McGill University
School of Computer Science
Sable Research Group

The Importance of Being Extendable, A Crucial Extension for
Aspect-Matlab

Sable Technical Report No. 2010-7

Olivier Savary B., McGill University
Prof. Laurie J. Hendren, McGill University

June 29, 2011

www.sable.mcgill. ca



Contents

1 Introduction

1.1 Acknowledgment . .. . ..

2 Transformations

2.1 End ... e e
2.2 clear . ... e

3 Patterns
3.1 Negative Matching . . . . . . . . .. .
3.2 Operator pattern . . . . . . . . . .. e
3.2.1 Modification and Addition to the Language Definition . . . . . .. ... ...
3.2.2 Simplification and weaving . . . . . .. ..o

3.2.3 Scientific Use Cases

4 Conclusions and Future Work

10

12



List of Figures

© 00 N O Ot e W N

[ w—y
= O

Example of "end” transformation . . . . .
Stages in the transformation of ”clear” . .
Example of ”clear” transformation

Grammar rule for '~ . ... ... ...
Example of uses for the negated patterns .
Example of uses for operator patterns

Extract from bmi.m, MATLAB code . . . .
Example of an aspect 1, AspectMatlab code
Extract from bmi.m, Weaved Matlab code

Example of an aspect 2, AspectMatlab code

Extract from bmi.m, Weaved Matlab code

List of Tables

1
II

MATLAB Arithmetic Operators

Context Selectors with respect to Join Points



Abstract

AspectMatlab is an aspect-oriented extension of the MATLAB programming language. In this
paper we present some important extensions to the original implementation of AspectMatlab. These
extensions enhance the expressiveness of the aspect pattern definition and widen support to certain
MATLAB native functions. Of particular importance are the new operator patterns, which permit
matching on binary operators such as “*” and “+”. Correct support for the MATLAB “clear”
command and the “end” expression were also added. Finally, we documented previously hidden
features, most notably a negation operator on pattern. This new extended version of MATLAB
thus supports important added functionality.



1 Introduction

Aspect-Oriented programming is a paradigm based around a desire to separate the core of a program
from its supporting features. These secondary features are encapsulated in functions in an aspect-
source file, alongside with patterns defining the positions(”before”,”around” or ”after” nearly any
expression) at which these functions should act in the source-code. Contrary to object-oriented
programming, it demands little or no modification to the source-code, encapsulating its extension
and other crosscutting concerns into another file. For that we felt it was a particularly relevant
language extension to develop for MATLAB, given that scientific programmers often reuse MATLAB
code by making small modifications. Another strong reason motivating this was its usefulness in
debugging and profiling, when the programmer wants to get information about, for example, the

program flow or the value of a variable throughout its execution.

From these concerns was born AspectMatlab, an aspect-oriented extension to the programming
language MATLAB, developed as part of the McLab project. It was developed by T. Aslaam, as part
of his Master Thesis at McGill, and was released as a compiler (Aspect-Matlab Compiler) in 2010 [1].
While this first release already had an extensive portion of the MATLAB grammar covered, and did
so while introducing many solutions to Aspect-Oriented Programming in a dynamic language,
certain functionalities required future work. Fortunately, extensibility was of primary concern in
the development of the compiler and of the language, as tools and documentation were in place for
the time when its vanilla coverage of the MATLAB language would not be sufficient for the more
demanding user.

Following the release, it was brought to our attention that a certain number of extensions to the
language itself could facilitate the adoption of the compiler, both by extending the coverage of
the MATLAB language, and by providing useful patterns to our targeted user base, the scientific
programmers.

These extensions can be divided into two categories, the first being rewriting of MATLAB Keywords,
which were omitted in the first release for their lack of consistency when simplified or inlined.
The keyword ”end”, used as an array index, and ”clear”, compilatric nightmare of dynamicity,
are now dealt with dedicated analysis which rewrite portions of the code to accommodate for
MATLAB semantic oddities. Detailed information about these keywords is provided in the section
”Transformations”. The second series of extension is ones made to the language itself, adding two
pattern types to the ones already there, sharpening our ability to create patternmatching-specific
language constructs, with the option to negate a pattern, making it match on every joint point
unmatched by the pattern, and providing ways of matching directly on arithmetic operation by
means of an "op” pattern. Their definition and usage are described in the ”Patterns” section.

This report concludes with a short discussion about our views on languages and compiler extensions.
Throughout the rest of this report, we will refer to T. Aslaam’s Master Thesis ” Aspect-Matlab”,
referenced in [1], as AMC.

1.1  Acknowledgment

Acknowledgment and thanks ought to be given to our research supervisor, Professor Laurie Hen-
dren, for her generosity with her time and knowledge, and for giving us the opportunity to work in
her research laboratory over the course of the summer. Another thanks is given to Toheed Aslaam,
for his guidance in finding relevant extensions to work on, and for his inspirational work as the



main developer of the Aspect-Matlab Compiler. Finally, we would like to thanks Julie Langmann
and Anton Dubrau for their advices on the writing and correction of this report.

2 Transformations

The following rewriting analysis were motivated, as indicated earlier in this report, by the absence,
in the initial release of AMC, of support for certain keywords in MATLAB, either by lack of static
information about the information they convey, as it is the case with the ”end” keyword, or by their
potential to break the weaved code, such as ”clear”, which can remove the elements introduced
by AspectMatlab from the workspace. Implementing those new features facilitates the adoption of
AspectMatlab by making it more respectful of MATLAB’s syntax.

2.1 End

The keyword “end” is used in MATLAB both to terminate a block of code, such as in an if-then-else
construct, and to refer to the last element of an array. In the latter, "end” is used as an index
in an array access, and is equivalent to referring to the last element of the dimension it is written
in. In the case where the keyword is embedded in multiple array access and function calls, ”end”
refers to the last element of the accessed row in the closest enclosing array. Assuming a workspace
containing a function called foo and two arrays, A, of size 2x2(accessed in the example as a 4x1
via linear indexing) and B, of size 3x3, we can say that the following two are equivalent. The first
end refers to the last row of B, that is, the 3rd row. The second end refers to the last element
of A(accessed, as mentioned earlier, as a 4x1 array). The last end is the last element of the 3rd
dimension of B, accessed as a 3x3x1 array.

B(end,A(foo(end)),end);
B(3,A(foo(4),1);

Two difficulties arise from the unparameterized nature of the call to "end”. First, certain simpli-
fications, in the initial release of Aspect-Matlab, take out the arguments from the call and replace
it by a temporary variable. In such event, end” is pulled out of its enclosing array and loses
its meaning. Fortunately, there exists a parameterized version of ”end”, by use of the function
”builtin”. The first parameter required for ”builtin” is the name of the desired function, ”end”
in our case. The rest of the arguments depend on the desired function, and the builtin version of
end has 3 arguments: the array it is referring to, the position in the array access, and the order
of the array as accessed in the call. When a MATLAB array is indexed with fewer indices than it
has dimensions, the last index linearly accesses all remaining dimensions. Thus, in the previous
example, the two dimensional matrix A can be accessed with one index only, giving access to all
four elements.

Other alternatives, such as replacing "end” with the correct index, or writing a function evaluating
“end” at runtime, that could be included in all AspectMatlab compiled files. The first was rejected
after looking at the accessible information at compile time. Even if we know about an expression
being an array, we might not be certain of its size, as variable are undeclared in MATLAB, and
being morphed to accommodate the assignments to them. Moreover, the speed difference between
”end”, ”builtin-end” and the indices was negligible, there was an significant overhead when we tried



to implement "end” as a function. Therefore, we decided to replace all calls to "end” as an array
index by a call to the parameterized version of the same function.

Using the same workspace as in the previous example, the same code would now look like
B(builtin('end',B,1,3), A(foo(builtin ('end', A ,1,1)), builtin ('end' ,3,3));

The second difficulty comes directly from this solution, where the array enclosing ”end” must be
determined at compile-time. Since MATLAB syntax for function call and array access are similar, it
is sometimes undecidable, with our current analysis, to determine statically if a certain expression
is an array or a function [2] . In the event of enclosed undecidable expressions between the call to
”end” and the outer expressions, a runtime check is used to determine the type of these expressions
inside an if-then-else construct. A temporary variable is initialized inside this construct and replaces
the call to ”end”.

For instance, with a workspace containing an array B, of size 3x3, and two unknown items(variables
or functions), foo and A, the initial

B(end,A(foo(end)),end);

would become

if isvariable (foo)
AM _tempEnd0 = builtin('end' foo,1,1);
elseif isvariable (A)
AM_tempEnd0 = builtin('end',A,1,1);
else
AM _tempEnd0 = builtin('end’,B,2,3);
end
B(builtin('end',B,1,3), A(foo(AM_tempEnd0)),builtin('end',B,3,3));

Figure 1 Example of "end" transformation

Such is the current state of our "end” rewrite. All rewritten ”end” can be simplified while conserving
all information related to its use but are kept in their initial position whenever possible, to favor
readability.

2.2 clear

The keyword ”clear” is used in MATLAB to remove items, such as object handles, loaded functions or
instantiated variables, from the workspace [4]. It can be presented in the source-code with different
arguments indicating what item or group of items should be cleared or alone, in which case it will
remove all the items in the workspace. AspectMatlab adds a certain number of variables and objects
to the workspace to keep track of certain dynamic proprieties of a program at runtime, and to be
able to call the method contained in the aspect file. Because of the vulnerability of these variables
to ”clear”, and of their importance in the correct execution of a program, misuses of ”clear” could
break the weaved program. To protect these AspectMatlab-specific runtime variables, we wrote an
analysis that determines which items are susceptible of being removed from the workspace by the
call to ”clear” It then generates and weaves in codes that keeps these runtime variables alive while
being semantically equivalent to the ”clear” in the source-code.



This analysis takes place before weaving aspects into the parsed source-code. Once a ”clear”
statement is found we weave code that protects AspectMatlab global or local variables based on
estimation which items are to be cleared. Difficulties arise from the possibility of using string
literals as an argument, which can be created and filled at runtime. In these situations we protect
all AspectMatlab items as if the call cleared all workspace items.

The protection itself is based on different levels of environment, where we promote and demote
items to ensure that they are not to be affected by clear at this level. These items are then restored
to their initial position, after ”clear” has been applied. Calls that clear multiple levels and types of
items are divided up. While reproducing the same effect, this allows us to weave-in the appropriate
protections in-between calls. All the temporary items created by this analysis, identified with the
usual ”AM” prefix, are then thoroughly cleared, thereby conserving only the items from the source-
code and the normal AspectMatlab ones. As an example, a call to ”clear global” would be dealt
with:

Declaring temporary local variables.

e Assigning the AspectMatlab global variables to their newly-declared, local equivalent.

Adding the statement ”clear(’global’);”

Restoring the AspectMatlab global variables to their previous state using the local copies.

Clearing the temporary local variables

Figure 2 Stages in the transformation of "clear”

The resulting code then follows.

AM_GLOBAL_B = AM_GLOBAL;
clear ('global");

global AM_GLOBAL,;
AM_GLOBAL = AM_GLOBAL_B;
clear (' AM_GLOBAL_B);

Figure 3 Example of "clear” transformation

Despite this not being the most elegant solution, as it adds many lines of code to the already
bloated processed source file, it is simple, and requires no adaptation from the MATLAB user.

3 Patterns

3.1 Negative Matching

The AspectMatlab Compiler was initially released with different combinators such as logical AND(”&”)
and OR( ”|” ) to compound patterns [1] , in addition to the primitive ones such as set and call.
However, we felt that the compiler lacked the negation operator, as seen in other Aspect-Oriented
Languages such as AspectJ [3].



Such an operator makes a pattern match with every join points that wouldn’t have been picked
by the initial pattern. It was determined that this interpretation is favorable to the one where the
pattern matches every join points of the type of the negated pattern, but not matched by it, for it
follow closely the logical definition of negation. We see its use in the definition of complex patterns,
along with compound patterns. The grammar rule for logical negation, as written by T. Aslaam,
is given bellow.

aspect ShadowMatch {
eq NotExpr.ShadowMatch(String target, String pattern, int args, ASTNode jp) {
return !( getOperand().ShadowMatch(target, pattern, args, jp));

}
]
}

Figure 4 Grammar rule for '~'

As shown below, one could define a pattern matching on all calls to the function foo, except those
with 2 arguments:

patterns
callToFoo: call(foo) & ~(foo(*,*));
end

Figure 5 Example of uses for the negated patterns .

Most of the code used to implement negative matching was already present, although undocu-
mented, in the compiler. Our contribution to this task is limited to the activation, debugging and
documentation of the feature. It should be noted that the symbol '~ was used rather than the
more common ! for parsing reasons, ’!” being already used in the header of aspect files and
breaking the pattern construct. Moreover, '~’ is the MATLAB operator for logical negation, in line
with the Principia Mathematica, so that our pattern feels in continuity with MATLAB syntax.

Y

3.2 Operator pattern

T. Aslaam’s AMC memorable chapter ”Conclusions and Future Work” [1] mentions, as possible
improvement to AspectMatlab, patterns cross-cutting on arithmetic operations. As seen in D.3 and
D.4, It was necessary to rewrite all arithmetic operations to their equivalent function forms (for
example ”+” to 7add”), because AspectMatlab had no pattern to match operators. This reduces
the portability of the aspect code, and more generally the usability of the compiler, forcing the user
to manually refactor his source-code. Keeping in mind the goals of ”performance, usefulness and
accessibility” [1], and seeing as many of the scientist use cases shown in it had to be rewritten to
match on the function version of operators, it is clear that the implementation of this pattern was
of foremost importance.



3.2.1 Maodification and Addition to the Language Definition

We added a new primitive pattern, ”op”, which captures join points at arithmetic operations. The
syntax closely follows the canon of AspectMatlab’s release, with a single pattern selector, either a
predefined keyword matching on multiple operators, or an operator itself, enclosed in parenthesis.
As with all other primitive patterns, they can be combined or negated with the appropriate logical
patterns. The following are different examples of operator patterns:

patterns
plusOp : op(+);
timesOp : op (.x)|| op(x)
matrixOp : op(matrix);
allOp : op(all) & ~op(—);
end

Figure 6 Example of uses for operator patterns

MATLAB’s arithmetic operators can be separated in two types, the first being Matrix operations,
"defined by the rules of linear algebra” [5] , and the second being Array operations, ”carried
out element by element” [5] . The keywords "matrix” and ”array” can be used to declare a
pattern matching on all operators of each category. Finally, ”all” match on both Matrix and Array
operation.

[ [ function [ enclosing type ]

+ plus matrix
- minus matrix
* mtimes matrix
K ediv array
/ mdiv matrix
./ ediv array
\ mldiv matrix
A\ eldiv array
A mpow matrix
A epow array

Table | MATLAB Arithmetic Operators

As with the other patterns, we define a number of selectors capturing the context of joint= points,
and reflect them in the actions. The selectors chosen in the action declaration contain information
about the matched operation such as its position in the source-code, the name of its operands, &c.
Below is a list of them, to be read as an addendum to the table ” Context Selectors with respect to
Join Points”, in the introductory thesis behind AspectMatlab. It is similar to the ones defined for
the ”call” pattern, except for the omission of ”obj” to get the function handle.

3.2.2 Simplification and weaving

Once properly matched, we must verify that its position in its parental statement exposes the
weaving point at which we will later weave the action, and, if it is not the case, refactor the code
to make it so. Each binaryExpr has three weaving points, and only appropriate ones are exposed
by our transformations.



I l op

args operand(s)

obj -

new Val -

counter number of arguments(unary or binary op.)
name name of the entity matched
pat name of the pattern matched
line line number in the source code
loc enclosing function/script name
file enclosing file name

aobj -

ainput name of the operand(s)
aoutput -

varargout [ cell array variable used to return data from around action ]

Table Il Context Selectors with respect to Join Points

It is important to note here a change in the flow of the compiler. Where AMC saw all expressions
as ”potential match, [would] there exists a pattern in the pattern list” [1] , and thus exposing all
weaving-point in the case of complex expressions, we delay refactoring at a point after the matching,
exposing only the relevant weaving-points. By limiting the number of transformations and the use
of temporary variables, we maintained the code readability and the form of the arithmetic formula
in the source code.

The implementation of these code refactorings is straightforward: BEFORE weaving-points are
exposed by pulling up expressions under the binaryExpr, where with AFTER weaving-point we do
so with the binaryExpr itself. AROUND are dealt with by simplifying both the binaryExpr and
the expressions under it, so that the effect of replacing it by the action is limited to its own. [1]

The actions are then weaved at their appropriate position, next or onto the matched operator. In
the case of multiple patterns matching at the same join point, the precedence order defined in the
documentation of the initial release [1] is respected, with woven advice appearing in the order they
were defined in the aspect source file.

3.2.3 Scientific Use Cases

Below is included an aspect inspired by the ”unit” aspect , included in AMC as Figure 3.7. It is
present here as a demonstration of simplifications applied on arithmetic operations while using the
AMC operator pattern. In this MATLAB source code, we compute a Quetelet index(bmi) from a
previously defined height in feet and inches, and a weight given in kg.

height = (feet+inches/12)%0.3;

bmi = kg/(height) "2

disp(bmi);

Figure 7 Extract from bmi.m, MATLAB code

10



The following example shows a first application of an aspect, defined using the pattern ”plusOp”,
on "bmi.m”. The division ”inches/12” has been simplified out of its initial position to expose
the "before” pointcut of the addition in "height”. The gain in readability of our just-in-time
simplifications, compared to a naive join points exposure, is clearly visible here, where most of the
arithmetic expression are kept intact.

patterns

plusOp: op(+);
end
actions

act : before plusOp

end

Figure 8 Example of an aspect 1, AspectMatlab code

AM_templ = inches/12;
AM_Global.myAspect.myAspect_act(]...]);
height = (feet + AM_temp1)=0.3;

bmi = kg/(height)"2;

disp(bmi);

Figure 9 Extract from bmi.m, Weaved Matlab code

Similarly to the previous example, this one shows the application of an action, defined using the
pattern ”allOpmDiv”, on "bmi.m”. This action is to be called after each operation, except division.
It matches on the addition in ”"height”, and on the exponentiation in "bmi”, both of which needs
to be simplified to expose the ”after” pointcut.

patterns

allOpmDiv: op(all) & (~op(/) & ~op(x));
end
actions

act : after allOpmDiv

end

Figure 10 Example of an aspect 2, AspectMatlab code

11



AM _templ = feet + inches/12;
\textbf{ AM_Global.myAspect.myAspect_act(][...]);}
height = AM_templ%0.3

AM _temp2 = height "2
AM_Global.myAspect.myAspect_act(]...]);
bmi = kg/AM_temp?2;

disp(bmi);

Figure 11 Extract from bmi.m, Weaved Matlab code

4 Conclusions and Future Work

Following the completion of the noted T. Aslaam‘s Thesis, and the subsequent release of the As-
pectMatlab Compiler, our research project was conceived with the constant attention to the design
choices behind AspectMatlab, so that our extensions do not denature the core of the compiler while
acting on their own, limited, whereabouts.

The code for each extension is comprehensively identified and commented in the compiler source-
code. This notion is perfectly illustrated by our decision to position the transformation on ”end”
and ”clear” as an analysis, directly in the method taking care of the compiler flow, rather than
inlined in the classes of relevant expressions. Doing so, we avoid weakening the core of the compiler
with our optional features, leaving its performance and effects intact. A programmer‘s code often
have a distinct, and unique style. Confusion regarding the effect of a code arises not only for
bad styling and commenting, but also from a poor cohesion due to multiple styles being present
side-by-side. One should use, as much as possible, the tools given by the previous programmer to
interface with his new feature, rather than integrating it in the initial source-code. This cleanness
will benefit future work on the compiler.

Nevertheless, our views on the user-visible part is diametrically opposed, with a desire for our
rewriting to produce code of congruous nature with the previously generated code, for a seamless
AspectMatlab code in the weaved source file. This leaves the end-user with a much more practical
AspectMatlab/ MATLAB distinctive division, in continuity with the previous release. The same
attention motivated the definition of our extensions on pattern, for example by limiting our patterns
on operators to one operator or keyword, leaving the more complex pattern declarations to the
appropriate compounding, in a similar fashion to the previously defined pattern types such as
?call”.

This bring us to the main point of this discussion, and of this report, for the knowledge and
experience brought by this research opportunity offset, by far, our humble contributions. Compilers
are extremely complex programs, often containing thousands of lines of code, and relating to many
fields of computer science. More so, they support an image of a programming language, which
itself evolves and expands throughout new research and desired uses. For that it is essential to
develop tools and mechanics among them in such way where extending them is simple. It can
then follow, whenever it is possible, the evolution of the language it supports, thus extending its

12



lifetime, allowing researchers to concentrate on cutting-edge research in precise areas rather than
on the programming itself.

And for that compiler researchers prefer the more redeeming areas of compiler developments, be
it optimization, analysis, &c, to the contrary of the seemingly repetitiveness and triviality of pro-
gramming the core itself, I've now realized for the first time in my life the vital Importance of Being
Extendable.

References

[1] Toheed Aslaam. Aspectmatlab: An aspect-oriented scientific -programming language. Master’s
thesis, McGill University, February 2010.

[2] Doherty J. Dubrau A. Aslam, T. and L. Hendren. Aspectmatlab: an aspect-oriented scientific
programming language. In AOSD ’10: Proceedings of the 9th International Conference on
Aspect-Oriented Software Development, pages 181-192, New York, NY, USA, 2010. ACM.

[3] AspectJ .  Pointcuts.  http://www.eclipse.org/aspectj/doc/released /progguide/semantics-
pointcuts.html, 2003.

[4] MathWorks. Clear. http://www.mathworks.com/access/helpdesk/help/techdoc/ref -
/clear.html, 2010.

[6] MathWorks. Matrix and array arithmetic. http://www.mathworks.com/access/helpdesk -
/help/techdoc/ref/arithmeticoperators.html, 2010.

13



