
McGill University
School of Computer Science

Sable Research Group

Staged Static Techniques to Efficiently Implement Array Cop y
Semantics in a MATLAB JIT Compiler

Sable Technical Report No. sable-2010-05

Nurudeen Lameed and Laurie Hendren

July 16, 2010

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

2 Background 4

3 Problem and Overview of Our Approach 6

4 Quick Check 7

5 Necessary Copy Analysis 9

5.1 Simple Example . 11

5.2 if-else Statement . 12

5.3 Loops . 12

5.3.1 Context Recognition . 12

5.3.2 Context Sensitivity . 13

6 Copy Placement Analysis 14

6.1 Copy Placement Analysis Details . 14

6.1.1 Statement Sequence . 15

6.1.2 if-else Statements . 16

6.1.3 Loops . 17

6.2 Using the Analyses . 17

7 Name Resolution 20

8 Experimental Results 20

8.1 Dynamic Counts of Array Updates and Copies . 21

8.2 The Overheads of Dynamic Checks . 22

8.3 Impact of our Analyses . 23

9 Related Work 25

10 Conclusions and Future Work 26

1

List of Figures

1 Overview of McLab (shaded boxes correspond to analyses presented in this paper) . 5

2 Amount of bytes copied by the benchmarks under the three options. 24

List of Tables

I Forward Analysis result for example1 . 11

II Flow sets for the first four iterations of the analysis for example2 13

III Context sensitive flow sets for the first three iterations of the analysis for example2. . 14

IV Necessary Copy Analysis Result for test3 . 18

V Copy Placement Analysis Result for test3 . 18

VI Forward Analysis Result for tridisolve . 19

VII Backward Analysis Result for tridisolve . 19

VIII . 22

IX Overheads of Dynamic Checks. 23

X Benchmarks against the total execution times in seconds 25

2

Abstract

Matlab has gained widespread acceptance among engineers and scientists. Several aspects
of the language such as dynamic loading and typing, safe updates, and copy semantics for
arrays contribute to its appeal, but at the same time provide many challenges to the compiler
and virtual machine. One such problem, minimizing the number of copies and copy checks
for Matlab programs has not received much attention. Existing Matlab systems rely on
reference-counting schemes to create copies only when a shared array representation is updated.
This reduces array copies, but increases the number of runtime checks. In addition, this sort of
reference-counted approach does not work in a garbage-collected system.

In this paper we present a staged static analysis approach that does not require reference
counts, thus enabling a garbage-collected virtual machine. Our approach eliminates both un-
needed array copies and does not require runtime checks. The first stage combines two simple,
yet fast, intraprocedural analyses to eliminate unnecessary copies. The second stage is com-
prised of two analyses that together determine whether a copy should be performed before an
array is updated: the first, necessary copy analysis, is a forward flow analysis and determines
the program points where array copies are required while the second, copy placement analysis,
is a backward analysis that finds the optimal points to place copies, which also guarantee safe
array updates.

We have implemented our approach in the McVM JIT, which is part of a garbage-collected
virtual machine for Matlab. Our results demonstrate that there are significant overheads for
both existing reference-counted and naive copy-insertion approaches. We also show that our
staged approach is effective. In some cases the first stage is sufficient, but in many cases the
second stage is required. Overall, our approach required no dynamic checks and successfully
eliminated all unnecessary copies, for our benchmark set.

1 Introduction

Matlab�1 is a popular programming language for scientists and engineers. It was designed for
sophisticated matrix and vector operations, which are common in scientific applications. It is
also a dynamic language with a simple syntax that is familiar to most engineers and scientists.
However, being a dynamic language, Matlab presents significant compilation challenges. The
problem addressed in this paper is the efficient compilation of the array copy semantics defined
by the Matlab language. The basic semantics and types in Matlab are very simple. Every
variable is assumed to be an array (scalars are defined as 1x1 arrays) and copy semantics is used
for assignments of one array to another array and for parameter passing. Thus a statement of the
form a = b or a call of the form foo(b) semantically means that a copy of b is made and that copy
is assigned to either the lhs of the assignment statement or to the parameter of the function.

In the current implementations of Matlab the copy semantics is implemented lazily using a
reference-count approach. The copies are not made at the time of the assignment, rather an
array is shared until an update on an array occurs. At update time (for example a statement of
the form b(i) = x), if the array being updated (in this case b) is shared, a copy is generated, and
then the update is performed on that copy. We have verified that this is the approach that Octave
open-source system takes (by examining and instrumenting the source code). We have inferred
that this approach (or a small variation) is what the Mathworks’ closed-source implementation
does based on the user-level documentation[27, p. 9-2].

1http://www.mathworks.com/products/pfo/

3

Although the reference-counting approach reduces unneeded copies at runtime, it introduces many
redundant checks, requires space for the reference counts, and requires extra code to update the
reference counts. Furthermore, this reference-counting approach does not work in the context of a
garbage-collected VM, such as the recently developed McVM, a specializing JIT[10, 11].

Thus, our challenge was to develop a static analysis approach, suitable for a JIT compiler, which
could determine which copies were required, without requiring reference counts and without the
expense of dynamic checks. Since we are in the context of a JIT compiler, we developed a staged
approach. The first phase applies very simple and inexpensive analyses to determine the obvious
cases where copies can be avoided. The second phase tackles the harder cases, using a pair of
more sophisticated static analyses: a forward analysis to locate all places where an array update
requires a copy (necessary copy analysis) and then a backward analysis that moves the copies to
the best location and which may eliminate redundant copies (copy placement analysis). We have
implemented our analyses in the McJIT compiler.

To demonstrate the applicability of our approach, we have performed several experiments to: (1)
demonstrate the behaviour of the reference-counting approaches, (2) to measure the overhead as-
sociated with the dynamic checks in the reference-counting approach, and (3) demonstrate the
effectiveness of our static analysis approach. Our results show that actual needed copies are in-
frequent even though the number of dynamic checks can be quite large. We also show that these
redundant checks do contribute significant overheads. Finally, we show that our static approach
finds the minimal number of copies required, without introducing any dynamic checks.

The paper is organized as follows. Section 2 describes the McLab project and where the work
presented in this paper fits into that project, and Section 3 gives an overview of the problem
and our general approach. Section 4 describes the simple first-stage analyses, and Section 5 and
Section 6 describe the second-stage forward and the backward analyses, with examples. In Section 7,
we briefly discuss how the forward analysis resolves conflicting names. Section 8 discuses the
experimental results of our approach; we give some related work in Section 9 and Section 10
concludes the paper.

2 Background

The work presented in this paper is a key component of our McLab system[3]. McLab provides an
extensible set of compilation, analysis and execution tools built around the core Matlab language.
One goal of the McLab project is to provide an open-source set of tools for the programming lan-
guage and compiler community so that researchers (including our group) can develop new domain-
specific language extensions and new compiler optimizations. A second goal is to provide these
new languages and compilers to scientists and engineers to both provide languages more tailored
to their needs and also better performance.

The McLab framework is outlined in Figure 1, with the shaded boxes indicating the components
presented in this paper. The framework comprises of an extensible front-end, a high-level analysis
and transformation engine and three backends. Currently there is support for the core Matlab

language and also a complete extension supporting AspectMatlab[6, 7].2 The front-end and the
extensions are built using our group’s extensible lexer, Metalexer[9] and JastAdd[14, 2]. There are
three backends: McFor, a FORTRAN code generator[20]; a Matlab generator (to use McLab as

2We use AspectMatlab to for some dynamic measurements in Section 8.

4

a source-to-source compiler); and McVM, a virtual machine that includes a simple interpreter and
a sophisticated type-specialization-based JIT compiler, which generates LLVM[19] code.

Generation

Domain−Specific LanguagesAspectMatlab Matlab

Extension
Extension

McLab Framework

McLab IR

Matlab Generator

Fortran

Matlab

McFor

Converter

Matlab−to−Fortran

McVM

High−level analyses and transformations

Matlab
Frontend

McJIT

Analyses and
Specialization

QuickCheck

Necessary Copy

Analyses
& Copy Placement

LLVM Code

Figure 1: Overview of McLab (shaded boxes correspond to analyses presented in this paper)

The techniques presented in this paper are part of McJIT, the JIT compiler for McVM. McJIT
is built upon LLVM, the Boehm garbage collector[8], and several numerical libraries[5, 30]. For
the purposes of this paper, it is important to realize that McJIT specializes code based on the
function argument types that occur at runtime. When a function is called the VM checks to see
if it already has a compiled version corresponding to the current argument types. If it does not,
it applies a sequence of analyses including live variable analysis, type inference and array bounds
check elimination. Finally, it generates LLVM code for this version.

When generating code McJIT assumes reference semantics, and not copy semantics for assignments
between arrays and parameter passing. That is, arrays are dealt with as pointers and only the
pointers are copied. Clearly this does not match the copy semantics specified for Matlab and thus
the need for the two shaded boxes in Figure 1 in order to determine where copies are required and
the best location for the copies. These two analysis stages are the core of the techniques presented
in this paper.

It is also important to note that the specialization and type inference in McJIT means that variables
that certainly have scalar types will be stored in LLVM registers and thus the copy analyses only
need to consider the remaining variables.

5

3 Problem and Overview of Our Approach

To properly understand our analyses, we first need to clearly define the problem. As we indicated in
the introduction, all variables in Matlab are assumed to be arrays. Array assignments and array
parameter passing assume copy semantics. Assignment statements in the Matlab programming
language have different forms, for example:

a = zeros(10); (1)

b = a; (2)

c = myfunc(a, b); (3)

A naive implementation of the copy semantics for statements 1 - 3 above would involve making a
copy at every assignment statement. Thus, in statement 1, the object (a 10 x 10 matrix) allocated
by the function zeros would be copied into the variable a. The Matlab language defines a number
of memory allocation functions similar to zeros. In statement 2, the array a would be copied into
the variable b. In statement 3, the arguments a and b in the call to the function myfunc would be
copied into their corresponding parameters of the function; the return value of myfunc would also
copied into the variable c.

With this naive strategy a copy must be generated when: (1) a variable is defined from an existing
object; (2) a parameter is passed from one function to another; and (3) a value is returned from a
function. Obviously, this is inefficient. A more advanced implementation can detect opportunities to
convert copy-by-value to copy-by-reference, and similarly, convert call-by-value to call-by-reference.

Copy-by-reference or call-by-reference enables sharing of objects or data blocks. Octave[1] — an
open source implementation of the Matlab programming language — uses a copy and call by
reference strategy and lazily makes a copy before array writes, where necessary, to guarantee copy-
by-value and call-by-value semantics. It implements reference counting to determine when copies
should be generated. This involves performing a runtime check before each array update. We believe
that Matlab uses a similar strategy. In fact, the MathWorks’ documentation [27] is consistent
with our position. Using this approach ensures that copies are made when needed. Unfortunately
however, this strategy alone does not prevent the runtime system from generating unneeded copies.
For example, consider the following code written in the Matlab programming language.

1: function test1()
2: a =
rand(15000);
3: b = a;
4:
5: a = [1:10]
6: disp(a(1:5));
7: disp(b(1:5));
8: end

1: function test2()
2: a =
rand(15000);
3: b = a;
4: b(1) = 10;
5: a = [1:10];
6: disp(a(1:5));
7: disp(b(1:5));
8: end

The difference between test1 and test2 is in line 4 where a copy of the 15000 x 15000 matrix is
made before the array element at index 1 is updated. The copying of the array referenced by both
a and b before the update in line 4, is a useless operation since a is dead after line 4. This suggests

6

that a liveness analysis is needed to complement reference counting in determining when a copy
should be generated.

Our approach differs from both the naive approach and the lazy copy-via-reference-counting ap-
proach. McVM uses garbage collection instead of a reference counter-based memory manager.
Thus, we have no need for reference counts, and instead we implement the lazy copying via a
staged static analysis.

The first phase of our analysis implements a simple analysis to determine when parameters are
never written and a standard copy elimination technique. The second phase is more complex, it
computes an abstraction of the sharing of arrays and then at every array write it determines if the
array being written to is referenced by any other live variable. If so, then that assignment requires
a copy. However, in our approach the copy statement is not immediately inserted, as there may be
a better placement for the copy. We use a second analysis to determine the best places to insert
the copy statements.

Our approach does not require the the space and time overheads associated with reference counting,
it does not require dynamic checks at each array update, and it enables the use of a garbage-collected
VM. Our approach will be successful if the analysis does not insert many spurious copies. As we
will see in Section 8, on our benchmarks we inserted the minimal number of copies and avoided the
frequent checks required by the reference-counting strategies.

In the next section we introduce the first stage of our approach which is the QuickCheck. Following
that we introduce the second stage — the necessary copy and copy placement analyses. Remember
that because of the type inference and specialization supported by McJIT, these analyses only need
to consider the variables that are “real” arrays, and it does not have to consider variables that
must be scalars.

4 Quick Check

The QuickCheck phase (QC) is a combination of two simple but effective analyses. The first, written
parameters analysis is a forward analysis and determines the parameters that may be modified by
a function. The intuition is that during a call of the function, the arguments passed to it from the
caller need to be copied to the corresponding formal parameters of the function only if the function
may modify the parameters. Read-only arguments do not need to be copied.

The analysis computes a set of pairs, where each pair represents a parameter and the assignment
statement that last defines the parameter. For example, the entry (p1, d1) indicates that the last
definition point for the parameter p1 is the statement d1. The analysis begins with a set of initial
definition pairs, one pair for each parameter declaration. The analysis also builds a copy list, a list of
parameters which must be copied, which initialized to the empty list. The analysis is a forward flow
analysis, using union as the merge operator. The key flow equations are for assignment statements
of two forms:

p = rhs If the left-hand side (lhs) of the assignment statement is a parameter p, then this state-
ment is redefining p, so all other definitions of p are killed and this new definition of p is
generated. Note that according to the Matlab copy semantics, such a statement is not cre-
ating an alias between p and rhs, but rather p is a new copy. Any subsequent writes to p will
write to this new copy.

7

p(i) = rhs If the lhs is an array index expression (i.e. the assignment statement is writing to an
element of p), and the array symbol p is a parameter, it checks if the initial definition of the
parameter reaches the current assignment statement and if so, it inserts the parameter into
the copy list. Otherwise, it skips the statement.

At the end of the analysis, the copy list contains all the parameters that must be copied before
executing the body of the function.

The second analysis performed by QC is copy replacement, a standard sort of copy propagation/e-
limination algorithm which is similar to the approach used by an APL compiler [29]. This analysis
determines when a copy variable can be replaced by the original variable (copy propagation). If
all the uses of a copy variable can be replaced by the original variable then the copy statement
defining the copy can be removed after replacing all the uses of the copy with the original (copy
elimination). To illustrate this point, consider the following equivalent code snippets. The variable
b in statement 3 of Box 1

Box 1:
1: a =
rand(15000);
2: b = a;
3: c = 2*b

Box 2:
1: a =
rand(15000);
2: b = a;
3: c = 2*a;

can be replaced with a as done in Box 2; since b is not referenced after statement 3, statement 2 in
Box 2 can be removed by the dead-code optimizer.

The copy replacement analysis computes a set of pairs of variables by examining assignment state-
ments of the form b = a. A pair represents the lhs and rhs of an assignment statement, and
indicates that if a successor of the statement uses the first member of the pair then the variable
used could be replaced with the second member of the pair. For example, if the pair, (b, a) reaches
the statement c = 2*b then b could be replaced with a in the statement.

Like the written parameters analysis, it is a forward flow analysis. However, in this case the merge
function is intersection. The key flow equations for copy replacement analysis are:

b = a if both the lhs and the rhs are variables, a new pair of variables, that is, (b, a) is generated
at the statement.

lhs = rhs if lhs is a member of a pair that reaches the statement, such pairs are killed at the
statement. This is because the statement is redefining lhs and its new value may no longer
match that of the other member of the pairs.

At the end of the analysis, the analyzed function is transformed using the result of the analysis.

If all copies can be eliminated with the QuickCheck, then there is no need to apply a more sophis-
ticated analysis. However, if copies do remain, then phase 2 is applied, as outlined in the next two
sections.

8

5 Necessary Copy Analysis

The necessary copy analysis is a forward analysis that collects information that is used to determine
whether a copy should be generated before an array is modified. To simplify our description of the
analysis, we consider only simple assignment statements of the form lhs = rhs. It is straightforward
to show that our analysis works for both single assignments (one lhs variable) and multiple assign-
ment statements (multiple lhs variables). The analysis is implemented as a structured flow analysis
on the AST intermediate representation used by McJIT. We describe the analysis by defining the
following components.

Domain: the domain of the analysis’ flow facts is the set of pairs comprising of an array reference
variable and the ID of the statement that allocates the memory for the array; henceforth called
allocators. We write (a, s) if a references the array allocated at the statement s.

Problem Definition: at the program point p, a variable references a shared array if the number
of variables that reference the array is greater than one. An array update via an array reference
variable requires a copy if the variable may reference a shared array at p and at least one of the
other variables that reference the same array is live after p.

Flow Function: out(Si) = gen(Si) ∪ (in(Si) − kill(Si)); gen(Si) and kill(Si) are respectively the
set of flow facts generated and killed by the statement Si.
Given the assignment statements of the forms:

Si : a = alloc (4)

Si : a = b (5)

Si : a(j) = x (6)

Si : a = f(arg1, arg2, ..., argn) (7)

where Si denotes a statement ID; alloc is a new memory allocation performed by statement Si
3, a, b

are array reference variables; x is a scalar; f is a function, arg1, arg2, ..., argn denote the arguments
passed to the function and the corresponding formal parameters are denoted with p1, p2, ..., pn.

We partition in(Si) using allocators and the partition containing flow entries with the allocator m

is:

Qi(m) = {(x, y)|(x, y) ∈ in(Si) ∧ y = m} (8)

Now consider statements of type 5 above; if the variable b has a reaching definition at Si then there
must exist some (b,m) ∈ in(Si) and there exists a non-empty Qi(m)((b,m) ∈ Qi(m)).

In addition, if b may reference a shared array at Si then |Qi(m)| > 1. Let us call the set of all such
Qi(m)s, Pi. We write Pi(a) if in(Si) is partitioned based on the allocators of the flow entries with
the variable a. Considering statements of the form 6, Pi(a) 6= ∅ implies that a copy of a must be
generated before executing Si and in that case, Si is a copy generator. This means that after this
statement a will point to a fresh copy and no other variable will refer to this copy.

3Functions such as zeros, ones, rand and magic are memory allocators in Matlab.

9

We are now ready to construct a table of gen and kill sets for the four assignment statement kinds
above. To simply the table, we define

Killdefine = {(a, s)|(a, s) ∈ in(Si)}
Killdead = {(c, s)|(c, s) ∈ in(Si) ∧ not live(Si, c)}
Killupdate = {(a, s)|(a, s) ∈ in(Si) ∧ Pi(a) 6= ∅}

Stmt Gen set Kill set

(4) {(a, Si)|live(Si, a)} Killdefine ∪ Killdead

(5) {(a, s)|(b, s) ∈
in(Si) ∧
live(Si, a)}

Killdefine ∪ Killdead

(6) {(a, Si)|Pi(a) 6= ∅} Killupdate ∪ Killdead

(7) see gen(f) below Killdefine ∪ Killdead

Computing the gen set for a function call is not straightforward. Certain built-in functions allocate
memory blocks for arrays; such functions are categorized as alloc functions. A question that arises
is: does the return value of the called function reference the same shared array as a parameter of
the function? If the return value references the same array as a parameter of the function then this
sharing must be made explicit in the caller, after the function call statement. Therefore, the gen
set for a function call is defined as:

gen(f) =

{(a, Si)|live(Si, a)},
if isAllocFunction(f)

{(a, s)|(argj , s) ∈ in(Si) ∧ live(Si, a)},
if ret(f) = pj(f)

{(a, s)|arg ∈ args(f)
∧(arg, s) ∈ in(Si) ∧ live(Si, a)},

otherwise

The first alternative generates a flow entry (a, Si) if the rhs is an alloc function and the lhs, a is
live after the statement Si; this makes statement Si an allocator. In the second alternative, the
analysis requests for the result of the necessary copy analysis on the function f from an analysis
manager. The manager caches the result of the previous analysis on a given function. This is only
updated if McJIT triggers a recompilation because the types of the arguments to the function have
changed. From the result of the analysis on f , we determine the return variables of f that are
aliases to the parameters of f and consequently aliases to the arguments of f . This is explained
in detail under initialization. The return variable of f corresponds to the lhs, a in statement type
7. Therefore we generate flow entries from the entries of the arguments that the return variable
may reference according to the summary information of f and provided that a is also live after Si.
The third alternative is conservative: flow entries are generated from all the flow entries of all the
arguments to the function f . This is can happen if the call of f is a recursive call or f cannot be
analyzed because it is neither a user-defined function nor an alloc function.

Initialization: The input set for a function is initialized with a flow entry for each parameter and
an additional flow entry (a shadow entry) for each parameter is also inserted. This is necessary in
order to determine which of the parameters (if any) a return variable references. At the entry to a

10

function, the input set is given as in(entry) =
{(p, Sp)|p ∈ Params(f)} ∪ {(p′, Sp)|p ∈ Params(f)} We illustrate this scheme with an example.
Given a function f , defined as:

1 function [u, v] = f(x, y)
2 u = x;
3 d = y;
4 v = d;
5 end

the in set at the entry of f is {(x, Sx), (x′, Sx), (y, Sy), (y
′, Sy)} and at the end of the function, the

out set is
{(u, Sx), (x′, Sx), (v, Sy), (y

′, Sy)}. We now know that u is an alias for the parameter x and v is an
alias for y. We encode this as a vector of sets of integers, [{0}, {1}]. The elements of the vector
correspond to the output parameters of the function in the order in which they appear in the
function definition. Each set of integers for an output parameter represents the input parameters
that the output parameter may reference in the function body. This is useful during a call of f .
For instance, in [c, d] = f(a, b); we can determine that c is an alias for the argument a and
similarly, d is an alias for b by inspecting the summary information generated for f .

5.1 Simple Example

Let us illustrate how the analysis works with the following simple example.

1 function example1()
2 a = rand(15000);
3 b = a;
4 b(1) = 10;
5 a = [1:10];
6 disp(a (1:5));
7 disp(b (1:5));
8 end

Table I shows the flow information at each statement of the function, including the gen, kill, in and
out sets. The statement number is shown in the first column of the table.

Gen set Kill set In set Out set

2 {(a, S2)} ∅ ∅ {(a, S2)}
3 {(b, S2) {(a, S2)} {(a, S2)} {(b, S2)}
4 ∅ ∅ {(b, S2)} {(b, S2)}
5 {(a, S5) ∅ {(b, S2)} {(b, S2), (a, S5)}

Table I: Forward Analysis result for example1

The analysis begins by initializing in(S2) to ∅ since the function does not have any parameters.
The assignment statement S2 is an allocator because the function rand is an alloc function. Table I
shows that despite the assignment in line 3, no copies should be generated before the assignment
in line 4. This is because the variable a defined in line 2 is no longer live after line 3 hence, S4 is
not a copy generator according to our definition.

11

5.2 if-else Statement

So far we have been considering sequences of statements. Analyzing an if-else statement requires
that we analyze all the alternative blocks and merge the result at the end of the if-else statement.
We duplicate the in set reaching the if-else statement and pass a copy to each of the alternative
blocks; each block is analyzed as a sequence of statements. We merge the result using the merge
operator (∪) after we have analyzed all the blocks of the if-else statement.

Let blocks denotes the set of all the alternative blocks of an if-else statement. The out set leaving
the if-else statement is given as

out(if-else) =
⋃

alternative∈blocksout(alternative)

5.3 Loops

Computing the input set entering a loop requires merging flow sets coming from two different paths:
one from the entry and another from the loop back-edge until a fixed point is reached. This on its
own right does not present significant problems. However, when a copy statement occurs in a loop,
it becomes necessary to distinguish between the sharing of arrays that are initiated outside the loop
from those initiated within the loop, and also to distinguish those that are initiated in different
iterations of the loop, otherwise, unneeded copies may be generated. For example, consider the
following function:

function example2()
1: a = [1:2:30];
2: b = [2:2:30];

i = 1;
while (i < 15)

3: a(i) = 5;
4: b = a;
5: a(i+1) = 0;

i = i + 1;
end
disp(a);
disp(b);

end

Table II shows the first four iterations of the analysis for example2 above. A fixed point is reached
in the fourth iteration. After the first iteration, the result of the merge of out(S5) with out(S2)
suggests that a and b may reference the same array (allocated at statement S1) at the statement
S3. But at the end of the first iteration and just before the beginning of the second iteration a

definitely references the array ‘allocated’ at statement S5. Observe from the table that P3(a) and
P5(a) are non-empty. This suggests that two copies are needed when actually only one copy, at S5,
is all that is required. The merge has introduced a spurious copy at statement S3!

5.3.1 Context Recognition

We resolved the foregoing problem by identifying the context in which an array sharing has been
created. First we recognize two contexts: the main sequence and the loop to distinguish the

12

flow entries generated before a loop from those generated within the loop. We assign two unique
identifiers to these contexts. Furthermore, we recognize an additional context named cyclic context
to distinguish the entries generated in the current iteration of a loop from those generated in the
previous iterations of the same loop. All contexts have unique identifiers.

5.3.2 Context Sensitivity

We introduce a new field named flow context to the flow entry object to ensure that an entry bears
the context in which it is generated. When a flow entry is generated by an allocator — an array
definition statement — the identifier of the current flow context is assigned to the entry. This could
either be the context id of the main sequence or a loop’s context id. Flow entries are generated for
the left-hand side of a copy statement from the entries associated with the right-hand side of the
statement. Therefore if the flow entries for the right-hand side are generated in the same context
as the copy statement, the entries for the left-hand side have the same context ID as those of
the right-hand side. However, if the copy statement occurs within a loop and the entries for the
right-hand side are generated before the loop, we create a copy of each entry associated with the
right-hand side and assign the loop’s flow context id to the copies. We then generate flow entries
for the left-hand side from the new flow entries (copies) associated with the right-hand side.

If an array update statement is a copy generator, a new flow entry is generated with its flow context
set to the id of the current context. However, if the input flow set reaching the statement contains
a flow entry whose allocator is the same as the current array update statement, a cycle is detected,
and all such flow entries are replaced with new entries having their flow context id set to the loop’s
cyclic context id. To determine if a statement Si is a copy generator, we match flow entries based
on the pairs comprising of an allocator and a context number. Therefore Equation 8 becomes

Qi(m, c) = {(x, y, z)|(x, y, z) ∈ in(Si) ∧ (y, z) = (m, c)} (9)

that is, in(Si) is now partitioned based on the pairs of an allocator (m in Equation 9) and a context
id (c in Equation 9).

An analysis of a loop begins with the first statement of the loop. At the beginning of every iteration
of the loop, the output set at the end of the previous iteration is merged with the input set at the
beginning of the same iteration to form the current input flow set. The output flow set from the
main sequence is the input flow set at the beginning of the first iteration. This is the same as the
output flow set at the end of the zeroth iteration of the loop.

iteration 1 iteration 2 iteration 3 iteration 4

in(S1) {} {} {} {}
out(S1) {(a, S1)} {(a, S1)} {(a, S1)} {(a, S1)}
in(S2) {(a, S1)} {(a, S1)} {(a, S1)} {(a, S1)}
out(S2) {(a, S1), (b, S2)} {(a, S1), (b, S2)} {(a, S1), (b, S2)} {(a, S1), (b, S2)}
in(S3) {(a, S1), (b, S2)} {(a, S5), (a, S1), (b, S1), (b, S2)} {(a, S1), (b, S2), (a, S5), (b, S1), (b, S3)} {(a, S1), (b, S2), (a, S5), (b, S1), (b, S3)}
out(S3) {(a, S1), (b, S2)} {(a, S3), (b, S1), (b, S2)} {(a, S3), (b, S1), (b, S2), (b, S3)} {(a, S3), (b, S1), (b, S2), (b, S3)}
in(S4) {(a, S1), (b, S2)} {(a, S3), (b, S1), (b, S2)} {(a, S3), (b, S1), (b, S2), (b, S3)} {(a, S3), (b, S1), (b, S2), (b, S3)}
out(S4) {(a, S1), (b, S1)} {(a, S3), (b, S3)} {(a, S3), (b, S3)} {(a, S3), (b, S3)}
in(S5) {(a, S1), (b, S1)} {(a, S3), (b, S3)} {(a, S3), (b, S3)} {(a, S3), (b, S3)}
out(S5) {(a, S5), (b, S1)} {(a, S5), (b, S3)} {(a, S5), (b, S3)} {(a, S5), (b, S3)}

Table II: Flow sets for the first four iterations of the analysis for example2

In a loop, an array copy statement that occurs after an array update statement may have an impact
on the behaviour of the array update statement in the iteration following the one in which the array
copy statement has been executed. For this reason, the minimum number of iterations required

13

iteration 1 iteration 2 iteration 3

in(S1) {} {} {}
out(S1) {(a, S1, α)} {(a, S1, α)} {(a, S1, α)}
in(S2) {(a, S1, α)} {(a, S1, α)} {(a, S1, α)}
out(S2) {(a, S1, α), (b, S2, α)} {(a, S1, α), (b, S2, α)} {(a, S1, α), (b, S2, α)}
in(S3) {(a, S1, α), (b, S2, α)} {(a, S1, α), (b, S2, α), (a, S5, β), (b, S1, β)} {(a, S1, α), (b, S2, α), (a, S5, β), (b, S1, β), (b, S5, θ)}
out(S3) {(a, S1, α), (b, S2, α)} {(a, S1, α), (b, S2, α), (a, S5, β), (b, S1, β)} {(a, S1, α), (b, S2, α), (a, S5, β), (b, S1, β), (b, S5, θ)}
in(S4) {(a, S1, α), (b, S2, α)} {(a, S1, α), (b, S2, α), (a, S5, β), (b, S1, β)} {(a, S1, α), (b, S2, α), (a, S5, β), (b, S1, β), (b, S5, θ)}
out(S4) {(a, S1, α), (a, S1, β), (b, S1, β)} {(a, S1, α), (a, S1, β), (a, S5, β), (b, S1, β), (b, S5, β)} {(a, S1, α), (a, S1, β), (a, S5, β), (b, S1, β), (b, S5, β)}
in(S5) {(a, S1, α), (a, S1, β), (b, S1, β)} {(a, S1, α), (a, S1, β), (a, S5, β), (b, S1, β), (b, S5, β)} {(a, S1, α), (a, S1, β), (a, S5, β), (b, S1, β), (b, S5, β)}
out(S5) {(a, S5, β), (b, S1, β)} {(a, S5, β), (b, S1, β), (b, S5, θ)} {(a, S5, β), (b, S1, β), (b, S5, θ)}

Table III: Context sensitive flow sets for the first three iterations of the analysis for example2.

before a fixed point can be reached is two. The input set at the beginning of the third iteration of
the loop summarizes the result of the analysis on the loop. The analysis generally converges after
three iterations.

Assuming that α, β and θ are respectively the context identifiers of the main sequence, the loop and
the loop’s cyclic context. We reconstruct Table II using the approach described in this section to
obtain the results shown in Table III. This scheme ensures that unneeded copies are not generated
by eliminating the false dependency since S3 is not a copy generator (i.e., P3(a) = ∅).

6 Copy Placement Analysis

In the previous section, we described the forward analysis which determines whether a copy should
be generated before an array is updated. One could use this analysis alone to insert the copy
statements, but this may not lead to the best placement of the copies and may lead to redundant
copies. The backward copy placement analysis determines a better placement of the copies, while at
the same time ensuring safe updates of a shared array. Examples of moving copies include hoisting
copies out of if-then constructs and out of loops.

The copy placement analysis uses the information collected in the forward analysis. In partic-
ular the analysis uses the input set, generated, and partition sets at an assignment statement.
Like the forward analysis, it a structured-based analysis that is performed on the low-level AST
representation used by McJIT.

The intuition behind this analysis is that often it is better to perform the array copy close to the
statement which created the sharing (i.e. statements of the form a = b) rather than just before the
array update statements (i.e. statements of the form a(i) = b) that require the copy. In particular,
if the update statement is inside a loop, but the statement that created the sharing is outside the
loop, then it is much better to create the copy outside of the loop.

Thus, the copy placement analysis is a backward analysis that pushes the necessary copies upwards,
possibly as far as the statement that created the sharing, which is ideal.

6.1 Copy Placement Analysis Details

A copy entry is represented as a three-tuple:

e =< copy loc, var, alloc site > (10)

where copy loc denotes the ID of the node that generates the copy, var represents variable holding
a reference to the array that should be copied and alloc site is the allocation site where the array

14

referenced by var was allocated. We refer to the three components of the three-tuple as e.copy loc,
e.var, and e.alloc site.

Let C denote the set of all copies generated by a function.

Given a function, the analysis begins by traversing the block of statements of the function backward.
The domain of the analysis’ flow entries is the set of copy objects and the merge operator is
intersection.

Define Cout as the set of copy objects at the exit of a block and Cin as the set of copy objects at
the entrance of a block. Since the analysis begins at the end of a function, Cout is initialized to ∅.
The rules for generating and placing copies are described here.

6.1.1 Statement Sequence

Given a sequence of statements, we are given a Cout for this block and the analysis traverses
backwards through the block computing a Cin for the block. As each statement is traversed the
following rules are applied for the different kinds of the assignment statements in the sequence.
When we refer to in(Si), Qi(m), Pi(a), we are referring to the entities defined in Section 5.

Rule 1: array updates, Si : a(y) = x : Recall from Section 5 that Pi(a) is the set of different
partitions of in(Si) with shared arrays (based on the different allocators and the context information
of the flow entries of the variable a).

Given that the array variable of the lhs of the statement Si is a, when a statement of this form is
reached, we add a copy for each partition for a shared array to the current copy set. Thus

Cin := Cin ∪
{

∅ if Pi(a) = ∅
{< Si, a, m > |(Qi(m) ∈ Pi(a)} otherwise

Rule 2: array assignments, Sj : a = b : If in the current block, ∃e ∈ Cin(e.var = a or e.var = b)
we remove e from the current copy flow set Cin. This means that the copy has been placed at its
current location. Otherwise, we check the copy set, Cout at the exit of the current block. If the
copy is found in Cout, we perform the following:� if Pj(a) = ∅, this is usually the case, we move the copy from the statement e.copy loc to Sj

and remove e from the flow set. The copy e has now been finally placed.� if Pj(a) 6= ∅, ∀(Qi(m) ∈ Pj(a)), we add a runtime equality test for a against the array
reference variable x (x 6= a) of each member of Qi(m) at the statement e.copy loc. This
indicates that there is at least a definition of a that dominates this statement and for which
a references a shared array. In addition to that, because the copy e was generated after the
current block there are two different paths to the statement e.copy loc, the current location
of e. We place a copy of e at the current statement Sj and remove e from the flow set.
Note that two copies of e have been placed; one at e.copy loc and another at Sj . However,
runtime guards have also been placed at e.copy loc, ensuring that only one of these two copies
materializes at runtime. In practice however, such checks are rarely generated. The following
code snippet illustrates this scenario.

15

1: b = [2, 4, 8];
2: a = b;

if (cond)
3: c = rand(10);

...
4: a = c;

end
5: a(i) = 10;
6: disp(a);
7: disp(b);

The statement S2 dominates the statement S3; if the if block is taken then a references the
array allocated at S3 otherwise, a references the array allocated at S1. By placing a copy
after S4, it is guaranteed that a is unique if the program takes the path through S4 and the
update at S5 is therefore safe and no copy will be generated at S5 because the runtime guard
will be false. However, if this path is not taken, then the guard at S5 will be true and a copy
will be generated.

We expect that such guards will not usually be needed, and in fact none of our benchmarks
required any guards.

6.1.2 if-else Statements

Let Cif and Celse denote the set of copies generated in an if and an else block respectively.

First we compute

C ′ := (Cout ∩ Celse) ∪ (Cout ∩ Cif) ∪ (Cif ∩ Celse)

Then we compute the differences

Cout := Cout \ C ′

Celse := Celse \ C ′

Cif := Cif \ C ′

to separate those copies that do not intersect with those in other blocks but should nevertheless be
propagated upward. Since the copies in the intersection will be relocated, they are removed from
their current locations.

And finally,

Cin := Cout ∪ Celse ∪ Cif ∪

{< SIF , e.var, e.alloc site > |e ∈ C ′})

Note that a copy object e with its first component set to SIF is attached to the if-else statement
SIF . That means if these copies remain at this location, the copies should be generated before the
if-else statement.

16

6.1.3 Loops

The main goal here is to identify copies that could be moved out of a loop. To place copies
generated in a loop, we apply the rules for statement sequence and the if-else statement. The
analysis propagates copies upward from the inner-most loop to the outer-most loop and to the main
sequence until either loop dependencies exist in the current loop or it is no longer possible to move
the copy according to Rule 2 in Section 6.1.1.

An alternative to propagating copies out of a loop is to generate copies in the loop’s header so that
if the loop does not execute, no copies will be generated. However with this strategy, in a nested
loop, copies initiated in an inner loop and that could be generated outside an outer loop would
be generated multiple times in different iterations of the outer loop. Furthermore, if there are two
or more adjacent loops, and identical copies are generated in the loops, generating copies at loop
header will generate the same copies in the loop headers of the adjacent loops, provided that more
than one of the loops are executed.

A disadvantage of propagating the copy outside of the loop is that if none of the loops that require
copies is executed then we would have generated a useless copy before any of the loop. However,
the execution is still correct. For this reason, we assume that a loop will always be executed
and generate copies outside loops, wherever possible. This is a reasonable assumption because a
loop is typically programmed to execute. With this assumption, there is no need to compute the
intersection of Cloop and Cout. Hence

Cin := Cout ∪ {< Sloop, e.var, e.alloc site > |e ∈ Cloop})

6.2 Using the Analyses

This section illustrates how the combination of the forward and the backward analyses is used to
determine the optimal copies that should be generated. First consider the following program, test3.
Again, we begin by computing the flow information for the forward analysis. Table IV shows the
result of the forward analysis; the context values are the same for all the flow sets and are therefore
omitted from the flow entries shown in the table.

1 function test3()
2 a = [1:5]
3 b = a
4 i = 1;
5 if (i > 2)
6 a(1) = 100;
7 else
8 a(1) = 700;
9 end

10 a(1) = 200;
11 disp(a);
12 disp(b);
13 end

Table V gives the result of the backward analysis. The

17

Gen set In Out

2 {(a, S2)} ∅ {(a, S2)}
3 {(b, S2)} {(a, S2)} {(a, S2)(b, S2)}
6 {(a, S6)} {(a, S2), (b, S2)} {(b, S2)(a,S6)}
8 {(a, S8)} {(a, S2), (b, S2)} {(b, S2), (a, S8)}
10 ∅ {(b, S2), (a,S6), {(b, S2), (a, S6)

(a, S8)} (a, S8)}

Table IV: Necessary Copy Analysis Result for test3

Cout Cin Current Result

10 ∅ ∅ ∅
8 ∅ {< S8, a, S2 >} {(a, S8)}
6 ∅ {< S6, a, S2 >} {(a, S6)}
I ∅ {< SI , a, S2 >} {(a, SI)}
3 {< SI , a, S2 >} ∅ {(a, SI)}
2 ∅ ∅ {(a, SI)}

Table V: Copy Placement Analysis Result for test3

I used in Table V stands for the if-else statement in test3. The backward analysis begins from
line 12 of test3. The out set Cout is initially empty. At line 10, Cout is still empty. When the
if-else statement is reached, a copy of Cout (∅) is passed to the Else block and another copy of
Cout is also passed to the If block. The copy {< S8, a, S2 > is generated in the Else block because
|Q(S2) = {(a, S2), (b, S2)}| = 2, hence Pi(a) 6= ∅. Similarly < S6, a, S2 > is generated in the If
block.

By applying the rule for if-else statement described in Section 6.1.2, the outputs of the If and
the Else blocks are merged to obtain the result at SI (the if-else statement). Applying Rule 2
for statement sequence (Section 6.1.1) in S3, < SI , a, S2 > is removed from Cin and the analysis
terminates at S2. The final result is that a copy must be generated before the if-else statement
instead of generating two copies, one in each block of the if-else statement. This example illus-
trates how common copies generated in the alternative blocks of an if-else statement could be
combined and propagated upward to reduce code size.

The second example, tridisolve is a Matlab function from [12]. The forward analysis information
is shown in Table VI. The table shows the gen and in sets at each relevant assignment statement
of the function tridisolve. The results in different loop iterations are shown using a subscript to
represent the loop iteration. For example, the row number 252 refers to the result at the statement
labelled S25 in the second iteration of the loop. The analysis reached a fixed point after the third
iteration. At the function’s entry, the in set is initialized with two flow entries for each parameter
of the function — one for the parameter and the other for a shadow entry.

function x = tridisolve(a,b,c,d)
% TRIDISOLVE Solve tridiagonal system of % equations.

20: x = d;
21: n = length(x);

for j = 1:n−1
mu = a(j)/b(j);

25: b(j+1) = b(j+1) − mu*c(j);
26: x(j+1) = x(j+1) − mu*x(j);

end

18

29: x(n) = x(n)/b(n);
for j = n−1:−1:1

31: x(j) = (x(j)−c(j)*x(j+1))/b(j);
end

end

The analysis continues by generating the gen, in and out sets according to the rules specified
in Section 5. Notice that statement S25 is an allocator because P25(b) 6= ∅ since |Q25(Sb)| =
|{(b, Sb, 0), (b

′, Sb, 0)}| > 1. Similarly, S26 and S29 are also allocators. This means that generating
a copy of the array referenced by the variable b just before executing the statement S25 ensures a
safe update of the array. The same is true of the array referenced by the variable x in lines 26 and
29. However, are these the best points in the program to generate those copies? Could the number
of copies be reduced? We provide the answers to these questions when we examine the results of
the backward analysis.

Gen In

20 {(x, Sd, 0)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b
′, Sb, 0), (c, Sc, 0), (c

′, Sc, 0), (d, Sd, 0), (d′, Sd, 0)}
251 {(b, S25, 1)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b

′, Sb, 0), (c, Sc, 0), (c
′, Sc, 0), (d

′, Sd, 0), (x,Sd, 0)}
261 {(x, S26, 1)} {(a, Sa, 0), (a′, Sa, 0), (b′, Sb, 0), (c, Sc, 0), (c

′, Sc, 0), (d
′, Sd, 0), (x, Sd, 0), (b, S25, 1)}

252 {(b, S25, 2)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b
′, Sb, 0), (c, Sc, 0), (c

′, Sc, 0), (d
′, Sd, 0), (x, Sd, 0), (b, S25, 1), (x,S26, 1)}

262 {(x, S26, 2)} {(a, Sa, 0), (a′, Sa, 0), (b′, Sb, 0), (c, Sc, 0), (c
′, Sc, 0), (d

′, Sd, 0), (x, Sd, 0), (b, S25, 2), (x,S26, 1)}
253 {(b, S25, 3)} {(a, Sa, 0), (a′, Sa, 0), (b, Sb, 0), (b

′, Sb, 0), (c, Sc, 0), (c
′, Sc, 0), (d

′, Sd, 0), (x, Sd, 0), (b, S25, 2), (x,S26, 2)}
263 {(x, S26, 3)} {(a, Sa, 0), (a′, Sa, 0), (b′, Sb, 0), (c, Sc, 0), (c

′, Sc, 0), (d
′, Sd, 0), (x, Sd, 0), (b, S25, 3), (x,S26, 2)}

29 {(x, S29, 0)} {(a′, Sa, 0), (b, Sb, 0), (b
′, Sb, 0), (c, Sc, 0), (c

′, Sc, 0), (d
′, Sd, 0), (x, Sd, 0)(b, S25, 3), (x,S26, 3)}

311 ∅ {(a′, Sa, 0), (b, Sb, 0), (b
′, Sb, 0), (c, Sc, 0), (c

′, Sc, 0), (d
′, Sd, 0), (b, S25, 3), (x, S29, 0)}

312 ∅ {(a′, Sa, 0), (b, Sb, 0), (b
′, Sb, 0), (c, Sc, 0), (c

′, Sc, 0), (d
′, Sd, 0), (b, S25, 3), (x, S29, 0)}

Table VI: Forward Analysis Result for tridisolve

Table VII shows the copy placement analysis information at each relevant statement of tridisolve.
Recall that the placement analysis is based on blocks. It works by traversing the statements in
each block of a function backward. In the case of tridisolve, the analysis begins in line 31 in the
second for loop of the function. The set Cout is passed to the loop body and is initially empty.
The set Cin stores all the copies generated in the block of the for statement. Line 31 is neither a
definition nor an allocator, therefore no changes are recorded at this stage of the analysis.

Cout Cin Current Result
31 ∅ ∅ ∅
F2 ∅ ∅ ∅
29 ∅ {(S29, a, Sd)} {(x, S29)}
26 {(S29, x, Sd)} {(S26, x, Sd)} {(x, S29), (x, S26)}
25 {(S29, x, Sd)} {(S25, b, Sb), (S26, x, Sd)} {(x, S29), (x, S26), (b, S25)}
F1 {(S29, x, Sd)} {(SF1

, x, Sd), (S25, b, Sb)} {(x, SF1
), (b, S25)}

20 ∅ {(S25, b, Sb)} {(x, SF1
), (b, S25)}

0 ∅ ∅ {(x, SF1
), (b, S0)}

Table VII: Backward Analysis Result for tridisolve

At the beginning of loop F2, the analysis merges with the main path and the result at this point is
shown in row F2. Statement S29 generated a copy as indicated by the forward analysis, therefore
Cin is updated and the result set is also updated. The analysis then branches off to the first loop

19

and the current Cin is passed to the loop’s body as Cout. The copies generated in loop F1 are stored
in Cin, which is then merged with Cout at the beginning of the loop to arrive at the result in row
F1. The result set is also updated accordingly; at this stage, the number of copies has been reduced
by 1 as shown in the column labelled Current Result of Table VII. The copy flow set that reaches
the beginning of the function is non-empty. This suggests that the definition or the allocator of the
array variables of the remaining entries could not be reached. Therefore, the array variables of the
flow entries must be the parameters of the function and the necessary copy should be generated at
the function’s entry. Hence, a copy of the array referenced by b must be generated at the entry of
tridisolve.

It is interesting to note that the number of copies has been reduced and all the copies generated in
loop F2 were successfully moved out of the loop because there were no “loop dependencies”. The
two copies generated are necessary to ensure that the arguments to the function by the callers are
not updated. Even though a, b, c, d are parameters of the function, a and c are read but not written
by the function therefore no copies were generated for a and c. However, attempt to update the
array referenced by d indirectly via x generated a copy. And updating the array referenced by b

also generated a copy.

7 Name Resolution

Matlab views an array as a mapping from the array index type to the array element type and
therefore uses the same syntax for both function calls and array accesses. The obvious advantage
of doing this is that a data structure initially implemented as an array could be re-implemented
as a function without changing the array accesses. The disadvantage of doing this is that it makes
efficient compilation difficult. For instance, in the statement below, is b a function or an array?

m = b(c, d);

Without a suitable analysis, it is hard to tell whether b(c, d) is a function call or an array access.
The forward analysis described in Section 5 relies on the McVM type inference analysis [11, 10] to
determine the type of a symbol. In the simple assignment statement above, the analysis needs to
know whether the variables m, c and d are arrays. And, if b is a function and m, c and d are arrays,
the analysis needs to know whether m references the same array as c or d. The forward analysis
requests the type information of b and proceeds to analyse b if the result of the look-up indicates
that b is a function.

8 Experimental Results

To evaluate the effectiveness of our approach, we set up experiments using benchmarks collected
from disparate sources, including those from [24, 12, 23]. Table VIII gives a short description of
the benchmarks together with a summary of the results of our analyses, which we discuss in more
detail in the following subsections. For all our experiments, we ran the benchmarks with their
smallest input size on an AMD Athlon� 64 X2 Dual Core Processor 3800+, 4GB RAM computer
running Linux operating system; GNU Octave, version 3.2.4; Matlab, version 7.9.0.529 (R2009b)
and McVM/McJIT, version 0.5.

20

The purpose of our experiments was three-fold. First, we wanted to measure the number of array
updates and copies performed by the benchmarks at runtime using existing systems (Section 8.1).
Knowing the number of updates gives an idea of how many dynamic checks a reference-counting-
based scheme for lazy copying, such as used by Octave and Mathworks’ Matlab, need to perform.
Remember that our approach does not usually require any dynamic checks. Knowing the number
of copies generated by such systems allows us to verify that our approach does not increase the
number of copies as compared to the reference-counting-based approaches. Secondly, we know that
dynamic checks generate overheads, and we would like to measure the amount of these overheads
in reference-counting-based systems (Section 8.2). Finally, we would like to assess the impact of
our static analyses in terms of their ability to minimize the number of copies (Section 8.3).

8.1 Dynamic Counts of Array Updates and Copies

Our first measurements were designed to measure the number of array updates and array copies
that are required by existing reference-counting-based systems, Octave and Mathworks’ Matlab.
Since we had access to the open-source Octave system we were able to instrument the interpreter
and make the measurements directly. However, the Mathworks’ implementation of Matlab is a
proprietary system and thus we were unable to instrument it to make direct measurements. Instead,
we developed an alternative approach by instrumenting the benchmark programs themselves via
aspects using our AspectMatlab compiler amc [7]. The amc compiler accepts a Matlab program
and an aspect written in AspectMatlab language — an extension of the Matlab programming
language. Our aspect4 defines all the patterns for the relevant points in a Matlab program
including all array definitions, array updates, and function calls. It also specifies the actions that
should be taken at these points in the source program. In effect, the aspect computes all of
the information that a reference-counting-based scheme would have, and thus can determine, at
runtime, when an array update triggers a copy because the number of references to the array is
greater than one. The aspect thus counts all array updates and all copies that would be required
by a reference-counting-based system.

In Table VIII the column labelled # Array Updates gives the total number of array updates
executed. The column # Copies shows the number of copies generated by the benchmarks under
Octave (reported as Octave in the table) and Matlab (column labelled Aspect). The column #
Copies is split into two: Lower Bound and With Analyses. The number of copies generated
by Octave and Matlab (Aspect) are considered the expected lower bounds (since they perform
copies lazily, and only when required) and are therefore grouped under Lower Bound in the table.6

At a high-level, the results in Table VIII show that our benchmarks often perform a significant
number of array updates, but very few updates trigger copies. We observed that no copies were
generated in ten out of the fourteen benchmarks. This low rate for array copies is not surprising
because Matlab programmers tend to avoid copying large objects and often only read from function
parameters.7

4This aspect is available at: www.sable.mcgill.ca/mclab/mcvm mcjit.html
5All of these benchmarks are also available at: www.sable.mcgill.ca/mclab/mcvm mcjit.html.
6Note that for the benchmark crni Octave performs 6898 copies, whereas the lower bound according to the Aspect

is 4598. We verified that Octave is doing some spurious copies in this case, and that the Aspect number is the true
lower bound.

7You may note that the diff benchmark performed no array updates. This benchmark performs a lot of scalar
operations and array reads, but does not perform array updates. Thus, McJIT already handles all of the writes by
detecting that they are scalars and allocating them to LLVM registers.

21

Copies
Array Lower Bound With Analyses

Benchmark Updates Aspect Octave Naive QC CA

adpt adaptive quadrature using Simp-
son’s rule

19624 0 0 12223 12223 0

capr capacitance of a transmission line
using finite difference and Gauss-
Seidel iteration

9790800 10000 10000 40000 20000 10000

clos transitive closure of a directed graph 2954 0 0 2 2 0

crni Crank-Nicholson solution to the
one-dimensional heat equation

21143907 4598 6898 11495 6897 4598

dich Dirichlet solution to Laplace’s equa-
tion

6935292 0 0 0 0 0

diff diffraction pattern calculator 0 0 0 0 0 0

fdtd 3D FDTD of a hexahedral cavity
with conducting walls

803 0 0 5400 5400 0

fft fast fourier transform 44038144 1 1 2 2 1

fiff finite-difference solution to the wave
equation

12243000 0 0 0 0 0

mbrt mandelbrot set 5929 0 0 0 0 0

nb1d N-body problem coded using 1d ar-
rays for the displacement vectors.

55020 0 0 10984 10980 0

nb3d N-body problem coded using 3d ar-
rays for the displacement vectors.

4878 0 0 5860 5858 0

nfrc computes a newton fractal in the
complex plane -2..2,-2i..2i

12800 0 0 6400 6400 0

trid Solve tridiagonal system of equa-
tions

2998 2 2 5 2 2

Table VIII: Benchmarks and the results of the copy analysis5

With Analyses comprises of three columns, Naive, QC, and CA representing respectively, the
number of copies generated in our naive implementation, with the QuickCheck phase, and with the
copy analysis phase. We return to these results in Section 8.3.

8.2 The Overheads of Dynamic Checks

With reference-counting-based approaches a dynamic check is needed for each array update, in
order to test if a copy is needed. Our counts indicated that several of our benchmarks had a high
number of updates, but no copies were required. We wanted to measure the overhead for all of these
redundant dynamic checks. The ideal measurement would have been to time the redundant checks
in a JIT-based system that used reference-counting, such as Mathworks’ Matlab. Unfortunately
we do not have access to such a system. Instead we performed two similar experiments, as reported
in Table IX, for three benchmarks with a high number of updates and no required copies (dich,
fiff and mbrt).

22

McVM Octave(O)
McJIT McJIT(+RC) Overheads(%) Time(s) Overheads

Bmark time(s) # LLVM time(s) # LLVM time size O(+RC) O(-RC) (%)

dich 0.18 546 0.27 625 47.37 14.47 425.05 408.08 4.16

fiff 0.39 388 0.52 415 33.72 6.96 468.64 438.69 6.83

mbrt 5.06 262 5.65 271 11.69 3.44 34.91 31.95 9.29

Table IX: Overheads of Dynamic Checks.

We first created a modified version of Octave that does not insert dynamic checks before array
update statements. In general this is not safe, but for these three benchmarks we knew no copies
were needed, and thus removing the dynamic checks allowed us to measure the overhead without
breaking the benchmarks. The column labelled O(+RC) gives the execution time with dynamic
checks and the column labelled O(-RC) gives the times when we artificially removed the checks.
The difference gives us the overhead, which is between 4% and 9% for these benchmarks. Although
this is not a huge percentage, it is not negligible. Furthermore, we felt that the absolute time for
the checks was significant and would be even more significant in a JIT system which has many
fewer other overheads.

To measure overheads in a JIT context, we modified our McVM JIT implementation to include
enough reference-counting machinery to measure the overheads of the checks (remember that McVM
is garbage-collected and does not normally have reference counts). For the modified McVM we
added a field to the array object representation to store reference counts (which is set to zero for
the purposes of this experiment) and we generated LLVM code for a runtime check before each
array update statement. Table IX shows, in time and code size, the amount of overheads generated
by redundant checks. The column labelled McJIT is the original McJIT and the column labelled
McJIT(+RC) is the modified version with the added dynamic checks. We measured code size
using the number of LLVM instructions (# LLVM) and execution time overhead in seconds. For
these three benchmarks the code size overhead was 3% to 14% and the execution time overhead
ranged from 12% to 47%.

Our conclusions from these experiments is that the dynamic checks for a reference-counting-based
scheme can be quite significant in both execution time and code size, especially in the context of
a JIT. Thus, although the original motivation of our work was to enable a garbage-collected VM
that did not require reference counts, we think that our analyses could also be useful to eliminate
unneeded checks in reference-counting-based systems.

8.3 Impact of our Analyses

Let us now return to the number of copies required by our analyses, which are given in the last
three columns of Table VIII. As a reminder, our goal was to achieve the same number of copies as
the lower bound.

The column labelled Naive gives the number of copies required with a naive implementation of
Matlab’s copy semantics, where a copy is inserted for each parameter, each return value and each
copy statement, where the lhs is an array. Clearly this approach leads to many more copies than
the lower bound.

23

The column labelled CA gives the number of copies when both phases of our static analyses are
enabled. We were very pleased to see that for our benchmarks, the static analyses achieved the
same number of copies as the lower bound, without requiring any dynamic checks.

The column labelled QC shows the number of copies when only the QuickCheck phase is enabled.
Although the QuickCheck does eliminate many unnecessary copies, it does not achieve the lower
bound. Thus, the second stage is really required in many cases.

In Table VIII and under McJIT with CA, two benchmarks generated a lot of copies:capr generated
10,000 copies while crni generated 4598 copies. Further examination of the two benchmarks reveals
that a copy is generated for each invocation of a function called 10,000 times by the capr program.
Similarly, two copies were generated in a function called 2299 times by the crni program. Except
the extra copies that were generated by crni running under Octave, all other copies generated
were found to be array parameters passed from one function to another and updated in the called
function. Although the QuickCheck(QC) is capable of reducing the number of arguments copied
from a caller to a callee by identifying the parameters that are modified in the callee, it is incapable
of determining whether or not an array-return value be copied. This explains why McJIT with QC
makes more copies that with CA even in crni and capr benchmarks.

Figure 2: Amount of bytes copied by the benchmarks under the three options.

To show the impact copies have on execution performance, we measure the total bytes of array
data copied by each benchmark. This is shown in Figure 2. The results correspond with those in
Table VIII for Naive, QC and CA. The columns Naive

QC
and Naive

CA
show respectively how many times

QC and CA perform better than Naive. The table shows that CA generally outperforms QC and
Naive. Copying large arrays affects execution performance and the results in Table X validate this
claim. Where a significant number of bytes were copied by the naive implementation, for example,
capr, crni and fdtd, CA performs better than both Naive and QC. In the three benchmarks that
do not generate copies, the performance of CA is comparable to Naive and QC. This shows that
the overheads of CA is low. It is therefore clear from the results of our experiments that the naive
implementation generates significant overheads and is therefore unsuitable for a high-performance
system.

So, the bottom line is that a very low fraction of array updates result in copies, and frequently no
copies are necessary. For our benchmark set our static analysis determined the optimal number
of copies, while at the same time avoiding all the overheads of dynamic checks. Furthermore, our
approach does not require reference counting and thus enables an efficient implementation of array

24

Bmark Naive QC CA Naive
QC

Naive
CA

adpt 1.57 1.57 1.61 1.00 0.98

capr 1.54 0.91 0.58 1.70 2.66

clos 0.49 0.49 0.48 0.99 1.01

crni 135.09 140.35 131.62 0.96 1.03

dich 0.18 0.18 0.18 1.00 1.00

diff 4.26 4.27 4.14 1.00 1.03

fdtd 3.79 3.78 2.80 1.00 1.35

fft 1.50 1.50 1.47 1.00 1.02

fiff 0.39 0.39 0.39 0.99 0.99

mbrt 5.06 5.12 5.04 0.99 1.00

nb1d 0.48 0.48 0.45 1.00 1.07

nb3d 0.48 0.48 0.36 1.00 1.35

nfrc 3.23 3.23 3.25 1.00 0.99

trid 1.57 1.04 1.02 1.51 1.53

Table X: Benchmarks against the total execution times in seconds

copy semantics in garbage-collected systems like McVM.

9 Related Work

Redundant copy elimination is a hard problem and implementations of languages such as Python
[4] are able to avoid copy elimination optimizations by providing multiple data structures: some
with copy semantics and others with reference semantics. Programmers decide when to use mutable
data structures. However, efficient implementations of languages like the Matlab programming
language and Sequoia [15] that use copy semantics require copy elimination optimization. The
problem is similar to the aggregate update problem in functional languages. The aggregate update
problem has been studied extensively in the context of functional languages [17, 22, 25, 26, 28,
16, 13]. To modify an aggregate in a strict functional language, a copy of the aggregate must be
made. This is in contrast with the imperative programming languages where an aggregate may be
modified multiple times.

APL [18] is one of the oldest array-based languages. Weigang [29] describes a range of optimizations
for APL compiler, including a copy optimization that finds uses of a copy of a variable and replaces
the copy with the original variable wherever possible. We implemented this optimization as part
of our QuickCheck phase. We found the optimization effective at enabling the elimination of
redundant copy statements by the dead-code optimizer. However, this optimization is unable to
eliminate redundant copies of arguments and return values. Hudak and Bloss [17] use an approach
based on abstract interpretation and conventional flow analysis to detect cases where an aggregate
may be modified in place. Their method combines static analysis and dynamic techniques. It
involves a rearrangement of the execution order or an optimized version of reference counting,
where the static analysis fails. Our approach is based on flow analysis but we do not change the
execution order of a program.

Interprocedural aliasing and the side-effect problem [21] is related to the copy elimination problem.
By using call by reference semantics, when an argument is passed to a function during a call,
the parameter becomes an alias for the argument in the caller and if the argument contains an
array reference, the referenced array becomes a shared array; any updates via the parameter in the

25

callee updates the same array referenced by the corresponding argument in the caller. Without
performing a separate and expensive flow analysis, our approach easily detects aliasing and side
effects in functions. Wand and Clinger present [28] interprocedural flow analyses for aliasing and
liveness based on set constraints. They present two operational semantics: the first one permits
destructive updates of arrays while the other does not. They also define a transformation from a
strict functional language to a language that allows destructive updates. Like Wand and Clinger,
our approach combines liveness analysis with flow analysis. However, unlike Wand and Clinger, we
have implemented our analysis in a JIT compiler for an imperative language.

10 Conclusions and Future Work

In this paper we have presented an approach for using static analysis to determine where to insert ar-
ray copies in order to implement the array copy semantics in Matlab. Unlike previous approaches,
which used a reference-counting scheme and dynamic checks, our approach is implemented as a pair
of static analysis phases in the McJIT compiler. The first phase implements simple analyses for
detecting read-only parameters and standard copy elimination, whereas the second phase consists
a forward necessary copy analysis that determines which array update statements trigger copies,
and a backward copy placement analysis that determines good places to insert the array copies. All
of these analyses have been implemented as structured-based analyses on the McJIT intermediate
representation.

The advantages of our approach are that it does not require frequent dynamic checks, nor do we
need the space and time overheads to maintain the reference counts. Our approach is particularly
appealing in the context of a garbage-collected VM, such as the one we are working with. However,
similar techniques could be used in a reference-counting-based system to remove redundant checks.

Our experimental results validate that, on our benchmark set, we do not introduce any more copies
than the reference-counting approach, and we eliminate all dynamic checks.

The work presented in this paper means that McJIT can use efficient call-by-reference and copy-
by-reference implementations for arrays most of the time, introducing copies only when necessary
to maintain the Matlab call-by-value and copy-by-value semantics.

We are continuing to fine-tune these and our other McJIT analyses and we plan to release the
framework under an open-source license for other research groups to build upon.

References

[1] GNU Octave. http://www.gnu.org/software/octave/index.html.

[2] JastAdd. http://jastadd.org/.

[3] McLab. http://www.sable.mcgill.ca/mclab/.

[4] Python. http://www.python.org.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

26

[6] T. Aslam. AspectMatlab: An Aspect-Oriented Scientific Programming Language. Master’s
thesis, McGill University, 2010.

[7] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren. AspectMatlab: An Aspect-Oriented
Scientific Programming Language. In Proceedings of 9th International Conference on Aspect-
Oriented Software Development, pages 181–192, March 2010.

[8] H. Boehm and M. Spertus. N2310: Transparent Programmer-Directed Garbage Collection for
C++, June 2007. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2310.

pdf.

[9] A. Casey. The MetaLexer Lexical Specification Language. Master’s thesis, McGill University,
September 2009.

[10] M. Chevalier-Boisvert. McVM: An Optimizing Virtual Machine for the MATLAB Program-
ming Language. Master’s thesis, McGill University, August 2009.

[11] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge. Optimizing MATLAB through Just-
In-Time Specialization. In International Conference on Compiler Construction, pages 46–65,
March 2010.

[12] Cleve Moler. Numerical Computing with MATLAB. Society for Industrial and Applied Math-
ematics, 2004.

[13] C. Dimoulas and M. Wand. The Higher-Order Aggregate Update Problem. In VMCAI ’09:
Proceedings of the 10th International Conference on Verification, Model Checking, and Abstract
Interpretation, pages 44–58, Berlin, Heidelberg, 2009. Springer-Verlag.

[14] T. Ekman and G. Hedin. The Jastadd Extensible Java Compiler. In OOPSLA ’07: Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems and
Applications, pages 1–18, New York, NY, USA, 2007. ACM.

[15] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez, M. Ren,
A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia: Programming the Memory Hierarchy. In
SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, page 83, New
York, NY, USA, 2006. ACM.

[16] K. Gopinath and J. L. Hennessy. Copy Elimination in Functional Languages. In POPL ’89:
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 303–314, New York, NY, USA, 1989. ACM.

[17] P. Hudak and A. Bloss. The Aggregate Update Problem in Functional Programming Systems.
In POPL ’85: Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 300–314, New York, NY, USA, 1985. ACM.

[18] Iverson, Kenneth E. A Programming Language. John Wiley and Sons, Inc., 1962.

[19] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation. In CGO ’04: Proceedings of the International Symposium on Code Generation
and Optimization, page 75, Washington, DC, USA, 2004. IEEE Computer Society.

[20] J. Li. McFor: A MATLAB to FORTRAN 95 Compiler. Master’s thesis, McGill University,
August 2009.

27

[21] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[22] M. Odersky. How to Make Destructive Updates Less Destructive. In POPL ’91: Proceedings
of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 25–36, New York, NY, USA, 1991. ACM.

[23] Press, H. William and Teukolsky, A. Saul and Vetterling, T. William and Flannery, P. Brian.
Numerical Recipes : the Art of Scientific Computing. Cambridge University Press, 1986.

[24] L. D. Rose, K. Gallivan, E. Gallopoulos, B. A. Marsolf, and D. A. Padua. FALCON: A MAT-
LAB Interactive Restructuring Compiler. In LCPC ’95: Proceedings of the 8th International
Workshop on Languages and Compilers for Parallel Computing, pages 269–288, London, UK,
1996. Springer-Verlag.

[25] A. V. S. Sastry. Efficient Array Update Analysis of Strict Functional Languages. PhD thesis,
Eugene, OR, USA, 1994.

[26] N. Shankar. Static Analysis for Safe Destructive Updates in a Functional Language. In
LOPSTR ’01: Selected papers from the 11th International Workshop on Logic Based Program
Synthesis and Transformation, pages 1–24, London, UK, 2001. Springer-Verlag.

[27] The MathWorks. MATLAB Programming Fundamentals. The MathWorks, Inc., 2009.

[28] M. Wand and W. D. Clinger. Set Constraints for Destructive Array Update Optimization.
Journal of Functional Programming, 11(3):319–346, 2001.

[29] Weigang, Jim. An Introduction to STSC’s APL Compiler. SIGAPL APL Quote Quad,
15(4):231–238, 1985.

[30] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated Empirical Optimizations of Software
and the ATLAS Project. Parallel Computing, 27(1-2):3 – 35, 2001.

28

