McGill University
School of Computer Science
Sable Research Group

Understanding Method Level Speculation

Sable Technical Report No. 2010-2

Christopher J.F. Pickett and Clark Verbrugge and Allan Kielstra
{cpi cke, cl ump}@abl e.ntgil | . ca, ki el stra@a.i bm com

April 21st, 2010

www.sable.mcgill. ca

Understanding M ethod L evel Speculation

Christopher J.F. PickéttClark Verbruggé, and Allan Kielstrd

1 School of Computer Science, McGill University
Montréal, Qebec, Canada
{cpi cke, cl unp}@abl e. ntgill.ca

2 IBM Toronto Lab
Markham, Ontario, Canada
ki el stra@a.i bmcom

Abstract. Method level speculation (MLS) is an optimistic technique for paral-
lelizing imperative programs, for which a variety of MLS systems and dp&im
tions have been proposed. However, runtime performance stroeginds on

the interaction between program structure and MLS system design choiaks

ing it difficult to compare approaches or understand in a general waypino-
grams behave under MLS. In this work we seek to establish a basic/itataéor
understanding MLS designs. We first present a stack-based diostratMLS

that encompasses major design choices such as in-order and aateofresting

and is also suitable for implementations. We then use this abstraction to develop
the structural operational semantics for a series of progressivelg flexible

MLS models. Assuming the most flexible such model, we provide transition-
based visualizations that reveal the speculative execution behaviantonber

of simple imperative programs. These visualizations show how speéifal-p
lelization patterns can be induced by combining common programming idioms
with precise decisions about where to speculate. We find that the runtime pa
allelization structures are complex and non-intuitive, and that both in-ami
out-of-order nesting are important for exposing parallelism. Thevaveiming
conclusion is that either programmer or compiler knowledge of how implait
allelism will develop at runtime is necessary to maximize performance.

1 Introduction

Method level speculation (MLS) is a technique for runtimegtialization of sequen-
tial programs. Upon reaching a method (alternatively fiom;tprocedure) invocation,
a “parent” thread will fork (spawn) a “child” thread that beg executing the method
continuation in parallel while the parent executes the bafde call. Memory depen-
dences in the child are buffered, such that any changes caniléeé back or discarded
if necessary. When the parent thread returns from the cadtojis the child thread,
validates its dependences, and if no violations occurrednaits the results to main
memory and resumes where the child left off. Although thémtiion between which
thread is the child and which is the parent varies, MLS canee® sis the most opti-
mistic and most automatic of a number of continuation-bamedllelization schemes:
futures, safe futures, parallel call, and implicit parigtgtion for functional languages.

The initial hope with MLS, as with most work on automatic peslization, was
that irregular programs would run faster, exploiting platem with no additional pro-
grammer intervention. However, due to variability in thédp@es between parent and
child thread lengths, value predictability, and the likelbd of dependence violations,
some fork points end up being much better than others, amalvdead of bad forking
decisions can easily dominate execution time. Naturatlg ofirst thought is to change
the set of fork points to accomodate. Although this does laaveffect on parallelism,
it does so not only by eliminating the overhead from unprbféaspeculation, but also
by changing the dynamic thread structure and hence engtdiradlelism where it was
previously precluded. The complication is that changirgydiinamic thread structure
in turn changes the suitability of fork points. For an onloveoffline adaptive system
that creates threads based on the suitability of fork ppihis creates a feedback loop.
The end result is that sometimes parallelism is obtainedesiones not, but ultimately
it is difficult to explainwhythings play out the way they do. A lack of insight into an
MLS system we previously created [1, 2] was the initial mation for this work.

There has been significant work on selecting fork points hadihal effect on per-
formance. There has been much less focus, at least in thefthles, on studying the
relationship between program structure, choice of forknpand the resultant paral-
lel behaviour. For this we need an abstract way to describgtbgram structure and
choice of fork point, and we need a way to “see” the behaviwhich in this case is a
visualization of how parallel structures evolve over time.

a() { /! parent creates child 1 here
b(); // can parent create child 2 here?

X; /1 child 2 might begin execution here
}; /1 child 1 begins execution here
c(); /1 can child 1 create child 3 here?
Y; /1 child 3 mght begin execution here

Fig. 1. Choice of fork points under MLS.

By way of example, consider the code in Figure 1, in which wauate threads are
created as soon as possible. If the speculation model pi®hibsting and only allows
one child per parent thread at a time, then the parent exebje X; while child 1
executeg(); Y; . If the model allows out-of-order nesting, under which agpércan
have more than one child at once, then the parent exebgfes child 2 executes
X; , and child 1 executes(); Y; . If instead in-order nesting is allowed, under which
children can create children of their own, then the parestetesb(); X; , child 1
executeg () ; , and child 3 executes; . If both in-order and out-of-order nesting are
permitted, them() , X, c(), andY can all execute in parallel. The precise nature of the
resulting parallelism is not intuitively obvious, and daps on the interaction of code,
MLS design, and of course scheduling.

In this work, we provide an abstract description of fork gaihoice via a unified
stack-based model of MLS that encompasses all of these riaen@/e also provide
a series of sub-models referring to our larger unified oné dha each described by
their structural operational semantics, where the strastinvolved are the precise re-
lationships between call stacks and threads. We then takbstract view of program
structure that isolates useful work from higher-level aiigational concerns, enabling

a focus on the effects of code layout. Finally, we provide @mgloy a method for visu-
alizing runtime parallel behaviour that relies on showihg state evolution that arises
from repeated application of our structural rules.

Given such a framework, we can compare the parallelizatiodets used by MLS-
like systems directly, and begin to understand at a nonffiaja¢ level why the results
differ between them. Our vision is that this understandiag be used to inform pro-
grammers and compiler writers trying to structure or regtrre programs for efficient
implicit parallelism, and to guide the design of runtimetsyss. Finally, our approach
provides a basis for inventing novel extensions: it alloas ripid specification and
visualization without the burden of implementation.

We make the following specific contributions:

1. We propose a stack-based operational semantics as adunifigel of MLS. This
model is derived from a working implementation [1, 2]. Ourdebprovides sup-
port for lazy stack buffering at the frame level, a uniqueirofation designed to
improve the speed of local variable access.

2. We provide several MLS sub-models, each of which is deedriby its struc-
tural operational semantics, and relate them to our unifectkanodel. These sub-
models are suitable for direct visualization of programsoeing under MLS.

3. We examine the behaviour of a number of common coding igionrelation to
our stack formalism. We show how these idioms map to speddfialiel runtime
structures depending on code layout and fork point choieed®vive several guide-
lines as to how parallelism can be exposed, and end with alearegample that
demonstrates implicit workload scheduling using recursio

In Section 2, we present our unified stack model, which we aiskevelop a series
of MLS sub-models in Section 3. We explore coding idioms asladlviour in Section 4,
present related work in Section 5, and finally conclude ardudis future work.

2 Stack Abstraction

We now present a core stack abstraction that directly ersctiwecall stack and thread
manipulations central to all MLS designs. This abstraciofiexible and supports in-
order nesting, out-of-order nesting, in-order specudativmmits, and any combination
thereof. Specific models that implement these featuregusin abstraction are devel-
oped in Section 3.

The standard sequential call stack model found in most lages has two sim-
ple operations that manipulate stack franmmgsH for entering methods, anelop for
exiting methods. Frames stores local variables and oth@exbrequired for correct
method execution, and for well-behaved languages the typesamust be matched.
For languages that support multithreadiagaRT andsTopoperations for creating and
destroying non-speculative threads are also necessarypdtailel call stack model for
MLS is simply a parallel extension of this standard. It inlinces three new operations,
FORK, COMMIT, andABORT. These new operations manipulate stack frames, but they
also have the power to create and destroy speculative thireadk can now be called

instead ofPUsH, pushing a framend creating a new child thread, and upon return
comMmIT or ABORT will be called to match theork instead ofPor

We make several assumptions: 1) well-ordepesH and POP nesting is provided
by the underlying language, even in the case of exceptiamdtal flow; 2) stack opera-
tions complete atomically; 3) non-stack operations, whdéeexplicitly modelled, may
be freely interleaved with stack operations on runningatsg 4) speculative accesses
to global state variables, if they exist, are handled exigrnfor example via some
transactional memory or dependence buffering system;digtes values are spillable
to a frame on demand; and 6) stacks grow upwards.

The model has two unique features that separate it frarerspeculation where all
reads and writes go through a dependence buffer or traosattnemory subsystem.
First, child threads buffer stack frames from their lessesjiative parents, such that all
local variable accesses go directly through a local frarhés iB intended to reduce the
load on the dependence tracking system. Second, stackdramduffered as lazily as
possible: on forking, only the frame of the current methodapied to the child. If the
child ever needs lower down frames from some parent thréadtrieves and copies
them on demand. This lazy copying introduces significantplerity: thePoPopera-
tion may need to buffer a frame, and themMIT operation needs to copy back only the
range of live frames from the child thread stack. We includesia practical measure
intended to make our abstraction useful: our experiendeawoftware implementation
indicates a steep performance penalty for copying entieathstacks.

The main abstraction is described via its operational séingaim Figure 2. It has
seven publicly available operations, each marked ythThese in turn use a number
of internal operations, both for purposes of clarity andlémjic reuse. A summary of
the public operations and their observable behaviourvdlo

START(|t): create a new non-speculative threadith an empty stack.

STOR(t): destroy non-speculative threadprovided its stack is empty.

PUSH(t, f): add a new frame with unique nanfeo the stack of thread

FORK(?, flu): executePUsH(, f), and then create a new child threadhat starts
executing the method continuation using a buffered versfche previous frame
from threadt. Cannot be issued on an empty stack.

POR(t): remove the top frame from the stack of threa@he matching operation must
be apusH, and for speculative threads there must be a frame to pop to.

ABORT(t): executePrOR(t) (internally JOIN) and abort the child thread attached to the
frame underneath, recursively aborting all of its childf€he matching operation
must be &0ORK.

COMMIT(t): executePOR(t) (internally JoiN) and commit the child thread attached to
the frame underneath, copying all of its live stack frames amy associated child
pointers. Committed children with children of their own &ept on a list attached
to ¢ until no references to them exist, lest another speculttingad attempt to copy
a stack frame from freed memory. The matching operation imeisiFORK.

We now turn to a detailed description of the operations iruFég2. We model
threads as unique integers, and maintain several thresid/Sistthe set of all threads,
T; is the set of live threads],, and T are non-speculative and speculative threads

Tp :T7L®Tp =T
{= [T, T 6 {t}, T, & {1}, T, & {1}, stack(l) — o

CREATE(T}, olt)

T,CT.teT, T,=Tw®T, =T,

DESTROY(t) = (0.7, \= (1) [*]START(lt)m
teT, stack(t)=10 teT, f¢F o=stack(t)
[«]STOR(t) DESTROV(E) [«]PUSH(t, f) stack(t) = o - ,F 5 {f}

teT;UT. ec€ stack(t) ec€ F child(e) ¢ Ts
e =e FW{c}

BUFFER(t, e|e’)

PUSHL, /)
o:e: f=stack(t),BUFFER(t, ele’) CREATE(Ts, e |u)
parent(u) = t, child(e) = u

[¥]FORK(t, f|u)

teTy o:€:f =stack(t) f'€F child(e)¢T,
teT, teTs
e e F@e ¢ F e € F®upy>o . BUFFER(p, ele)
stack(t) = o : €

[x]POR(t)

teT; o:e: f=stack(t) e, feF childle) €T
stack(t) = o : e,u = child(e)

JOIN(t|u)

d' : p = stack(u)
d € stack(t) d ¢ stack(t)
o:d:m:e= stack(t) o=10
stack(t) =0 :d : p

MERGE-STACKS(¢, u)

v = commits(t) § = commits(u)
commits(t) =y :u:6,Te W {u}

MERGE.COMMITS(¢, u)

~: 8 = commits(t) . 6 = vdsop -

Ve e 6 Vf € stack(c), child(f) ¢ Tr
commits(t) =, T. \= {0}

PURGE.COMMITS(t)

JOIN(t|lu) MERGE.STACKS(t, u)

DESTROY(u) MERGE.COMMITS(¢, u)
CLEANUP(t, u) [¥x]cOMMIT (¢)
PURGE.COMMITS(t) CLEANUP(t, u)
Vf € stack(t) . u = child(f) € T JOIN(t|u)
ABORT_ALL (u) ABORT_ALL (u)
ABORT_ALL (t) [¥]ABORT(t) ——————
F\= {stack(t)},CLEANUP(t, u) CLEANUP(t, u)

Fig. 2. Stack operationsExternally available operations are marked wjith START andsToP
create and destroy non-speculative threadssH POP, FORK, COMMIT, andABORT operate on
existing threads, and all other operations are internal.

respectively, and’. is the set of committed threads that may still be referengesbime

t € T,. Some invariants apply to these séts= T, UT, UT,, T, N T, = 0, Ts C T},

T, CT,UT, T,NT; # 0, andT. N'T; = (). Elements are never removed frdfiy
such that each new thread gets a unique ID based on the csizerfT’, namely|T|.
Stack frames are modeled by a set of unique frafmgsuch that each newly pushed
or buffered frame is not already if. This invariant is maintained by removing frames
from " when threads are aborted. Given a frafne F', buffering creates a new frame
/" by appending to the name. Given a framg, f is the less-speculative version of the
same frame in some ancestor thread. Note that for notatimmaenienceg” and f/ in
POR(t) may belong to a non-speculative thread, in which case no auchstor exists.
Variablesd, e, f and their primed derivatives represent concrete framestedass, p,
represent lists of frames. Similarly, variabjes, u represent concrete threads, whereas
v, 6 represent lists of threads.

In addition to these sets, there are several functions thattain mappings between
them.stack(t € T') mapst to a thread stack, which is a list of frameshn child(f €
F) mapsf to a speculative child thread parent(u € T,) mapsu to thet € T that
forked it, andcommits(t € T') mapst to a list of threads irf.. Initially all mappings
and sets are empty.

Our rules make use of a few specific operators and conventrarss act like func-
tions, requiring a list of arguments. In some cases they@isduce values, which are
separated from arguments byl he use of exclusive or) indicates a choice between
one rule and another or one set of premises and another. \Weufs¢ andS \= {s} to
indicate set additions and removals respectively. Fipally the greatest fixed point op-
erator from theu-calculus that given some terminating condition maximizesperand
starting fromT. We usev to find the greatest, or “most speculative”, thrgsith POR,
and to find the longest sub-li§twithout child dependences FURGE COMMITS.

Lastly, we give a brief description of each rueREATE initializes a new thread,
adds it to7;, T', andT,, or T, depending on whether the thread is speculative or not, as
given byT,,, and initializes the stack @fto 0. DESTROY conversely removeisfrom 7;
and eitherT,, or 7. Note that after destroy, committed threads will mov&tpfrom
which they are later removed only B\ URGE.COMMITS. START simply callSCREATE
to make a new non-speculative threadndstopcallsDESTROYto remove it.

PUSHtakes a freslf and appends it tetack(t), wheret is live, also adding’ to F.
BUFFERtakes either a live or committed thread, the name of a frainets stack, and
provided there is no child attached da@reates:’ for use by its caller, which is either
FORK Or POP. FORK first callspusH, bufferse’ from e, creates:, and sets ase’s child
andt asu’s parent.

poprtakes the stack of, and checks that the top franjé is valid and there is no
child attached to the frame underneath. If is non-speculative, it does not mattee'if
exists, we can always poh If ¢ is speculative, either’ exists and is found intack(t),
or due to our lazy stack copying approach it needs to be vettiand buffered from
the most speculative parent thrgathat containg. JOIN has similar conditions teop,
except that here must both exist and have a speculative child.

MERGE_STACKSis called bycomMIT. It copies the live range of frames : p from
the childu to the parent. It takes the stack of and looks for a less-speculative ver-

siond of its bottom framed’ in its parent. If found, then framesthroughe in ¢ are
replaced with the child stack, otherwise the entire partatksis replaced. Note that

d will always be found ift € T,,, since non-speculative threads must have complete
stacks MERGE_COMMITS, as called bycommIT, takes the commit lisy from the par-
ent, appends the childand the child commit lisé, and adds: to T.. PURGE.COMMITS

is called every timecLEANUP is called. It removes threads without child dependences
from the most speculative end of a commit list until eithércaimmitted threads have
been purged or it encounters a dependency.

CLEANUP simply destroys: and then purges It is called after thecommIT and
ABORT operations, and internally fromBORT_ALL . WhereasJOIN contains the com-
mon logic that precedes commits and abodsgEANUP contains the common logic
that follows them.coMMIT is just a composite operation that joihsmerges stacks
and commit lists using. from JoIN, and then cleans upBORT has a similar struc-
ture, callingABORT_ALL internally, which performs a depth-first search looking for
live children, and destroying them post-order. In any reafld implementation that
uses this stack abstraction, child threads must be stogfedelthey can be committed
or aborted.

3 Individual MLS Models

Using the stack abstraction from Figure 2, we now developri@sef concentric and
progressively more flexible MLS models each described biy #tieictural operational
semantics, shown individually in Figures 3-9. They prowaleexhaustive visual ref-
erence to the MLS design considerations in our unified aft#bra by exposing the
core state evolution patterns that define execution. Wehesetmodels in Section 4 to
explore and understand the behaviour of various code idigrdsr speculation.

In these models, each rule is named, possibly with symbolsdsH (|), PoP(1),
FORK (<), COMMIT (=), andABORT (3£). Above the inference line is the corresponding
[*] command from Figure 2, followed by model-specific restoieti on behaviour and
local variable mappings. For a mapping= vy, « is a value found in the transitive
expansion of théx] command from Figure 2 anglis the local value. Below the line is
a visual depiction of the transition from one stack statdeortext. Threads are named
in increasing order by, «a, 3, v, 4, such thatr € T,, and{«,... 5} C T, exceptin
rule 17_L from Figure 7, where- may be inTs. Shown for each threatlis the value
of stack(t), which grows upwards, the value @fmmits(t), which grows left-to-right
starting at, and for eaclyf € stack(t) a horizontal line to the child threaddhild(f) €
T;. Asin Figure 2, variables, e, f and derivatives are given to concrete frames, whereas
o, p, T, w, , v range over frames. A valid speculation for a given progradescribed
and can be visualized by a sequence of rule applicationk,afaghich acts atomically.

Figure 3 contains a simple structured non-speculativé stexel common to many
languages. Non-speculative threads sanRT andSTOP, delimiting the computation.
In NJ, a new frame can be pushed, wher€ F' and so may b@. NT andNT_L, match
the two cases € stack(r) ande ¢ stack(r) of POR(t) in Figure 2, the latter being the
penultimate operation on a thread, followedgmor.

Figure 4 contains the simplest MLS stack model, one thahelst&igure 3 to allow
non-speculative threads to fork and join a single child &n&1In this model, specula-
tive threads cannot perform any operations, including Bmpethod entry and exit. For
N=, there is a restriction on children being attached to pracls frames, which pre-
vents out-of-order speculation:- is the simplestommIT(¢) possible, with the child
stack containing only one frame, angt is similarly simple with no recursion required
in ABORT(7). Finally, the restriction € T,, in N| andN= is sufficient to prevent spec-
ulative child threads from doing anything other than loeahputation in the buffered
framee’: N andNy must match wittN<, NT must matchn |, andNT L is precluded
for speculative threads becauserrFeR(T, e|e’) will not complete.

The model in Figure 5 extends Figure 4 to allow speculatiileldn to enter and
exit methods. A speculative pust) simply creates a new frame far, specifying that
7" is linked tor via some frame’ at the bottom ofr’ to the corresponding € .
s] takes the left-hand case ROR(t) wheree’ € F, whereass] L takes the right-hand
case and so buffees from its parent. Finally, this model updates- andn 3 to handle
situations where the child may have leftvia s{_L or s|, now representing the child
thread stack by’ instead of €.

The next model in Figure 6 simply adds one operation to allawvaf-order nest-
ing in non-speculative threads<. This rule specifies that if there is some lower stack
framed in = with a child attached, a new thread can be forked fegromplementing
N= in Figure 4 which prohibits this. All other existing opelais continue to work as
expected in this model. As an implementation note, this rhisdelatively straightfor-
ward to express in software, but offers significantly lirdigarallelism [1].

After out-of-order nesting comes in-order nesting in Fegun < allows speculative
threada to create3 independently of its paremt.# will recursively abort these threads
without modification, but>- is required to allow a parent thread to commit child thread
« with a grandchild3, maintaining the link tg3 and mergingx onto the commit list of
the parent. Afteg gets committed viai>-, o will be freed, assuming there are no more
children.17_L is yet more complex, specifying that in order to buffer frasheparent
threads will be searched backwards starting from the granedy untile is found. Here
~+ indicates that there is a path of buffered frames frdrbackwards ter. This rule is
an extended version &ff L, which only handles buffering from the immediate parent.
sT works nicely as is with in-order speculation, asidl. works not only in the simple
case above but also when the buffered frame is in some coethtittead: € T...

In Figure 8, speculative commits are now permitted. Thesehvao simple ruless>-
andsi=, which complement>- andi> respectively. In the formes is purged from
commits(«), whereas in the latter it is kept because of dependendy-MERGE]|
is implied by 1>, and so adds nothing, but is shown to illustrate the full psscof
merging committed thread lists, wheteand v were already committed and gets
added between them.

Finally, in Figure 9, the last restrictions are removed st il of the features in
the main abstraction in Figure 2 are available. In this caseiffices to providao=,
which allows speculative threads to create child threati®Border. This was formerly
prohibited byo=, which only applied to non-speculative threads. The otiverrules
are again shown only for purposes of illustratifim;Z] shows a recursive abort on a

START(|T) STOHR(T) N PUSH(T, f) T €Tn

START————> sTop——> l
= = f
T T o = 0
T T
POR(T) e € stack(T) POR(T) e ¢ stack(r)
elze f/:f 6,26 f,:f
N NTL
=7 f =
e e
e T T
T T
Fig. 3. Adults-only modelNo speculation.
COMMIT(T)
FORK(T, fla) T€T, p=10
Vd € o, child(d) ¢ T, — I ! ABORT
< g,che ()¢ ! N}M N%i(r)
f I f ! ! f /
€ e—e e—e e e—e (&
g = 0 g = O a = O

. T_ _T « . . T « T T . « T
Fig. 4. Totalitarian model.One speculative child allowed, but only non-speculative threads can
perform stack operations.

PUSH(, f) POR(e) f'=Ff
o= w#0 o =71 w#0D
e =car(r’) . eem d =car(r’).dem
w o, w T w f, w
—7' = 7—7 m—7'= 71—
T a T « T a T «
PORa) f'== COMMIT(T)
og:e' =0 w#0 d:p=¢ ABORT(T)
= car(m d:m:e= re=o0:
- f (m) wdimie=e N%O e=0:¢p
w , w f i / /
T—T — p—p 14 p—p P
e e e o =0 o =0
¥ = ¥ T T T o T

T « T «
Fig. 5. Kid-friendly model Allows pusHandPoPactions on speculative threads, overriding

andN to accomodate.
FORK(T, f|B) 7T€Tn
d = car(r’) . d = car(m)

f /
e , e—e
T—Tr s m
o =0
T «@ T [«@

Fig. 6. Catholic model Provides out-of-order nesting via< to allow an arbitrary number of

speculative children for non-speculative threads.
PORB) f'=7" o:e/ =0

FORK(a, f|3) commiT(r) T€ET, w,v#0 f = car(n’)
o= w0 w#£D dip=¢ 1w car(m") ~ car(m)
d =car(n’).der d:7m:e= T=v . BUFFER(p, e|e’
= () L dimie=g v upo. surrERpel)
f , f W, % %% " w v, " w v,
w e, w e—e P—p—p 12 ¥ T T— T T
—7' = 7—m7 o =0 e e e
T « T « B T « ﬁ T—« ﬁ ¥ = ¢

T a f T a f
Fig. 7. One big happy modeProvides in-order nesting vie< to allow speculative children of

speculative threads. Note thatiinL, = may be speculative.

COMMIT () w#0 COMMIT () w,v#0D

S>d':p:<p” d:m:e=¢ Sl>d/: =¢":v d:mie=¢
bty G Bl G
o =0 o =0
T a f T « T o [B T a—fp
COMMIT(T) w#0
d:p=¢": d:m:e=¢
[I-MERGH pP=y v Te=y
f/ W i Wy 1
o @ © A
o =0

. T—a f[—7 § T—a—fp—7 §)
Fig. 8. Nuclear modelAllows speculative threads to commit their own childrém-MERGE's
behaviour is provided bys-.

FORK(S3, f[7)
FORK(a, flv) w#0 ABORT(T) w # 0 o=a" w#0
d = .d= re=o0: d = "N.de
o< car(n') . car(m) 0] cre=0:¢ [01<] car(m") : ™
we, , we—€ I a=a ., w e, w e—¢
T—T—T T— 1T T P— - ¥ ¥ T—T , T ,
o = 0 o = 0 PP = P
T a f T « T a Y S T T [« T [7 «@

v B
Fig. 9. Libertarian model Allows both
provided byNy# andi<.

thread with both in- and out-of-order nesting, giad<] shows in-order nesting after
out-of-order nesting has taken place, as already allowen-bfollowed byi<.

The above models illustrate the core behaviour patternowfneon speculation
strategies. In the next section, we explore a series of aalktions that assume sup-
port for the final combined stack model in Figure 9, althougsome cases one of the
less flexible models will suffice.

n-order and out-of-order nestingo] and [01<] are

4 Speculation Idioms

Simple changes in the structure of input programs and chafiéerk points can dra-
matically affect the dynamic structure of the speculatiaé stack. In this section we
explore several common code idioms and their behaviour rulideS using the full
stack abstraction. We examine straight-line code, if-tbenditionals, iteration, head
recursion, and tail recursion, with a view towards discmglidiomatic code struc-
tures and speculation decisions that yield interestinglfghiexecution behaviours. We
present a series of linear state evolutions to visualizerékalts, each of which was
generated from a list of operations by an Awk script impletaton of our model.

In the examples that follow, we assume that useful compurtatan be represented
by calls to anor k function whose running time is both constant and far in exoéshe
running time of all non-work computation. Thus we can reathan if a thread is exe-
cuting a work function, it will not return from that functiamtil all other computations
possible before its return have completed. This reasonindeg the stack evolutions
in cases where more than one operation is possible. Thegdistimexecution tim-
ing assumptions yield surprisingly complex behaviour, smgrovide a good basis for
understanding even more complex situations.

straightline () {

. wl w2
V\Drt(%)z =>S$S=>85S=>85=>85=5=
} work (2); T T T T T T T
b) Do not speculate.
(a) Code. () P
wl | wliw2 w2 .,)
S = s—8 = s—s—s"= s "= s
T T « T a f T—a (3 T
(c) Speculate on all calls taor k.
stop () { _ _
/* any unsafe instruction */
} wl | wlw2 = wlw2st
S > s—S = s—s—s"= s—s—s
straightline () { T T a T af T alf
work (1); w2 st st w3
work (2); = s "= §"= s"= s-s"= s”
stop (); T—a f3 T T T T
work (3); (e) Speculation barrier: speculate on all calls to

wor K.
(d) Speculation barrier code.

Fig. 10. Straight-line.

Straight-line The simplest code idiom in imperative programs is stralgig-code,
where one statement executes after the next without bragichs in Figure 10. In 10a,
two sequential calls taor k are shown, with the non-speculative stack evolution in 10b.
In future evolutions we omit the initial | and finalNT_L. In 10c, speculation occurs on
all calls towor k: the parent thread executeswor k(1) , o executeswr k(2), andj
executes a continuation which does nothing usefueturns from wl and commits,
then returns from w2 and commits and finally pops s” to exit the program.

Even in this simple example, the choices betweeisH and FORK clearly affect
which threads execute which regions of code, and whethgrhbee useful work to
do. In 10d, a functiost op is introduced containing an unsafe operation that acts as a
speculation barrier. The result in 10e is that w3 is not etextapeculatively. Again, al-
though simple, the impact of unsafe instructions on spé¢igalparallelism is important
to consider; in some cases, artificial speculation barrnexg even be helpful.

If-then Another simple code idiom is if-then conditional branchiiigthe value of
the conditional is speculative, then particular code péttiswed depending on the
value themselves become speculative. In Figure 11, sgawytan the call tovor k(1) ,

it is necessary to predict a boolean return value. If the Wpéon is correct, as in
11d and 11e, then the speculative work w2 or w3 respectigatpimmitted. Otherwise,
that work is aborted, as in 11f and 11g.

For this speculation idiom to be useful, the function pradgahe return value
should take a long time to execute. Further, extensionsitemeculation model could
allow for multiple predicted return values, associating speculative thread with each.
This would provide a kind of speculative hedging, and may behwvhile given excess
resources. Nested ifs have similar behaviour to this exepgilhough the prediction
for the outer test will be more important than the inner tegerms of limiting wasted
computation, since the inner speculation is under its obntr

if_then () {

if (work (1)) _ wl w2 w3
work (2); =i =>i=i=1i=1i=I
Wwor k (3); T T T T T T T

} (b) Do not speculatepor k(1) returns true.

(a) Code.

. wl wiw2 w2 w3

i }N1:>i:>}N3:>i [N] N L e

= T T (0% T (0% T T T T

T T T T T
(c) Do not speculatepor k(1) returns false. (d) Speculate orwor k(1) , predict true cor-

rectly.
: wl. wlw3 w3 : wl. wlwz w3
I =1i—0"=i—"=1=7T I =1i—0"=i—0"=1=1i =1
T T « T « T T T T « T « T T T
(e) Speculate omor k(1) , predict false (f) Speculate ommor k(1), predict true incor-
correctly. rectly.
. wl ~—~— wlw3 w2 w3 .
i =i—l=>i—=i=1i=1i=1i=I
T T « T « T T T T T
(9) Speculate omor k(1) , predict false incorrectly.
Fig. 11. If-then.

Iteration The most common code idiom considered for speculation ig itewation.
Chen & Olukotun demonstrated that if a loop body is extradted a method call,
then method level speculation can subsume loop level satmol[3]. We explore an
example loop under different speculation assumptionsgntéi 12 to better understand
the behaviour. Speculating on all callsvior k in 12c, the loop is quickly divided up
into one iteration per thread for as many threads as theriéeaations.

To limit this aggressive parallelization, we explored spating on everym in n
calls. In 12d, a child is forked every 1 in 2 calls. The stackless to a point where
both wl and w2 are executing concurrently and no other stpekations are possible.
Once w1l and w2 complete, a number of intermediate evolut@es up, but they all
lead to the same state with w3 and w4 executing concurrdgifigctively, the loop is
parallelized across two threads, each executing oneigarat a time. Speculating on
every 1 in 3 calls, a similar pattern emerges, except thahapaoallel execution of w3
is interjected. Speculating on every 2 in 3 calls, wl, w2, &@B8dxecute in parallel, and
once they complete the stack evolves until w4, w5, and w6erdn parallel.

A general rule for iteration under MLS then is that specaaton everyn — 1 in
n calls towor k will parallelize the loop across threads, each executing one iteration.
To support multiple subsequent iterations executing instmae thread, there are two
options: 1) pass + 2 when speculating, which our model does not explicitly suppo
or 2) unroll the loop and push multiple iterations into thegdody, per 12g.

Tail Recursion Tail recursion is explored in Figure 13. It is well known thail recur-

sion can be efficiently converted to iteration, and we sees#ime behaviour in these
examples. Speculating on batlecur se andwor k usefully populates the stack with
successive calls taor k. However, this also creates just as many useless threaids tha
only ever fall out of the recursion, although they stop almwsnediately as they en-
counter elder siblings. Speculating on justr k in 13d is good, and yields a stack

iterate (n) {

P S wl w2 w3
for(:(—llfl<—n,'++) S I O L O SO
} work (i) ; T T T T T T
b) Do not speculate.
(a) Code. () P
coowl owlw2 o wlw2ws
I I S e L e =
T T « T a f T a [7
(c) Speculate on all calls taor k.
: wl. wlwz w2 w3 . wl. wlwz w2 w3
I ==1i—0=i—0=1=1=1-I F==1i—0=i—1"=1"=1=1=1
T T « T « T T T ﬁ T T « T «Q T T T T
w3 w4 wa - wAws
= I —1 = ... 21— =1 —I = ...
T pB T 0 T
(d) Speculate on 1 in 2 calls teor k. (e) Speculate on 1 in 3 calls teor k.
wil wl w2 wl w2 w3 unrol l'ed (i) {
i =>i—0=i—0"="=1—-r=r work (i);
T T o« T a fB T a f work (i + 1);

}

w2 w3 w3 | wé
Vo Wel v o WE

=1 i .
—a @ - - o |t¢rate(n) { _
i = 1; // assunes n is even
waws w4 WS w6 while (i <=n)
= I —1I— = I —1I—I" = ... unrol | ed (I 4= 2)'
T 7 4 T 76 }
(f) Speculate on 2 in 3 calls wwor k. (g) Unrolled iteration code.

Fig. 12. Iteration.

structure identical to that produced by speculating on alksdn iteration, as in Fig-
ure 12c, modulo the interleavingcur se frames. On the contrary, speculating on just
recur se is bad, because calls tar k are never parallelized.

Speculating on 1 in 2 calls teor k yields again a structure directly comparable to
iteration, where w1l and w2 will execute in parallel before giack evolves to w3 and
w4. Speculating on 1 in 2 calls t@or k andr ecur se is similar but more wasteful.
Speculating on 1 in 2 calls toecur se is bad, but yields interesting behaviour which
sees speculative children unwind the stack by one framedstopping.

Head Recursion Head recursion is considered in 14. Here the calldok comes after
the call tor ecur se instead of before. Speculating on all calls is inefficienstjas for
tail recursion, whereas speculating on justur se is good, allowing for calls tewr k
to be executed out-of-order. This is expected given thad heeursion is seen as dual
to tail recursion. However, surprisingly, speculating ostywr k is also good: the stack
gets unwound in-order. For head recursion, the supporhforder nesting and out-of-
order nesting support in our stack model helps ensure thali@iésm is obtained.
Speculating on 1 in 2 calls toecur se andwor k yields unbounded parallelism,
where pairs of two calls are unwound in-order within a paid aut-of-order between
pairs. Speculating on 1 in 2 callswor k yields a bounded parallelism structure compa-
rable to iteration, where first wn and wm execute in paradlet] then the stack evolves
to a state where wl and wk execute in parallel.

recurse (i, n) {

work (i); w2
. . ! wl r2 r2
if (i <n) rl:>r1:>r1:>r1:>r1:>“.
recurse (i + 1, n); . .
} (b) Do not speculate.
(a) Code.
wl 1r2 wl r} r2’
= rk-rl'= rkrkrl’b rkrl—rl”:
T T « 1] 1]
(© Speculate on all caIIs (|nef'f|0|ent)
w2 w2
wl r2 wl r2—-r2’ wl r2 r2
r1: rkr1:> rkr1:> rkrl’ :> r1:> r1:> rl= rkrl'= rkrl’:>
T T (0%
(d) Speculate on aII calls twor k (good). (e) Speculate on all calls toec ur se (bad).
w3 w3 r4
w2 w2 r3 r3 r& r3’ r& r3’
wl wl r2 wl r2 r2 r2 r2-r2' r2—
1= rk—rl'= rkrl'= ri—rl'= rI'= r1'= r1’ = r1' r1'= rl’ ri'= rl’ r1”
T T « T « T « T T T 0 T 0 T v B T v B
w4
w3 r4
r3—-r3
r
= rl rl'=
T
(f) Speculate on 1 in 2 calls teor k andr ecur se (inefficient).
w4
w3 w3 r4 w3 r4
w2 r3 r3—-r3 r3-r3 r3-r3

w2
wl wl r2 wl r2 r2 r2 r2 r2 r2 r2
rl= rk-rl'= ri—rl'= rkrl:> r1:> r1:> rl'= rl’ =1l =rl = ...

T T «@ T @ T I6] T 3 T 3
(9) Speculate onl in 2 calls mor k (good).

w4
w3 w3 r4 r4
r3 r3 r3 r3 r3
wl r2 r2 r2 r%rz r2-r2" r2— r2— r2— re—
M=rl=rl=rl=rl=rl=rl =rl =71l rI'=srl rlI'=rl rI'=s r1 1l
T T T T T T T « T (0% T (0% T (0% T (0% T (0%
wbh wbh
r5 r5 r5
r4 r4—r4’ r4—r4’ r4—
r3 r3 r3 r3 r3
r2— r2—— r2—— r
=rl rI'= rl rI'= rl rI'= rl rI'=s ...
T « T B « T B « T @

(h) Speculate on 1 in 2 calls toecur se (bad).

Fig. 13. Tail recursion.

We were again surprised by speculating on 1 in 2 callsdour se: o executes
w2, and after returning the stack evolves until it execut@sThis pattern is strikingly
similar to loop unrolling, where two successive calls exedn the same thread. This
particular example is unbounded, however, because nogitevgents the growth of
up the stack, such that every two callsaor k start all together and are then unrolled
all together. In general, calls to work can be divided intéchas of sizeh = n/t
and distributed evenly across threads by choosing to specah every 1 i calls to

recurse (i, n) {
if (i <n
recurse (i + 1, n);
work (i);
(a) Code.
r3
r2 r2 wl r2—r2’ wl
= rtrl'= rkrt-rl= rk——rt-rl”
T T « T o f T 7 o
3 w2
r2—r2-r2" wl
> r——rirtrl=s ...
T 7 § «
(c) Speculate on all calls (inefficient).
wn wn
m rm-m rm-
rm rm rm rm rm
Mo Mo o Mo 1 = 1l
T T T T T « T o
wn
rm—wm
rm resrm”
=rl = ...
T «

(e) Speculate on all calls taor k (good).

wn

m m m wm
rm rm rm rm rm rm
rl= r1:> M= rl=rl= rl= rl=rl
T T T T T T T T
= ...
(b) Do not speculate.
r3
r2 r2 wl r2-r2' wl
rl= rkrl'= rk—rl'= rk——r20’
T T « T « T [«@
r3 w2
r2—r2’ wl
= r——rl'= ...
T (0%

(d) Speculate on all calls toecur se (good).

r3 r3 w2 r3 w2
r2 r2—r2' r2—r2-r2” r2—r2-r2’

rl=rl=rl =rl =rl
T T T « T a f T a f

r3 w2 r3 w2

r2—r2- r2—r2-wl
=rl rI'= rl rI’'= ...

T a f T a

(f) Speculate on 1 in 2 calls toecur se and
wor k (unbounded parallelism).

wn wn wn wn wn
m rm—rm rn— rm—wm rn— rn—
rm rm rm rmm’ rmrm rmrmm’ rm
rl rl rl rl r rl rl rl ol
rk rk rk rk rk rk rk rk rk
Mo Mo Mo s Mo Mol = = =i =il
T T T T T T T « T (0% T (0% T (0% T (0%
wn wn wn
m— rm— rn—
rm wi rm wi rm wi wi
rlrl—rl” rlri— rl ri—wk rl wk
_rk _rk rk’ _rk rk’ rk rk’
=rl =rl =rl = rl = ...
T o f T a f T a f T—a f
(g) Speculate on 1 in 2 calls teor k (compare with Figure 139)
r3 3 w2 13 w2 i3 i3 i3 i3
r2 r2—r2' r2-r2' r2-r2" r2-r2" r2- r2-wl rz2—
= ri=rl = rl = rl = rl = r1 rl’: 1 rI'=rl r'= ...
T T T (6% T 0% T [0} T o T «

(h) Speculate on1lin 2 calls toecur se (Ioop unrolling).

Fig. 14. Head recursion.

recur se. The unrolling within a given batch is in-order, but the ¢iea of batches

themselves is out-of-order.

headl (i, n) {

head2 (i, n);
work (i); w3 w
} 1 t1 t1 w2
h2 h2-h2’ h2-h2" h2-h2’
) hl= hl= hl = hl = hl
head2 (i, n) { T T T a T a T «
taill_(i, n); wd wd
work (i);) 2 %)
} 1 w2 tT w2 t1 w2 tI
h2-h2" h2-h2’ h2-h2" h2-h2’
taill (i, n) { =hl =hl = hl = hl
wor k (;) T « T « T o T o
tail2 (i, n); w4 w4
} t2 t2
1 1
. . h2- h2-wl
tail2 (i, n) { = hl hl= hl hls ...
work (i); T « T @
headl (i, n); (b) Two head then two tail: calheadl(1, n)
] and speculate ohai | 1 in head2. This creates
(2) Two head then two tail code. two batches of two calls each.
w4
2 t2 t2
tl tl t t1l t
h2 h2 h2 h2 h2 h2 h2
hl= hl= hl= hl= hl= hl= hl= hl= ...
T T T T T

T T T
(c) Two head then two tail: do not speculate.
recurse (i, n, b, t)
if (i <n & (i - 1) %(b*xt) <b=x (t - 1))
if (i %b==18&%i % (b * t) > b)
spec recurse (i + 1, n, b, t);
el se
recurse (i + 1, n, b, t);
work (i);
if (i <n & (i - 1) %(b=*x1t) >b=* (t - 1))
if (i %b==18&%i %(b * t) > b)
spec recurse (i + 1, n, b, t);
el se
recurse (i + 1, n, b, t);

(d) Mixed head and tail recursion code. To split work into multiple threads, caltur se
(1, n, b, t),wheren is the number of calls taor k, b is the batch size, and is the number of
threads. Speculation points are indicated by $tpeec keyword.

Fig. 15. Mixed head and tail recursion.

Mixed Head and Tail Recursion Finally, we experimented with a mix of head and
tail recursion, as in Figure 15. Given the interesting bahag seen for these kinds of
recursion in isolation, it seemed reasonable that a cortibmanight yield even more
interesting results. Tail recursion has two distinguighimoperties under speculation:
it provides in-order distribution across threads, and évpnts the calling thread from
proceeding immediately to the top of the stack, becauseuuseafrk must be done
first. On the other hand, head recursion is able to providenbetr comparable to
loop unrolling in a single thread. However, head recurssomncapped and will always
proceed immediately to the top of the stack.

Figures 15a and 15b constitute a minimal example that uses feeursion to pro-
vide batch processing and tail recursion to limit stack dghovin 15b, the repeating
pattern is two head recursive calls followed by two tail msoee calls, such that specu-
lation only occurs on the first of the two tail recursive callbis creates a threadthat
executes the first two calls ter k out-of-order, while the parent threadexecutes the
second two calls teor k in-order. Except during brief periods of stack state evotut
there will only ever two threads actively executing code.

We can use this pattern to schedule batches ofhsipeosg threads when the depth
of the recursion is unknown or when ortlyx ¢ calls should be scheduled at once. We
need a pattern of x (¢ — 1) head recursive calls followed Wytail recursive calls,
speculating on the first tail recursive call in the patterd an every(cb + 1) head
recursive call forc € N;. For example, to distribute work in batches of size 3 across
4 threads, use a pattern of 9 head recursive calls followe@ tgil recursive calls,
and speculate on th&" and 7" head recursive calls and the first tail recursive call. A
generalized function that provides this behaviour is giveb5d.

Discussion We can see from these examples that the dynamic parallelizaehaviour
induced by MLS is not obvious, and that there are surely nmisgésting patterns to be
found. The key lesson here is that we cannot take ordinanyranes with call and re-
turn semantics, provide a set of parallelization operatibat significantly perturbs the
normal execution order, and expect to obtain dramatic padoce results, especially
if we do not understand the underlying behaviour. We can kiewese investigations
of sequential program behaviour under our stack model toelgeneralizations about
program structure and the correlation with performanceck thereof.

Method level speculation is a powerful system for autompécallelization, par-
ticularly when relatively arbitrary speculation choices aermitted. The challenge is
to restructure sequential code so that any inherent phsallean be fully exploited.
In general, parallel programming is an optimization, angstbannot be divorced from
knowledge of what different code structures imply for thatime system if perfor-
mance is to be maximed. Just as tail-recursion is favouregdguential programs for
its efficient conversion to iteration, so should other idgoim sequential programms be
favoured for their efficient conversion to parallel code.d@firse, the end goal is for a
compiler to remove this optimization burden from the progmaer wherever possible.

5 Reated Work

MLS is a form of thread level speculation (TLS), or specufatnultithreading (SpMT),
which has been relatively well-studied from a hardware pectve and has been a
subject of research for over a decade. Garzataal. reviewed and classified most of
the core TLS approaches [4]. A primary problem in TLS is degdwvhere to fork
speculative child tasks, with systems proposed that opetahe loop level [5], basic-
block level [6], and of course at the method level [3].

According to Chen & Olukotun [3], Oplingeegt al. were the first to propose the
concept of MLS in a limit study for C programs that sought teritify the maximum
amounts of loop and method level parallelism available Fdmmond, Willey, and

Olukotun later designed the Hydra chip multiprocessor foSThat included MLS
support [8]. Chen & Olukotun concurrently described a maalistic MLS system
for Java, which combined a modified version of the Kaffe JVM @il compiler run-
ning on the Hydra architecture [3]. They found encouragingants of speculative
parallelism in JIT-compiled code, and noticed that MLS calpssime loop level specu-
lation if loop bodies are extracted into method calls. Invpres work we developed an
interpreter-based MLS system for Java [1, 2], the designta¢ivSclatti later followed
to implement a partial MLS system for the HotSpot JVM bytezaderpreter [9].

MLS in general must balance overhead costs with potentiglllptism, and can
benefit from profile information to guide forking heuristjd9-12]. Return value pre-
diction can further assist MLS by allowing the method comdition to proceed past
consumption of the return value [13]; c.f. safe futures Whéce similar in many re-
spects but do not allow this [14]. A key consideration in dltfee work on TLS that
our approach here elides is the impact of speculative datardiences. We consider
the data dependence problem not unimportant but orthodgorla¢ one of how to cre-
ate efficient stack and thread interleavings. In general sthong isolation properties
assumed by speculative threads require some kind of triimsakcmemory (TM) sub-
system [15]. MLS and purely transactional approachesrdiffewever, in that under
MLS the speculative execution is not user-specified andtisnially unbounded.

Our effort to unify several MLS models is largely motivateg the difficulty in
comparing disparate proposals and in understanding tfierpemnce impact of design
choices. In-order speculation is usually supported inWward, while adding out-of-
order execution to a hardware system is complicated but bar brgued critical to
achieving good speculative performance [16]. On the otl@dhout-of-order specu-
lation is much simpler to support in software, and while nder speculation can sig-
nificantly increase the choice of fork points, it poses a ifiggmt memory allocation
problem. For most MLS studies, the lack of precise semant&sns that even though a
direct mapping to our model almost certainly exists, it cardifficult to nail down. As
an example, in their study of MLS fork heuristics for Java, éliand Kozyrakis claim
to allow speculative threads to create speculative threelish meets the definition of
in-order nesting [10]. However, all of their examples atijudemonstrate out-of-order
nesting. Similarly, Zhai describes stack management fecation [17], but does not
provide details on the complexities of entering and existaxk frames speculatively.

Our study also relates to continuation-based paralléizan other contexts. Non-
speculatively, Goldsteint al. provide an efficient implementation of parallel call that
uses a stack abstraction dual to the one presented herehittiglcead executes the
method and the parent thread executes the continuation®PiBir is a new language
that supports this abstraction [19]. Although parallel eals not designed to be spec-
ulative, the speculation rules of our system could nevitisebe translated straightfor-
wardly. In a functional context, Mattson, Jr. found thategative evaluation in Haskell
can be supported with low overhead [20]. Ennals and Peytoeslpresent a simi-
lar optimistic execution system that works together with thzy evaluation model in
Haskell [21]. They provide an operational semantics, butatanodel the stack explic-
itly nor use their semantics to visualize behaviour. HagriSingh later extended this
model to work with the Haskell thunk structure allocated jtimized programs [22].

6 Conclusionsand Future Work

Empirical studies of language implementation strategégsanly provide so much un-
derstanding. For a strategy such as MLS, there is obvioughjfeant performance
potential, but the results can be confusing and moreovezdiir system-specific per-
formance details. At some point, formalizing the model ardl@ing behaviour in
abstract terms can provide a fresh perspective.

In this work we developed a unified model of MLS that accountsthe major
design variations involved in building such a system. Thdividual sub-models run
from completely sequential to highly speculative, and estigely cover the core pat-
terns of behaviour encoded in the unified model. This modehigable purely from
a specification standpoint, facilitating system comprsfmn comparison, testing, and
implementation. Initial work suggests our model is alsdahle for a proof of MLS
correctness. Once obtained, showing equivalence witthr oth@inuation-based paral-
lelization systems can then be used to transfer proof sesOlir model finally lends
itself to rapid design prototyping of future extensions,iekthmight normally require
significant implementation effort to explore.

The other half of this work entails an exploration of MLS belbar using our model
as a tool for insight. We identified some key relationshipsvieen program structure,
choice of fork point, and resultant speculation behavitisome cases we labelled
them as good, bad, or inefficient in terms of exposing pdrsthe and in others we used
them to synthesize desirable higher level behaviours. & begeriments demonstrated
that all features of the speculation model are useful foatang parallelism, including
both in-order and out-of-order nesting, and that robustresl flexibility in an MLS
system are important. Our experience here is that accymatedicting how the parallel
state will evolve without actually trying scenarios outigovhelmingly impractical. In
the future, automated explorations of this nature may Yiatther insights. In general,
we found that MLS behaviour is fragile, but that if undergtdbcan be beneficially
controlled. We believe that maximizing parallelism wilguere a combination of pro-
grammer awareness, compiler transformation, profile médion, and judicious static
and/or dynamic forking decisions.

Finally, our visualization methods could be equally welpbgd to actual MLS
implementations, including our own Java-based SableSHM]] Our stack diagrams
are unique for their compactness, linear scalability, amif symbol density, lack of
overlapping lines, and relation to actual data structufé® state evolutions require
only a simple event trace along with unique thread and frataastifiers as inputs. This
avenue would be useful for empirical studies of real-worlogpams.

Acknowledgments

This research was supported by the IBM Toronto Centre forafsded Studies and the
Natural Sciences and Engineering Research Council of Gaigelwould like to thank
Sam Sanjabi for his insightful comments on an earlier drthis paper.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Pickett, C.J.F., Verbrugge, C.: SableSpMT: A software franmk\iar analysing speculative

multithreading in Java. In: PASTE’'05. (September 2005) 59-66

. Pickett, C.J.F., Verbrugge, C.: Software thread level speculfdioie Java language and

virtual machine environment. In: LCPC’05. Volume 4339 of LNCS. t@er 2005) 304-318

. Chen, M.K., Olukotun, K.: Exploiting method-level parallelism in sintfieeaded Java pro-

grams. In: PACT'98. (October 1998) 176-184

. Garzaan, M.J., Prvulovic, M., Llabéa, J.M., Vials, V., Rauchwerger, L., Torrellas, J.:

Tradeoffs in buffering speculative memory state for thread-levetsiation in multipro-
cessors. TACQ(3) (September 2005) 247-279

. Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The STAMP@pproach to thread-level

speculation. TOCZ3(3) (August 2005) 253-300

. Bhowmik, A., Franklin, M.: A general compiler framework for spéative multithreading.

In: SPAA, New York, NY, USA, ACM Press (August 2002) 99-108

. Oplinger, J.T., Heine, D.L., Lam, M.S.: In search of specugtiivead-level parallelism. In:

PACT’99. (October 1999) 303-313

. Hammond, L., Willey, M., Olukotun, K.: Data speculation supportfahip multiprocessor.

In: ASPLOS-VIII. (October 1998) 58-69

. Sclatti, G.: Hotspec - a speculative JVM. Master’s thesis, ETlfjch, Switzerland (January

2008)

Whaley, J., Kozyrakis, C.: Heuristics for profile-driven meth@gk| speculative paralleliza-
tion. In: ICPP’05. (June 2005) 147-156

Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., RenauJdrellas, J.: POSH: A TLS
compiler that exploits program structure. In: PPoPP’06. (March p068-167

Warg, F.: Techniques to Reduce Thread-Level Speculatiorh®adr PhD thesis, Dept. of
CSE, Chalmers U. of Tech.,d&borg, Sweden (May 2006)

Hu, S., Bhargava, R., John, L.K.: The role of return valuédipt®n in exploiting speculative
method-level parallelism. JILB (November 2003) 1-21

Welc, A., Jagannathan, S., Hosking, A.: Safe futures for. JavaOOPSLA05. (October
2005) 439-453

Larus, J.R., Rajwar, R.: Transactional Memory. Morgan & @tef (December 2006)
Renau, J., Tuck, J., Liu, W., Ceze, L., Strauss, K., TorrellasTasking with out-of-order
spawn in TLS chip multiprocessors: Microarchitecture and compilationld8’05. (June
2005) 179-188

Zhai, A.: Compiler optimization of value communication for thread{lspeculation. PhD
thesis, School of Computer Science, Carnegie Mellon University, PighbBA, USA (Jan-
uary 2005)

Goldstein, S.C., Schauser, K.E., Culler, D.E.: Lazy threadgtdmenting a fast parallel call.
JPDC37(1) (August 1996) 5-20

Anderson, T., Glew, N., Guo, P., Lewis, B.T., Liu, W., Liu, Petersen, L., Rajagopalan,
M., Stichnoth, J.M., Wu, G., Zhang, D.: Pillar: A parallel implementationgizage. In:
LCPC’07. Volume 5234 of LNCS. (October 2007) 141-155

Mattson, Jr., J.S.: An effective speculative evaluation techriagymrallel supercombinator
graph reduction. PhD thesis, University of California at San Diego,dl,JCalifornia,
USA (1993)

Ennals, R., Jones, S.P.: Optimistic evaluation: an adaptive evalsataiegy for non-strict
programs. In: ICFP’03. (August 2003) 287-298

Harris, T., Singh, S.: Feedback directed implicit parallelism. IFR©7. (October 2007)
251-264

