
McGill University

School of Computer Science

Sable Research Group

Adaptive Software Return Value Prediction

Sable Technical Report No. 2010-3

Christopher J.F. Pickett and Clark Verbrugge and Allan Kielstra
{cpicke,clump}@sable.mcgill.ca, kielstra@ca.ibm.com

April 21st, 2010

w w w . s a b l e . m c g i l l . c a

Adaptive Software Return Value Prediction

Abstract
Return value prediction (RVP) is a technique for guessing the return
value from a function before it actually completes, enabling a num-
ber of program optimizations and analyses. However, despite the
apparent usefulness, RVP and value prediction in general have seen
limited uptake in practice. Hardware proposals have been success-
ful in terms of speed and prediction accuracy, but the cost of dedi-
cated circuitry is high, the available memory for prediction is low,
and the flexibility is negligible. Software solutions are inherently
much more flexible, but can only achieve high accuracies in ex-
change for reduced speed and increased memory consumption. In
this work we first express many different existing prediction strate-
gies in a unification framework, using it as the basis for a software
implementation. We then explore an adaptive software RVP design
that relies on simple object-orientation in a hybrid predictor. It allo-
cates predictors on a per-callsite basis instead of globally, and frees
the resources associated with unused hybrid sub-predictors after an
initial warmup period. We find that these techniques dramatically
improve speed and reduce memory consumption while maintaining
high prediction accuracy.

1. Introduction
Return value prediction (RVP) is a runtime technique for guessing
the result of a function, method, or procedure call. It is a specific
case of value prediction in general, differentiated by the fact that
functions may take arguments, and also by the fact that as the core
building block of modularity, functions provide an extremely broad
range of behaviour.

Value prediction is typically investigated in a hardware context,
where the focus is on providing high accuracy with minimal cir-
cuit costs. Software designs are much less common, but can be
supported on existing and off-the-shelf machines. Previous work
in software value prediction has concentrated on mimicking hard-
ware designs in software. We believe that software value prediction
can be useful and is worth exploring in its own right, its relation-
ship to hardware value prediction being analogous to that between
software transactional memory and hardware transactional mem-
ory. In this work we seek to establish a software state of the art in
value prediction by providing a fast, accurate, and memory efficient
design and implementation for return value prediction.

The primary advantages of a software implementation are rela-
tively unbounded memory resources, cheap development costs, and
high level runtime information. A significant problem we encoun-
tered in reviewing the hardware literature was understanding ex-
actly how the existing predictors worked, and how they were related
to each other. To this end we developed a unification framework for
organizing the various predictors, and created straightforward soft-
ware implementations of them. We included both space-efficient
computational predictors and space-inefficient table-based predic-
tors in our design. We applied these predictors to standard Java
benchmarks to measure their return value predictability, as well as
the relative accuracy, speed, and memory consumption of individ-
ual predictor types.

We next needed a hybrid predictor design to bring together all
of the predictors in our framework. Figure 1 shows what a typ-
ical implementation of hybrid RVP in hardware might look like.
First to make a prediction, a callsite address is hashed to an en-
try in a primary hashtable. This entry contains the hybrid predic-
tor state, which includes prediction accuracies for individual sub-
predictors as well as stateful information they might need, such as a
history of return values. The hybrid then selects the best performing
sub-predictor to create a prediction. In-place sub-predictors com-

Figure 1. Hybrid prediction in hardware.

pute a value based directly on the state, whereas table-based sub-
predictors hash components of the state to a predicted value in a
secondary hashtable. On each prediction, even though only one
will be selected, all sub-predictors execute, which in hardware is
easily parallelized. When the function returns from the call, sub-
predictor correctness becomes known, and the hybrid state and all
corresponding table-based predictor entries get updated. The most
notable feature for our purposes is that due to hardware constraints,
all data structures are fixed-size global singletons.

Figure 2. Hybrid prediction in software (novel).

Our hybrid design exploits its software context to provide adap-
tivity, as shown in Figure 2. The first major kind of adaptivity is that
a single hybrid predictor instance is associated with each callsite,
which allows for scaling according to program size and client us-
age. Each hybrid has some private state, and each sub-predictor has
its own state as well. Importantly, there is no state sharing between
sub-predictors. On prediction and update, the hybrids execute and
update every sub-predictor. This design can be extended through
sub-classing, avoids conflicts, achieves high accuracy, and allows
for tables to grow as necessary. The primary disadvantages are that
serialized sub-predictor execution leads to high overhead costs and
that the memory consumption can be excessive. The second major
kind of adaptivity is an attempt to optimize away these costs. Af-
ter a warmup period, if the accuracy of an individual sub-predictor
meets a certain threshold, the hybrid specializes. This frees all other
predictor resources, such that prediction and update only access
the individual sub-predictor. If accuracy ever drops below a cer-
tain threshold, the hybrid despecializes. Thus we maintain accuracy
while reducing speed and memory overhead.

There are many potential applications for this technology. Re-
turn value prediction was originally conceived to support method
level speculation, which executes a function continuation specula-
tively and in parallel with the function call. RVP significantly im-
proves method level speculation performance in both hardware [11,
17, 30] and software [32] systems. Close to the original motiva-
tion of speculative execution, return value prediction could also
enhance “safe” futures [45, 46], a source level continuation-based
parallelization construct, by allowing for speculation past the con-
sumption of the return value. Aside from certain predictors that take
function arguments, there is nothing preventing our design from
also being used for more general load value prediction, which has
application to both software thread level speculation [29] and trans-
actional memory implementations [31].

More broadly, any instruction that produces a value can be con-
sidered a function, and so the technique is readily extended to non-
return values. A key analysis in JIT compilers is value profiling,
which enables method body specialization according to expected
values [10, 42]. Software (return) value prediction could be used
to generalize value profiling to support multiple concurrent pro-
files and hence multiple specializations of a method. A second use
of RVP-based profiling we are currently exploring is program un-
derstanding, where post-mortem analysis of specific predictor be-
haviours can provide insight into the run-time behaviour of indi-
vidual programs and functions. A third use of RVP-based profiling
is in software self-healing, which seeks to repair damage from net-
work attacks [25]. Apart from profiling and speculative execution,
value prediction can be used to prevent stalls due to memory laten-
cies, both in distributed and multi-core systems [23], and to sup-
port prefetching [1]. Finally, outside of programming languages,
our fast, accurate, and memory efficient software RVP design could
apply throughout the field of machine learning.

1.1 Contributions

We make the following specific contributions:1

• A unification framework for specifying and relating predictors to
each other based on the patterns they capture. This work clarifies
the extant literature, exposes the potential for new predictors,
and demonstrates how object-oriented composition can simplify
understanding and implementation.
• Several new sub-predictors, including a 2-delta last value pre-

dictor, a table-based memoization predictor that hashes together
function arguments, and memoization stride and memoization fi-
nite context method predictors derived from it.

• An adaptive software hybrid predictor composed of many sub-
predictors that dynamically specializes to whichever sub-predictor
performs best. Its object-oriented design and implementation en-
ables two unique optimizations. First, it allocates one hybrid
predictor instance per prediction point to eliminate conflicts and
improve accuracy. Second, it identifies ideal sub-predictors at
runtime and specializes at a prediction point granularity, bypass-
ing the execution of unused sub-predictors and actually freeing
their associated data structures. The end result is dramatic speed
and memory consumption improvements that do not sacrifice
high prediction accuracy.
• A software library implementation of return value prediction.

This library is open source, portable, modular, and supported by
unit tests. We use this library and its built-in profiling to obtain
a comprehensive set of speed, memory, and accuracy prediction
data for every method invocation over SPEC JVM98, a signifi-
cant improvement to existing data.

In the next section, we present our predictor unification frame-
work. Section 3 describes our experimental setup, and Section 4
provides an initial performance evaluation. We then develop and
apply our adaptive hybrid design in Section 5 to optimize these
results. Finally, Section 6 describes related work, followed by con-
clusions and future work.

1 Note to reviewers: This paper is a completely rewritten and greatly ex-
tended version of a prior workshop paper, which is attached as supplemental
material. We first refactored our JVM-based implementation into a software
library with much cleaner, object-oriented code. This included removing the
overlap between sub-predictor state, which in turn enabledour core hybrid
specialization optimization. The unification framework we present is com-
pletely new and much more comprehensive with respect to approaches in
the hardware value prediction literature, and it doubles the number of sub-
predictors under consideration from six to twelve. We also now provide
detailed speed, memory, and accuracy results for all predictors, as opposed
to just limited memory and accuracy results for a non-specializing näıve
hybrid and two table-based sub-predictors.

2. Predictor Unification Framework
A wide variety of value predictors have been proposed, making a
basic organization and evaluation essential to our study. In design-
ing a software solution, we abstracted the simplest implementation
approach for each predictor, and so discovered many commonali-
ties between predictors that are not immediately apparent in hard-
ware designs. Based on this exploration, we developed a unification
framework for value predictors to clarify their intended behaviour
and implementation and relate them to each other. This framework
also suggested several new predictors.

Tables 1–3 give a structured presentation of a variety of com-
mon predictors. These tables organize typical history-based pre-
dictor designs, extended predictors that also consume argument
state, and composite predictors that contain sub-predictors. In
each case we provide an idealized mathematical expression, an
example if appropriate, and the stateful data and pseudo-code
used to implement the actual predictor. The mathematical expres-
sions illustrate predictor behaviour by showing how the current
prediction (vn) is derived from a history of actual return values
(vn−1, vn−2, . . .), as well as current and past function arguments
(args(n), args(n− 1), . . .). Implementation details include fields
for actual state and pseudo-code insidepredict() andupdate()
functions that provide a common predictor interface.predict()
optionally takes function arguments and returns a new predicted
value, whileupdate() takes the actual return value and updates
internal predictor state. For brevity we use several non-standard
but self-explanatory functions in these descriptions. Our unifica-
tion framework does not include predictors that are unsuitable for
return value prediction, nor those that are substantially equivalent
to the ones presented here. However, extensions are straightfor-
ward, and our experience suggests that all predictors benefit from
expression in this form.

History-based predictors. Table 1 contains predictors based only
the history of return values for the associated function. We used
predictor names as reported in the literature, except for last N stride,
which is a local version of the global gDiff predictor [47]. On the
left of the table are predictors that derive their prediction from
the value history directly, whereas on the right are predictors that
use the differences or strides between values in the history. It is
useful to think of the stride predictors as derivatives of the value
based predictors; the word “differential” chosen by the creators of
the differential finite context method predictor is expressing this
relationship [16]. This organized division between primary and
derivative forms suggests a new 2-delta last value predictor here.
We used standard values ofN = 4 andC = 5 in our experimental
analysis of the last four predictors in this table.

Argument-based predictors.Return value prediction accuracy
can be improved by taking into account function inputs instead of
or as well as function outputs. Table 2 contains the predictors that
exploit this information, again separated in terms of normal and
derivative forms. In each of these cases thepredict() function
now receives the current function arguments as input. In our imple-
mentation we disable these predictors for methods that do not take
any arguments.

The memoization predictor is a new predictor that behaves like
the finite context method predictor but hashes together method ar-
guments instead of a recent history of return values. The predic-
tor name comes from the traditional functional programming tech-
nique known as memoization, alternatively function caching, that
“skips” pure function execution when the arguments match previ-
ously recorded table entries. A key difference from traditional ap-
proaches is that memoization based predictions can be incorrect.
This makes memoization applicable to all functions that take argu-
ments instead of only the smaller subset of pure, side-effect free
functions in a typical object-oriented program. The MS predictor is
a simple stride derivative, and MFCM incorporates value history.

Last Value [15] – LV

vn = vn−1

Predicts using the last value.
example:1, 2, 3→ 3
fields: last
predict():

return last;
update(value t rv):

last = rv;

Stride [15] – S

vn = vn−1 + (vn−1 − vn−2)
Predicts using the difference between the last two values.
example:1, 2, 3→ 4
fields: last, stride
predict():

return last + stride;
update(value t rv):

stride = rv - last;
last = rv;

2-Delta Last Value(new) – 2DLV

vn = vn−i, wherei is the mini s.t.
vn−i = vn−i−1

or vn−1 if no suchi exists
LV that only updates if the last value is the same twice in a row.
example:1, 1, 2, 3→ 1
fields: last1, last2
predict():

return last2;
update(value t rv):

if (rv != last1) last1 = rv;
else last2 = rv;

2-Delta Stride [39] – 2DS

vn = vn−1 + vn−i − vn−i−1, wherei is the mini s.t.
vn−i − vn−i−1 = vn−i−1 − vn−i−2

or vn−1 if no suchi exists
S that only updates if the stride is the same twice in a row.
example:1, 2, 3, 3→ 4
fields: last, stride1, stride2
predict():

return last + stride2;
update(value t rv):

if (rv - last != stride1) stride1 = rv - last;
else stride2 = rv - last;
last = rv;

Last N Value [7,22] – LNV

vn = vn−i, wherei ≤ N is the mini s.t.
vn−1 = vn−i−1

or vn−1 if no suchi exists
Predicts using the value at some position in the lastN values.
example:1, 2, 3, 1, 2, 3→ 1
fields: values[N], lastcorrectpos
predict():
return values[last correct pos];

update(value t rv):
last correct pos = contains (values, rv) ?

index of (rv, values) : 1;
shift into (values, rv);

Last N Stride [47] – LNS

vn = vn−1 + (vn−i − vn−i−1), wherei ≤ N is the mini s.t.
vn−1 − vn−2 = vn−i−1 − vn−i−2

or vn−1 − vn−2 if no suchi exists
Predicts using the stride at some position in the lastN strides.
example:1, 2, 4, 7, 8, 10, 13→ 14
fields: last, strides[N], lastcorrectpos
predict():

return last + strides[last correct pos];
update(value t rv):

last correct pos = contains (strides, rv - last) ?
index of (rv - last, strides) : 1;

shift into (values, rv - last);

Finite Context Method [38,39] – FCM

vn = vn−i, wherei is the mini s.t.
vn−c = vn−i−c, for all c ≤ C
or 0 if no suchi exists

Captures value history patterns of lengthC + 1.
example:1, 7, 2, 3, 8, 4, 7, 2→ 3 for C = 2
fields: key, context[C]
predict():

key = hash (context);
return lookup (key);

update(value t rv):
store (key, rv);
shift into (context, rv);

Differential Finite Context Method [16] – DFCM

vn = vn−1 + (vn−i − vn−i−1), wherei is the mini s.t.
vn−c − vn−c−1 = vn−i−c − vn−i−c−1, for all c ≤ C
or 0 if no suchi exists

Captures stride history patterns of lengthC + 1.
example:1, 6, 9, 11, 16, 19→ 21 for C = 2
fields: last, key, context[C]
predict():

key = hash (context);
return last + lookup (key);

update(value t rv):
store (key, rv);
shift into (context, rv - last);

Table 1. History-based predictors.Hashing and searching functions are not shown; theshift into function adds a new value to an array,
shifting all other elements down and removing the oldest element.

The parameter stride predictor identifies a constant difference
between the return value and one parameter, and uses this to com-
pute future predictions. A simple example of a function it captures
is one that converts lowercase ASCII character codes to alphabet
positions. Although the parameter stride predictor is in general sub-
sumed by the memoization predictor, parameter stride is simpler in
implementation, warms up very quickly, and requires only constant
storage.

Composite predictors. Table 3 contains predictors that are com-
posites of one or more sub-predictors. The hybrid predictor uses
the other predictors directly, returning a prediction by the best per-
forming sub-predictor over the last 64 return values, whereas com-

posite stride is in fact a generalized implementation pattern. Each
predictor on the right hand side of Table 1 as well as the memo-
ization stride predictor in Table 2, for instance, can be alternatively
constructed as a composite stride predictor containing the corre-
sponding predictor on the left hand side. In our implementation
we applied this pattern to implement all stride predictors, except
the parameter stride predictor which does not follow this pattern
because it predicts a constant difference between return value and
one parameter. This object-oriented simplification was only real-
ized once we expressed the predictors in this framework.

Memoization (new) – M

vn = vn−i, wherei is the mini s.t.
args(n) = args(n− i), or 0 if no suchi exists

Maps function arguments to return values.
example:f(1, 2, 3) = 4, f(4, 5, 6) = 7, f(1, 2, 3)→ 4
fields: key
predict(value t args[]):

key = hash (args);
return lookup (key);

update(value t rv):
store (key, rv);

Memoization Stride (new) – MS

vn = vn−1 + (vn−i − vn−i−1), wherei is the mini s.t.
args(n) = args(n− i), or 0 if no suchi exists

Maps function arguments to return value strides.
example:f(1, 2, 3) = 4, f(1, 2, 3) = 7, f(1, 2, 3)→ 10
fields: key, last
predict(value t args[]):

key = hash (args);
return last + lookup (key);

update(value t rv):
store (key, rv);
last = rv;

Memoization Finite Context Method (new) – MFCM

vn = vn−i, wherei is the mini s.t.
vn−C = vn−i−C , for all c ≤ C, and
args(n) = args(n− i), or 0 if no suchi exists

Maps function arguments× value history to return values.
example:f(1)=5, f(2)=6, f(3)=7,

f(3)=9, f(1)=5, f(5)=6, f(5)=8,
f(1)=5, f(2)=6, f(3)→ 7 for C = 2

fields: key, context[C]
predict(value t args[]):

key = hash (concat (args, context));
return lookup (key);

update(value t rv):
store (key, rv);
shift into (context, rv);

Parameter Stride [17] – PS

vn = args(n)[a] + (vn−i − args(n− i)[a]),
wherei is the mini s.t.
vn−i − args(n− i)[a] = vn−i−1 − args(n− i− 1)[a]
for some argument indexa, or 0 if no suchi exists

Identifies a constant offset between one parameter and the return value.
example:f(‘r’) = 17, f(‘v’) = 21, f(‘p’)→ 15
fields: a = A, old args[A], strides[A]
predict(value t args[]):

copy into (old args, args);
return a < A ? args[a] + strides[a] : 0;

update(value t rv):
for (i = A - 1; i >= 0; i--)
if (rv - old args[i] == strides[i]) a = i;
strides[i] = rv - old args[i];

Table 2. Argument-based predictors.A differential version of the memoization finite context method predictor would naturally follow from
our framework; instead we investigate the parameter stride predictor.

Hybrid [9] (new design) – H

vn = f(v1, . . . , vn−1, args(n)),
wheref is the best performing sub-predictor

Combines many different sub-predictors and identifies the best one.
fields: predictors[], accuracies[], predictions[]
predict(value t args[]):

for (p = 0; p < P; p++)
predictions[p] = predictors[p].predict (args);

return predictions[max index (accuracies)];
update(value t rv):

for (p = 0; p < P; p++)
predictors[p].update (rv);
accuracies[p] = (rv == predictions[p]) ?
min (accuracies[p] + 1, 64) :
max (accuracies[p] - 1, 0);

Composite Stride(new) – CS

sn−i = vn−i − vn−i−1, ∀ 2 ≤ i < n
sn−1 = f(s1, . . . , sn−2, args(n− 1)),

wheref is any sub-predictor
vn = vn−1 + sn−1

Creates a stride derivative of any other predictor.
fields: last, f
predict():

return last + f.predict ();
update(value t rv):

f.update (rv - last);
last = rv;

Table 3. Composite predictors.Our software hybrid design is new, but conceptually similar to hardware hybrid designs. The composite
stride predictor is a general implementation pattern for converting value predictions into stride predictions, rather than a specific predictor.

3. Experimental Setup
We modified a Java VM to communicate with an object-oriented
C software library implementation of every predictor described in
Section 2. This library is open source, portable, modular, and sup-
ported by unit tests that check for expected predicted behaviour. It
currently runs onx86 64 andppc64 architectures. It also includes
profiling support, which we used to generate the raw data for our
experimental results. At the library core is a map between physical
callsite addresses and callsite probe objects. Each probe contains a
hybrid predictor instance as well as callsite identification and pro-
filing information. When the Java VM client allocates a non-void
callsite during method preparation, it sends the callsite address,
class, method, program counter, and target method descriptor to
the library in exchange for a reference to a callsite probe object.
This reference is used for all subsequent communication to avoid
unnecessary table lookups.

We modified the VM to callpredict() andupdate() RVP
functions before and after non-void callsite execution respectively.

The former takes method arguments, including any implicitthis
reference, and returns a predicted value, whereas the latter takes
the actual return value and updates the predictors associated with
the callsite. In the event of escaping exceptions, no update occurs.
To minimize VM changes, the library parses arguments from the
VM call stack using the target descriptor, zeroing out unused bytes
and arranging the arguments contiguously in memory. Internally,
the hybrid and all sub-predictors subclass a predictor class with
update() andpredict() methods. This design allows for easy
composition and hybrid specialization, as described in Section 5.

Benchmarks. We used the SPEC JVM98 benchmarks with in-
put set S100 for experimental evaluation [41]. These benchmarks
are not as complex or memory-intensive as the more recent Da-
Capo benchmarks [2]. However, they are fast to execute, an impor-
tant factor in performing a large number of experiments, and more
than sufficient for a software RVP study as they use over 800 mil-
lion non-void method calls in the absence of method inlining. Our
choice of benchmark suite also directly extends previous work on

RVP for Java, which used the same benchmarks but alternatively
ran only the tiny S1 dataset in a restricted hardware context that
only considered boolean, int, and reference return types [17], ig-
nored specific predictor behaviour [40], or focused on client appli-
cation of the results [32].

benchmarkcomp db jack javac jess mpeg mtrt
methods 670 714 936 1.51K 1.15K 838 863
callsites 2.48K 2.79K 4.56K 7.20K 4.32K 2.94K 3.71K

invokes (V) 93.4M 54.4M 35.0M 39.9M 23.3M 45.2M 28.4M
invokes (NV) 133M 116M 62.9M 82.3M 102M 65.8M 259M
escapes (V) 0 0 608K 0 0 0 0
escapes (NV) 0 0 68 41.5K 0 0 0
returns (V) 93.4M 54.4M 34.4M 39.9M 23.3M 45.2M 28.4M
returns (NV) 133M 116M 62.9M 82.3M 102M 65.8M 259M
booleansZ 6.70K 11.1M 17.3M 19.5M 35.8M 13.2M 3.07M

bytesB 0 0 580K 39.3K 0 0 0
charsC 8.85K 25.2K 8.53M 3.80M 24.4K 6.96K 20.8K

shortsS 0 0 0 73.0K 0 18.0M 0
intsI 133M 48.1M 17.9M 35.9M 20.7M 34.6M 4.54M

longsJ 440 152K 1.23M 818K 100K 15.7K 2.07K
floatsF 102 704 296K 104 1.04K 7.82K 162M

doublesD 0 0 0 160 1.77M 56 214K
referencesR 17.0K 56.2M 17.0M 22.2M 43.5M 24.3K 89.6M

Table 4. Benchmark properties.V: void; NV: non-void; escapes:
escaping exceptions.

Table 4 presents relevant benchmark properties. The first sec-
tion shows the number of methods and callsites in the dynamic call
graph. In principle, we can associate predictors with methods, call-
sites, or the invocation edges that join them. We choose here to
use callsites exclusively, mostly to limit the scope of our evalua-
tion. Callsites seem like a reasonable choice because they capture
the calling context without being type sensitive. In future work, it
would be interesting to study how performance differs when meth-
ods or invocation edges are used instead.

The second section shows dynamic void and non-void invokes,
escapes, and returns. An invoke is a method call, a return is normal
method completion, and an escape is abnormal method termina-
tion due to an uncaught exception in the callee. We exclude void
method calls from our analysis because they do not return values,
but present them here for the sake of completeness. We make pre-
dictions on all non-void invokes, but only send updates on normal
returns, because for escapes there is no return value and control
does not return to the callsite. We thus report accuracy measures
over the total number of non-void returns. As the data show, escap-
ing exceptions are relatively rare, even for supposedly exception-
heavy benchmarks such asjack, which means they do not have a
large impact in any case.

The third section classifies non-void returns according to the
nine Java primitive types. Return type information is interesting be-
cause some types are inherently more predictable than other types,
suggesting specialization and compression strategies, and because
it describes behaviour to some extent. We see thatmtrt relies heav-
ily on float methods,mpegaudio uses a surprising number of meth-
ods returning shorts,compress returns almost exclusively ints, and
the remaining benchmarks use more or less equal mixes of int,
boolean, and reference calls.

4. Initial Performance Evaluation
We used our software library implementation of the predictors in
Section 2 to measure their accuracy, speed, and memory consump-
tion performance over our benchmark suite. Knowing the perfor-
mance characteristics of individual predictors can help when given
a constrained resource budget. We expect the more complex pre-
dictors to have better accuracy but with higher speed and mem-
ory costs. The näıve hybrid predictor we study here does not spe-
cialize, visiting every sub-predictor on each call topredict()
and update(). The next section contains a detailed exploration
of adaptivity.

It is important to keep in mind while considering these results
that a prediction is made for every single invocation in the program
and that there is no inlining. We chose this approach to gather the
most comprehensive set of data possible and to make our study gen-
erally useful, because different clients of RVP will invariably make
different decisions about where to predict. Individual callsite pre-
diction accuracies and overhead costs differ widely, which means
that disabling prediction selectively can significantly affect the re-
sults. The actual runtime speed and memory costs in any practical
scenario will scale with usage. This scaling effect is most notable
in mtrt, which incurs significantly more overhead than the other
benchmarks due to its high call density.

Accuracy. Figure 3 shows basic prediction accuracies for each
predictor and for each benchmark. Accuracy is calculated as the
number of correct predictions over the number of non-void calls
that returned to their callsite. The benchmarks are clustered in
alphabetical order and the predictors arranged in the order given by
Tables 1–3. For comparison we have included as the first predictor
a null predictor (N) that simply returns 0 for every prediction.

As expected, the hybrid beats individual predictor accuracies
for every benchmark because it allows sub-predictors to comple-
ment each other. Accuracy otherwise scales roughly with complex-
ity, at least for the non-memoization predictors. A basic last value
predictor significantly improves on a null predictor, is in turn im-
proved on by last N predictors, which themselves are overshadowed
by context-based designs. Interestingly the stride versions of non-
context predictors do not show significant differences from the last
value predictors, suggesting that extending the predictors to higher
level derivative forms does not necessarily improve accuracy. In-
cluding value history context has a significant impact. The finite
context method and its differential form have the highest individ-
ual predictor accuracies, and even memoization is noticeably im-
proved by adding value history. Argument based approaches are
not as successful as history based approaches in isolation, but as
we show later memoization can complement the FCM and DFCM
predictors nicely in a hybrid.

Interesting differences also show up in terms of benchmark be-
haviour.db, jack, javac, andjess respond well overall, with
even simple predictors reaching 40–60% accuracy levels.mtrt and
mpegaudio are more resilient to prediction, due to their use of
more irregular floating point types.compress improves dramati-
cally with table-based prediction, indicating longer term patterns
exist, even ifmpegaudio andcompress are naturally expected to
be less predictable since they handle compressed data.

Speed. Figure 4 shows slowdowns due to predictor overhead for
each predictor and for each benchmark. Slowdown is calculated as
predictor performance relative to a null predictor, factoring out any
overhead inherent in our experimental setup. The graph is struc-
tured similarly to Figure 3, although on a logarithmic scale. As
expected, predictor speeds vary with complexity, with the table-
based predictors being considerably slower than the fixed-space
predictors. The table-based predictors are expensive for two rea-
sons. First, hashing arguments or return value histories to table
lookup keys is an expensive operation. Second, the memory re-
quirements of the larger tables introduce performance penalties due
to memory hierarchy latencies. The naı̈ve hybrid is unsuprisingly
very slow, incurring the summed cost of all sub-predictors.

Memory consumption. The memory consumption of each pre-
dictor for each benchmark is shown in Table 5. The memory re-
quirements of the fixed-space predictors are calculated by sum-
ming the number of bytes used by each predictor and multiplying
by the number of callsites. The table-based predictor memory re-
quirements are calculated in the same manner for the fixed-space
fields, and then the actual final sizes of the hashtables at individ-
ual callsites upon program completion are used to calculate the
variable-sized fields. The main observation here is that the table-
based predictors can consume large amounts of memory, and that

0

20

40

60

80

100

ac
cu

ra
cy

 (
%

)

N LV S 2DLV 2DS LNV LNS FCM DFCM M MS MFCM PS H

comp
db
jack
javac
jess
mpeg
mtrt

Figure 3. Predictor accuracies for a null predictor (N) and all predictors in Tables1–3.

1

1.5
2

3

5

7

sl
ow

do
w

n

LV S 2DLV 2DS LNV LNS FCM DFCM M MS MFCM PS H

comp
db
jack
javac
jess
mpeg
mtrt

Figure 4. Predictor slowdowns.

predictor comp db jack javac jess mpeg mtrt
N 4.67K 5.23K 10.5K 20.9K 10.1K 6.08K 11.0K

LV 9.34K 10.5K 21.0K 41.7K 20.2K 12.2K 21.9K
S 18.7K 20.9K 42.0K 83.4K 40.4K 24.3K 43.9K

2DLV 14.0K 15.7K 31.5K 62.6K 30.3K 18.2K 32.9K
2DS 23.4K 26.1K 52.5K 104K 50.5K 30.4K 54.8K
LNV 23.9K 26.8K 53.8K 107K 51.7K 31.2K 56.2K
LNS 33.3K 37.2K 74.8K 149K 71.9K 43.3K 78.2K
FCM 625M 0.97G 50.7M 205M 14.6M 1.61G 2.97G

DFCM 673M 784M 7.26M 197M 10.1M 1.60G 3.31G
M 6.81M 99M 7.75M 1.51M 4.03M 25.4M 7.19M

MS 6.82M 99M 7.77M 1.55M 4.05M 25.5M 7.21M
MFCM 31.1M 893M 16.6M 4.79M 13.4M 1.72G 80.6M

PS 12.4K 13.8K 29.5K 59.6K 26.9K 16.2K 28.0K
H 1.31G 2.80G 90.9M 411M 47.1M 4.98G 6.37G

Table 5. Predictor memory consumption.

this effect is compounded in the hybrid that has five table-based
sub-predictors at each callsite. These data confirm that memory la-
tencies are likely to contribute to predictor slowdowns for table-
based prediction.

The data in Table 5 and Figures 3 and 4 assume hashtable sizes
are unbounded, and so the tables grow as necessary to accommo-
date new values. This is obviously unrealistic, but if the sizes are
bounded then new values overwrite old values once the maximum
size is reached, which reduces overall accuracy if the old value is
ever requested. Predictor accuracy as a function of maximum table
size is thus shown in Figure 8. Here maximum table sizes are varied
from 20 to 225 entries, one power of 2 larger than the largest size
any predictor was observed to expand to naturally, and accuracy
examined for each table predictor and benchmark combination. In
general, accuracy increases as table size increases, although only up
to a point. After this point accuracy remains mostly constant, indi-
cating no further impact from collisions, and in some cases may ac-
tually decrease due to the absence of lucky collisions that returned
a correct value at smaller sizes.

Figure 8 also indicates that individual predictors can have com-
plex interactions in a hybrid. For a given benchmark and table size,
individual predictors often have noticeably different performance:
memoization (stride) may work well in some instances whereas
the (differential) finite context method works well in others. Inter-
estingly, although the context predictors usually have the highest
accuracies, the predictor complementation provided by the hybrid
predictor can be seen in the shapes of the curves for individual

benchmarks. The hybrid behaviour forcompress, jack, javac,
andjess, for example, combines the better accuracy of M(S) de-
signs at low table sizes with the higher accuracy of (D)FCM at
higher sizes.

5. Hybrid Adaptivity
The näıve hybrid design in Table 3 achieves very high accuracy.
However, its speed suffers because it employs twelve different sub-
predictors in series to make and update predictions, and its mem-
ory consumption suffers because it retains the memory for large
table-based predictors even if they are never selected for prediction.
We would like to maintain this high accuracy while optimizing for
speed and memory consumption. We do this by specializing indi-
vidual hybrid instances to particular sub-predictors and releasing
the resources required by the other unused sub-predictors. This op-
timization relies on an important hypothesis:for a given callsite,
there is likely to be an ideal sub-predictor.

We first tested this hypothesis with an offline profiling based
experiment to identify ideal sub-predictors on a per-callsite basis.
The ideal sub-predictor for a callsite is simply the one that per-
formed best over the entire course of execution. If a subsequent
run in which the hybrid immediately specializes to these predic-
tors matches the accuracy of the naı̈ve version, then it indicates
that ideal sub-predictors are likely to exist. The performance of this
offline hybrid can then provide an oracle for online optimization.

Offline specialization. We first ran each benchmark to comple-
tion using the näıve predictor, and processed the results to create a
profile for offline specialization. Figure 9 shows the distribution
of ideal predictors for each benchmark in terms of dynamically
reached callsites and the number of dynamic calls. At the callsite
level, most ideal predictors are null or last value predictors. In this
analysis, cold callsites with one call are weighted equally with hot
callsites that have 50 million calls, and they tend to specialize to
simple predictors. Most of these cold callsites are found in initial-
ization code, and there is simply no chance for sufficient history
to develop such that the more complex predictors outperform the
simple ones.

At the level of actual calls, the simple predictors still work well
in many cases, particularly for methods returning constants or ac-
cessing static data structures. However, hot callsites tend to benefit
from complex table-predictors predictors, indicating an important
role for them in maximizing accuracy. This reconfirms the result in

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24

ac
cu

ra
cy

 (
%

)

maximum per-callsite table size (bits)

compress
db

jack
javac

jess
mpegaudio

mtrt

Figure 5. Differential finite context method (DFCM)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24

ac
cu

ra
cy

 (
%

)

maximum per-callsite table size (bits)

compress
db

jack
javac

jess
mpegaudio

mtrt

Figure 6. Memoization stride (MS)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24

ac
cu

ra
cy

 (
%

)

maximum per-callsite table size (bits)

compress
db

jack
javac

jess
mpegaudio

mtrt

Figure 7. Hybrid (H)

Figure 8. Predictor accuracy vs. maximum table size (Figures 5–
7). Results for the FCM, M, and MFCM predictors are omitted for
space reasons. They generally perform worse than DFCM and MS.

0

20

40

60

80

100

pr
ed

ic
to

r
sp

ec
ia

liz
at

io
n

(%
)

comp
db

jack
javac

jess
mpeg

mtrt comp
db

jack
javac

jess
mpeg

mtrt

callsites calls

N

LV

S

2DLV

2DS

LNV

LNS

FCM

DFCM

M

MS

MFCM

PS

Figure 9. Ideal predictor distributions.

Figure 7, where a low cap on table size in the hybrid predictor can
suppress accuracy significantly.mpegaudio provides a notable ex-
ception to the dominance of table predictors. It decodes an mp3 file,
and so its return values are mostly random. It has very low overall
predictability, and when there is repetition it is generally found in
the last few values, meaning that simple predictors dominate.

Online specialization. We next attempted to determine ideal sub-
predictors dynamically, without ahead-of-time profiling data. On-
line adaptivity is critical in dynamic compilation environments,
where ahead-of-time techniques are not well accepted in practice.
In this case online specialization can also accommodate callsites
that exhibit phase-like behaviour, where the ideal sub-predictor is
not constant throughout the program run.

There are three basic parameters we considered in constructing
our online specializing hybrid. The first is a warmup period,w. The
hybrid predictor will not specialize untilu ≥ w, whereu is the
number of predictor updates. The second is a confidence threshold
for specialization,s. For the number of correct predictionsc over
the lastn calls, if c ≥ s ∧ u ≥ w then the hybrid specializes to the
best performing sub-predictor, favouring cheaper predictors in the
event of ties. We use a value ofn = 64, the number of bits in a word
on our machines. The third parameter is a confidence threshold for
despecialization,d. If c < d and the hybrid has already specialized,
then it will despecialize again. We did not experiment with resetting
the warmup period upon despecialization, although this could be a
useful extension.

We performed a parameter sweep overw, s, d according to
Figure 10. This generated 360 different experiments. For each,
the average accuracy and slowdown were computed. The average
accuracies were rounded to the nearest integer, and the minimum
running time for each accuracy identified. These results are shown
in Figure 11.

From these data, we selected the point at accuracy 67% with
slowdown of 1.35x for use in future experiments. This choice is
5% worse than the optimal accuracy at 72% with slowdown of
2.40x. At this point,{W, S, D} = {3, 2, 0}, which corresponds to
a warmup ofw = 512 returns, specialization threshold ofs = 16
correct predictions (25% accuracy), and a despecialization thresh-
old of d = 0, meaning no despecialization will occur. The cheapest
configuration of{−1, 0, 0} is equivalent to the null predictor and
only achieves an accuracy of 12%.

The data point at accuracy 61% with slowdown 1.74x also
stands out. The corresponding configuration,{−1, 8, 0}, means
that w = 0, s = 64, andd = 0. This predictor has no warmup,
nor does it despecialize, and it is quite slow. It was selected by
the optimization for that data point for two reasons. First, its high

specialization threshold did ultimately result in some good sub-
predictor choices. Second, there were only three configurations
to choose from at that accuracy level, because the distribution of
experiments is not even along the x-axis and most experiments
cluster in the upper accuracy range. Interestingly, in all but the top
three most accurate and slowest cases,d = 0. We conclude that
although slight accuracy benefits from despecialization may exist,
they come with sharply increasing costs.

Performance comparisons. We finally compared the behaviour
of our offline and online adaptive hybrids with the naı̈ve non-
adapative hybrid. We show predictor accuracies, slowdowns, and
memory consumption for all three in Figures 12 and 13 and Ta-
ble 14 respectively. We used a maximum table size of 225 entries in
these experiments to prevent memory constraints from interfering
with accuracy results.

In terms of accuracy, we expected the naı̈ve hybrid to act as an
oracle with respect to the offline hybrid, behaving like the online
hybrid but configured with an infinite warmup period. The data in
Figure 12 show that offline specialization is quite effective, usually
within a few percent of the naı̈ve version. In some cases the accu-
racy is actually slightly better, because the constant availability of
all predictors in the näıve version can lead to suboptimal choices.
The close match between offline and naı̈ve accuracies indicates two
things. First, ideal sub-predictors do in fact exist for the vast major-
ity of callsites. Second, for these benchmarks, significant program
phases are either rare or non-critical with respect to adaptive RVP
performance, because the offline hybrid uses a fixed set of sub-
predictors over the entire program run.

Accuracy is not significantly compromised in the online hy-
brid, and is within 5–10% of offline accuracy for most benchmarks.
However,compress performs significantly less well than the oth-
ers. Investigation revealed that this difference is due to differences
in the chosen sub-predictors for a few callsites, in particular the
getbyte()I call in Compress.compress() which gets executed
over 47 million times. Here the offline hybrid chooses a DFCM
predictor with79% accuracy, whereas the online hybrid special-
izes too early, selecting a null predictor that results in less than
10% accuracy overall. We could potentially remedy this problem
by performing a more refined parameter sweep overcompress.

Predictor slowdowns are dramatically reduced by both offline
and online hybrids, as shown in Figure 13. Online is actually better
than offline for most benchmarks, because the offline hybrid tends
to choose accurate but expensive table-based predictors, while sub-
optimal specialization in the online hybrid favours predictors with
less state and thus less warmup. This effect can also be seen in
the memory consumption data in Table 14. Both offline and online
hybrids greatly reduce memory requirements, and in the case of
offline mpeg by over 24 times. Online memory usage tends to be
even smaller, withdb providing an extreme example where the
online hybrid is orders of magnitude cheaper. The bottom half of
Table 14 shows the further memory reductions that straightforward
elimination of wasteful memory use in our system would provide.

6. Related Work
Return value prediction is a kind of value prediction, a technique
which has been researched for well over a decade, primarily in
the context of novel hardware designs. A wide variety of value
predictors have been proposed and examined, including simple
computational predictors, more complex table-based predictors,
machine learning based predictors, and hybrid implementations.
Our work here extends existing investigations of RVP in a Java
context [11, 17, 32, 40] with practical explorations of accuracy,
speed, and memory consumption in an adaptive, dynamic software-
only environment, and our unification framework brings together
many known value predictors that are suitable for RVP.

Burtscheret al. provide a good overview of basic value pre-
diction techniques [6]. As a general rule, accommodating more

for W ← −1 to 6 do
for S ← 0 to 8 do

for D ← 0 to S do
if W = −1 then w ← 0 elsew ← 23W

s← 8S
d← 8D
measure (w, s, d)

Figure 10. Online hybrid parameter sweep configuration.

 1

 2

 3

 4

12 52 54 55 56 57 59 60 61 62 63 64 65 66 67 68 69 70 71 72

sl
ow

do
w

n

average accuracy (%)

-1,8,0

3,2,0

Figure 11. Online hybrid parameter sweep.

0

20

40

60

80

100

ac
cu

ra
cy

 (
%

)

comp db jack javac jess mpeg mtrt

naive
offline
online

Figure 12. Näıve vs. offline vs. online accuracies.

1

1.5
2

3

5

7

sl
ow

do
w

n

comp db jack javac jess mpeg mtrt

naive
offline
online

Figure 13. Näıve vs. offline vs. online slowdowns.

predictor comp db jack javac jess mpeg mtrt
näıve 1.31G 2.80G 91.0M 412M 47.2M 4.98G 6.37G

offline 484M 771M 5.83M 190M 6.11M 206M 417M
online 197M 1.89M 5.56M 40.9M 5.23M 252M 252M

no logs 131M 1.41M 3.97M 27.6M 3.75M 168M 168M
32-bit keys 99M 1.22M 3.27M 21.1M 3.10M 127M 126M

type info 65.9M 1.00M 2.46M 14.5M 2.66M 84.7M 85.1M
perfectZ 65.9M 0.98M 2.42M 14.4M 2.63M 84.6M 85.1M

Figure 14. Näıve vs. offline vs. online memory consumption.The
four additional rows indicate the cumulative memory consumption
benefits due to removing a backing log from hash tables, using 32-
bit table keys instead of 64-bit keys, using VM knowledge about
type widths, and using perfect hashing for booleans in the context-
based predictors. Perfect boolean hashing means that an order-5
context-based predictor only requires 5 bytes, 1 byte to hold the
5-bit context and 4 bytes to hold the 25 = 32 possible values.

patterns and using more historical information can improve pre-
diction accuracy, and generalizations of simple predictors, such
as lastN value prediction, have been studied by a number of
groups [7,22,44]. LastN value prediction allows for short, repeti-
tive sequences to be captured, and can yield good results; Burtscher
and Zorn, for example, show a space-efficient last4 value predictor
can outperform other more complex designs [7]. Zhouet al. later
provided the gDiff predictor, which is a global version of our lastN
stride predictor. Most predictors can be further improved by incor-
porating statistical measures such as formal confidence estimates,
although this does add extra complexity [4].

Gabbay introduced the stride predictor and last value predictor,
as well as several more specialized predictors, such as the sign-
exponent-fraction (SEF) and register-file predictors [15]. Special-
ized predictor designs provide further ways to exploit value pre-
diction where more general approaches work poorly. The SEF pre-
dictor, for instance, predicts the sign, exponent, and fraction parts
of a floating point number separately. Although the sign and expo-
nent are often highly predictable, the fraction is not, which usually
results in poor prediction accuracy for floating point data. Tullsen
and Seng extended Gabbay’s register-file predictor to a more gen-
eral register value predictor. It predicts whether the value to be
loaded by an instruction into a register is already present in that
register [43]. It may be worth considering a stack top predictor that
is simply a register value predictor specialized for return values.

Pointer-specific prediction is also possible, an example being
the address-value delta (AVD) prediction introduced by Mutluet
al. that predicts whether the difference between an address and the
value at that address for a given pointer load instruction is sta-
ble [28]. Marcuelloet al., propose an increment-based value pre-
dictor [27] for value prediction within a speculative multithreading
architecture. This predictor is like the 2-delta stride load value pre-
dictor, but is further differentiated by computing the storage loca-
tion value stride between two different instruction address contexts.

Sazeides and Smith examine the predictability of data values
produced by different instructions. They consider hardware imple-
mentations of last value, stride, and context predictors, showing
the limits of predicability and the relative performance of context
and computational predictors [39]. Subsequent work considers the
practical impact of hardware resource (table size) constraints on
predictability [38]. Goemanet al. proposed thedifferential finite
context method predictor [16] as a way of further improving predic-
tion accuracy. Burtscher later suggested an improved DFCM index
or hash function that makes better use of the table structures [5].
We use Jenkins’ fast hash to compute hash values because it is ap-
propriate for software [19].

Hybrid designs allow predictors to be combined, complement-
ing and in some cases reinforcing the behaviour of individual sub-
predictors. Wang and Franklin show that a hybrid value predictor
achieves higher accuracy than its component sub-predictors in iso-
lation [44]. The interaction of sub-predictors can be complex, and
Burtscher and Zorn show that resource sharing as well as the im-
pact of how the hybrid selects the best sub-predictor can signifi-
cantly affect performance [9]. Designs have thus been proposed to
reduce hybrid storage requirements [8], and to use selection mech-
anisms that reduce inappropriate bias, such as cycling between sub-
predictors [36], or the use of improved confidence estimators [18].
Sam and Burtscher argue that complex value predictors are not al-
ways necessary in optimal hybrid designs that maximize the effi-
ciency of client applications [35].

Software value prediction, while less common, has also been in-
vestigated, usually in conjunction with a hardware design. For in-
stance, Liet al.,use static program analysis to identify value depen-
dencies that may affect speculative execution of loop bodies, and
apply selective profiling to monitor the behaviour of these variables
at runtime [20]. The resulting profile is used to customize predictor
code generation for an optimized, subsequent execution [13, 21].
Liu et al. incorporated software value prediction in their POSH

compiler for speculative multithreading and found a beneficial im-
pact on performance [24]. The predictors are similar to those used
by Li et al. [20], and handle return values, loop induction vari-
ables, and some loop variables. Hybrid approaches have also been
proposed, combining software with simplified hardware compo-
nents in order to reduce hardware costs [3, 14]. Performance can
also be improved through software analysis, for example by stat-
ically estimating predictability [6]. Quiñoneset al. developed the
Mitosis compiler for speculative multithreading that relies on pre-
computation slices for child threads, predicting thread inputs in
software but performing the speculation in hardware [33].

Return value prediction is a basic component of method level
speculation (MLS), and even simple last value and stride predictors
have a large impact on speculative performance [11, 30]. Huet al.
introduced the parameter stride predictor in a hardware study that
made a strong case for the importance of return value prediction in
MLS [17]. Pickett and Verbrugge provided a software implemen-
tation of MLS that showed RVP had a beneficial impact on perfor-
mance in a relative sense, but contributed to overall system slow-
downs in an absolute sense [32]. Theoretical limits on RVP have
also been considered: Singer and Brown applied information theory
to analyse the predictability of return values in Java, independent of
any specific predictor design [40]. Finally, several of our new pre-
dictor designs are based on memoization, particularly suitable for
RVP. Memoization is obviously a well known technique, and has
been used for both compiler and runtime optimizations [12].

Type information is another vector for optimizing performance.
Sato and Arita show that data value widths can be exploited to
reduce predictor size; by focusing on only smaller bit-width val-
ues accuracy is preserved at less cost [37]. Loh demonstrates both
memory and power savings by using data width information [26],
although the hardware context requires heuristic discovery of high
level type knowledge. Sam and Burtscher later show that hard-
ware type information can be efficiently used to reduce predictor
size [34]. They also demonstrate that more complex and hence
more accurate predictors have a worse energy-performance trade-
off than simpler predictors and are thus unlikely to be implemented
in hardware [35].

7. Conclusions and Future Work
The ideal choice of return value predictor varies widely, depending
on dynamic benchmark and callsite properties. A flexible, software-
based design for RVP thus has many advantages, permitting a wide
variety of arbitrarily complex predictors and an adaptive mecha-
nism for optimizing their application. The latter is especially impor-
tant for software implementations, where a naı̈ve design imposes
memory and speed overheads that can easily outweigh any derived
benefit. We found that using a variety of callsite-bound predictors
that include complex, table-based predictors can result in very high
accuracy. Our online adaptive hybrid is effective at maintaining this
accuracy while reducing overhead costs to reasonable levels. It does
so by identifying and specializing to ideal sub-predictors, which
we found do generally exist at the callsite level. If the total run-
time overhead of ubiquitous RVP in this study remains a concern,
applications can easily tailor their usage to reduce it.

Our software-only focus played an important role in this work.
The search for a simple hierarchical design led to the high level
specialization optimization in our adaptive hybrid predictor, which
suggests that clean design and object-orientation stand to benefit
software analogues of hardware components in general. We found
that after many years of research, history-based prediction studies
covered the design space rather well, missing only the 2 delta last
value predictor. This suggests that early attempts to formalize the
design of runtime components may be beneficial. For example,
our composite stride pattern makes it easy to create stride based
derivatives of any predictor. Our software context allowed us to
consider a large number of sub-predictors at low cost, and we
found that they all had application at different points. Memoization

is particularly effective when applied to RVP, and complements
existing predictors nicely in a hybrid.

For future work, we outlined the many potential applications
of RVP in the introduction. With respect to performance, accuracy
could be improved by identifying hot but unpredictable callsites
and designing new predictors to accommodate them. Attaching
predictors to methods and invocation edges instead of callsites may
alternatively improve accuracy or reduce overhead. Various static
analyses and program transformations to support prediction are
also possible, building on previous work in this area [6]. Finally,
generalized software value prediction using our framework may
benefit from several predictors not suitable for return values.

In terms of implementation, a mixture of software and hardware
support may be appropriate [3]. Our design could certainly accom-
modate hardware versions of specific sub-predictors when avail-
able. Furthermore, a general purpose hardware hash function could
improve the performance of table-based predictors, and have broad
applicability outside of value prediction. Finally, we think that a JIT
compiler integration of RVP which weaves predictors into the gen-
erated code may be worthwhile. We are particularly interested in
the impact of JIT compiler method inlining on predictor behaviour.

References
[1] Enhancing memory-level parallelism via recovery-free value predic-

tion. TC, 54(7):897–912, July 2005. Huiyang Zhou and Thomas M.
Conte.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java benchmarking de-
velopment and analysis. InOOPSLA’06, pages 169–190, Oct. 2006.

[3] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi. Predictor virtu-
alization. InASPLOS XIII, pages 157–167, Mar. 2008.

[4] M. Burtscher.Improving Context-Based Load Value Prediction. PhD
thesis, Department of Computer Science, University of Colorado at
Boulder, Boulder, Colorado, USA, Apr. 2000.

[5] M. Burtscher. An improved index function for (D)FCM predictors.
Comp. Arch. News, 30(3):19–24, June 2002.

[6] M. Burtscher, A. Diwan, and M. Hauswirth. Static load classifica-
tion for improving the value predictability of data-cache misses. In
PLDI’02, pages 222–233, June 2002.

[7] M. Burtscher and B. G. Zorn. Exploring last n value prediction. In
PACT’99, pages 66–77, Oct. 1999.

[8] M. Burtscher and B. G. Zorn. Hybridizing and coalescing load value
predictors. InICCD’00, pages 81–92, Sept. 2000.

[9] M. Burtscher and B. G. Zorn. Hybrid load-value predictors. TC,
51(7):759–774, July 2002.

[10] B. Calder, P. Feller, and A. Eustace. Value profiling. InMICRO 30,
pages 259–269, Dec. 1997.

[11] M. K. Chen and K. Olukotun. Exploiting method-level parallelism
in single-threaded Java programs. InPACT’98, pages 176–184, Oct.
1998.

[12] Y. Ding and Z. Li. A compiler scheme for reusing intermediate
computation results. InCGO’04, page 279. IEEE Computer Society,
Mar. 2004.

[13] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai. A
cost-driven compilation framework for speculative parallelization of
sequential programs. InPLDI’04, pages 71–81, June 2004.

[14] C.-Y. Fu.Compiler-Driven Value Speculation Scheduling. PhD thesis,
Department of Electrical and Computer Engineering, North Carolina
State University, Raleigh, North Carolina, USA, May 2001.

[15] F. Gabbay. Speculative execution based on value prediction. Techni-
cal Report 1080, Electrical Engineering Department, Technion – Is-
rael Institute of Technology, Haifa, Israel, Nov. 1996.

[16] B. Goeman, H. Vandierendonck, and K. de Bosschere. Differential
FCM: Increasing value prediction accuracy by improving table usage
efficiency. InHPCA’01, pages 207–216, Jan. 2001.

[17] S. Hu, R. Bhargava, and L. K. John. The role of return value prediction
in exploiting speculative method-level parallelism.JILP, 5:1–21,
Nov. 2003.

[18] S. J. Jackson and M. Burtscher. Self optimizing finite state machines
for confidence estimators. InWISA’06, Feb. 2006.

[19] B. Jenkins. A hash function for hash table lookup.Dr. Dobb’s Journal,
Sept. 1997.

[20] X.-F. Li, Z.-H. Du, Q. Zhao, , and T.-F. Ngai. Software value predic-
tion for speculative parallel threaded computations. InVPW1, pages
18–25, San Diego, CA, June 2003.

[21] X.-F. Li, C. Yang, Z.-H. Du, and T.-F. Ngai. Exploiting thread-level
speculative parallelism with software value prediction. In ACSAC’05,
volume 3740 ofLNCS, pages 367–388, Oct. 2005.

[22] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value
prediction. InMICRO 29, pages 226–237, Dec. 1996.

[23] S. Liu and J.-L. Gaudiot. Potential impact of value prediction on
communication in many-core architectures.TC, 58(6):759–769, June
2009.

[24] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, andJ. Tor-
rellas. POSH: A TLS compiler that exploits program structure. In
PPoPP’06, pages 158–167, Mar. 2006.

[25] M. E. Locasto, A. Stavrou, G. F. Cretu, A. D. Keromytis, and S. J.
Stolfo. Return value predictability profiles for self-healing. In
IWSEC’08, volume 5312 ofLNCS, pages 152–166, Nov. 2008.

[26] G. H. Loh. Width-partitioned load value predictors.JILP, 5:1–23,
Nov. 2003.

[27] P. Marcuello, A. Gonźalez, and J. Tubella. Thread partitioning and
value prediction for exploiting speculative thread-levelparallelism.
TC, 53(2):114–125, Feb. 2004.

[28] O. Mutlu, H. Kim, and Y. N. Patt. Address-value delta (AVD) pre-
diction: A hardware technique for efficiently parallelizing dependent
cache misses.TC, 55(12):1491–1508, Dec. 2006.

[29] C. E. Oancea and A. Mycroft. Software thread-level speculation: an
optimistic library implementation. InIWMSE’08, pages 23–32, May
2008.

[30] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of speculative
thread-level parallelism. InPACT’99, pages 303–313, Oct. 1999.

[31] S. M. Pant and G. T. Byrd. Extending concurrency of transactional
memory programs by using value prediction. InCF’09, pages 11–20,
May 2009.

[32] C. J. F. Pickett and C. Verbrugge. SableSpMT: A softwareframework
for analysing speculative multithreading in Java. InPASTE’05, pages
59–66, Sept. 2005.

[33] C. G. Quĩnones, C. Madriles, J. Sánchez, P. Marcuello, A. González,
and D. M. Tullsen. Mitosis compiler: an infrastructure for speculative
threading based on pre-computation slices. InPLDI’05, pages 269–
279, June 2005.

[34] N. B. Sam and M. Burtscher. Exploiting type information in load-
value predictors. InVPW2, pages 32–39, Oct. 2004.

[35] N. B. Sam and M. Burtscher. Complex load-value predictors: Why
we need not bother. InWDDD’05:, pages 16–24, June 2005.

[36] N. B. Sam and M. Burtscher. Improving memory system performance
with energy-efficient value speculation.CAN, 33(4):121–127, Sept.
2005.

[37] T. Sato and I. Arita. Table size reduction for data valuepredictors
by exploiting narrow width values. InICS’00, pages 196–205, May
2000.

[38] Y. Sazeides and J. E. Smith. Implementations of context-based value
predictors. Technical Report TR ECE-97-8, U. Wisconsin–Madison,
Dec. 1997.

[39] Y. Sazeides and J. E. Smith. The predictability of data values. In
MICRO 30, pages 248–258, Dec. 1997.

[40] J. Singer and G. Brown. Return value prediction meets information
theory. InQAPL’06, volume 164 ofENTCS, pages 137–151, Oct.
2006.

[41] Standard Performance Evaluation Corporation. SPEC JVMClient98
benchmark suite, June 1998.http://www.spec.org/jvm98/.

[42] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani.
A dynamic optimization framework for a Java just-in-time compiler.
In OOPSLA’01, pages 180–195, Oct. 2001.

[43] D. M. Tullsen and J. S. Seng. Storageless value prediction using prior
register values. InISCA’99, pages 270–279, May 1999.

[44] K. Wang and M. Franklin. Highly accurate data value prediction using
hybrid predictors. InMICRO 30, pages 281–290, Dec. 1997.

[45] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In
OOPSLA’05, pages 439–453, Oct. 2005.

[46] L. Zhang, C. Krintz, and P. Nagpurkar. Language and virtual machine
support for efficient fine-grained futures in Java. InPACT’07, pages
130–139, Sept. 2007.

[47] H. Zhou, J. Flanagan, and T. M. Conte. Detecting global stride locality
in value streams. InISCA’03, pages 324–335, June 2003.

