
McGill University

School of Computer Science

Sable Research Group

Understanding Method Level Speculation

Sable Technical Report No. 2010-2

Christopher J.F. Pickett and Clark Verbrugge and Allan Kielstra
{cpicke,clump}@sable.mcgill.ca, kielstra@ca.ibm.com

April 21st, 2010

w w w . s a b l e . m c g i l l . c a

Understanding Method Level Speculation

Christopher J.F. Pickett1, Clark Verbrugge1, and Allan Kielstra2

1 School of Computer Science, McGill University
Montréal, Qúebec, Canada

{cpicke,clump}@sable.mcgill.ca

2 IBM Toronto Lab
Markham, Ontario, Canada
kielstra@ca.ibm.com

Abstract. Method level speculation (MLS) is an optimistic technique for paral-
lelizing imperative programs, for which a variety of MLS systems and optimiza-
tions have been proposed. However, runtime performance strongly depends on
the interaction between program structure and MLS system design choices, mak-
ing it difficult to compare approaches or understand in a general way how pro-
grams behave under MLS. In this work we seek to establish a basic framework for
understanding MLS designs. We first present a stack-based abstraction of MLS
that encompasses major design choices such as in-order and out-of-order nesting
and is also suitable for implementations. We then use this abstraction to develop
the structural operational semantics for a series of progressively more flexible
MLS models. Assuming the most flexible such model, we provide transition-
based visualizations that reveal the speculative execution behaviour for a number
of simple imperative programs. These visualizations show how specific paral-
lelization patterns can be induced by combining common programming idioms
with precise decisions about where to speculate. We find that the runtime par-
allelization structures are complex and non-intuitive, and that both in-order and
out-of-order nesting are important for exposing parallelism. The overwhelming
conclusion is that either programmer or compiler knowledge of how implicitpar-
allelism will develop at runtime is necessary to maximize performance.

1 Introduction

Method level speculation (MLS) is a technique for runtime parallelization of sequen-
tial programs. Upon reaching a method (alternatively function, procedure) invocation,
a “parent” thread will fork (spawn) a “child” thread that begins executing the method
continuation in parallel while the parent executes the bodyof the call. Memory depen-
dences in the child are buffered, such that any changes can berolled back or discarded
if necessary. When the parent thread returns from the call, itstops the child thread,
validates its dependences, and if no violations occurred commits the results to main
memory and resumes where the child left off. Although the distinction between which
thread is the child and which is the parent varies, MLS can be seen as the most opti-
mistic and most automatic of a number of continuation-basedparallelization schemes:
futures, safe futures, parallel call, and implicit parallelization for functional languages.

The initial hope with MLS, as with most work on automatic parallelization, was
that irregular programs would run faster, exploiting parallelism with no additional pro-
grammer intervention. However, due to variability in the balances between parent and
child thread lengths, value predictability, and the likelihood of dependence violations,
some fork points end up being much better than others, and theoverhead of bad forking
decisions can easily dominate execution time. Naturally, one’s first thought is to change
the set of fork points to accomodate. Although this does havean effect on parallelism,
it does so not only by eliminating the overhead from unprofitable speculation, but also
by changing the dynamic thread structure and hence enablingparallelism where it was
previously precluded. The complication is that changing the dynamic thread structure
in turn changes the suitability of fork points. For an onlineor offline adaptive system
that creates threads based on the suitability of fork points, this creates a feedback loop.
The end result is that sometimes parallelism is obtained, sometimes not, but ultimately
it is difficult to explainwhy things play out the way they do. A lack of insight into an
MLS system we previously created [1,2] was the initial motivation for this work.

There has been significant work on selecting fork points and the final effect on per-
formance. There has been much less focus, at least in the caseof MLS, on studying the
relationship between program structure, choice of fork point, and the resultant paral-
lel behaviour. For this we need an abstract way to describe the program structure and
choice of fork point, and we need a way to “see” the behaviour,which in this case is a
visualization of how parallel structures evolve over time.

a() { // parent creates child 1 here
b(); // can parent create child 2 here?
X; // child 2 might begin execution here

}; // child 1 begins execution here
c(); // can child 1 create child 3 here?
Y; // child 3 might begin execution here

Fig. 1. Choice of fork points under MLS.

By way of example, consider the code in Figure 1, in which we assume threads are
created as soon as possible. If the speculation model prohibits nesting and only allows
one child per parent thread at a time, then the parent executes b();X; while child 1
executesc();Y;. If the model allows out-of-order nesting, under which a parent can
have more than one child at once, then the parent executesb();, child 2 executes
X;, and child 1 executesc();Y;. If instead in-order nesting is allowed, under which
children can create children of their own, then the parent executesb();X;, child 1
executesc();, and child 3 executesY;. If both in-order and out-of-order nesting are
permitted, thenb(), X, c(), andY can all execute in parallel. The precise nature of the
resulting parallelism is not intuitively obvious, and depends on the interaction of code,
MLS design, and of course scheduling.

In this work, we provide an abstract description of fork point choice via a unified
stack-based model of MLS that encompasses all of these scenarios. We also provide
a series of sub-models referring to our larger unified one that are each described by
their structural operational semantics, where the structures involved are the precise re-
lationships between call stacks and threads. We then take anabstract view of program
structure that isolates useful work from higher-level organizational concerns, enabling

a focus on the effects of code layout. Finally, we provide andemploy a method for visu-
alizing runtime parallel behaviour that relies on showing the state evolution that arises
from repeated application of our structural rules.

Given such a framework, we can compare the parallelization models used by MLS-
like systems directly, and begin to understand at a non-superficial level why the results
differ between them. Our vision is that this understanding can be used to inform pro-
grammers and compiler writers trying to structure or restructure programs for efficient
implicit parallelism, and to guide the design of runtime systems. Finally, our approach
provides a basis for inventing novel extensions: it allows for rapid specification and
visualization without the burden of implementation.

We make the following specific contributions:

1. We propose a stack-based operational semantics as a unified model of MLS. This
model is derived from a working implementation [1, 2]. Our model provides sup-
port for lazy stack buffering at the frame level, a unique optimization designed to
improve the speed of local variable access.

2. We provide several MLS sub-models, each of which is described by its struc-
tural operational semantics, and relate them to our unified stack model. These sub-
models are suitable for direct visualization of programs executing under MLS.

3. We examine the behaviour of a number of common coding idioms in relation to
our stack formalism. We show how these idioms map to specific parallel runtime
structures depending on code layout and fork point choice. We derive several guide-
lines as to how parallelism can be exposed, and end with a complex example that
demonstrates implicit workload scheduling using recursion.

In Section 2, we present our unified stack model, which we use to develop a series
of MLS sub-models in Section 3. We explore coding idioms and behaviour in Section 4,
present related work in Section 5, and finally conclude and discuss future work.

2 Stack Abstraction

We now present a core stack abstraction that directly encodes the call stack and thread
manipulations central to all MLS designs. This abstractionis flexible and supports in-
order nesting, out-of-order nesting, in-order speculative commits, and any combination
thereof. Specific models that implement these features using our abstraction are devel-
oped in Section 3.

The standard sequential call stack model found in most languages has two sim-
ple operations that manipulate stack frames:PUSH for entering methods, andPOP for
exiting methods. Frames stores local variables and other context required for correct
method execution, and for well-behaved languages the operations must be matched.
For languages that support multithreading,START andSTOPoperations for creating and
destroying non-speculative threads are also necessary. Our parallel call stack model for
MLS is simply a parallel extension of this standard. It introduces three new operations,
FORK, COMMIT, andABORT. These new operations manipulate stack frames, but they
also have the power to create and destroy speculative threads. FORK can now be called

instead ofPUSH, pushing a frameand creating a new child thread, and upon return
COMMIT or ABORT will be called to match theFORK instead ofPOP.

We make several assumptions: 1) well-orderedPUSH andPOPnesting is provided
by the underlying language, even in the case of exceptional control flow; 2) stack opera-
tions complete atomically; 3) non-stack operations, whilenot explicitly modelled, may
be freely interleaved with stack operations on running threads; 4) speculative accesses
to global state variables, if they exist, are handled externally, for example via some
transactional memory or dependence buffering system; 5) register values are spillable
to a frame on demand; and 6) stacks grow upwards.

The model has two unique features that separate it from naı̈ve speculation where all
reads and writes go through a dependence buffer or transactional memory subsystem.
First, child threads buffer stack frames from their less-speculative parents, such that all
local variable accesses go directly through a local frame. This is intended to reduce the
load on the dependence tracking system. Second, stack frames are buffered as lazily as
possible: on forking, only the frame of the current method iscopied to the child. If the
child ever needs lower down frames from some parent thread, it retrieves and copies
them on demand. This lazy copying introduces significant complexity: thePOPopera-
tion may need to buffer a frame, and theCOMMIT operation needs to copy back only the
range of live frames from the child thread stack. We include it as a practical measure
intended to make our abstraction useful: our experience with a software implementation
indicates a steep performance penalty for copying entire thread stacks.

The main abstraction is described via its operational semantics in Figure 2. It has
seven publicly available operations, each marked with[∗]. These in turn use a number
of internal operations, both for purposes of clarity and forlogic reuse. A summary of
the public operations and their observable behaviour follows:

START(|t): create a new non-speculative threadt with an empty stack.
STOP(t): destroy non-speculative threadt, provided its stack is empty.
PUSH(t, f): add a new frame with unique namef to the stack of threadt.
FORK(t, f |u): executePUSH(t, f), and then create a new child threadu that starts

executing the method continuation using a buffered versionof the previous frame
from threadt. Cannot be issued on an empty stack.

POP(t): remove the top frame from the stack of threadt. The matching operation must
be aPUSH, and for speculative threads there must be a frame to pop to.

ABORT(t): executePOP(t) (internallyJOIN) and abort the child thread attached to the
frame underneath, recursively aborting all of its children. The matching operation
must be aFORK.

COMMIT(t): executePOP(t) (internallyJOIN) and commit the child thread attached to
the frame underneath, copying all of its live stack frames and any associated child
pointers. Committed children with children of their own arekept on a list attached
to t until no references to them exist, lest another speculativethread attempt to copy
a stack frame from freed memory. The matching operation mustbe aFORK.

We now turn to a detailed description of the operations in Figure 2. We model
threads as unique integers, and maintain several thread sets: T is the set of all threads,
Tl is the set of live threads,Tn and Ts are non-speculative and speculative threads

CREATE(Tp, σ|t)
Tp = Tn ⊕ Tp = Ts

t = |T |, T ⊎ {t}, Tl ⊎ {t}, Tp ⊎ {t}, stack(t) = σ

DESTROY(t)
Tp ⊆ T . t ∈ Tp Tp = Tn ⊕ Tp = Ts

Tl \= {t}, Tp \= {t}
[∗]START(|t)

CREATE(Tn, ∅|t)

[∗]STOP(t)
t ∈ Tn stack(t) = ∅

DESTROY(t)
[∗]PUSH(t, f)

t ∈ Tl f /∈ F σ = stack(t)

stack(t) = σ : f, F ⊎ {f}

BUFFER(t, e|e′)
t ∈ Tl ∪ Tc e ∈ stack(t) e ∈ F child(e) /∈ Ts

e′ = e, F ⊎ {e′}

[∗]FORK(t, f |u)

PUSH(t, f)

σ : e : f = stack(t),BUFFER(t, e|e′) CREATE(Ts, e
′|u)

parent(u) = t, child(e) = u

[∗]POP(t)

t ∈ Tl σ : e′ : f ′ = stack(t) f ′ ∈ F child(e′) /∈ Tl

t ∈ Tn

e′ ∈ F ⊕ e′ /∈ F
⊕

t ∈ Ts

e′ ∈ F ⊕ νpp≥0 . BUFFER(p, e|e′)

stack(t) = σ : e′

JOIN(t|u)
t ∈ Tl σ : e : f = stack(t) e, f ∈ F child(e) ∈ Tl

stack(t) = σ : e, u = child(e)

MERGE STACKS(t, u)

d′ : ρ = stack(u)

d ∈ stack(t)

σ : d : π : e = stack(t)
⊕

d /∈ stack(t)

σ = ∅

stack(t) = σ : d′ : ρ

MERGE COMMITS(t, u)
γ = commits(t) δ = commits(u)

commits(t) = γ : u : δ, Tc ⊎ {u}

PURGE COMMITS(t)

γ : δ = commits(t) . δ = νδδ⊇∅ .
∀c ∈ δ ∀f ∈ stack(c), child(f) /∈ Tl

commits(t) = γ, Tc \= {δ}

CLEANUP(t, u)
DESTROY(u)

PURGE COMMITS(t)
[∗]COMMIT(t)

JOIN(t|u) MERGE STACKS(t, u)
MERGE COMMITS(t, u)

CLEANUP(t, u)

ABORT ALL (t)

∀f ∈ stack(t) . u = child(f) ∈ Tl

ABORT ALL (u)

F \= {stack(t)},CLEANUP(t, u)
[∗]ABORT(t)

JOIN(t|u)
ABORT ALL (u)

CLEANUP(t, u)

Fig. 2. Stack operations.Externally available operations are marked with[∗]. START andSTOP

create and destroy non-speculative threads,PUSH, POP, FORK, COMMIT, andABORT operate on
existing threads, and all other operations are internal.

respectively, andTc is the set of committed threads that may still be referenced by some
t ∈ Ts. Some invariants apply to these sets:T = Tn ∪ Ts ∪ Tc, Tn ∩ Ts = ∅, Ts ⊂ Tl,
Tl ⊆ Tn ∪ Ts, Tn ∩ Tl 6= ∅, andTc ∩ Tl = ∅. Elements are never removed fromT ,
such that each new thread gets a unique ID based on the currentsize ofT , namely|T |.
Stack frames are modeled by a set of unique framesF , such that each newly pushed
or buffered frame is not already inF . This invariant is maintained by removing frames
from F when threads are aborted. Given a framef ∈ F , buffering creates a new frame
f ′ by appending′ to the name. Given a framef ′, f is the less-speculative version of the
same frame in some ancestor thread. Note that for notationalconvenience,e′ andf ′ in
POP(t) may belong to a non-speculative thread, in which case no suchancestor exists.
Variablesd, e, f and their primed derivatives represent concrete frames, whereasσ, ρ, π
represent lists of frames. Similarly, variablesp, t, u represent concrete threads, whereas
γ, δ represent lists of threads.

In addition to these sets, there are several functions that maintain mappings between
them.stack(t ∈ T) mapst to a thread stack, which is a list of frames inF , child(f ∈
F) mapsf to a speculative child threadu, parent(u ∈ Ts) mapsu to thet ∈ T that
forked it, andcommits(t ∈ T) mapst to a list of threads inTc. Initially all mappings
and sets are empty.

Our rules make use of a few specific operators and conventions. Rules act like func-
tions, requiring a list of arguments. In some cases they alsoproduce values, which are
separated from arguments by|. The use of exclusive or (⊕) indicates a choice between
one rule and another or one set of premises and another. We useS⊎{s} andS \= {s} to
indicate set additions and removals respectively. Finally, ν is the greatest fixed point op-
erator from theµ-calculus that given some terminating condition maximizesits operand
starting from⊤. We useν to find the greatest, or “most speculative”, threadp in POP,
and to find the longest sub-listδ without child dependences inPURGE COMMITS.

Lastly, we give a brief description of each rule.CREATE initializes a new threadt,
adds it toTl, T , andTn or Ts depending on whether the thread is speculative or not, as
given byTp, and initializes the stack oft to σ. DESTROYconversely removest from Tl

and eitherTn or Ts. Note that after destroy, committed threads will move toTc, from
which they are later removed only byPURGE COMMITS. START simply callsCREATE

to make a new non-speculative threadt, andSTOPcallsDESTROY to remove it.
PUSHtakes a freshf and appends it tostack(t), wheret is live, also addingf to F .

BUFFER takes either a live or committed thread, the name of a framee in its stack, and
provided there is no child attached toe createse′ for use by its caller, which is either
FORK or POP. FORK first callsPUSH, bufferse′ from e, createsu, and setsu ase’s child
andt asu’s parent.

POP takes the stack oft, and checks that the top framef ′ is valid and there is no
child attached to the framee′ underneath. Ift is non-speculative, it does not matter ife′

exists, we can always popf . If t is speculative, eithere′ exists and is found instack(t),
or due to our lazy stack copying approach it needs to be retrieved and buffered from
the most speculative parent threadp that containse. JOIN has similar conditions toPOP,
except that heree must both exist and have a speculative child.

MERGE STACKS is called byCOMMIT. It copies the live range of framesd′ : ρ from
the childu to the parentt. It takes the stack ofu and looks for a less-speculative ver-

sion d of its bottom framed′ in its parent. If found, then framesd throughe in t are
replaced with the child stack, otherwise the entire parent stack is replaced. Note that
d will always be found ift ∈ Tn, since non-speculative threads must have complete
stacks.MERGE COMMITS, as called byCOMMIT, takes the commit listγ from the par-
ent, appends the childu and the child commit listδ, and addsu toTc. PURGE COMMITS

is called every timeCLEANUP is called. It removes threads without child dependences
from the most speculative end of a commit list until either all committed threads have
been purged or it encounters a dependency.

CLEANUP simply destroysu and then purgest. It is called after theCOMMIT and
ABORT operations, and internally fromABORT ALL . WhereasJOIN contains the com-
mon logic that precedes commits and aborts,CLEANUP contains the common logic
that follows them.COMMIT is just a composite operation that joinst, merges stacks
and commit lists usingu from JOIN, and then cleans up.ABORT has a similar struc-
ture, callingABORT ALL internally, which performs a depth-first search looking for
live children, and destroying them post-order. In any real-world implementation that
uses this stack abstraction, child threads must be stopped before they can be committed
or aborted.

3 Individual MLS Models

Using the stack abstraction from Figure 2, we now develop a series of concentric and
progressively more flexible MLS models each described by their structural operational
semantics, shown individually in Figures 3–9. They providean exhaustive visual ref-
erence to the MLS design considerations in our unified abstraction by exposing the
core state evolution patterns that define execution. We use these models in Section 4 to
explore and understand the behaviour of various code idiomsunder speculation.

In these models, each rule is named, possibly with symbols for PUSH (↓), POP(↑),
FORK (≺), COMMIT (≻), andABORT (⊁). Above the inference line is the corresponding
[∗] command from Figure 2, followed by model-specific restrictions on behaviour and
local variable mappings. For a mappingx = y, x is a value found in the transitive
expansion of the[∗] command from Figure 2 andy is the local value. Below the line is
a visual depiction of the transition from one stack state to the next. Threads are named
in increasing order byτ , α, β, γ, δ, such thatτ ∈ Tn and{α,. . . ,δ} ⊆ Ts, except in
rule I↑⊥ from Figure 7, whereτ may be inTs. Shown for each threadt is the value
of stack(t), which grows upwards, the value ofcommits(t), which grows left-to-right
starting att, and for eachf ∈ stack(t) a horizontal line to the child thread ifchild(f) ∈
Tl. As in Figure 2, variablesd, e, f and derivatives are given to concrete frames, whereas
σ, ρ, π, ω, ϕ, υ range over frames. A valid speculation for a given program isdescribed
and can be visualized by a sequence of rule applications, each of which acts atomically.

Figure 3 contains a simple structured non-speculative stack model common to many
languages. Non-speculative threads canSTART andSTOP, delimiting the computation.
In N↓, a new frame can be pushed, whereσ ⊆ F and so may be∅. N↑ andN↑⊥, match
the two casese ∈ stack(τ) ande /∈ stack(τ) of POP(t) in Figure 2, the latter being the
penultimate operation on a thread, followed bySTOP.

Figure 4 contains the simplest MLS stack model, one that extends Figure 3 to allow
non-speculative threads to fork and join a single child at a time. In this model, specula-
tive threads cannot perform any operations, including simple method entry and exit. For
N≺, there is a restriction on children being attached to prior stack frames, which pre-
vents out-of-order speculation.N≻ is the simplestCOMMIT(t) possible, with the child
stack containing only one frame, andN⊁ is similarly simple with no recursion required
in ABORT(τ). Finally, the restrictionτ ∈ Tn in N↓ andN≺ is sufficient to prevent spec-
ulative child threads from doing anything other than local computation in the buffered
framee′: N≻ andN⊁ must match withN≺, N↑ must matchN↓, andN↑⊥ is precluded
for speculative threads becauseBUFFER(τ, e|e′) will not complete.

The model in Figure 5 extends Figure 4 to allow speculative children to enter and
exit methods. A speculative pushS↓ simply creates a new frame forα, specifying that
π′ is linked toπ via some framee′ at the bottom ofπ′ to the correspondinge ∈ π.
S↑ takes the left-hand case inPOP(t) wheree′ ∈ F , whereasS↑⊥ takes the right-hand
case and so bufferse′ from its parent. Finally, this model updatesN≻ andN⊁ to handle
situations where the child may have lefte′ via S↑⊥ or S↓, now representing the child
thread stack byϕ′ instead of e’.

The next model in Figure 6 simply adds one operation to allow out-of-order nest-
ing in non-speculative threads,O≺. This rule specifies that if there is some lower stack
framed in π with a child attached, a new thread can be forked frome, complementing
N≺ in Figure 4 which prohibits this. All other existing operations continue to work as
expected in this model. As an implementation note, this model is relatively straightfor-
ward to express in software, but offers significantly limited parallelism [1].

After out-of-order nesting comes in-order nesting in Figure 7.I≺ allows speculative
threadα to createβ independently of its parent.N⊁ will recursively abort these threads
without modification, butI≻ is required to allow a parent thread to commit child thread
α with a grandchildβ, maintaining the link toβ and mergingα onto the commit list of
the parent. Afterβ gets committed viaN≻, α will be freed, assuming there are no more
children. I↑⊥ is yet more complex, specifying that in order to buffer framee′, parent
threads will be searched backwards starting from the grandparent untile is found. Here
; indicates that there is a path of buffered frames fromπ′ backwards toπ. This rule is
an extended version ofS↑⊥, which only handles buffering from the immediate parent.
S↑ works nicely as is with in-order speculation, andS↑⊥ works not only in the simple
case above but also when the buffered frame is in some committed threadc ∈ Tc.

In Figure 8, speculative commits are now permitted. There are two simple rules,S≻
andSI≻, which complementN≻ and I≻ respectively. In the formerβ is purged from
commits(α), whereas in the latter it is kept because of dependencyγ. [I≻MERGE]
is implied by I≻, and so adds nothing, but is shown to illustrate the full process of
merging committed thread lists, whereα andγ were already committed andβ gets
added between them.

Finally, in Figure 9, the last restrictions are removed so that all of the features in
the main abstraction in Figure 2 are available. In this case,it suffices to provideIO≺,
which allows speculative threads to create child threads out-of-order. This was formerly
prohibited byO≺, which only applied to non-speculative threads. The other two rules
are again shown only for purposes of illustration:[IO⊁] shows a recursive abort on a

START
START(|τ)

⇒
τ

STOP
STOP(τ)

τ
⇒

N↓
PUSH(τ, f) τ ∈ Tn

τ
σ ⇒

τ
σ
f

N↑

POP(τ) e ∈ stack(τ)
e′ = e f ′ = f

τ
σ
e
f

⇒
τ
σ
e

N↑⊥

POP(τ) e /∈ stack(τ)
e′ = e f ′ = f

τ

f ⇒
τ

Fig. 3. Adults-only model.No speculation.

N≺

FORK(τ, f |α) τ ∈ Tn

∀d ∈ σ, child(d) /∈ Tl

τ
σ
e

⇒
τ
σ
e
f

α

e′
N≻

COMMIT(τ)
ρ = ∅

d = e d′ = e′

τ
σ
e
f

α

e′
⇒

τ
σ
e′

N⊁
ABORT(τ)

τ
σ
e
f

α

e′
⇒

τ
σ
e

Fig. 4. Totalitarian model.One speculative child allowed, but only non-speculative threads can
perform stack operations.

S↓

PUSH(α, f)
σ = π′ ω 6= ∅

e′ = car(π′) . e ∈ π

τ
π
ω

α
π′⇒

τ
π
ω

α
π′
f

S↑

POP(α) f ′ = f
σ : e′ = π′ ω 6= ∅
d′ = car(π′) . d ∈ π

τ
π
ω

α
π′
f

⇒
τ
π
ω

α
π′

S↑⊥

POP(α) f ′ = π′

σ : e′ = ∅ ω 6= ∅
f = car(π)

τ

ϕ
e
π
ω

α

π′

⇒
τ

ϕ
e
π
ω

α

e′

N≻

COMMIT(τ)
d′ : ρ = ϕ′

d : π : e = ϕ

τ
σ
ϕ
f

α

ϕ′

⇒
τ
σ
ϕ′

N⊁

ABORT(τ)
σ : e = σ : ϕ

τ
σ
ϕ
f

α

ϕ′

⇒
τ
σ
ϕ

Fig. 5. Kid-friendly model.Allows PUSHandPOPactions on speculative threads, overridingN≻
andN⊁ to accomodate.

O≺

FORK(τ, f |β) τ ∈ Tn

d′ = car(π′) . d = car(π)

τ
σ
π
e

α

π′

⇒
τ
σ
π
e
f

β

e′

α

π′

Fig. 6. Catholic model.Provides out-of-order nesting viaO≺ to allow an arbitrary number of
speculative children for non-speculative threads.

I≺

FORK(α, f |β)
σ = π′ ω 6= ∅

d′ = car(π′) . d ∈ π

τ
π
ω

α
π′
e

⇒
τ
π
ω

α
π′
e
f

β

e′
I≻

COMMIT(τ) τ ∈ Tn

ω 6= ∅ d′ : ρ = ϕ′ : ω
d : π : e = ϕ

τ
σ
ϕ
f

α

ϕ′ω

β

ϕ′′

⇒
τ
σ
ϕ′ω

α β

ϕ′′

I↑⊥

POP(β) f ′ = π′′ σ : e′ = ∅
ω, υ 6= ∅ f = car(π′)

car(π′) ; car(π)
τ = νpp≥0 . BUFFER(p, e|e′)

τ

ϕ
e
π
ω

α

π′
υ

β

π′′...

⇒
τ

ϕ
e
π
ω

α

π′
υ

β

e′
...

Fig. 7. One big happy model.Provides in-order nesting viaI≺ to allow speculative children of
speculative threads. Note that inI↑⊥, τ may be speculative.

S≻

COMMIT(α) ω 6= ∅
d′ : ρ = ϕ′′ d : π : e = ϕ′

τ
σ
ϕ
ω

α

ϕ′
f

β

ϕ′′

⇒
τ
σ
ϕ
ω

α

ϕ′′

SI≻

COMMIT(α) ω, υ 6= ∅
d′ : ρ = ϕ′′ : υ d : π : e = ϕ′

τ
σ
ϕ
ω

α

ϕ′
f

β

ϕ′′υ

γ

ϕ′′′

⇒
τ
σ
ϕ
ω

α

ϕ′′υ

β γ

ϕ′′′

[I≻MERGE]

COMMIT(τ) ω 6= ∅
d′ : ρ = ϕ′′′ : ω d : π : e = ϕ′

τ
σ
ϕ′
f

α β

ϕ′′′ω

γ δ

ϕ′′′′

⇒
τ
σ
ϕ′′′ω

α β γ δ

ϕ′′′′

Fig. 8. Nuclear model.Allows speculative threads to commit their own children.[I≻MERGE]’s
behaviour is provided byI≻.

IO≺

FORK(α, f |γ) ω 6= ∅
d′ = car(π′) . d = car(π)

τ
σ
π
ω

α

π′
e

β

π′′

⇒
τ
σ
π
ω

α

π′
e
f

γ

e′

β

π′′

[IO⊁]

ABORT(τ) ω 6= ∅
σ : e = σ : ϕ

τ
σ
ϕ
f

α

ϕ′π
ω

γ

π′

β

ϕ′′

⇒
τ
σ
ϕ

[OI≺]

FORK(β, f |γ)
σ = π′ ω 6= ∅

d′ = car(π′) . d ∈ π

τ

ϕ
π
ω

β

π′
e

α

ϕ′
⇒

τ

ϕ
π
ω

β

π′
e
f

γ

e′

α

ϕ′

Fig. 9. Libertarian model.Allows both in-order and out-of-order nesting.[IO⊁] and [OI≺] are
provided byN⊁ andI≺.

thread with both in- and out-of-order nesting, and[OI≺] shows in-order nesting after
out-of-order nesting has taken place, as already allowed byO≺ followed by I≺.

The above models illustrate the core behaviour patterns of common speculation
strategies. In the next section, we explore a series of stackevolutions that assume sup-
port for the final combined stack model in Figure 9, although in some cases one of the
less flexible models will suffice.

4 Speculation Idioms

Simple changes in the structure of input programs and choiceof fork points can dra-
matically affect the dynamic structure of the speculative call stack. In this section we
explore several common code idioms and their behaviour under MLS using the full
stack abstraction. We examine straight-line code, if-thenconditionals, iteration, head
recursion, and tail recursion, with a view towards discovering idiomatic code struc-
tures and speculation decisions that yield interesting parallel execution behaviours. We
present a series of linear state evolutions to visualize theresults, each of which was
generated from a list of operations by an Awk script implementation of our model.

In the examples that follow, we assume that useful computation can be represented
by calls to awork function whose running time is both constant and far in excess of the
running time of all non-work computation. Thus we can reasonthat if a thread is exe-
cuting a work function, it will not return from that functionuntil all other computations
possible before its return have completed. This reasoning guides the stack evolutions
in cases where more than one operation is possible. These simplistic execution tim-
ing assumptions yield surprisingly complex behaviour, andso provide a good basis for
understanding even more complex situations.

straightline () {
work (1);
work (2);

}
(a) Code.

τ
⇒

τ
s ⇒

τ
s
w1

⇒
τ
s ⇒

τ
s
w2

⇒
τ
s ⇒

τ
(b) Do not speculate.

τ
s ⇒

τ
s
w1

α
s’ ⇒

τ
s
w1

α
s’
w2

β
s” ⇒

τ
s’
w2

α β
s” ⇒

τ
s”

(c) Speculate on all calls towork.
stop () {

/* any unsafe instruction */
}

straightline () {
work (1);
work (2);
stop ();
work (3);

}
(d) Speculation barrier code.

τ
s ⇒

τ
s
w1

α
s’ ⇒

τ
s
w1

α
s’
w2

β
s” ⇒

τ
s
w1

α
s’
w2

β
s”
st

⇒
τ
s’
w2

α β
s”
st

⇒
τ
s”
st

⇒
τ
s” ⇒

τ
s”
w3

γ
s”’⇒

τ
s”’

(e) Speculation barrier: speculate on all calls to
work.

Fig. 10. Straight-line.

Straight-line The simplest code idiom in imperative programs is straight-line code,
where one statement executes after the next without branching, as in Figure 10. In 10a,
two sequential calls towork are shown, with the non-speculative stack evolution in 10b.
In future evolutions we omit the initialN↓ and finalN↑⊥. In 10c, speculation occurs on
all calls towork: the parent threadτ executeswork(1), α executeswork(2), andβ
executes a continuation which does nothing useful.τ returns from w1 and commitsα,
then returns from w2 and commitsβ, and finally pops s” to exit the program.

Even in this simple example, the choices betweenPUSH and FORK clearly affect
which threads execute which regions of code, and whether they have useful work to
do. In 10d, a functionstop is introduced containing an unsafe operation that acts as a
speculation barrier. The result in 10e is that w3 is not executed speculatively. Again, al-
though simple, the impact of unsafe instructions on speculative parallelism is important
to consider; in some cases, artificial speculation barriersmay even be helpful.

If-then Another simple code idiom is if-then conditional branching. If the value of
the conditional is speculative, then particular code pathsfollowed depending on the
value themselves become speculative. In Figure 11, speculating on the call towork(1),
it is necessary to predict a boolean return value. If the speculation is correct, as in
11d and 11e, then the speculative work w2 or w3 respectively is committed. Otherwise,
that work is aborted, as in 11f and 11g.

For this speculation idiom to be useful, the function producing the return value
should take a long time to execute. Further, extensions to our speculation model could
allow for multiple predicted return values, associating one speculative thread with each.
This would provide a kind of speculative hedging, and may be worthwhile given excess
resources. Nested ifs have similar behaviour to this example, although the prediction
for the outer test will be more important than the inner test in terms of limiting wasted
computation, since the inner speculation is under its control.

if_then () {
if (work (1))
work (2);

work (3);
}

(a) Code.

τ
i ⇒

τ
i
w1

⇒
τ
i ⇒

τ
i
w2

⇒
τ
i ⇒

τ
i
w3

⇒
τ
i

(b) Do not speculate,work(1) returns true.

τ
i ⇒

τ
i
w1

⇒
τ
i ⇒

τ
i
w3

⇒
τ
i

(c) Do not speculate,work(1) returns false.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2

⇒
τ
i’
w2

⇒
τ
i’ ⇒

τ
i’
w3

⇒
τ
i’

(d) Speculate onwork(1), predict true cor-
rectly.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w3

⇒
τ
i’
w3

⇒
τ
i’

(e) Speculate onwork(1), predict false
correctly.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2

⇒
τ
i ⇒

τ
i
w3

⇒
τ
i

(f) Speculate onwork(1), predict true incor-
rectly.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w3

⇒
τ
i ⇒

τ
i
w2

⇒
τ
i ⇒

τ
i
w3

⇒
τ
i

(g) Speculate onwork(1), predict false incorrectly.

Fig. 11. If-then.

Iteration The most common code idiom considered for speculation is loop iteration.
Chen & Olukotun demonstrated that if a loop body is extractedinto a method call,
then method level speculation can subsume loop level speculation [3]. We explore an
example loop under different speculation assumptions in Figure 12 to better understand
the behaviour. Speculating on all calls towork in 12c, the loop is quickly divided up
into one iteration per thread for as many threads as there areiterations.

To limit this aggressive parallelization, we explored speculating on everym in n
calls. In 12d, a child is forked every 1 in 2 calls. The stack evolves to a point where
both w1 and w2 are executing concurrently and no other stack operations are possible.
Once w1 and w2 complete, a number of intermediate evolutionsopen up, but they all
lead to the same state with w3 and w4 executing concurrently.Effectively, the loop is
parallelized across two threads, each executing one iteration at a time. Speculating on
every 1 in 3 calls, a similar pattern emerges, except that a non-parallel execution of w3
is interjected. Speculating on every 2 in 3 calls, w1, w2, andw3 execute in parallel, and
once they complete the stack evolves until w4, w5, and w6 execute in parallel.

A general rule for iteration under MLS then is that speculating on everyn − 1 in
n calls towork will parallelize the loop acrossn threads, each executing one iteration.
To support multiple subsequent iterations executing in thesame thread, there are two
options: 1) passi + 2 when speculating, which our model does not explicitly support;
or 2) unroll the loop and push multiple iterations into the loop body, per 12g.

Tail Recursion Tail recursion is explored in Figure 13. It is well known thattail recur-
sion can be efficiently converted to iteration, and we see thesame behaviour in these
examples. Speculating on bothrecurse andwork usefully populates the stack with
successive calls towork. However, this also creates just as many useless threads that
only ever fall out of the recursion, although they stop almost immediately as they en-
counter elder siblings. Speculating on justwork in 13d is good, and yields a stack

iterate (n) {
for (i = 1; i <= n; i++)
work (i);

}
(a) Code.

τ
i ⇒

τ
i
w1

⇒
τ
i ⇒

τ
i
w2

⇒
τ
i ⇒

τ
i
w3

⇒ . . .

(b) Do not speculate.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2

β
i” ⇒

τ
i
w1

α
i’
w2

β
i”
w3

γ
i”’ ⇒ . . .

(c) Speculate on all calls towork.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2

⇒
τ
i’
w2

⇒
τ
i’ ⇒

τ
i’
w3

β
i”

⇒
τ
i’
w3

β
i”
w4

⇒ . . .

(d) Speculate on 1 in 2 calls towork.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2

⇒
τ
i’
w2

⇒
τ
i’ ⇒

τ
i’
w3

⇒
τ
i’

⇒
τ
i’
w4

β
i” ⇒

τ
i’
w4

β
i”
w5

⇒ . . .

(e) Speculate on 1 in 3 calls towork.

τ
i ⇒

τ
i
w1

α
i’ ⇒

τ
i
w1

α
i’
w2

β
i” ⇒

τ
i
w1

α
i’
w2

β
i”
w3

⇒
τ
i’
w2

α β
i”
w3

⇒
τ
i”
w3

⇒
τ
i” ⇒

τ
i”
w4

γ
i”’

⇒
τ
i”
w4

γ
i”’
w5

δ
i””⇒

τ
i”
w4

γ
i”’
w5

δ
i””
w6

⇒ . . .

(f) Speculate on 2 in 3 calls towork.

unrolled (i) {
work (i);
work (i + 1);

}

iterate (n) {
i = 1; // assumes n is even
while (i <= n)
unrolled (i += 2);

}
(g) Unrolled iteration code.

Fig. 12. Iteration.

structure identical to that produced by speculating on all calls in iteration, as in Fig-
ure 12c, modulo the interleavingrecurse frames. On the contrary, speculating on just
recurse is bad, because calls towork are never parallelized.

Speculating on 1 in 2 calls towork yields again a structure directly comparable to
iteration, where w1 and w2 will execute in parallel before the stack evolves to w3 and
w4. Speculating on 1 in 2 calls towork andrecurse is similar but more wasteful.
Speculating on 1 in 2 calls torecurse is bad, but yields interesting behaviour which
sees speculative children unwind the stack by one frame before stopping.

Head Recursion Head recursion is considered in 14. Here the call towork comes after
the call torecurse instead of before. Speculating on all calls is inefficient, just as for
tail recursion, whereas speculating on justrecurse is good, allowing for calls towork
to be executed out-of-order. This is expected given that head recursion is seen as dual
to tail recursion. However, surprisingly, speculating on justwork is also good: the stack
gets unwound in-order. For head recursion, the support for in-order nesting and out-of-
order nesting support in our stack model helps ensure that parallelism is obtained.

Speculating on 1 in 2 calls torecurse andwork yields unbounded parallelism,
where pairs of two calls are unwound in-order within a pair, and out-of-order between
pairs. Speculating on 1 in 2 calls towork yields a bounded parallelism structure compa-
rable to iteration, where first wn and wm execute in parallel,and then the stack evolves
to a state where wl and wk execute in parallel.

recurse (i, n) {
work (i);
if (i < n)
recurse (i + 1, n);

}
(a) Code.

τ
r1⇒

τ
r1
w1

⇒
τ
r1⇒

τ
r1
r2

⇒
τ
r1
r2
w2

⇒ . . .

(b) Do not speculate.

τ
r1⇒

τ
r1
w1

α
r1’⇒

τ
r1
w1

α
r1’
r2

β
r1”⇒

τ
r1
w1

α
r1’
r2
w2

γ

r2’

β
r1”⇒ . . .

(c) Speculate on all calls (inefficient).

τ
r1⇒

τ
r1
w1

α
r1’⇒

τ
r1
w1

α
r1’
r2

⇒
τ
r1
w1

α
r1’
r2
w2

β

r2’
⇒ . . .

(d) Speculate on all calls towork (good).
τ
r1⇒

τ
r1
w1

⇒
τ
r1⇒

τ
r1
r2

α
r1’⇒

τ
r1
r2
w2

α
r1’⇒ . . .

(e) Speculate on all calls torecurse (bad).

τ
r1⇒

τ
r1
w1

α
r1’⇒

τ
r1
w1

α
r1’
r2

⇒
τ
r1
w1

α
r1’
r2
w2

⇒
τ
r1’
r2
w2

⇒
τ
r1’
r2

⇒
τ
r1’
r2
r3

β

r2’
⇒

τ
r1’
r2
r3

β
r1”⇒

τ
r1’
r2
r3
w3

γ

r3’

β
r1”⇒

τ
r1’
r2
r3
w3

γ

r3’
r4

β
r1”

⇒
τ
r1’
r2
r3
w3

γ

r3’
r4
w4

β
r1”⇒ . . .

(f) Speculate on 1 in 2 calls towork andrecurse (inefficient).

τ
r1⇒

τ
r1
w1

α
r1’⇒

τ
r1
w1

α
r1’
r2

⇒
τ
r1
w1

α
r1’
r2
w2

⇒
τ
r1’
r2
w2

⇒
τ
r1’
r2

⇒
τ
r1’
r2
r3

⇒
τ
r1’
r2
r3
w3

β

r3’

⇒
τ
r1’
r2
r3
w3

β

r3’
r4

⇒
τ
r1’
r2
r3
w3

β

r3’
r4
w4

⇒ . . .

(g) Speculate on 1 in 2 calls towork (good).

τ
r1⇒

τ
r1
w1

⇒
τ
r1⇒

τ
r1
r2

⇒
τ
r1
r2
w2

⇒
τ
r1
r2

⇒
τ
r1
r2
r3

α

r2’
⇒

τ
r1
r2
r3
w3

α

r2’
⇒

τ
r1
r2
r3
w3

α
r1’⇒

τ
r1
r2
r3

α
r1’⇒

τ
r1
r2
r3
r4

α
r1’⇒

τ
r1
r2
r3
r4
w4

α
r1’

⇒
τ
r1
r2
r3
r4

α
r1’⇒

τ
r1
r2
r3
r4
r5

β

r4’

α
r1’⇒

τ
r1
r2
r3
r4
r5
w5

β

r4’

α
r1’⇒

τ
r1
r2
r3
r4
r5
w5

β

r3’

α
r1’⇒ . . .

(h) Speculate on 1 in 2 calls torecurse (bad).

Fig. 13. Tail recursion.

We were again surprised by speculating on 1 in 2 calls torecurse: α executes
w2, and after returning the stack evolves until it executes w1. This pattern is strikingly
similar to loop unrolling, where two successive calls execute in the same thread. This
particular example is unbounded, however, because nothingprevents the growth ofτ
up the stack, such that every two calls towork start all together and are then unrolled
all together. In general, calls to work can be divided into batches of sizeb = n/t
and distributed evenly across threads by choosing to speculate on every 1 inb calls to

recurse (i, n) {
if (i < n)
recurse (i + 1, n);

work (i);
}

(a) Code.

τ
r1⇒

τ
r1
:

⇒
τ
r1
:
rm

⇒
τ
r1
:
rm
rn

⇒
τ
r1
:
rm
rn
wn

⇒
τ
r1
:
rm
rn

⇒
τ
r1
:
rm

⇒
τ
r1
:
rm
wm

⇒ . . .

(b) Do not speculate.

τ
r1⇒

τ
r1
r2

α
r1’⇒

τ
r1
r2

α
r1’
w1

β
r1”⇒

τ
r1
r2
r3

γ

r2’

α
r1’
w1

β
r1”

⇒
τ
r1
r2
r3

γ

r2’
w2

δ

r2”

α
r1’
w1

β
r1”⇒ . . .

(c) Speculate on all calls (inefficient).

τ
r1⇒

τ
r1
r2

α
r1’⇒

τ
r1
r2

α
r1’
w1

⇒
τ
r1
r2
r3

β

r2’

α
r1’
w1

⇒
τ
r1
r2
r3

β

r2’
w2

α
r1’
w1

⇒ . . .

(d) Speculate on all calls torecurse (good).

τ
r1⇒

τ
r1
:

⇒
τ
r1
:
rm

⇒
τ
r1
:
rm
rn

⇒
τ
r1
:
rm
rn
wn

α

rn’

⇒
τ
r1
:
rm
rn
wn

α

rm’

⇒
τ
r1
:
rm
rn
wn

α

rm’
wm

β

rm”

⇒ . . .

(e) Speculate on all calls towork (good).

τ
r1⇒

τ
r1
r2

⇒
τ
r1
r2
r3

α

r2’
⇒

τ
r1
r2
r3

α

r2’
w2

β

r2”
⇒

τ
r1
r2
r3
:

α

r2’
w2

β

r2”

⇒
τ
r1
r2
r3
:

α

r2’
w2

β
r1’⇒

τ
r1
r2
r3
:

α

r2’
w2

β
r1’
w1

⇒ . . .

(f) Speculate on 1 in 2 calls torecurse and
work (unbounded parallelism).

τ
r1⇒

τ
r1
:

⇒
τ
r1
:
rk

⇒
τ
r1
:
rk
rl

⇒
τ
r1
:
rk
rl
rm

⇒
τ
r1
:
rk
rl
rm
rn

⇒
τ
r1
:
rk
rl
rm
rn
wn

α

rn’

⇒
τ
r1
:
rk
rl
rm
rn
wn

α

rm’

⇒
τ
r1
:
rk
rl
rm
rn
wn

α

rm’
wm

⇒
τ
r1
:
rk
rl
rm
rn
wn

α

rm’

⇒
τ
r1
:
rk
rl
rm
rn
wn

α

rl’

⇒
τ
r1
:
rk
rl
rm
rn
wn

α

rl’
wl

β

rl”

⇒
τ
r1
:
rk
rl
rm
rn
wn

α

rl’
wl

β

rk’

⇒
τ
r1
:
rk
rl
rm
rn
wn

α

rl’
wl

β

rk’
wk

⇒
τ
r1
:
rk
rl’
wl

α β

rk’
wk

⇒ . . .

(g) Speculate on 1 in 2 calls towork (compare with Figure 13g).

τ
r1⇒

τ
r1
r2

⇒
τ
r1
r2
r3

α

r2’
⇒

τ
r1
r2
r3

α

r2’
w2

⇒
τ
r1
r2
r3
:

α

r2’
w2

⇒
τ
r1
r2
r3
:

α

r2’
⇒

τ
r1
r2
r3
:

α
r1’⇒

τ
r1
r2
r3
:

α
r1’
w1

⇒
τ
r1
r2
r3
:

α
r1’⇒ . . .

(h) Speculate on 1 in 2 calls torecurse (loop unrolling).

Fig. 14. Head recursion.

recurse. The unrolling within a given batch is in-order, but the creation of batches
themselves is out-of-order.

head1 (i, n) {
head2 (i, n);
work (i);

}

head2 (i, n) {
tail1 (i, n);
work (i);

}

tail1 (i, n) {
work (i);
tail2 (i, n);

}

tail2 (i, n) {
work (i);
head1 (i, n);

}
(a) Two head then two tail code.

τ
h1⇒

τ
h1
h2

⇒
τ
h1
h2
t1

α

h2’
⇒

τ
h1
h2
t1
w3

α

h2’
⇒

τ
h1
h2
t1
w3

α

h2’
w2

⇒
τ
h1
h2
t1

α

h2’
w2

⇒
τ
h1
h2
t1
t2

α

h2’
w2

⇒
τ
h1
h2
t1
t2
w4

α

h2’
w2

⇒
τ
h1
h2
t1
t2
w4

α

h2’

⇒
τ
h1
h2
t1
t2
w4

α
h1’⇒

τ
h1
h2
t1
t2
w4

α
h1’
w1

⇒ . . .

(b) Two head then two tail: callhead1(1,n)
and speculate ontail1 in head2. This creates
two batches of two calls each.

τ
h1⇒

τ
h1
h2

⇒
τ
h1
h2
t1

⇒
τ
h1
h2
t1
w3

⇒
τ
h1
h2
t1

⇒
τ
h1
h2
t1
t2

⇒
τ
h1
h2
t1
t2
w4

⇒
τ
h1
h2
t1
t2

⇒ . . .

(c) Two head then two tail: do not speculate.
recurse (i, n, b, t) {

if (i < n && (i - 1) % (b * t) < b * (t - 1))
if (i % b == 1 && i % (b * t) > b)

spec recurse (i + 1, n, b, t);
else

recurse (i + 1, n, b, t);
work (i);
if (i < n && (i - 1) % (b * t) >= b * (t - 1))
if (i % b == 1 && i % (b * t) > b)

spec recurse (i + 1, n, b, t);
else

recurse (i + 1, n, b, t);
}

(d) Mixed head and tail recursion code. To split work into multiple threads, callrecurse
(1,n,b,t), wheren is the number of calls towork, b is the batch size, andt is the number of
threads. Speculation points are indicated by thespec keyword.

Fig. 15. Mixed head and tail recursion.

Mixed Head and Tail Recursion Finally, we experimented with a mix of head and
tail recursion, as in Figure 15. Given the interesting behaviours seen for these kinds of
recursion in isolation, it seemed reasonable that a combination might yield even more
interesting results. Tail recursion has two distinguishing properties under speculation:
it provides in-order distribution across threads, and it prevents the calling thread from
proceeding immediately to the top of the stack, because useful work must be done
first. On the other hand, head recursion is able to provide behaviour comparable to
loop unrolling in a single thread. However, head recursion is uncapped and will always
proceed immediately to the top of the stack.

Figures 15a and 15b constitute a minimal example that uses head recursion to pro-
vide batch processing and tail recursion to limit stack growth. In 15b, the repeating
pattern is two head recursive calls followed by two tail recursive calls, such that specu-
lation only occurs on the first of the two tail recursive calls. This creates a threadα that
executes the first two calls towork out-of-order, while the parent threadτ executes the
second two calls towork in-order. Except during brief periods of stack state evolution,
there will only ever two threads actively executing code.

We can use this pattern to schedule batches of sizeb acrosst threads when the depth
of the recursion is unknown or when onlyb × t calls should be scheduled at once. We
need a pattern ofb × (t − 1) head recursive calls followed byb tail recursive calls,
speculating on the first tail recursive call in the pattern and on every(cb + 1)th head
recursive call forc ∈ N1. For example, to distribute work in batches of size 3 across
4 threads, use a pattern of 9 head recursive calls followed by3 tail recursive calls,
and speculate on the4th and7th head recursive calls and the first tail recursive call. A
generalized function that provides this behaviour is givenin 15d.

Discussion We can see from these examples that the dynamic parallelization behaviour
induced by MLS is not obvious, and that there are surely more interesting patterns to be
found. The key lesson here is that we cannot take ordinary programs with call and re-
turn semantics, provide a set of parallelization operations that significantly perturbs the
normal execution order, and expect to obtain dramatic performance results, especially
if we do not understand the underlying behaviour. We can however use investigations
of sequential program behaviour under our stack model to derive generalizations about
program structure and the correlation with performance or lack thereof.

Method level speculation is a powerful system for automaticparallelization, par-
ticularly when relatively arbitrary speculation choices are permitted. The challenge is
to restructure sequential code so that any inherent parallelism can be fully exploited.
In general, parallel programming is an optimization, and thus cannot be divorced from
knowledge of what different code structures imply for the runtime system if perfor-
mance is to be maximed. Just as tail-recursion is favoured insequential programs for
its efficient conversion to iteration, so should other idioms in sequential programms be
favoured for their efficient conversion to parallel code. Ofcourse, the end goal is for a
compiler to remove this optimization burden from the programmer wherever possible.

5 Related Work

MLS is a form of thread level speculation (TLS), or speculative multithreading (SpMT),
which has been relatively well-studied from a hardware perspective and has been a
subject of research for over a decade. Garzaranet al. reviewed and classified most of
the core TLS approaches [4]. A primary problem in TLS is deciding where to fork
speculative child tasks, with systems proposed that operate at the loop level [5], basic-
block level [6], and of course at the method level [3].

According to Chen & Olukotun [3], Oplingeret al. were the first to propose the
concept of MLS in a limit study for C programs that sought to identify the maximum
amounts of loop and method level parallelism available [7].Hammond, Willey, and

Olukotun later designed the Hydra chip multiprocessor for TLS that included MLS
support [8]. Chen & Olukotun concurrently described a more realistic MLS system
for Java, which combined a modified version of the Kaffe JVM and JIT compiler run-
ning on the Hydra architecture [3]. They found encouraging amounts of speculative
parallelism in JIT-compiled code, and noticed that MLS can subsume loop level specu-
lation if loop bodies are extracted into method calls. In previous work we developed an
interpreter-based MLS system for Java [1,2], the design of which Scḧatti later followed
to implement a partial MLS system for the HotSpot JVM bytecode interpreter [9].

MLS in general must balance overhead costs with potential parallelism, and can
benefit from profile information to guide forking heuristics[10–12]. Return value pre-
diction can further assist MLS by allowing the method continuation to proceed past
consumption of the return value [13]; c.f. safe futures which are similar in many re-
spects but do not allow this [14]. A key consideration in all of the work on TLS that
our approach here elides is the impact of speculative data dependences. We consider
the data dependence problem not unimportant but orthogonalto the one of how to cre-
ate efficient stack and thread interleavings. In general, the strong isolation properties
assumed by speculative threads require some kind of transactional memory (TM) sub-
system [15]. MLS and purely transactional approaches differ, however, in that under
MLS the speculative execution is not user-specified and is potentially unbounded.

Our effort to unify several MLS models is largely motivated by the difficulty in
comparing disparate proposals and in understanding the performance impact of design
choices. In-order speculation is usually supported in hardware, while adding out-of-
order execution to a hardware system is complicated but has been argued critical to
achieving good speculative performance [16]. On the other hand, out-of-order specu-
lation is much simpler to support in software, and while in-order speculation can sig-
nificantly increase the choice of fork points, it poses a significant memory allocation
problem. For most MLS studies, the lack of precise semanticsmeans that even though a
direct mapping to our model almost certainly exists, it can be difficult to nail down. As
an example, in their study of MLS fork heuristics for Java, Whaley and Kozyrakis claim
to allow speculative threads to create speculative threads, which meets the definition of
in-order nesting [10]. However, all of their examples actually demonstrate out-of-order
nesting. Similarly, Zhai describes stack management for speculation [17], but does not
provide details on the complexities of entering and exitingstack frames speculatively.

Our study also relates to continuation-based parallelization in other contexts. Non-
speculatively, Goldsteinet al. provide an efficient implementation of parallel call that
uses a stack abstraction dual to the one presented here: the child thread executes the
method and the parent thread executes the continuation [18]; Pillar is a new language
that supports this abstraction [19]. Although parallel call was not designed to be spec-
ulative, the speculation rules of our system could nevertheless be translated straightfor-
wardly. In a functional context, Mattson, Jr. found that speculative evaluation in Haskell
can be supported with low overhead [20]. Ennals and Peyton Jones present a simi-
lar optimistic execution system that works together with the lazy evaluation model in
Haskell [21]. They provide an operational semantics, but donot model the stack explic-
itly nor use their semantics to visualize behaviour. Harris& Singh later extended this
model to work with the Haskell thunk structure allocated in optimized programs [22].

6 Conclusions and Future Work

Empirical studies of language implementation strategies can only provide so much un-
derstanding. For a strategy such as MLS, there is obviously significant performance
potential, but the results can be confusing and moreover mired in system-specific per-
formance details. At some point, formalizing the model and exploring behaviour in
abstract terms can provide a fresh perspective.

In this work we developed a unified model of MLS that accounts for the major
design variations involved in building such a system. The individual sub-models run
from completely sequential to highly speculative, and exhaustively cover the core pat-
terns of behaviour encoded in the unified model. This model isvaluable purely from
a specification standpoint, facilitating system comprehension, comparison, testing, and
implementation. Initial work suggests our model is also suitable for a proof of MLS
correctness. Once obtained, showing equivalence with other continuation-based paral-
lelization systems can then be used to transfer proof results. Our model finally lends
itself to rapid design prototyping of future extensions, which might normally require
significant implementation effort to explore.

The other half of this work entails an exploration of MLS behaviour using our model
as a tool for insight. We identified some key relationships between program structure,
choice of fork point, and resultant speculation behaviour.In some cases we labelled
them as good, bad, or inefficient in terms of exposing parallelism, and in others we used
them to synthesize desirable higher level behaviours. These experiments demonstrated
that all features of the speculation model are useful for creating parallelism, including
both in-order and out-of-order nesting, and that robustness and flexibility in an MLS
system are important. Our experience here is that accurately predicting how the parallel
state will evolve without actually trying scenarios out is overwhelmingly impractical. In
the future, automated explorations of this nature may yieldfurther insights. In general,
we found that MLS behaviour is fragile, but that if understood it can be beneficially
controlled. We believe that maximizing parallelism will require a combination of pro-
grammer awareness, compiler transformation, profile information, and judicious static
and/or dynamic forking decisions.

Finally, our visualization methods could be equally well applied to actual MLS
implementations, including our own Java-based SableSpMT [1,2]. Our stack diagrams
are unique for their compactness, linear scalability, uniform symbol density, lack of
overlapping lines, and relation to actual data structures.The state evolutions require
only a simple event trace along with unique thread and frame identifiers as inputs. This
avenue would be useful for empirical studies of real-world programs.

Acknowledgments

This research was supported by the IBM Toronto Centre for Advanced Studies and the
Natural Sciences and Engineering Research Council of Canada. We would like to thank
Sam Sanjabi for his insightful comments on an earlier draft of this paper.

References

1. Pickett, C.J.F., Verbrugge, C.: SableSpMT: A software framework for analysing speculative
multithreading in Java. In: PASTE’05. (September 2005) 59–66

2. Pickett, C.J.F., Verbrugge, C.: Software thread level speculationfor the Java language and
virtual machine environment. In: LCPC’05. Volume 4339 of LNCS. (October 2005) 304–318

3. Chen, M.K., Olukotun, K.: Exploiting method-level parallelism in single-threaded Java pro-
grams. In: PACT’98. (October 1998) 176–184

4. Garzaŕan, M.J., Prvulovic, M., Llaberı́a, J.M., Vĩnals, V., Rauchwerger, L., Torrellas, J.:
Tradeoffs in buffering speculative memory state for thread-level speculation in multipro-
cessors. TACO2(3) (September 2005) 247–279

5. Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The STAMPede approach to thread-level
speculation. TOCS23(3) (August 2005) 253–300

6. Bhowmik, A., Franklin, M.: A general compiler framework for speculative multithreading.
In: SPAA, New York, NY, USA, ACM Press (August 2002) 99–108

7. Oplinger, J.T., Heine, D.L., Lam, M.S.: In search of speculative thread-level parallelism. In:
PACT’99. (October 1999) 303–313

8. Hammond, L., Willey, M., Olukotun, K.: Data speculation support fora chip multiprocessor.
In: ASPLOS-VIII. (October 1998) 58–69

9. Scḧatti, G.: Hotspec - a speculative JVM. Master’s thesis, ETH, Zürich, Switzerland (January
2008)

10. Whaley, J., Kozyrakis, C.: Heuristics for profile-driven method-level speculative paralleliza-
tion. In: ICPP’05. (June 2005) 147–156

11. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J.,Torrellas, J.: POSH: A TLS
compiler that exploits program structure. In: PPoPP’06. (March 2006) 158–167

12. Warg, F.: Techniques to Reduce Thread-Level Speculation Overhead. PhD thesis, Dept. of
CSE, Chalmers U. of Tech., G̈oteborg, Sweden (May 2006)

13. Hu, S., Bhargava, R., John, L.K.: The role of return value prediction in exploiting speculative
method-level parallelism. JILP5 (November 2003) 1–21

14. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: OOPSLA’05. (October
2005) 439–453

15. Larus, J.R., Rajwar, R.: Transactional Memory. Morgan & Claypool (December 2006)
16. Renau, J., Tuck, J., Liu, W., Ceze, L., Strauss, K., Torrellas, J.: Tasking with out-of-order

spawn in TLS chip multiprocessors: Microarchitecture and compilation. In: ICS’05. (June
2005) 179–188

17. Zhai, A.: Compiler optimization of value communication for thread-level speculation. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA (Jan-
uary 2005)

18. Goldstein, S.C., Schauser, K.E., Culler, D.E.: Lazy threads: Implementing a fast parallel call.
JPDC37(1) (August 1996) 5–20

19. Anderson, T., Glew, N., Guo, P., Lewis, B.T., Liu, W., Liu, Z.,Petersen, L., Rajagopalan,
M., Stichnoth, J.M., Wu, G., Zhang, D.: Pillar: A parallel implementation language. In:
LCPC’07. Volume 5234 of LNCS. (October 2007) 141–155

20. Mattson, Jr., J.S.: An effective speculative evaluation techniquefor parallel supercombinator
graph reduction. PhD thesis, University of California at San Diego, La Jolla, California,
USA (1993)

21. Ennals, R., Jones, S.P.: Optimistic evaluation: an adaptive evaluation strategy for non-strict
programs. In: ICFP’03. (August 2003) 287–298

22. Harris, T., Singh, S.: Feedback directed implicit parallelism. In: ICFP’07. (October 2007)
251–264

