
McGill University

School of Computer Science

Sable Research Group

McFLAT: A Profile-based Framework for MATLAB Loop
Analysis and Transformations

Sable Technical Report No. 2010-6

Amina Aslam and Laurie Hendren

July 19, 2010

w w w . s a b l e . m c g i l l . c a



Contents

1 Introduction 3

2 Overview of Our Approach 3

3 Important Components of McFLAT 5

3.1 Instrumenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 5

3.2 Range Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 5

3.3 Dependence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 5

3.4 Loop Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 7

3.5 Parallelism Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 7

3.6 Current Limitations of McFLAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Experimental Results 8

4.1 Benchmarks and Static Information . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 8

4.2 Performance Study for Standard Loop Transformations . .. . . . . . . . . . . . . . . . . . . . . . . 8

4.3 Performance study for Parallel For Loops . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 11

5 Related Work 13

5.1 Automatic Parallelization . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 13

5.2 Adaptive Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 13

6 Conclusions and Future Work 14

1



List of Figures

1 Structure of the McFLAT Framework. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 4

2 Pictorial Example of Ranges and Subranges . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 6

List of Tables

I Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 8

II Mathworks’ MATLAB Execution Times and Speedups . . . . . . . . . . . . . . . . . . . . . . . . . 9

III Octave Execution Times and Speedups . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 10

IV McVM Execution Times and Speedups . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 10

V Mathworks’ MATLAB Execution Times and Speedups with Parallel Loops . . . . . . . . .. . . . . . 12

2



Abstract
Parallelization and optimization of the MATLAB programming language presents several challenges due to the dy-

namic nature of MATLAB . Since MATLAB does not have static type declarations, neither the shape and size of arrays,
nor the loop bounds are known at compile-time. This means that many standard array dependence tests and associated
transformations cannot be applied straight-forwardly. Onthe other hand, many MATLAB programs operate on arrays
using loops and thus are ideal candidates for loop transformations and possibly loop vectorization/parallelization.

This paper presents a new framework, McFLAT , which uses profile-based training runs to determine likelyloop-
bounds ranges for which specialized versions of the loops may be generated. The main idea is to collect information
about observed loop bounds and hot loops using training datawhich is then used to heuristically decide upon which
loops and which ranges are worth specializing using a variety of loop transformations.

Our McFLAT framework has been implemented as part of the McLAB extensible compiler toolkit. Currently,
McFLAT , is used to automatically transform ordinary MATLAB code into specialized MATLAB code with transfor-
mations applied to it. This specialized code can be executedon any MATLAB system, and we report results for four
execution engines, Mathwork’s proprietary MATLAB system, the GNU Octave open-source interpreter, McLAB ’s
McVM interpreter and the McVM JIT. For several benchmarks, we observed significant speedups for the specialized
versions, and noted that loop transformations had different impacts depending on the loop range and execution engine.

1 Introduction

MATLAB is an important programming language for scientists and engineers [16]. Although the dynamic nature and
lack of static type declarations makes it easy to define programs, MATLAB programs are often difficult to optimize and
parallelize. The McLAB system [2] is being defined to provide an open and extensible optimizing and parallelizing
compiler and virtual machine for MATLAB and extensions of MATLAB such as ASPECTMATLAB [7]. As an important
part of McLAB, we are developing a framework for loop dependence tests andloop transformations, McFLAT , which
is the topic of this paper.

Due to the dynamic nature of MATLAB , there is very little static information about array dimensions and loop
bounds. Furthermore, many of the scientific codes written inMATLAB can be applied to very different sized data sets.
Thus, our design of McFLAT is based on a profiling phase which collects information about loop bounds over many
different runs. We then have a heuristic engine which identifies important loop bound ranges and then a specializer
which produces specialized code for each important range. The specializer applies loop dependence tests and loop
transformations specific to the input range. Currently, foreach important range, we exhaustively generate all legal
specializations, but the ultimate goal is to combine this framework with a machine learning approach which will
automatically generate a good specialization for the givenrange.

This paper describes our initial design and implementationof McFLAT and provides some exploratory experi-
mental data obtained by using McFLAT to generate different versions of code which we execute on four different
systems, Mathworks’ MATLAB implementation (which includes a JIT), the GNU Octave open-source interepreter [1],
our McVM interpreter and our McVM JIT [12]. Interestingly, this shows that different optimizations are beneficial for
different ranges and on different MATLAB execution engines. This implies that specialization for both the range and
intended execution engine is a good approach in the context of M ATLAB .

The remainder of this paper is organized as follows. In Section 2 we give a high-level view of McFLAT , and in
Section 3 we provide more details of each important component. We apply our framework to a selection of benchmarks
and report on the experimental results in Section 4. Finally, we discuss related work in Section 5 and conclude in
Section 6.

2 Overview of Our Approach

The overall structure of the McFLAT framework is outlined in Figure 1. Our ultimate goal is to embed this framework
in our McJIT system, however currently it is a stand-alone source-to-source framework which uses the McLAB front-
end. The user provides both the MATLAB program which they wish to optimize and a collection of representative
inputs (top of Figure 1). The output of the system is a collection of specialized programs (bottom of Figure 1),
where each specialized program has a different set of transformations applied. The system also outputs a dependence
summary for each loop, which is useful for compiler developers.
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Figure 1: Structure of the McFLAT Framework.
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The design of the system is centered around the idea that a MATLAB program is likely to be used on very different
sized inputs, and hence at run-time loops will have very different loop bounds. Thus, our objective is to find important
ranges for each loop nest, and to specialize the code for those ranges. Knowing the ranges for each specialization also
enables us to use very fast and simple dependence testers.

The important phases of McFLAT , as illustrated in Figure 1, are theInstrumenter, which injects the profiling code,
theRange Estimatorwhich decides which ranges are important, and theDependence Analyzer and Loop Transformer
Engine. In the next section we look at each of these components in more detail.

3 Important Components of McFLAT

In this section we provide an overview of the key components of our McFLAT framework, and we briefly discuss
parallel loop detection and some current limitations of theframework.

3.1 Instrumenter

As illustrated in the phase labeledInstrument and Profile in Figure 1, theInstrumentercomponent is used to auto-
matically inject instrumentation and profiling code into a MATLAB source file. This injection is done on the high-level
structured IR produced by the McLAB front-end. In particular, we inject instrumentation to associate a unique loop
number to each loop, and we inject instrumentation to gather, for each loop, the lower bound of the iteration, the loop
increment, the upper bound of the iteration, the nesting level of the loop, the time spent executing the loop, and a list
of variables that are written to in the loop body.

The MATLAB program resulting from this instrumentation is functionally equivalent to the original code, but emits
additional information that generates training data required for the next phase.

When the instrumented program is executed using MATLAB virtual machine, the profile information is written to
an .xml file. This .xml file is persistent, and so multiple runscan be made, and each run will add new information to
the .xml file. The loop profiling information .xml file is then used as an input to the next component.

3.2 Range Estimator

TheRange Estimatoris the first important component of the main part of McFLAT , theAnalysis and Transforma-
tions phase in Figure 1. The Range Estimator reads the loop profiling information and determines which are the
important ranges for each loop. The important ranges are identified using Algorithm 1. The input to this algorithm
is a hash table containing all the observed values for all theloops and the output is a list of important ranges. The
basic idea is that for each loop, we extract the observed values for that loop, partition the value space into regions and
subregions, and then identify subregions which contain more values than a threshold.

We determine the regions and subregions as illustrated in Figure 2. The regions are powers of 10, starting with the
largest power of 10 that is less than the smallest observed value, and ending with the smallest power of 10 that is greater
than the highest observed value. For example, if the observed upper bounds were in the range 120 to 80000, then we
would choose regions of size 100, 1000, 10000 and 100000. Each region is further subdivided into 10 subregions.
A subregion is considered important if the number of observed values are above a threshold, which can be set by the
user. For our experiments we used a threshold of 30 % . When an important region is identified, the the maximum
observed value from the region is added to the list of important ranges.

3.3 Dependence Analysis

During this phase, McFLAT calculates dependences between all the statements in the loop body against all the pre-
dicted important ranges for that loop. It maintains variousdata structures supporting dependence analysis. This
information is used in subsequent loop transformation phases.

The data dependence testing problem is that of determining whether two references to the same array within a nest
of loops may reference to the same element of that array [4,20].
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Algorithm 1 Algorithm for range estimation
Data Items
H (K,V) : Hash table with loop numbers as keys and list of observed values
Procedure processLoopData(LoopID)
l ← lookup(LoopID, H)// get all observed values for loop with LoopID
sort(l)
importantRanges← empty
R← computeRegions(min(l), max(l))
// for each large region
for all r in R do

// for each subregion (divide R into 10 equal parts)
for all sR in Rdo

if numInRegion(l,sR)≥ thresholdthen
PredVal←maxval(sR)
add PredVal to importantRanges

end if
end for

end for
return(importantRanges)

1000−10000

Region Observed values arranged in sub−regions

1         100    200      300     400      500      600    700    800     900    1000

1000     2000   3000    4000   5000    6000    7000     8000     9000   10000

100−1000

Figure 2: Pictorial Example of Ranges and Subranges
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Since we have identified the upper loop bounds via our profiling, we have chosen very simple and efficient de-
pendence testers: theextended GCD testand thesingle variable per constraint test. Currently, we have found these
sufficient for our small benchmarks, but we can easily add furthers tests as needed.

3.4 Loop Transformations

In our framework programmers can either suggest the type of transformation that they need to apply through optional
loop annotations, or it will automatically determine and apply a transformation or a combination of transformations
which are legal for a loop.

McFLAT implements following loop transformations that have been shown to be useful for two important goals par-
allelism and efficient use of memory hierarchy [14]:loop interchangeandloop reversal. For automatic detection and
application of above mentioned loop transformations, we use the unimodular transformation model presented in [19].
Loop interchange and reversal are modeled as elementary matrix transformations, combination of these transforma-
tions can simply be represented as product of elementary transformation matrices. An elementary transformation or a
compound transformation is considered to be legal if the transformed distance vectors are lexicographically positive.

Apart from automatically testing the legality of loop interchange and reversal, our framework supports a larger set
of transformations which can be specified by the user. This allows us to use our system as a test bed for programmers
with which they can suggest different transformations and observe the effect of different transformations on different
loops. Programmers just have to annotate the loop body with the type of transformation that they need to apply on the
loop. Our framework checks for the presence of annotations,if a loop annotation is present it computes the dependence
information using the predicted loop bounds for that loop and applies the transformations if there is no dependency
between the loop statements. The current set of transformations supported by annotations is:loop fission, loop fusion,
loop interchangeandloop reversal.

3.5 Parallelism Detection

Efficient parallelization of a sequential program is a challenging task. Currently our McFLAT framework automat-
ically detects whether afor loop can be automatically converted to aparfor loop or not. The framework performs
parallelization test on the loops based on the dependence information calculated in dependence analysis and instru-
mentation phase. A loop is classified as a parallel loop according to MATLAB ’s semantics [16], since the generated
code is targeted for MATLAB system. Thus, a loop is classified as a parallel for-loop if itsatisfies the following
conditions.

• There should be no flow dependency between the same array access within the loop body. i.e.Distance vectors
for all the same array accesses should be zero.

• Within the list of indices for the variable, exactly one index involves the loop variable

• Other variables used with loop index variable to index an array should remain constant over the entire execution
of the loop

• Loop index variables must have consecutive increasing integers

3.6 Current Limitations of Mc FLAT

At present, our framework implements a limited set of loop transformations. It only handles perfectly nested loops
which have affine accesses and whose dependences can be summarized by distance vectors. As we develop the
framework we will add further dependence tests and transformations, as well as transformations to enable more paral-
lelization. However, since we also wish to put this framework into our JIT compiler, we must be careful not to include
overly expensive analyses.
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4 Experimental Results

In this section we demonstrate the use of McFLAT through two exploratory performance studies on a set of MATLAB

benchmarks. Our ultimate goal is to integrate McFLAT with a machine learning approach, however these example
studies provide some interesting initial data. The first study examines performance and speedups of transformed
programs, applying our dependence testers and standard loop transformations for a variety of input ranges. The
second study looks at the performance of benchmarks when we automatically introduceparfor constructs.

4.1 Benchmarks and Static Information

Table I summarizes our collection of 10 benchmarks, taken from the McLab and University of Stuttgart benchmark
suites. These benchmarks have a very modest size, but yet perform interesting calculations and demonstrate some
interesting behaviours. For each benchmark we give the name, description, source of the benchmark, the number of
functions, number of loop nests, number of loops that can be automatically converted to parallel for loops.

Benchmark Source of # Lines # # # Par. Benchmark
Name Benchmark Code Func. Loops Loops Description

Crni McLab 65 2 4 1 Finds the
Benchmarks Crank-Nicholoson Sol.

Mbrt McLab 26 2 1 0 Computes mandelbrot set.
Benchmarks

Fiff McLab 40 1 2 0 Finds the finite-difference solution
Benchmarks to the wave equation.

Hnormal McLab 30 1 1 1 Normalises array of homogeneous coordinates.
Benchmarks

Nb1d McLab 73 1 1 0 Simulates the gravitational
Benchmarks movement of a set of objects.

Interpol Uni of Stutt 187 5 5 0 Compares the stability
and complexity of Lagrange interpolation.

Lagrcheb Uni of Stutt 70 1 2 2 Computes Lagrangian and Chebyshev
polynomial for comparison.

Fourier Uni of Stutt 81 3 3 2 Compute the Fourier transform
with the trapezoidal integration rule.

Linear Uni of Stutt 56 1 2 1 Computes the linear iterator.
EigenValue Uni of Stutt 50 2 1 0 Computes the eigenvalues

of the transition matrix.

Table I: Benchmarks

4.2 Performance Study for Standard Loop Transformations

For our initial study, we ran the benchmarks on an AMD Athlon™64 X2 Dual Core Processor 3800+, 4GB RAM
computer running Linux operating system; GNU Octave, version 3.2.4; MATLAB , version 7.9.0.529 (R2009b) and
McVM/McJIT, version 0.5.

For each benchmark we ran a number of training runs through the instrumenter and profiler and then we used our
dependence analyzer and loop transformer to generate a set of output files, one output file for each combination of
possible transformations. For example, if the file had two loops, and loop reversal could be applied to both loops, then
we would produce four different output files corresponding to: (1) no reversals, (2) reversing only loop 1, (3) reversing
only loop 2, and (4) reversing both loops.
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Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % Speedup Time % Speedup Time % Speedup

Crni N 60ms 3.41s
R 60ms 0.0 % 3.21s 5.8 %

Mbrt N 1.91s 9.40s
I 1.98s -3.6 % 9.55s -1.6%
R 1.91s 0.0 % 9.25s 1.5%
(I+R) 1.97s -3.4% 9.32s 0.8%

Fiff NN 400ms 880ms
RN 405ms -1.25% 830ms 5.6%

Hnormal N 1.85s 4.52s
R 1.84s 0.5% 4.48s 0.8%

Nb1d N 40ms 2.53s
Interpol N 44.70s 60.35s
Lagrcheb NN 140ms 280ms 450ms

RR 138ms 1.4% 270ms 3.5% 420ms 6.6%
RN 143ms -2.1% 280ms 0.0% 450ms 0.0%
NR 143ms -2.1% 280ms 0.0% 430ms 4.4%

Fourier NNN 50ms 1.31s
FN 40ms 20.0% 1.49s -13.7%
RRN 50ms 0.0% 1.25s 4.5%
(F+R)N 60ms -20.0% 1.31s 0.0%
RNN 50ms 0.0% 1.21s 7.6%
NRN 50ms 0.0% 1.25s 4.5%

Linear NN 336ms 640ms 2.60s
IN 566ms -68.4% 890ms -39.0% 3.67s -38.4%
IR 610ms -81.5% 850ms -32.8% 3.42s -31.5%
NR 320ms 4.7% 600ms 6.2% 2.51s 3.4%

EigenValue N 80ms 310ms 1.10s
I 100ms -25.0% 370ms -19.3% 1.18s -7.27%
R 90ms -12.5% 290ms 6.4% 1.10s 0.0%
(I+R) 90ms -12.5% 280ms 9.6% 1.08s 1.81%

Table II: Mathworks’ MATLAB Execution Times and Speedups
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Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % Speedup Time % Speedup Time % Speedup

Crni N 5.46s 1102s
R 5.46s 0 % 1101s 0.09%

Mbrt N 289.8s 2000s
I 300s -3.5 % 2000s 0%
R 289.8s 0 % 2000s 0%
(I+R) 300s -3.5% 2000s 0%

Fiff NN 6.44s 251s
RN 6.41s 0.46% 253s -0.7%

Hnormal N 7.34s 13.4s
R 7.48s -1.9% 13.6s -1.4%

Nb1d N 2.56s 7.89s
Interpol N 3524s 5238s
Lagrcheb NN 630ms 1.28s 1.95s

RR 630ms 0% 1.27s 0.7% 1.94s 0.51%
RN 630ms 0% 1.27s 0.7% 1.94s 0.51%
NR 630ms 0% 1.27s 0.7% 1.94s 0.51%

Fourier NNN 120ms 4.24s
FFN 120ms 0% 4.28s -0.9%
RRN 120ms 0% 4.31s -1.6%
FRN 120ms 0% 4.19s 1.1%
RNN 110ms 8.3% 4.26s -0.4%
NRN 120ms 0% 4.25s -0.2%

Linear NN 6.58s 352s 1496s
IN 6.65s -1.0% 381s -8.2% 1443s 3.5%
IR 6.65s -1.0% 382s -8.5% 1422s 4.9%
NR 6.56s 0.3% 369s -4.8% 1389s 7.1%

EigenValue N 240ms 106s 460s
I 230ms 4.1% 127s -19.8% 502s -9.1%
R 230ms 4.1% 116s -9.4% 486s -5.6%
(I+R) 230ms 4.1% 126s -18.8% 507s -10.2%

Table III: Octave Execution Times and Speedups

McVm(JIT) McVM(Interpreter)
Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 1 Pred. Range 2
Name Applied Time % Speedup Time % Speedup Time %Speedup Time % Speedup
Crni N 4.00s 1074s 7.12s 1386.2s

R 4.00s 0.0 % 820s 23.6 % 6.35s 10.8 % 1341.5 3.2 %
Mbrt N 98.37s 675s 384s 2491s

I 101s -3.3 % 714s -5.8% 344s 10.4 % 2286s 8.2%
R 110s -12.6 % 781s -15.6% 342s 10.9 % 2370s 4.8%
(I+R) 106s -8.16% 738s -9.35% 346s 9.8% 2375s 4.6%

Fiff NN 260ms 500ms 7.38s 7.46s
RN 260ms -1.95% 460ms 8% 6.95s 5.8% 7.25s 2.8%

Hnormal N 5.00s 8.93s 7.23s 11.6s
R 4.96s 0.8% 8.05s 10.9% 7.11s 1.6% 12.24s -5.5%

Nb1d N 850ms 4.10s 1.41s 4.24s

Table IV: McVM Execution Times and Speedups
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Each output file has a specialized section for each predictedimportant range, plus a dynamic guard around each
specialized section to ensure that the correct version is run for a given input.

We report the results for four different MATLAB execution engines, the Mathworks’ MATLAB (which contains a
JIT) (Table II), the GNU Octave interpreter (Table III), theMcVM interepreter, and the McVM JIT (McJIT) (Table IV).

In each table, the column labeledTrans. Appliedindicates which transformations are applied to the loops inthe
benchmark, whereN indicates that no transformation is applied,R indicates Loop Reversal is applied,F represents
Loop fusion andI is representative of Loop Interchange.NN indicates that there are two loops in the benchmark and
no transformation is applied on any of them. Similarly,IR shows there are two loops, Interchange is applied on the first
loop and reversal on the second loop.I+R indicates one loop nest on which interchange is applied and then reversal.

Depending on the benchmark we had two or three different ranges that were identified by the range predictor. The
ranges appear in the tables in increasing value, soPred. Range 1corresponds to the smallest range andPred Range 3
corresponds to the largest range. We chose one input for eachidentified range and timed it for each loop transformation
version. In each table we give the speedup (positive) or slowdown (negative) achieved as compared to the version with
no transformations. We indicate in bold the version that gave the best performance for each range.

Let us consider first the execution time for Mathworks’ MATLAB , as given in Table II. Somewhat surprisingly to
us, it turns out that loop reversal alone always gives performance speed-up on the higher ranges. Whereas, on lower
ranges there is either no speed up or performance de-gradation in some of the benchmarks. This implies that it may be
worth having a specialized version of the loops, with important loops reversed for larger data ranges.

MATLAB accesses arrays in column-major order, and MATLAB programmers normally write their loops in that
fashion, so always applying loop interchange degrades the performance of the program. Performance degrades more
for loops which involve array dependencies. However, the degradation impact is lower at higher ranges perhaps due
to cache misses in both the cases, that is transformed and original loop. Loop interchange degradation impact is less
for loops that invoke a function whose value is written to an array, for example, Mbrt.

Loop fusion was only applied once (in Fourier) where gives a performance speed-up on lower ranges. However,
as the loop bounds and accessed array get bigger then performance degrades.

Now consider the execution time for Octave, given in Table III. Octave is a pure interpreter and you will note
that the absolute execution times are often an order of magnitude slower than Mathworks’ system, which has a JIT
accelerator. The applied transformations also seem to havevery little impact on performance, particularly on the lower
ranges. For higher ranges, no fixed behavior is observed, forsome benchmarks there is a performance improvement
whereas for others performance degrades.

We were also interested in how the transformations would impact our group’s McVM, both in pure interpreter
mode, and with the JIT. We couldn’t run all the benchmarks on McVM because the benchmarks use some library
functions which are not currently supported. However, Table IV lists the results on the subset of benchmarks currently
supported. Once again loop reversal can make a significant impact on the larger ranges for the JIT, and actually also
seems beneficial for the McVM(interpreter).

4.3 Performance study for Parallel For Loops

In Table V we report the execution time and speedups with MATLAB ’s parfor looping construct. We ran the
benchmarks on an Intel ™Core(TM) i7 Processor (4 cores), 5.8GB RAM computer running a Linux operating system;
MATLAB , version 7.9.0.529 (R2009b). For these experiments we initialized the MATLAB worker pool to size 4.

The term pN indicates that there is one loop in the benchmark,which is parallelized and no loop transformation
is applied on it. (pF) means two loops are fused and then fusedloop is parallelized. Note that it is not possible to
combine loop reversal and parallelization with the MATLAB parfor construct as the MATLAB specifications require
that the loop index expression must increase.

We have reported execution times of various combinations ofparallel and sequential loops, to study the effect of
parallelizing a loop in the context of MATLAB programming language.

For most of the benchmarks we observed that MATLAB ’s parfor loop does not often give significant performance
benefits, and in some cases causes severe performance degradation. This is likely due to the parallel execution model
supported by MATLAB which requires significant data copying to and from worker threads.
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Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % Speedup Time % Speedup Time % Speedup

Crni N 280ms 13.41s
pN 1.03s -257% 14.20s -5.9%
R 290ms -3.5 % 13.30s 0.8 %

Hnormal N 800ms 1.70s
pN 70.5s -8712 % 71.3s -4094%
R 780ms 2.5% 1.68s 1.1%

Lagrcheb NN 120ms 200ms 280ms
(pN)(pN) 140ms -16.6% 180ms 10.0% 250ms 10.7%
N(pN) 110ms 8.3% 180ms 10.0% 250ms 10.7%
(pN)N 120ms 0.0% 180ms 10.0% 260ms 7.1%
R(pN) 120ms 0.0% 180ms 10.0% 250ms 10.7%
(pN)R 120ms 0.0% 180ms 10.0% 250ms 10.7%
RR 120ms 0.0% 200ms 0.0% 270ms 3.5%
RN 130ms -8.3% 200ms 0.0% 270ms 3.5%
NR 130ms -8.3% 200ms 0.0% 270ms 3.5%

Fourier NNN 170ms 680ms
(pN)NN 50ms 70% 720ms -5.8%
(pN)(pN)N 200ms -17.6% 720ms -5.8%
N(pN)N 50ms 70% 720s -5.8%
(pF)N 50ms 70% 720ms -5.8%
R(pN)N 50ms 70% 710ms -4.4%
(pN)RN 50ms 70% 680ms 0.0%
FN 20ms 88.2% 690ms -1.4%
RRN 170ms 0.0% 680ms 0.0%
(F+R)N 170ms 0.0% 680ms 0.0%
RNN 170ms 0.0% 680ms 0.0%
NRN 170ms 0.0% 680ms 0.0%

Linear NN 150ms 7.40s 29.8s
N(pN) 150ms 0.0% 7.20s 2.7% 30.2s -1.3%
I(pN) 390ms 0.0% 10.30s -39.1% 40.2s -34.8%
IN 370ms -146.6% 10.30s -39.1% 37.6s -26.1%
IR 370ms -146.6% 10.30s -39.1% 37.6s -26.1%
NR 160ms -6.6% 7.20s 2.7% 29.4s 1.34%

Table V: Mathworks’ MATLAB Execution Times and Speedups with Parallel Loops
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5 Related Work

Of course there is a rich body of research on the topics of dependence analysis, loop transformations and paralleliza-
tion. In our related work we attempt to cover a representative subset that, to the best of our knowledge, covers the
prior work in the area of our paper.

Banerjee [8], Wolfe and Lam [19,20] have modeled a subset of loop transformations like loop reversal, loop inter-
change and skewing as unimodular matrices and have devised tests to figure out the legality of these transformations.
Our framework also uses unimodular transformations model to apply and test the legality of a loop transformation or
a combination of loop transformations, but our intent is to specialize for different predicted loop bounds.

Quantitative models based on memory cost analysis have beenused to select optimal loop transformations [17].
Memory cost analysis chooses an optimal transformation based on the number of distinct cache lines and the number
of distinct pages accessed by the iterations of a loop. Our framework is a preliminary step towards building a learn-
ing system that selects optimal transformations based on loop bounds and profiled program features that have been
beneficial in the past for a transformation or a combination of transformations.

A dimension abstraction approach for vectorization in MATLAB presented in [9] discovers whether dimensions
of an expression will be legal if vectorization occurs. The dimensionality abstraction provides a representation of
the shape of an expression if a loop containing the expression was vectorized. To improve vectorization in cases
which have incompatible vectorized dimensionality, a looppattern database is provided which is capable of resolving
obstructing dimensionality disagreements.

Another framework presented in [21] predicts the impact of optimizations for some objective (e.g., performance,
code size or energy). The framework consists of three types of models: optimization models, code models and resource
models. By integrating these models, a benefit value is produced that represents the benefit of applying an optimization
in a code context for the objective represented by the resources. McFLAT is the first step towards developing a self-
learning system which would use its past experience in selecting an optimal loop transformations.

5.1 Automatic Parallelization

Static automatic parallelism extraction have been achieved in the past [10, 15]. Unfortunately, many parallelization
opportunities could still not be discovered by static analysis approach due to lack of information at the source code
level. [18] have used a profiling-based parallelism detection method that enhances static data dependence analysis with
dynamic information, resulting in larger amounts of parallelism uncovered from sequential programs. Our approach is
also based on profiling-based parallelism detection but in the context of MATLAB programming language and within
the constraints of MATLAB parallel loops.

5.2 Adaptive Compilation

Heuristics and statistical methods have already been used in determining compiler optimization sequences. For exam-
ple, Cooper et. al. [13] developed a technique using geneticalgorithms to find ”good” compiler optimization sequences
for code size reduction. Profile-based techniques have alsobeen in the past to suggest recompilation with additional
optimizations. Jalapeo JVM [6] uses adaption system that can invoke a compiler when profiling data suggests that
recompiling a method with additional optimization will be more beneficial. Our work is a first step towards develop-
ing an adaptive system that applies loop transformations based on predicted data from previous execution runs and
profiled information about the programs.

Previously work has been done on JIT compilation for MATLAB . MaJIC [5], combines JIT-compilation with an
offline code cache maintained through speculative compilation of Matlab code into C/Fortran. It derives the most
benefit from optimizations such as array bounds check removals and register allocation. Mathworks introduced MAT-
LAB JIT-Accelerator [3], in MATLAB 6.5, that has accelerated the execution of MATLAB code. McVM [11, 12] is
also an effort towards JIT compilation for MATLAB , it uses function specializations based on run-time type oftheir
arguments. McVM(JIT) has shown performance speed-ups against MATLAB for some of our benchmarks. McFLAT ,
the framework presented in this paper uses profiled program features and heuristically determines loop bounds ranges
to generate specialized versions of loops in the program.
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6 Conclusions and Future Work

In this paper, we have described a new framework, McFLAT , which uses profile-based training runs to collect infor-
mation about loop bounds and ranges, and then applies a rangeestimator to estimate which ranges are most important.
Specialized versions of the loops are then generated for each predicated range. The generated MATLAB code can be
run on any MATLAB virtual machine or interpreter.

Results obtained on four execution engines (Matlab, GNU Octave, McVM(JIT) and McVM(interpreter) suggest
that the impact of different loop transformations on different loop bounds is different and also depends on the execution
engine. We were somewhat surprised that loop reversal was fairly useful for several execution engines, especially on
large ranges. Although the tool detected quite a few parallel loops and transformed them to MATLAB ’s parfor
construct, the execution benefit was very limited and sometimes very detrimental. Thus, our McJIT compiler will
likely support a different parallel implementation which has lower overheads.

Although McFLAT is already a useful stand-alone tool, in our overall plan it is a preliminary step towards develop-
ing a self-learning system that will be part of McJIT and which will decide on whether to apply a loop transformation
or not depending on the benefits that the system has seen in thepast. Our initial exploratory experiments validate
that different loop transformations are beneficial for different ranges. Future work will focus on extracting more in-
formation about the program features from profiling, maintaining a mapping between loop bounds, program features
and effective loop transformations and making use of past experience to make future decisions on whether to apply
transformations or not.
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