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Abstract

Parallelization and optimization of the MLAB programming language presents several challenges due dy-th
namic nature of MTLAB . Since MATLAB does not have static type declarations, neither the shapsizamof arrays,
nor the loop bounds are known at compile-time. This mearisihay standard array dependence tests and associated
transformations cannot be applied straight-forwardly.t@nother hand, many M LAB programs operate on arrays
using loops and thus are ideal candidates for loop transftioms and possibly loop vectorization/parallelization.

This paper presents a new framework, MafF, which uses profile-based training runs to determine likedyp-
bounds ranges for which specialized versions of the loopsbeajenerated. The main idea is to collect information
about observed loop bounds and hot loops using trainingvdaitzh is then used to heuristically decide upon which
loops and which ranges are worth specializing using a yaoitbop transformations.

Our McFLAT framework has been implemented as part of the Mglextensible compiler toolkit. Currently,
McFLAT, is used to automatically transform ordinaryaM.AB code into specialized MrLAB code with transfor-
mations applied to it. This specialized code can be exeautezhy MATLAB system, and we report results for four
execution engines, Mathwork’s proprietaryAWLAB system, the GNU Octave open-source interpreter, McE
McVM interpreter and the McVM JIT. For several benchmarks,afpserved significant speedups for the specialized
versions, and noted that loop transformations had differepacts depending on the loop range and execution engine.

1 Introduction

MATLAB is an important programming language for scientists anéheregs [16]. Although the dynamic nature and
lack of static type declarations makes it easy to define pragr MATLAB programs are often difficult to optimize and
parallelize. The Mclag system [2] is being defined to provide an open and extensjltienizing and parallelizing
compiler and virtual machine for MrLAB and extensions of MrLAB such as APECTMATLAB [7]. As an important
part of McLAB, we are developing a framework for loop dependence testtoapdransformations, MakAT, which

is the topic of this paper.

Due to the dynamic nature of MLAB, there is very little static information about array dimiens and loop
bounds. Furthermore, many of the scientific codes writteddd ATLAB can be applied to very different sized data sets.
Thus, our design of MclFAT is based on a profiling phase which collects information abmp bounds over many
different runs. We then have a heuristic engine which idiestimportant loop bound ranges and then a specializer
which produces specialized code for each important randgpe specializer applies loop dependence tests and loop
transformations specific to the input range. Currently,dach important range, we exhaustively generate all legal
specializations, but the ultimate goal is to combine th&rfework with a machine learning approach which will
automatically generate a good specialization for the graege.

This paper describes our initial design and implementadioNlcFLAT and provides some exploratory experi-
mental data obtained by using MckT to generate different versions of code which we execute an different
systems, Mathworks’ MTLAB implementation (which includes a JIT), the GNU Octave opeukce interepreter [1],
our McVM interpreter and our McVM JIT [12]. Interestinglfis shows that different optimizations are beneficial for
different ranges and on differentMLAB execution engines. This implies that specialization fahkibe range and
intended execution engine is a good approach in the cont®AnuLAB .

The remainder of this paper is organized as follows. In $aciwe give a high-level view of MaFaT, and in
Section 3 we provide more details of each important compoivéa apply our framework to a selection of benchmarks
and report on the experimental results in Section 4. Finaly discuss related work in Section 5 and conclude in
Section 6.

2 Overview of Our Approach

The overall structure of the MefAT framework is outlined in Figure 1. Our ultimate goal is to exdlthis framework

in our McJIT system, however currently it is a stand-alongrse-to-source framework which uses the M@l front-

end. The user provides both theaWLAB program which they wish to optimize and a collection of regreative
inputs (top of Figure 1). The output of the system is a calbecof specialized programs (bottom of Figure 1),
where each specialized program has a different set of wemstions applied. The system also outputs a dependence
summary for each loop, which is useful for compiler devetspe
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Figure 1: Structure of the McFLAT Framework.



The design of the system is centered around the idea thatra AB program is likely to be used on very different
sized inputs, and hence at run-time loops will have venedéiit loop bounds. Thus, our objective is to find important
ranges for each loop nest, and to specialize the code foe tiangies. Knowing the ranges for each specialization also
enables us to use very fast and simple dependence testers.

The important phases of McRT, as illustrated in Figure 1, are thestrumenterwhich injects the profiling code,
theRange Estimatowhich decides which ranges are important, anddbpendence Analyzer and Loop Transformer
Engine In the next section we look at each of these components il chetail.

3 Important Components of MCFLAT

In this section we provide an overview of the key componeftsus McFLAT framework, and we briefly discuss
parallel loop detection and some current limitations offtaenework.

3.1 Instrumenter

As illustrated in the phase labeléastrument and Profile in Figure 1, thdnstrumentercomponent is used to auto-
matically inject instrumentation and profiling code into aMAB source file. This injection is done on the high-level
structured IR produced by the MaB front-end. In particular, we inject instrumentation to@sate a unique loop
number to each loop, and we inject instrumentation to gatheeach loop, the lower bound of the iteration, the loop
increment, the upper bound of the iteration, the nestingllef/the loop, the time spent executing the loop, and a list
of variables that are written to in the loop body.

The MATLAB program resulting from this instrumentation is functidpaluivalent to the original code, but emits
additional information that generates training data regffor the next phase.

When the instrumented program is executed using M8 virtual machine, the profile information is written to
an .xml file. This .xml file is persistent, and so multiple ruwas be made, and each run will add new information to
the .xml file. The loop profiling information .xml file is thersed as an input to the next component.

3.2 Range Estimator

The Range Estimatois the first important component of the main part of Maf, the Analysis and Transforma-
tions phase in Figure 1. The Range Estimator reads the loop pfitiformation and determines which are the
important ranges for each loop. The important ranges argtifobal using Algorithm 1. The input to this algorithm
is a hash table containing all the observed values for alldbps and the output is a list of important ranges. The
basic idea is that for each loop, we extract the observedsdbr that loop, partition the value space into regions and
subregions, and then identify subregions which contairermatues than a threshold.

We determine the regions and subregions as illustratedjuwr&i2. The regions are powers of 10, starting with the
largest power of 10 that is less than the smallest obseriadand ending with the smallest power of 10 that is greater
than the highest observed value. For example, if the obderpper bounds were in the range 120 to 80000, then we
would choose regions of size 100, 1000, 10000 and 100000h Eeggon is further subdivided into 10 subregions.
A subregion is considered important if the number of obsg#madues are above a threshold, which can be set by the
user. For our experiments we used a threshold of 30 % . Whempaortant region is identified, the the maximum
observed value from the region is added to the list of impumanges.

3.3 Dependence Analysis

During this phase, McFLAT calculates dependences betwikdmeastatements in the loop body against all the pre-
dicted important ranges for that loop. It maintains varidasa structures supporting dependence analysis. This
information is used in subsequent loop transformation @has

The data dependence testing problem is that of determinfireghver two references to the same array within a nest
of loops may reference to the same element of that array [4, 20



Algorithm 1 Algorithm for range estimation

Dataltems
H (K,V) : Hash table with loop numbers as keys and list of obssdvalues
Procedure processLoopData(LooplD)
| + lookup(LooplD, H)// get all observed values for loop with LoopID
sort(l)
importantRanges- empty
R + computeRegions(min(l), max(l))
/I for each large region
for allrin R do
/I for each subregion (divide R into 10 equal parts)
for all sR in Rdo
if numinRegion(l,sRy thresholdthen
PredVal« maxval(sR)
add PredVal to importantRanges
end if
end for
end for
return(importantRanges)

Region Observed values arranged in sub-regions

1 100 200 300 400 500 600 700 800 900 1040
100-1000] | L] | MH;HW i il i ilH i

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000

1000-1000 |- b

Figure 2: Pictorial Example of Ranges and Subranges



Since we have identified the upper loop bounds via our prgfifme have chosen very simple and efficient de-
pendence testers: tlextended GCD testnd thesingle variable per constraint tesCurrently, we have found these
sufficient for our small benchmarks, but we can easily adthérs tests as needed.

3.4 Loop Transformations

In our framework programmers can either suggest the typen$tormation that they need to apply through optional
loop annotations, or it will automatically determine anglgpa transformation or a combination of transformations
which are legal for a loop.

McFLAT implements following loop transformations that have bdews to be useful for two important goals par-
allelism and efficient use of memory hierarchy [1#jop interchangendloop reversal For automatic detection and
application of above mentioned loop transformations, wethe unimodular transformation model presented in [19].
Loop interchange and reversal are modeled as elementarixrirahsformations, combination of these transforma-
tions can simply be represented as product of elementargftramation matrices. An elementary transformation or a
compound transformation is considered to be legal if thesficrmed distance vectors are lexicographically positive

Apart from automatically testing the legality of loop intbange and reversal, our framework supports a larger set
of transformations which can be specified by the user. Thisvalus to use our system as a test bed for programmers
with which they can suggest different transformations doskove the effect of different transformations on différen
loops. Programmers just have to annotate the loop body hatlype of transformation that they need to apply on the
loop. Our framework checks for the presence of annotatibaspop annotation is present it computes the dependence
information using the predicted loop bounds for that lood applies the transformations if there is no dependency
between the loop statements. The current set of transfarnsagupported by annotations iepp fissionloop fusion
loop interchangeandloop reversal

3.5 Parallelism Detection

Efficient parallelization of a sequential program is a aradfing task. Currently our MaRAT framework automat-
ically detects whether #or loop can be automatically converted tgarfor loop or not. The framework performs
parallelization test on the loops based on the dependefam@nation calculated in dependence analysis and instru-
mentation phase. A loop is classified as a parallel loop aiegito MATLAB’s semantics [16], since the generated
code is targeted for MrLAB system. Thus, a loop is classified as a parallel for-loop #aitisfies the following
conditions.

« There should be no flow dependency between the same arragsaeithin the loop body. i.e.Distance vectors
for all the same array accesses should be zero.

« Within the list of indices for the variable, exactly one édnvolves the loop variable

« Other variables used with loop index variable to index aayashould remain constant over the entire execution
of the loop

» Loop index variables must have consecutive increasiregers

3.6 Current Limitations of Mc  FLAT

At present, our framework implements a limited set of lo@msformations. It only handles perfectly nested loops
which have affine accesses and whose dependences can ber@edrby distance vectors. As we develop the
framework we will add further dependence tests and transdtions, as well as transformations to enable more paral-
lelization. However, since we also wish to put this framdwiato our JIT compiler, we must be careful not to include
overly expensive analyses.



4 Experimental Results

In this section we demonstrate the use of MaF through two exploratory performance studies on a set af MB
benchmarks. Our ultimate goal is to integrate MaF with a machine learning approach, however these example
studies provide some interesting initial data. The firstgtaxamines performance and speedups of transformed
programs, applying our dependence testers and standgvdraasformations for a variety of input ranges. The

second study looks at the performance of benchmarks wheniteenatically introducgar for constructs.

4.1 Benchmarks and Static Information

Table | summarizes our collection of 10 benchmarks, takemfthe McLab and University of Stuttgart benchmark

suites. These benchmarks have a very modest size, but yetrmpénteresting calculations and demonstrate some
interesting behaviours. For each benchmark we give the ndeseription, source of the benchmark, the number of
functions, number of loop nests, number of loops that carubengatically converted to parallel for loops.

Benchmark| Source of #Lines| # # # Par. || Benchmark
Name Benchmark || Code | Func.| Loops | Loops || Description
Crni McLab 65 2 4 1 Finds the
Benchmarks Crank-Nicholoson Sol.
Mbrt McLab 26 2 1 0 Computes mandelbrot set.
Benchmarks
Fiff McLab 40 1 2 0 Finds the finite-difference solution
Benchmarks to the wave equation.
Hnormal McLab 30 1 1 1 Normalises array of homogeneous coordinates.
Benchmarks
Nbld McLab 73 1 1 0 Simulates the gravitational
Benchmarks movement of a set of objects.
Interpol Uni of Stutt 187 5 5 0 Compares the stability
and complexity of Lagrange interpolation.
Lagrcheb | Uni of Stutt 70 1 2 2 Computes Lagrangian and Chebyshev
polynomial for comparison.
Fourier Uni of Stutt 81 3 3 2 Compute the Fourier transform
with the trapezoidal integration rule.
Linear Uni of Stutt 56 1 2 1 Computes the linear iterator.
EigenValue| Uni of Stutt 50 2 1 0 Computes the eigenvalues
of the transition matrix.

Table I: Benchmarks

4.2 Performance Study for Standard Loop Transformations

For our initial study, we ran the benchmarks on an AMD Athlo®# X2 Dual Core Processor 3800+, 4GB RAM
computer running Linux operating system; GNU Octave, ward.2.4; MATLAB, version 7.9.0.529 (R2009b) and
McVM/McJIT, version 0.5.

For each benchmark we ran a number of training runs througmgtrumenter and profiler and then we used our
dependence analyzer and loop transformer to generate & @etpait files, one output file for each combination of
possible transformations. For example, if the file had tvapk) and loop reversal could be applied to both loops, then
we would produce four different output files correspondmg ) no reversals, (2) reversing only loop 1, (3) reversing
only loop 2, and (4) reversing both loops.



Benchmark|| Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied || Time | % Speedup]| Time | % Speedup| Time [ % Speedup
Crni N 60ms 3.41s
R 60ms | 0.0% 321s | 58%
Mbrt N 1.91s 9.40s
I 1.98s | -3.6% 9.55s | -1.6%
R 191s | 0.0% 9.25s | 1.5%
(+R) 1.97s | -3.4% 9.32s | 0.8%
Fiff NN 400ms 880ms
RN 405ms| -1.25% 830ms | 5.6%
Hnormal N 1.85s 4.52s
R 1.84s | 0.5% 448s | 0.8%
Nb1ld N 40ms 2.53s
Interpol N 44.70s 60.35s
Lagrcheb NN 140ms 280ms 450ms
RR 138ms | 1.4% 270ms | 3.5% 420ms | 6.6%
RN 143ms| -2.1% 280ms| 0.0% 450ms| 0.0%
NR 143ms| -2.1% 280ms| 0.0% 430ms| 4.4%
Fourier NNN 50ms 1.31s
FN 40ms | 20.0% 1.49s | -13.7%
RRN 50ms | 0.0% 1.25s | 4.5%
(F+R)N || 60ms | -20.0% 1.31s | 0.0%
RNN 50ms | 0.0% 121s | 7.6%
NRN 50ms | 0.0% 1.25s | 4.5%
Linear NN 336ms 640ms 2.60s
IN 566ms| -68.4% 890ms | -39.0% 3.67s | -38.4%
IR 610ms| -81.5% 850ms| -32.8% 3.42s | -31.5%
NR 320ms | 4.7% 600ms | 6.2% 251s | 3.4%
EigenValue|| N 80ms 310ms 1.10s
| 100ms| -25.0% 370ms| -19.3% 1.18s | -7.27%
R 90ms | -12.5% 290ms| 6.4% 1.10s | 0.0%
(+R) 90ms | -12.5% 280ms | 9.6% 1.08s | 1.81%

Table II: Mathworks’ MaTLAB Execution Times and Speedups



Benchmark|| Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied || Time | % Speedup| Time | % Speedup| Time [ % Speedup
Crni N 5.46s 1102s
R 5.46s | 0% 1101s | 0.09%
Mbrt N 289.8s 2000s
I 300s | -3.5% 2000s| 0%
R 289.8s| 0% 2000s| 0%
(+R) 300s | -3.5% 2000s| 0%
Fiff NN 6.44s 251s
RN 6.41s | 0.46% 253s | -0.7%
Hnormal N 7.34s 13.4s
R 7.48s | -1.9% 13.6s | -1.4%
Nbid N 2.56s 7.89s
Interpol N 3524s 5238s
Lagrcheb NN 630ms 1.28s 1.95s
RR 630ms| 0% 1.27s | 0.7% 1.94s | 0.51%
RN 630ms| 0% 1.27s | 0.7% 1.94s | 0.51%
NR 630ms| 0% 1.27s | 0.7% 1.94s | 0.51%
Fourier NNN 120ms 4.24s
FFN 120ms| 0% 4.28s | -0.9%
RRN 120ms| 0% 431s | -1.6%
FRN 120ms| 0% 419s | 1.1%
RNN 110ms | 8.3% 4.26s | -0.4%
NRN 120ms| 0% 4.25s | -0.2%
Linear NN 6.58s 352s 1496s
IN 6.65s | -1.0% 381s | -8.2% 1443s| 3.5%
IR 6.65s | -1.0% 382s | -8.5% 1422s| 4.9%
NR 6.56s | 0.3% 369s | -4.8% 1389s | 7.1%
EigenValue|| N 240ms 106s 460s
I 230ms | 4.1% 127s | -19.8% 502s | -9.1%
R 230ms| 4.1% 116s | -9.4% 486s | -5.6%
(+R) 230ms| 4.1% 126s | -18.8% 507s | -10.2%
Table IlI: Octave Execution Times and Speedups
McVm(JIT) McVM(Interpreter)
Benchmark| Trans Pred. Range 1 Pred. Range 2 Pred. Range 1 Pred. Range 2
Name Applied || Time % Speedup| Time % Speedup| Time | %Speedup| Time % Speedup
Crni N 4.00s 1074s 7.12s 1386.2s
R 4.00s | 0.0% 820s 23.6 % 6.35s | 10.8% 13415 | 3.2%
Mbrt N 98.37s 675s 384s 2491s
I 101s | -3.3% 714s | -5.8% 344s | 10.4 % 2286s 8.2%
R 110s | -12.6% 781s | -15.6% 342s | 109% 2370s | 4.8%
(+R) 106s | -8.16% 738s | -9.35% 346s | 9.8% 2375s | 4.6%
Fiff NN 260ms 500ms 7.38s 7.46s
RN 260ms| -1.95% 460ms | 8% 6.95s | 5.8% 7.25s 2.8%
Hnormal N 5.00s 8.93s 7.23s 11.6s
R 496s | 0.8% 8.05s | 10.9% 7.11s | 1.6% 12.24s | -5.5%
Nb1ld N 850ms 4.10s 1.41s 4.24s

Table IV: McVM Execution Times and Speedups
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Each output file has a specialized section for each predistpdrtant range, plus a dynamic guard around each
specialized section to ensure that the correct versiomisata given input.

We report the results for four different MLAB execution engines, the Mathworks’AiLAB (which contains a
JIT) (Table 1), the GNU Octave interpreter (Table Ill), thieVM interepreter, and the McVM JIT (McJIT) (Table 1V).

In each table, the column label@dans. Appliedndicates which transformations are applied to the loophén
benchmark, wherdl indicates that no transformation is appli&lindicates Loop Reversal is applidd, represents
Loop fusion and is representative of Loop InterchandéN indicates that there are two loops in the benchmark and
no transformation is applied on any of them. Similally/shows there are two loops, Interchange is applied on the first
loop and reversal on the second lobpR indicates one loop nest on which interchange is applied laged teversal.

Depending on the benchmark we had two or three differentamtitat were identified by the range predictor. The
ranges appear in the tables in increasing valu®red. Range torresponds to the smallest range &ndd Range 3
corresponds to the largest range. We chose one input foidamdified range and timed it for each loop transformation
version. In each table we give the speedup (positive) orddewn (negative) achieved as compared to the version with
no transformations. We indicate in bold the version thaeghe best performance for each range.

Let us consider first the execution time for MathworksAM AB, as given in Table Il. Somewhat surprisingly to
us, it turns out that loop reversal alone always gives perémrce speed-up on the higher ranges. Whereas, on lower
ranges there is either no speed up or performance de-gradasome of the benchmarks. This implies that it may be
worth having a specialized version of the loops, with impotioops reversed for larger data ranges.

MATLAB accesses arrays in column-major order, angrM\B programmers normally write their loops in that
fashion, so always applying loop interchange degradesahenmance of the program. Performance degrades more
for loops which involve array dependencies. However, thgratgation impact is lower at higher ranges perhaps due
to cache misses in both the cases, that is transformed agidairioop. Loop interchange degradation impact is less
for loops that invoke a function whose value is written to enay for example, Mbrt.

Loop fusion was only applied once (in Fourier) where givegdqgrmance speed-up on lower ranges. However,
as the loop bounds and accessed array get bigger then parfoerdegrades.

Now consider the execution time for Octave, given in Table Octave is a pure interpreter and you will note
that the absolute execution times are often an order of madgslower than Mathworks’ system, which has a JIT
accelerator. The applied transformations also seem toveaydittle impact on performance, particularly on the lowe
ranges. For higher ranges, no fixed behavior is observedpfoe benchmarks there is a performance improvement
whereas for others performance degrades.

We were also interested in how the transformations wouldarhpur group’s McVM, both in pure interpreter
mode, and with the JIT. We couldn’t run all the benchmarks a@VM because the benchmarks use some library
functions which are not currently supported. However, &adWllists the results on the subset of benchmarks currently
supported. Once again loop reversal can make a significgratdtron the larger ranges for the JIT, and actually also
seems beneficial for the McVM(interpreter).

4.3 Performance study for Parallel For Loops

In Table V we report the execution time and speedups witkrDMB's par f or looping construct. We ran the
benchmarks on an Intel ™Core(TM) i7 Processor (4 coreszB.BAM computer running a Linux operating system;
MATLAB, version 7.9.0.529 (R2009b). For these experiments wialiaid the MATLAB worker pool to size 4.

The term pN indicates that there is one loop in the benchmenich is parallelized and no loop transformation
is applied on it. (pF) means two loops are fused and then flesgalis parallelized. Note that it is not possible to
combine loop reversal and parallelization with theaB par f or construct as the MrLAB specifications require
that the loop index expression must increase.

We have reported execution times of various combinationmddllel and sequential loops, to study the effect of
parallelizing a loop in the context of MLAB programming language.

For most of the benchmarks we observed thatrMAB's par f or loop does not often give significant performance
benefits, and in some cases causes severe performanceatiegradhis is likely due to the parallel execution model
supported by MTLAB which requires significant data copying to and from workee#als.
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Benchmark|| Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time | % Speedup| Time | % Speedup| Time | % Speedup
Crni N 280ms 13.41s
pN 1.03s | -257% 14.20s| -5.9%
R 290ms| -3.5% 13.30s | 0.8 %
Hnormal N 800ms 1.70s
pN 70.5s | -8712% 71.3s | -4094%
R 780ms | 2.5% 1.68s | 1.1%
Lagrcheb NN 120ms 200ms 280ms
(pPN)(pN) 140ms| -16.6% 180ms | 10.0% 250ms | 10.7%
N(pN) 110ms | 8.3% 180ms| 10.0% 250ms| 10.7%
(pPN)N 120ms| 0.0% 180ms| 10.0% 260ms| 7.1%
R(pN) 120ms| 0.0% 180ms| 10.0% 250ms| 10.7%
(PN)R 120ms| 0.0% 180ms| 10.0% 250ms| 10.7%
RR 120ms| 0.0% 200ms| 0.0% 270ms| 3.5%
RN 130ms| -8.3% 200ms| 0.0% 270ms| 3.5%
NR 130ms| -8.3% 200ms| 0.0% 270ms| 3.5%
Fourier NNN 170ms 680ms
(PN)NN 50ms | 70% 720ms| -5.8%
(PN)(PN)N || 200ms| -17.6% 720ms| -5.8%
N(pN)N 50ms | 70% 720s | -5.8%
(PF)N 50ms | 70% 720ms| -5.8%
R(pN)N 50ms | 70% 710ms| -4.4%
(PN)RN 50ms | 70% 680ms | 0.0%
FN 20ms | 88.2% 690ms | -1.4%
RRN 170ms| 0.0% 680ms | 0.0%
(F+R)N 170ms| 0.0% 680ms| 0.0%
RNN 170ms| 0.0% 680ms | 0.0%
NRN 170ms| 0.0% 680ms | 0.0%
Linear NN 150ms 7.40s 29.8s
N(pN) 150ms | 0.0% 7.20s | 2.7% 30.2s | -1.3%
I(pN) 390ms| 0.0% 10.30s| -39.1% 40.2s | -34.8%
IN 370ms| -146.6% 10.30s| -39.1% 37.6s | -26.1%
IR 370ms| -146.6% 10.30s| -39.1% 37.6s | -26.1%
NR 160ms| -6.6% 7.20s | 2.7% 29.4s | 1.34%

Table V: Mathworks’ MaTLAB Execution Times and Speedups with Parallel Loops
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5 Related Work

Of course there is a rich body of research on the topics ofrigrece analysis, loop transformations and paralleliza-
tion. In our related work we attempt to cover a represergaivbset that, to the best of our knowledge, covers the
prior work in the area of our paper.

Banerjee [8], Wolfe and Lam [19, 20] have modeled a subsetay transformations like loop reversal, loop inter-
change and skewing as unimodular matrices and have deesesdo figure out the legality of these transformations.
Our framework also uses unimodular transformations maxapply and test the legality of a loop transformation or
a combination of loop transformations, but our intent isgedalize for different predicted loop bounds.

Quantitative models based on memory cost analysis haveussghto select optimal loop transformations [17].
Memory cost analysis chooses an optimal transformatioacdeas the number of distinct cache lines and the number
of distinct pages accessed by the iterations of a loop. Gundmork is a preliminary step towards building a learn-
ing system that selects optimal transformations based @m bwunds and profiled program features that have been
beneficial in the past for a transformation or a combinatiinamsformations.

A dimension abstraction approach for vectorization iamJAB presented in [9] discovers whether dimensions
of an expression will be legal if vectorization occurs. The@nhsionality abstraction provides a representation of
the shape of an expression if a loop containing the expnessas vectorized. To improve vectorization in cases
which have incompatible vectorized dimensionality, a Ipaftern database is provided which is capable of resolving
obstructing dimensionality disagreements.

Another framework presented in [21] predicts the impactmtfroizations for some objective (e.g., performance,
code size or energy). The framework consists of three tyfe®dels: optimization models, code models and resource
models. By integrating these models, a benefit value is medithat represents the benefit of applying an optimization
in a code context for the objective represented by the ressuMcRAT is the first step towards developing a self-
learning system which would use its past experience in setean optimal loop transformations.

5.1 Automatic Parallelization

Static automatic parallelism extraction have been acli@vehe past [10, 15]. Unfortunately, many parallelization
opportunities could still not be discovered by static as@lyapproach due to lack of information at the source code
level. [18] have used a profiling-based parallelism det@atiethod that enhances static data dependence analysis wit
dynamic information, resulting in larger amounts of paiéim uncovered from sequential programs. Our approach is
also based on profiling-based parallelism detection butércontext of MA\TLAB programming language and within
the constraints of MTLAB parallel loops.

5.2 Adaptive Compilation

Heuristics and statistical methods have already been nsdgtérmining compiler optimization sequences. For exam-
ple, Cooper et. al. [13] developed a technique using gealgarithms to find "good” compiler optimization sequences

for code size reduction. Profile-based techniques havebasn in the past to suggest recompilation with additional
optimizations. Jalapeo JVM [6] uses adaption system thatirmaoke a compiler when profiling data suggests that

recompiling a method with additional optimization will beone beneficial. Our work is a first step towards develop-

ing an adaptive system that applies loop transformatiosedan predicted data from previous execution runs and
profiled information about the programs.

Previously work has been done on JIT compilation fosas. MaJIC [5], combines JIT-compilation with an
offline code cache maintained through speculative conipiladf Matlab code into C/Fortran. It derives the most
benefit from optimizations such as array bounds check relmawva register allocation. Mathworks introducediv
LAB JIT-Accelerator [3], in MATLAB 6.5, that has accelerated the execution oftMAB code. McVM [11,12] is
also an effort towards JIT compilation for MLAB, it uses function specializations based on run-time typeneif
arguments. McVM(JIT) has shown performance speed-upsisigeliaTLAB for some of our benchmarks. Mckr,
the framework presented in this paper uses profiled progeatafes and heuristically determines loop bounds ranges
to generate specialized versions of loops in the program.
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6 Conclusions and Future Work

In this paper, we have described a new framework, MaF which uses profile-based training runs to collect infor-
mation about loop bounds and ranges, and then applies aeatiggtor to estimate which ranges are most important.
Specialized versions of the loops are then generated for gadicated range. The generatedmaB code can be
run on any MATLAB virtual machine or interpreter.

Results obtained on four execution engines (Matlab, GNW@GtMcVM(JIT) and McVM(interpreter) suggest
that the impact of different loop transformations on diéfierloop bounds is different and also depends on the executio
engine. We were somewhat surprised that loop reversal ihsdaeful for several execution engines, especially on
large ranges. Although the tool detected quite a few pdraiteos and transformed them to AlLAB’s par f or
construct, the execution benefit was very limited and samegivery detrimental. Thus, our McJIT compiler will
likely support a different parallel implementation whichslower overheads.

Although McH_AT is already a useful stand-alone tool, in our overall plag & preliminary step towards develop-
ing a self-learning system that will be part of McJIT and wheill decide on whether to apply a loop transformation
or not depending on the benefits that the system has seen pasfie Our initial exploratory experiments validate
that different loop transformations are beneficial for eliént ranges. Future work will focus on extracting more in-
formation about the program features from profiling, manitay a mapping between loop bounds, program features
and effective loop transformations and making use of pgs¢rience to make future decisions on whether to apply
transformations or not.
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