efficiency, as the sparsity benchmark (Section 3.1) shows. Some information is hard to get
by “traditional” means, i.e. by extending the program to include profiling code. Adding an aspect
represents a much cleaner solution, with the additional advantage that they allow to profile differ-
ent programs without much modification. Both the sparsity (Section 3.1) and flops(Section 3.2)
examples show this.

With regards to annotating functionality it is interesting to note that the McLab Project was
conceived as a framework not only to allow the addition of analyses and compilation of Matlab into
different backends. It is also a framework to allow the simple development of language extensions,
which is exactly what the amc compiler is (an extension of the base MATLAB compiler). Aspects
are a quick way to prototype further possible language extensions without much work, as the units
(Section 3.3) benchmark shows.

3.1 Tracking array sparsity

The sparsity benchmark is an aspect which helps to profile how sparse matrices (arrays) are. The
sparsity of a matrix is the number of zero elements compared to the number of non-zero elements.
If a matrix is sufficiently sparse, it can be stored as a sparse matrix, which is a special data type
supported by MATLAB. It stores only the non-zero elements and their location. All arithmetic is
supported both on sparse data types and between a mixture of sparse and dense matrices.

If a matrix is very sparse, then matrix multiplication, which is where most of the computation of
many scientific programs happens, becomes much cheaper to perform, giving order of magnitude
speedups in specific instances. Other operations on the other hand, like indexing or adding new
elements that were previously zero are much more expensive, because they require to traverse or
rebuild the sparse matrix.

The sparsity aspect identifies which variables are good candidates to make sparse by intercepting
every set and get of every variable, and recording their size and sparsity. At the end of the program,
a list of all variables along with the mean and standard deviation of their sizes and sparsities are
printed out along with counts of accesses and shape as well as sparsity changes.

The existence of the get and set patterns are particularly convenient here, because we merely have
to write actions in which we increase counters associated with every variable. Since the context
information includes the name of a matched variable as a string, we can put all the variables
in a MATLAB structure to map between names and values. A structure in MATLAB, unlike in
static programming languages, allows the addition of fields during run time. As new variables are
encountered during runtime, they are added into the structure that tracks them, so we don’t have
to specify the variable names in advance. Thus the aspect needs almost no modification to profile
different programs. In fact the only modification needed is the pattern that specifies the call of the
main entry point of program, because MATLAB does not have a standard main entry point. The



overall structure of the aspect is given below.

aspect trackSparsity

patterns
arraySet : set(k, *.x);
arrayWholeGet : get(x());
arrayIndexedGet : get(x(..));
exec : execution(program);
end
actions
aset : before arrayset : (newVal,objname)
end
awget : before arrayWholeGet : (obj,name)
end

aiget : before arrayIndizedGet : (args,name)

end
end

Having special syntax allowing us to specify whether an array is accessed by indexing it or whether
it is accessed without indexing allows us to differentiated between these accesses, and record them
more easily, which is useful to track because of the different penalties during runtime.

Along with the aspect itself we coded our actual program, which utilizes a RungeKuttad ODE solver
to solve the heat equation in 1D given some initial conditions and time interval. The benchmark
uses matrices to discretize the heat function in space. The needed derivative is computed using
matrix multiplication with a differentiation matrix which is very sparse and never changes. Most
of the computation of the program relies on this multiplication. If this matrix is made sparse, it
decreases the overall computation time by 95%.

The output of the benchmark in Figure 3 clearly shows that the variable D is of large size, never
indexed, seldomly written to and changing in shape or sparsity. We thus show a very simple
benchmark using aspects and the special array patterns to profile a certain feature of a program,
leading to a very useful result. Without aspects and these patterns, one would need to inline
profiling code manually.

3.2 Measuring floating point operations

In numerical computing it is common to count computational complexity in terms of floating point
operations, because they tend to make up most of the operations and were traditionally more
expensive than other operations. Knowing exactly how many floating point operations each part
of a program performs can be more useful than knowing how time the computations take, because
the number of flops may be more consistent, and is not subject to compiler optimizations.

10



>> program
tracking sparsities of all variables in the following program...
computation finished

’var’ ’size’ ’sparsity’ ’arraySet’ ’shape changes’ ’decrease sparsity’ ’increase sparsity’
’a’ ’1.0 +-0.0’ ’1.00 +-0.04> [ 2] [ 2] [ 1] [ 0]
’h’ ’1.0 +-0.0’ ’1.00 +-0.00° [ 2] [ 2] [ 0] [ 0]
X ’299.0 +-0.0’ ’1.00 +-0.00° [ 1] [ 1] [ 0] [ 0]
’uo’ ’199.7 +-140.5° ’0.37 +-0.45° [ 2] [ 2] [ 1] [ 1]
’D’ ’89356.4 +-1997.0° ’0.01 +-0.02° [ 3] [ 3] [ 2] [ 1]
W2 ’124874.0 +-55722.8° ’0.55 +-0.33’ [  504] [ 504] [ 2] [ 501]
L’ ’261.1 +-250.0’ ’1.00 +-0.02> [ 2001] [ 2001] L 2] [ o]
‘u’ 7299.0 +-0.0° ’0.97 +-0.13> [ 2000] [ 2000] [ 135] [ 0]
k1’ ’299.0 +-0.0’ ’0.97 +-0.13> [ 500] [ 1] L 1] [ 34]

Figure 3: Output of the sparsity benchmark

The flop aspect thus attempts to identify where in the program floating point operations occur
and counts them. For every occurence of an operation on matrices (like times, mtimes, plus etc.),
it uses an estimate on the number of floating point operations and records for every call site, the
number of calls during the run of the program, and the total number of flops contained in all the
calls.

This is done recursively, i.e. the output will list the total flops of a call of a function, but then it will
also list the total flops for every call inside that function etc. This is done by keeping a stack that
for every call records the number of operations performed so far. When encountering a new call,
which is captured via a before action on all calls, zero is pushed onto the stack. When encountering
a floating point operation, which is captured by using around advices for every tracked operation,
the number of operations are added to the top of the stack. Finally, after every call, the number
of operations encountered is added to the total operations of the callsite, and the operations are
popped from the stack and is added to the next level.

Note that currently we have not defined patterns to match operations *, -, .*, etc., thus for this
experiment such expressions have to be converted into their equivalent named form, i.e. using
mtimes, minus, times, etc.

aspect flops

patterns
tracking: call(SVD);

pminus : call(minus (*,%));
pmtimes : call(mtimes (x,%));
ptimes : call(times (,%));
pplus : call(plus  (*,%));
psart  : call(sqrt  (x));
prdivide: call(rdivide (*,%));
pabs : call(abs  (x));
any : call (x);

end

actions

beforeTrack : before tracking : (name)

this.record = true;

11
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end

bany : before any
if (—this.record)
return;
end
this.s = this.push( this.s ,0);
end

aany : after any : (name,line,loc);

end

afterTrack : after tracking

this.record = false;
end
end
end

Note the order of the before and after actions. Because we want the “beforeTrack” and “afterTrack”
to happen before and after the “any” actions, so that we can record information on the top level
call that is being tracked, we have to list the actions in the above order.

We used this aspect to weave into the computation of the singular value decomposition of a ran-
dom matrix via the Kogbetliantz method. While it is an elegant algorithm, it is a bit slow and
the computation is fragmented, performing both a lot of computations on small 2x2 sub-matrices
and of matrix multiplications of larger sub-blocks of the whole matrix, although it is not immedi-
ately obvious which happen more often. The implementation is kept modular, spread over many
functions, which help to see how the algorithm works, but it hides the computational complexity.

As the output in Figure 4 shows, the aspect is able to uncover where the computation happens,
and presents it in a similar way a profiler shows computation time (i.e. encapsulated information).
In the listing, lines with 0 flops were removed, as well as several very similarly behaivng scalar
operations (the line above the ’...’s is representative of the ommitted lines).

While it would be possible in MATLAB to override the behaviour of plus, minus etc (i.e. the
atomic functions for which the aspect tracks the flops) to track the number of operations, it would
be pretty much impossible to get that information in the way it is listed, i.e. with a report for
every call site, and with encapsulated information, without emulating the before and after actions
in some way. Moreover, the aspect allows the tracking of any function (which uses the tracked
atomic operations) without modification, and only slight modification of the benchmark - merely
the function that should be tracked has to be edited.

12



>> runsvd
encountered call to SVD, recording flops...
finished tracking function call, here are the results:

’call site’ ’# of calls’ ’total flops’
’fro_150_times’ [ 11 [ 100]
>fro_150_sqrt’ [ 11 [ 1]
’SVD_13_fro’ [ 11 [ 101]
’SVD_14_abs’ [ 71 630]
’tinySVD_77_minus’ [ 270] [ 270]
’tinySVD_81_mtimes’ [ 2701 [ 3240]
’tinySymmetricSVD_109_minus’ [ 270] [ 270]
’tinySymmetricSVD_113_times’ [ 270] [ 270]
’tinySymmetricSVD_116_mtimes’ [ 540] [ 6480]
’£ixSVD_137_mtimes’ [ 270] [ 3240]
’£ixSVD_138_mtimes’ [ 2701 [ 32401
’£ixSVD_141_mtimes’ [ 111 [ 132]
’£ixSVD_142_mtimes’ [ 22] [ 264]
’£ixSVD_143_mtimes’ [ 111 [ 132]
’tinySymmetricSVD_121_f£ixSVD’ [ 270] [ 7008]
’tinySVD_82_tinySymmetricSVD’ [ 270] [ 17268]
’tinySVD_83_mtimes’ [ 270] [ 3240]
»jacobi_42_tinySVD’ [ 2701 [ 25368]
»SVD_17_jacobi’ [ 270] [ 25368]
’SVD_18_mtimes’ [ 540] [ 1026000]
’SVD_19_mtimes’ [ 2701 [ 5130001
’SVD_20_mtimes’ [ 270] [ 513000]
’SVD_34_times’ [ 11 [ 100]
’Script_6_SVD’ [ 11 [ 2078199]

Figure 4: Output of the flops benchmark
3.3 Adding units to computations

The units aspect adds the functionality by allowing matrices to have SI units associated with them,
while not requiring any special treatment of these variables.

The aspect turns all variables that are encountered at calls into structures containing both a unit
and the original value. All basic operations are overriden as well. In order to create a matrix with
an associated unit, one merely has to multiply the matrix with the name of the unit.

The aspect intercepts all calls to functions that denote units (e.g. ’s’, 'Kg’, ’inches’, etc.), overrides
them and returns a structure containing a value of one and the given unit. If the requested unit
is not a basic SI unit (i.e. ’inches’, kilotons’) or if the value requested is a physical constant (i.e.
"AU’,’G’, "dozen’) the value will be a factor relative to the corresponding SI unit. The point to note
is that these functions that are getting called in a program don’t exist anywhere on the MATLAB
path. This is allowed in MATLAB, because if a name cannot be resolved an error is only thrown
when the name is executed. But since we use an around action to intercept these calls, and to
replace them with the real functionality, they never get called. In effect, we use around actions to
replace these ”functions” with their real implementation.

All operations (again only the functions, not the operators) are overriden to both perform the
denoted operation on the .val field and the .unit field. Units are stored as vectors, denoting the
power of every SI unit. There are 7 SI units, and they are ordered as metre, kg, second, Ampere,
Kelvin, candela and mol. Thus, [1 0-2 0 0 0 0] would denote m/s?. The function ’dis’ is overriden
as well to show the matrix with the associated unit.

13



Because the data structures MATLAB now computes with are changed, all the semantics in the
program change. In particular for loops using the syntax

for i =x

do not work anymore, because x will no longer be an array, but instead it will be a structure
containing an array in the field “val”. Thus we use the loophead pattern and override the loop
initialization, to turn the array into a struct-array. The struct-array is a MATLAB array whose
every element, when indexed, is a structure. This data type works with for loops again, allowing
us the emulate the correct semantics. The loop advice looks as follows

aspect unit
patterns

loopheader : loophead(x);
end

actions
loop : around loopheader : (newVal)
range = this.annotate(newVal);
acell = {};
for i = (range.val)
acell {length(acell )+1} = i;
end
varargout{1} =
struct (this.annotated , true, ' val' | acell , 'unit', range.unit );
end

end
end

Here the action takes the range expression, and iterates over the values. These are stored in a cell
array, which is then passed to the struct function which creates a structure array. This is a feature
of MATLAB- when ’struct’ receives a cell array, it will build a struct-array. When looping over this
new structure, every element will be a structure containing the elements of value of the previous
array.

For example, one could run (as in the provided example)

t = mrdivide(AU,c);
disp(t);

bmi =
mtimes(180,mrdivide(lb,power(plus(mtimes(5,feet),mtimes(8,inches)),2)));

disp (bmi);

For which the result after weaving and running would be

s: 499.0052
m”—2xKg: 27.3686
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This example demonstrates that AspectMatlab allows us to override the functionality of matrices,
adding support for numerous units, adding a language extension supporting many of the basic
operations while keeping the semantics. This is accomplished with an aspect that is less than 300
lines long.

3.4 Other possibilities

While we only presented a few use cases showcasing the potential of both aspects in the scientific
computing domain as well as our special patterns in particular, there are many more possibilities.

For example, one could use the loop patterns to track how many iterations an iterative solver like
iterative GEPP or solve based on the Newton Method. This could be particularly useful if it is
used inside some larger computation like a backward Euler integration, because it would allow one
to track how many iterations are done when and where.

Tracking loop counts could also be interesting for loop dependency analyses. One could use aspects
there to collect run time information and feed that back to the compiler and write specializing code
optimizing the encountered runtime propoerties. This could be done for many possible optimiza-
tions.

4 AspectMatlab Compiler

The AspectMatlab compiler has been designed to be easily extensible so that it is simple for us and
other researchers to add further features. To enable this we have built it using extensible toolkits
and have aimed for a very clean and modular implementation. In this section, we briefly describe
the structure of AspectMatlab compiler and its various phases.

The overall structure of amc, the AspectMatlab compiler is given in Figure 5. The compiler takes
as input, a collection of MATLAB (.m) source files, plus a collection of AspectMatlab files, and
produces a collection of woven MATLAB source files. These output files can be executed using any
MATLAB system.

The front-end of AspectMatlab was implemented as an extension to the Natlab front-end (Natlab is
a “neat” version of MATLAB, developed by the Sable Reasearch Group). The scanner is built using
the MetaLexer tool [?] and was specified as a simple and modular extension to the Natlab Metalexer
specification. The parser and semantic checks were modular extensions to Natlab’s parser, which is
built using the extensible Jastadd framework [?]. The Natlab grammar was extended to incorporate
AspectMatlab grammar rules using the JastAddParser. JastAdd provides powerful facilities for
AST traversal, associating attributes with nodes and modifying the AST via node rewriting.

As indicated in Figure 5, after front-end processing, the AST generated includes both MATLAB
and aspect-specific AST nodes. Following the abc model, the Separator component harvests all
the aspect-specific key information out of the AST, and transforms the AST so that it becomes a
pure MATLAB AST. This process allows us to process the resulting AST using our Matlab compiler
analysis framework, and is also the first key step in converting the aspect source files to MATLAB
source files. The separation phase records the aspect information into corresponding data structures
set, called AspectInfo (following the structure of the abc compiler). AspectInfo contains the pattern
lists, action lists and the information about their association.
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Figure 5: Overall structure of the amc AspectMatlab compiler
4.1 Transformations

In order to perform matching and later weaving, some join points require transformation. There are
two notable code transformations: name/parameterized expressions simplification and loops rewrit-
ing. An expression in MATLAB can be very complex with a lot of computation being performed
within a single expression. This computation can be in the form of function/script calls or complex
operations on arrays. So, some kind of refactoring of complex expressions is required expose all the
matching and weaving points in the code. To avoid inserting the meaningless and redundant code,
we consult AspectInfo data structures at this stage. All the name or parameterized expressions,
which potentially match the specified patterns, are taken out of the parent expression. This results
in simple weavable statements with precise locations for before, after or around actions.

For example, given the following base program.

z = sum(x) / length(y);

Assuming that patterns exist for both calls and variables, the above line gets translated into this:

AM_CVar5 = x;

AM_CVar_6 = sum(AM_CVar_5);
AM_CVar 7 = y;

AM_CVar_8 = length(AM_CVar._7);
z = (AM_CVar 6 / AM_CVar_8);

It should be noted that arguments of the function calls are extracted out for the sake of their own
weaving. In turn, in around case if the function never gets called through proceed, its arguments
were still evaluated before passed on to the around action.
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The second kind of transformation occurs on the loops. for loops in MATLAB have a loop iteration
space defined before the loop executes - for loops contain an assignment statement, which allocates
the iteration space to the loop iterator. In order to perform weaving on that assignment statement
itself, it needs to taken out of the loop body and be replaced by appropriate code.

For example, consider the following loop.

for i=1:step:size (dx,1)

end

This loop would be transformed to the following. Note that for loops are transformed regardless
of the existence of any patterns or actions targeting them, for reasons we shall describe in the
following section.
AM_CVar_1 = 1:step:size(dx,1);
for AM_CVar_2 = 1:numel(AM_CVar_1)

i = AM_CVar_1(AM_CVar_2);

end

while loops present a different challenge. The conditional expression can contain several instruc-
tions inside it. Refactoring the expression will be our solution again. But since the condition is
supposed to be evaluated at the start of each iteration, we have to take care of all the back edges
of the loop finishing at the loop header, which means just before the syntactical end of loop body
and also at all the continue statements.

For example, consider the following loop.

while x <y

continue;

end

In the transformed version below, the while loop’s conditional expressions is factored out and
placed before all the edges to loop header.

AM_CVar3 =x < y;
while AM_CVar_3

AM CVar3 =x <y;
continue;

AM CVar3 =x <y;
end
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4.2 Name Resolution Analysis

In MATLAB, a function call or an array access has the same syntax using either just the name
of the entity or passing a number of parameters with it. So foo(1, 2) can either be an access
to an array named foo, if it exists in the current scope, or it could be a function call with two
parameters. This name resolution can be achieved with the help of run-time checks, but doing so
we compromise on the efficiency of generated weaved code. So we essentially need to have a flow
analysis, to determine the exact type of a join point at the time of matching. We describe this
analysis in detail in section 5.

4.3 Matching and Weaving

The previous name resolution phase populates the resolved names set, which is then used as one
input to the matcher and weaver.

Matching of the patterns and then weaving the action advice happens in single pass through the
AST. T Before/after execution actions are woven by simply inserting of action call at the start or
at the end of the function respectively. In case of around of execution (and other kind of patterns
as well), the semantics of the MATLAB force us to develop a different strategy, which is described
in section 4.3.1.

After matching and weaving at the function level, the next kind of patterns we deal with are loops.
AspectMatlab provides a set of loop patterns for both for and while loops, namely loop, loopbody
and loophead. Unlike other program constructs, loops are not named entities. So we match the
loops based on the variables involved inside the loop header. There is single loop iteration variable
in for loops, whereas conditional expression of while loop can contain any number of named
entities.

Weaving for for loops is also different than while loops with regard to the context information
they provide. We can fetch the loop iteration space (out of which the action function has to infer
start, end and stride values of the loop iterator), loop iterator variable and loop counter. In order
to weave after action on loopbody pattern, we have to analyze the loop body, because it’s not
just the syntactical end of the body. We also have to take break, continue and return statements
into account, as they mark the end of body too.

The lowest tier of matching is at the statement level. Since we have simplified the complex state-
ments already in an earlier pass, so it only comes down to assignment statements or even simple
expression statements. The left hand side of an assignment statement is matched for set patterns,
and right hand side expression for get or call patterns. This is where we can use the name res-
olution set, which helps us determine if the expression is a get or call join point. Without the
name resolution optimizations we must weave in a dynamic check.

4.3.1 Weaving around actions

In the AspectJ around advice case, the concerned piece of code is extracted out of the context and
replaced with a call to the around advice. The extracted code is placed inside a new method of the
same class, which is then called from aspect’s advice function. Because the code stays in the same
class, there are no scoping issues. However, in the case of MATLAB’S non-object oriented version,

18



this weaving strategy is clearly not possible. When we move a piece of code out of its scope, we
have to provide all the necessary context information required.

The solution we came up with is partially inspired by Kuzins’ work on efficient implementation
of around advice for the AspectBench Compiler [?]. Taking advantage of the MATLAB’s nested
functions, we create a nested function, namely proceed(), inside the around action function. This
function contains a switch statement to host the extracted code from all the around join points
of this particular action. The join points are assigned simple number id, which is unique for each
around action. Along with this unique id, a join point has to pass the context information to
execute the extracted code being moved inside a different scope.

This is how the around action from example given in Section 2.4 would look:

function [varargout] = myAspect_actcall(this, name, args,
AM_caseNum, AM_obj, AM_args)
this.incCount ();

disp ([ calling ', name, 'with parameters(', args, ')']);
proceed(AM_caseNum, AM_obj, AM_args);
function [] = proceed(AM_caseNum, AM_obj, AM_args)
switch AM_caseNum
case 0
varargout{1} = AM_obj(AM_args{1}, AM_args{2});
case 1
varargout{1} = AM_obj(AM_args{1}, AM_args{2});
case 2
AM_obj(AM_args{1}, AM_args{2});
end
end
end

4.4 Post-processing

At the end of the weaving, a post-processing phase takes place. In all function and scripts, we weave
in the global structure which contains the aspect class objects and also few checks are inserted to
validate the objects. Finally, amc generates standard MATLAB code, which can be executed on any
MATLAB system.

After this detailed description of all phases, we come back to the example given in Section 2.4.
The woven code is shown in Figure 6. Expression simplication is very noticeable, as we transform
complex statements into eaas-to-weave statements. With the help of our name resolution analysis,
we are able to distinguish between function calls and array accesses. So all the calls matching the
call pattern are woven accordingly. Also notice the extra bit of code added by the post-processing
phase, at the start and the end of the function.

5 Weaving Optimizations

In this section we will describe a program analysis needed to drive a weaving optimization. We begin
by describing the motivation for this optimization, followed by a description of the analysis, and
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function [m, s, d] = histo_am(n)

global AM_GLOBAL;

if (—isempty(AM_GLOBAL))
AM_EntryPoint 0 = 0;

else
AM_EntryPoint 0 = 1;

end

if (—isfield (AM_GLOBAL, 'myAspect'))
AM_GLOBAL.myAspect = myAspect;

end

AM_CVar 0 = n;

AM_CVar_1 = AM_GLOBAL.myAspect.myAspect_actcall('randn’,

{AM_CVar_0, 1}, 0, @randn, {AM_CVar.0, 1});

x1 = ((AM_CVar_1 % 5) 4+ 100);

AM_CVar_2 = n;

AM_CVar_3 = AM_GLOBAL.myAspect.myAspect_actcall('rand’,
{AM_CVar_2, 1}, 1, @Qrand, {AM_CVar.2, 1});

x2 = (5 + (AM_CVar.3 x (15 — 5)));

AM_CVar 4 = x2;

AM_CVar_5 = x1;

y = ((AM_CVar4 .” 2) ./ AM_CVar._5);

AM_CVar_6 = y;

AM_GLOBAL.myAspect.myAspect_actcall('hist',
{AM_CVar_6, 50}, 2, @Qhist, { AM_CVar_6, 50});

AM_CVar.7 = y;

AM_CVar_8 = mean(AM_CVar_7);

m = AM_CVar_8;
AM_CVar9 =y;
AM_CVar_10 = std(AM_CVar.9);
s = AM_CVar_10;
AM_CVar_11 = y;
AM_CVar_12 = median(AM_CVar_11);
d = AM_CVar_12;
AM_GLOBAL.myAspect.myAspect_actexecution();
if AM_EntryPoint_0
AM_GLOBAL = [J;
end
end

Figure 6: Woven MATLAB function

finally the results of the analysis. This analysis has been implemented using the McLab Analysis
Framework and incorporated into the AspectMatlab compiler.
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5.1 Motivation

To weave call, get, and set actions correctly, the compiler must know if a given name is a function
or a variable at a given program point. If the name is a variable, then the compiler must know if
the variable is defined at that point. As was described previously, MATLAB does not syntactically
differentiate between function calls and variable reads. In addition, MATLAB does not predefine
or initialize a variable before its first assignment. These properties of MATLAB mean that the
information needed is not readily available to the compiler.

It is possible to naively weave these actions without having access to this information. To do this,
the compiler must introduce runtime checks. In the case of determining if a name is a variable or
a function, this check would look like the following example which has been shortened for brevity:
if (exist('x', 'var') % 1)
AM_CVar 0 = AM_GLOBAL.act_call(0, eval('@x"), {});
else

AM_CVar 0 = x;
end

Not only do these checks incur a performance cost, they also introduce the use of eval. Introducing
an eval is not desirable because it makes it difficult to perform subsequent nalysis on the generated
code.

Ideally we would like to eliminate many, if not all of these runtime checks and uses of eval. The
analysis that will be described next is able to provide much of this information, and in some
situations eliminate the use of eval entirely.

5.2 Analysis

The goal of this analysis is to determine if a given name at a given program point corresponds
to a function, variable or assigned variable. To accomplish this goal the analysis is implemented
as a data flow analysis using the McLab Analysis Framework. In this section we describe some
of MATLAB’s semantics relevant to this analysis, and follow with a description of the analysis
implementation.

5.2.1 Matlab semantics

MATLAB’s semantics offer novel challenges to weaving that are not present in languages with
stronger static semantics such as Java. Since MATLAB is not compiled, many of the semantics
are either runtime semantics or static semantics applied when the code is first loaded. We will refer
to the latter as load time semantics. However, these load time semantics are not purely static.
They depend on the runtime state at the point when the code is loaded. Even worse, MATLAB’S
semantics become substantially different depending on if the code being executed is a script, a
function, or a function containing inner functions. We begin by describing these three execution
environments, starting with functions.

Functions in MATLAB behave as one might expect. They are callable. They take input parameters
and have return parameters. They also introduce a new scope. In functions, MATLAB applies
load-time semantics to determine if a given identifier is a variable or function, which guides name
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lookup at runtime. It determines this based on the first use of that name. If it is assigned a value
first, then it is a variable. If it is read from first and it corresponds to an available function at load
time, then it is a function.

Inner functions and functions with inner functions behave similarly to functions without inner
functions. One main difference is that inner functions can access the scope of their parent function.

Scripts are similar to functions in that they are callable. However, unlike functions, they do not
have parameters and do not introduce scope. Scripts are executed entirely within the scope of the
calling context. What this means is that anything that was a variable in the calling context is
a variable in the script and everything that was a function in the calling context starts off as a
function in the script. A name can start off as a function but it can still be assigned a value. After
that assignment, the name will be treated as a variable. However, this change is restricted to the
script environment. It will only affect a calling environment if the caller was a script as well. So
unlike functions, scripts rely more heavily on runtime semantics to perform a name lookup. There
are further details concerning how the calling context is effected by script calls from within scripts,
both in the callee and the caller, but we will not go into these details here.

These semantics mean the compiler must estimate what a name corresponds to at run time. It
must also estimate when a variable is known to have a value. These estimation are implemented
as a static flow analysis in the McLab Analysis Framework.

5.2.2 Analysis implementation

The Name Resolution Analysis is designed to solve the following problem:
Problem: For every program point p and every name n, determine if n is a function, a variable,
or an assigned variable at p.

This is implemented by a flow analysis that builds up a set of information for each statement in
the program. These sets contain names labeled with the information about that name so far. This
information is represented as one of five tags. These tags are described briefly in Table IV.

Table IV: Flow data values
T error or unknown
AVAR assigned variable
VAR  variable with no assignment information
FUN function
L no information

T is a special value. It means either tag or unknown depending on if you are in a function or a
script respectively.

The tags are organized in a lattice structure. This lattice is depicted in Figure 7. The reason the
tags are organized in this lattice is to facilitate the flow analysis.

When a name n is labeled with a given tag at a particular program point p it means that for all
possible execution paths to p, n was used in a way consistent with that tag. In particular this
means that if n is labeled AVAR, then you are guaranteed that at that point n is a variable with a
value. If n is labeled VAR, then n is guaranteed to be a variable, but it is unknown if it has been
given a value. If n has the label FUN, then it must be a function. If n is L or it is not labeled, then
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no information has been acquired about n up to this point. If n is T then there is at least one
point on an execution path on which n was guaranteed to be a variable, and another point on an
execution path on which n must have been a function. In functions T is not allowed and represents
an error whereas in scripts it simply means that we don’t know what n is and must be checked at
runtime.

The Name Resolution Analysis builds up this label information in two phases. The first phase
is only applied to functions and is intended to estimate the load time semantics. The second is
applied to both.

The first phase estimates the load time semantics by performing a preorder traversal of a function’s
abstract syntax tree (AST) and applying rules when encountering names. The result of these rules
is a set of labeled names where the labels are one of the tags in Table IV. There is only one set
for the entire function. The reason for only having one set is that the MATLAB semantics mean a
name in a function cannot change from a variable to a function or a function to a variable. This
means that if a name is determined to be a function or a variable, then it must be so for the entire
function.

The rules that are applied are fairly simple and are as follows:

e The input or return parameter names are labeled VAR.
e All names on the left hand side of an assignment are labeled VAR.
e All names declared to be global or persistent are labeled VAR.

e All names that are used with the @ operator to create function handles are labeled FUN.

If the analysis attempts to label a name with VAR or FUN, but the name was already labeled with
the other, the name to be labeled with T. If the analysis tries to label a name that is already
T, then there is no change. This phase is strong enough to be able to label all variable names as
variables and it can be assumed that all other names are functions. Unfortunately this phase is too
simple to get any information about assignments to variable.

The second phase estimates the run-time semantics. It does so by performing a forward flow analysis
over the function or script. During this process it associates a set of labels with each statement.

In order for this analysis to start it must assume a starting set of labels. In the script case it uses
the empty set. In the function case it uses the result of the first phase of the analysis.

The once a starting set is chosen, a simple structure-based data flow analysis is performed. The
analysis applies rules to certain names, handles different execution paths by merging the results
when paths converge, and performs fixed point computations on loops.

The same rules that applied for the first phase also apply here, with one minor difference. Names
on the left hand side of assignments are labeled as AVAR instead of VAR. When results are merged,
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labels for the same name are merged using the lattice depicted in Figure 7. Again incompatible
labels can arise, both from these rules and from merging results, in which case the labels become
T.

5.3 Results

The goal of the Name Resolution Analysis is to estimate the MATLAB’s semantics for determining
how a name is resolved and if it refers to a variable, if that variable has a value. In this section we
demonstrate the effectiveness of this analysis at reducing the number of runtime checks needed by
the woven code to execute correctly. To do this we apply the analysis to the examples described in
Section 3.

There are two types of checks that we are concerned with. Checks to determine if a name is a
variable or a function, and checks to determine if a variable is assigned at run-ime. The former
are particularly undesirable because they require the use of eval. The use of eval can make later
analysis much less precise.

The MATLAB semantics for determining if a name is a variable or a function in functions are fairly
static. Because of this, the Name Resolution Analysis is capable of accurately determining all
names that are variables. This allows the compiler to eliminate all runtime checks for this property.
By eliminating those checks the compiler also eliminates all uses of eval.

The analysis can also be fairly successful in eliminating runtime checks to determine if a variable
is defined in a function. Once again this is due to the more static semantics of functions. The
analysis can detect roughly 60% of these runtime checks in our example programs.

Because script semantics are more dependent on runtime behaviour, the Name Resolution Analysis
is less successful at eliminating checks. For the variable or function checks we can eliminate roughly
10%. For the checks to determine if a variable is defined we can eliminate roughly 9%.

In this section we have presented a problem with naively weaving into MATLAB code. We discussed
the semantics that play a role in this problem. These semantics were used to motivate and explain
the Name Resolution Analysis. This analysis was applied to example AspectMatlab programs to
demonstrate its effectiveness.

6 Related Work

AspectMatlab is targeted at dynamic scientific programs, and thus deals with a different set of
challenges as compared to other aspect-oriented language extensions. In this section, we review a
number of such works, and contrast them with the approach taken in AspectMatlab.

AspectJ [?] was one of the main languages that popularized aspect-oriented programming. AspectJ
provides array pointcuts functionality, such that a type name pattern or subtype pattern can be
followed by one or more sets of square brackets to make array type patterns. So Object[] is an
array type pattern, as is com.xerox..*[][] and Object+[]. However, the pointcuts of AspectJ
do not support array objects in full. When an element of an array object is set or referenced, the
corresponding index values and the assigned value are not exposed to the advice. The availability
of such information can be very helpful in multiple ways, such as ability to bounds-check the array,
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optimization of array usage and profiling related to arrays. The original AspectJ does not support
any loop pointcuts.

Researchers have experimented with array and loop pointcut extensions to AspectJ using abc, an
extensible AspectJ compiler [?].

Harbulot extended the set pointcut to capture arrayset.? In his proposal, the pointcut designator
args () exposes both the array index value and the object being assigned to an array element, and
the pointcut designator target () exposes the array object being assigned. However, this extension
bases its implementation on treating array element set as a call to a set(int index, Object
newValue) method, and thus works only for one-dimensional arrays.

As compared to Harbulot’s extension, ArrayPT [?] works for multi-dimensional arrays. The core
of the implementation is a finite-state machine based pointcut matcher that can handle arrays of
multiple dimensions in a uniform way. They took the standard field set pointcut as the basis and
developed this extension on the top of it. All array field set join points are treated as having a
variable number of arguments: the sequence of index values and the value the field is being set to.
At a join point, these values can be obtained using an args () pointcut designator and then passed
to the advice for further processing. It enables the programmer to perform selective matching on
any number of specified indices.

AspectMatlab enhances this idea of selective matching and incorporates it within the definition of
pattern designator. So it eliminates the need of a separate pattern for capturing arrays and then
using another pattern to specialize the matching. AspectMatlab also can more easily detect array
set and get join points as it matches at the source code level, whereas the AspectJ approaches all
must match and weave at the Java bytecode level.

Another extension to the abc compiler, LoopsAJ [?] provides AspectJ with a loop pointcut. Loop
selection is a major issue here, because unlike other pointcuts for variables and functions, loops don’t
have a named identification associated with them. In AspectMatlab, loops patterns are equipped
with facility to match the loops based on the variables being used in loop headers. Certain context
exposure is provided to make the advice more effective.

This model of loop join point presents only an outside view of the loop; the points before and after
the loop are not within the loop itself. For some applications it might be desirable to advise the
loop body. Also, the loop iterators are good candidates to be advised. AspectMatlab provides a
range of poincuts for loops: loop, loopbody and loophead.

AspectCobol [?] is inspired from AspectJ in many ways, but it incorporates original techniques
for join point identification and context capture. AspectCobol’s design strongly suggests that join
point reflection on the join point shadow should be viewed as part of the pointcut as opposed to
using reflection in the advice code. AspectCobol allows one to extract such details from the join
point. The extraction is described as part of the pointcut designator, while the results are bound
to variables for subsequent use in the advice code. Hence data is extracted from the shadow of the
join point, i.e. the static program context that belongs to the join point.

While agreeing with the basic approach of AspectCobol, AspectMatlab makes the extraction of
context available only at the advice definition level. It enhances the clarity and structure of the
whole aspect and also it makes more sense to inquire information right where it is being utilized.

2Post to the abc-users mailing list, November 2004.
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7 Conclusions and Future Work

In this paper we have introduced a new aspect-oriented scientific language, AspectMatlab. By
providing clear extensions to an already popular language, MATLAB, we hope to make aspect-
oriented programming accessible to a new group of programmers including scientists and engineers.

Our AspectMatlab language provides the basic patterns (pointcuts) that one expects, but also
focuses on providing new patterns that work well for array accesses and loops. We have also
designed and implemented the amc compiler for the new language. The amc compiler is designed
to be easily extensible, so that other researchers can easily experiment with other new features
useful for scientists.®> The compiler is a source-to-source compiler, producing ordinary MATLAB as
its output. This means that any MATLAB system can be used to execute the woven code.

AspectMatlab presents some challenges for producing correct and efficient woven code. We have
described our approach to weaving, including our approach to around advice, and we provided
static flow analyses that enabled us to reduce the number of dynamic checks required in the woven
code.

It is our expectation that scientists will have new and different uses for aspect-oriented program-
ming. We have provided some example use cases that we think indicate the potential, and we hope
that others will continue to use the language and find new uses and new language extensions.

In our future work we intend to continue evaluate and improve the performance and functionalilty
of AspectMatlab. We also intend to teach the language to scientists in different disciplines and to
integrate new language features that would be useful to them. We will also continue to build our
library of example use cases, which will be publicly-available.
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